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Preface

This project has several parts, of which this book is the fourth one. The first
part deals with measure and integration theory, while part two concerns basic
function spaces (particularly the theory of distributions. Part three is dedicated
to elementary probability (after measure theory), and stochastic ordinary differ-
ential equations are discussed in part five, with a clear emphasis on estimates.
Each part was designed independent (as much as possible) of the others, but it
makes a lot of sense to consider all five parts as a sequence.

This part four begins with a quick recall of basic probability, including con-
ditional expectation, random processes, constructions of probability measures
and ending with short comments on martingale in discrete time, in a way, this
is an enlarged review of part three. Chapter 2 deals with stochastic processes in
continuous times, martingales, Lévy processes, and ending with integer random
measures. In Chapters 3 and 4, we introduce the stochastic calculus, in two
iterations, beginning with stochastic integration and passing through stochas-
tic differentials and ending with stochastic flows. Chapters 5 is more like an
appendix, where Makrov process are discussed in a more ’analysis’ viewpoint,
which ends with a number of useful examples of transition functions.

Most of the style is formal (propositions, theorems, remarks), but there
are instances where a more narrative presentation is used, the purpose being
to force the student to pause and fill-in the details. Practically, there are no
specific section of exercises, giving to the instructor the freedom of choosing
problems from various sources (and according to a particular interest of subjects)
and reinforcing the desired orientation. There is no intention to diminish the
difficulty of the material to put students at ease, on the contrary, all points
presented as blunt as possible, even some times shorten some proofs, but with
appropriate references.

This book is written for the instructor rather than for the student in a sense
that the instructor (familiar with the material) has to fill-in some (small) details
and selects exercises to give a personal direction to the course. It should be taken
more as Lecture Notes, addressed indirectly (via an instructor) the student. In
a way, the student seeing this material for the first time may be overwhelmed,
but with time and dedication the reader can check most of the points indicated
in the references to complete some hard details, perhaps the expression of a
guided tour could be used here. Essentially, it is known that a Proposition in
one textbook may be an exercise in another, so that most of the exercises at

vii



viii Preface

this level are hard (or simple), depending on the experience of the student.
The combination of parts IV and V could be regarded as an introduction to

‘stochastic control’, without making any precise application, i.e., in a neutral
way, so that after a good comprehension of this material, the student is ready to
fully understand most of the models used in stochastic optimal control theory.
In a way, the purpose of these lecture notes is to develop a solid foundation
on Stochastic Differential Equations so that Stochastic Optimal Control can
be widely treated. A solid course in measure theory and Lebesgue spaces is a
prerequisite, while some basic knowledge in functional spaces and probability
is desired. Moreover, there is not effort to add “exercises” to either of these
parts, however, the instructor may find appropriated problems in some of the
references quoted in the text.

Michigan (USA), Jose-Luis Menaldi, June 2010
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Introduction

The reader has several entry points to begin checking this book (as it sequel part
five). Essentially, assuming a good background on measure theory (and some
elementary probability) the reader may quickly review some basic probability
in Chapter 1 and stochastic processes in Chapter 2. The heart of this book is
in Chapters 3 and 4, which are dedicated to the theory of stochastic integration
or stochastic calculus as commonly known. The last Chapter 5 is like a flash
on the side, regarding an analytic view of Markov processes. In any case, it
may be convenient for the reader to review certain points of ‘real analysis’,
in particular, the interplay of measures, topology and integration, e.g., review
Chapters 3 and 6 in our first part-book [123] and most of Chapters 1 and 2 in
our second part-book [122].

Rationality for this book

In Deterministic Control, if time is regarded as either continuous or discrete
then two models can be set, which combined yield the so called hybrid system.
The state representation of the continuous model evolves following an ordinary
differential equation (ODE) of the form

ẋ(t) = A(t)x(t) +B(t)v(t), (1)

where t ≥ 0 is the time, x = x(t) is the state and v = v(t) is the control. The
state x (in Rn) represents all variables needed to describe the physical system
and the control v (in Rm) contains all parameters that can be modified (as
a controller’s decision) as time passes. The matrices A(t) and B(t) are the
coefficients of the system.

The first question one may ask is the validity of the model, which lead to the
identification of the coefficients. Next, one may want to control the system, i.e.,
to start with an initial state x(t0) = x0 and to drive the system to a prescribed
position x(t1) = x0. Variations of this question are well known and referred to
as controllability.

Furthermore, another equation appear,

y(t) = C(t)x(t), (2)

ix
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where y = y(t) is the observation of the state and C(t) is another coefficient.
Clearly, y is in Rd with d ≤ n. Thus, the problem is to reconstruct the state
{x(t) : t0 ≤ t ≤ t1} based on the observations {y(t) : t0 ≤ t ≤ t1}, which is
called observability.

Another key question is the stabilization of the system, where one looks for
a feedback, i.e., v(t) = K(t)y(t) such that the closed system of ODE (1) and
(2) is stable.

Variation of theses four basic questions: identification, controllability, ob-
servability and stabilization are solved in text books.

To each control (and state and observation) a cost (or profit) is associated
with the intention of being minimized (or maximized), i.e., a performance index
of the form

J =

∫ T

0

[y(t)]∗R(t)y(t)dt+

∫ T

0

[v(t)]∗N(t)v(t)dt (3)

is to be optimized. This is called an optimal control problem.

Two methods are available to solve optimal control problems, namely, the
Pontryagin maximum principle and the Bellman dynamic programming. The
above (1), (2), (3) linear-quadratic model can be successfully solved by either
method. The maximum principle transforms the given (infinite-dimensional
optimization) problem into ODE with initial and terminal conditions and a
finite-dimensional optimization problem, i.e., a Lagrange multiplier technique.
The dynamic programming transforms the given problem into a non-linear par-
tial differential equation (PDE). There is a vast bibliography under the subject
optimal control, e.g. classic references such as the text book Bertsekas [10],
and Fleming and Rishel [50] or more recently Bardi and Capuzzo-Dolcetta [2],
among others.

The ODE defining the evolution equations (of the state and the observation)
may be nonlinear and the performance index may have a more general form.
Moreover, the state could be distribute, i.e., the evolution equation becomes a
PDE. Again, there are many references on the subject.

Both, the maximum principle and the dynamic programming are innova-
tions over the classic calculus of variations. The positive part of the maximum
principle is the preservation of the equation type (i.e., if the evolution equation
is an ODE then the maximum principle equation is an ODE), and the negative
part is the open-loop solution (i.e., the optimal control is of the form v = v(t)).
On the other hand, the positive part of the dynamic programming is the closed-
loop or feedback control (i.e., the optimal control has the form v = K(t, x(t))),
while the negative part is the new equation (i.e., if the evolution equation is an
ODE then the dynamic programming equation is an PDE). It is clear that this
material is built on the ODE theory.

In Stochastic Control, an uncertainty component is added to the previous
model. The coefficients becomes random and the evolution equation includes a
noise. Perhaps the most typical example is presented in signal processing, where

[Preliminary] Menaldi December 12, 2017
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the signal (say x) has some noise. The ODE becomes stochastic

ẋ(t) = g(t, x(t), v(t)) + (noise). (4)

Since Gauss and Poisson distributions are the main examples of continuous and
discrete distributions, the driving noise is usually a Wiener process or a Poisson
measure. Again, the four basic questions are discussed. Observability becomes
filtering, which is very importance. Perhaps the most practical situation is the
case with a linear state space and linear observation, which produces the cel-
ebrated Kalman filter. Clearly, an average performance index is used for the
optimal stochastic control. Again, there is a vast bibliography on stochastic con-
trol from variety of points of view, e.g., Fleming and Soner [51], Morimoto [134],
Oksendal and Sulem [139], Yong and Zhou [183], Zabczyk [184], among others.

It is clear that stochastic control is mainly based on the theory of stochastic
differential equations, which begins with stochastic calculus, which is the main
subject of this book.

[Preliminary] Menaldi December 12, 2017
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Chapter 1

Probability Theory

A probability space (Ω,F , P ) is a measure space with P (Ω) = 1, i.e., a nonempty
set Ω (an abstract space) with a σ-algebra F ⊂ 2Ω of subsets of Ω and an σ-
additive function P defined on F . Usually, a measure µ is obtained from an
outer measure µ∗ by restriction to the measurable sets, and an outer measure
is constructed from the expression

µ∗(A) = inf
{ ∞∑

n=1

µ(Rn) : A ⊂
⋃

n

Rn, Rn ∈ R
}
.

Caratheodorys arguments shows that if µ is a σ-additive function defined on
a semi-ring R (i.e., stable under the formation of finite unions and differences,
such that the whole space Ω can be written as a countable union of sets in R)
then the outer measure defined by the above formula can be restricted to the
(Caratheodorys) measurable sets to produce an extension of µ to the σ-algebra
generated by R. Also recall that if two measure µ and ν agree on a π-class E (i.e.,
containing the empty set and stable under the formation of finite intersections)
then µ = ν on the σ-algebra generated by E . The reader interested in a guided
tour to measure theoretic probability may take a look at the recent book by
Pollard [146].

Thus, a probability measure on Ω is a σ-additive function defined on the
σ-algebra F with values in [0, 1] such that µ(Ω) = 1. A set A in F satisfying
P (A) = 0 is called a negligible set or a null sets, or a set of probability zero
(and it complement Ac = Ω r A is a set of probability one or full probability).
In probability, almost surely (a.s.) is used instead of almost everywhere (a.e.),
a set of only one point (singleton) is called an outcome, an measurable set (i.e.,
an element in F) is called an event. As discussed later, the integration with
respect to the probability measure P is denoted by E{·} and referred to as the
expectation.

Random variable or measurable functions are discussed in Section 1, and
the key instrument of probability, namely, the conditional expectation goes to
Section 2. A first contact with random processes is addressed in Section 3,

1



2 Chapter 1. Probability Theory

while in Section 4 deals with the probability behind random processes. A short
presentation on discrete martingales and Markov chains is given in Section 5.

1.1 Random Variables

Recall that a real-valued function x defined on a measurable space (Ω,F) is
measurable if the pre-image x−1([a, b]) is in F for any interval [a, b], and in the
probability context, measurable functions are called random variable. The σ-
algebra Fx generated by a random variable x is the smallest σ-algebra for which
x is measurable, i.e., generated by all sets of the form x−1(B), for any possible
set B in a class K that generates the Borel σ-algebra B in the line R.

If a probability measure P is defined on (Ω,F) and x is real-valued random
variable then the mapping B 7→ Px(B) = P (x−1(B)) is a probability measure
defined on the Borel σ-algebra B is called the probability image of P via x, or
simply the law or distribution of x under P . As usually, if two random variables
x and y are almost surely equals then x and y should be considered equals, in
other words, we work mainly with the vector space L0(Ω,F , P ) of equivalence
classes (under the a.s. equality) instead of the vector space L0(Ω,F , P ) of
all real-valued random variables, and even a completion of the σ-algebra F is
simplicity assumed. Indeed, we say that x = y a.s. iff x(ω) = y(ω) for any
ω in Ω r N with P (N) = 0; instead of saying that x = y a.s. iff the set
N = {ω : x(ω) 6= y(ω)} is measurable and P (N) = 0. This could be called
almost measurable function or almost random variables to recall that random
variables are properly defined only outside of a null event. Also, it is clear that
random variables may take values in any measurable space (E, E), but this is
left for a later section.

Therefore, a random variables represents a measurement obtained while
studying a natural object, which is technically viewed as a measurable func-
tion x (with values in E) on a probability space, and typically P the Lebesgue
measure restricted to Ω = (0, 1), or its infinite product in [0, 1]∞. Usually, to
simplify notation, the variable ω is not written explicitly, but the context de-
termine when random elements are presented, e.g., if x is a random variable
then the event x−1(B) = {ω ∈ Ω : x(ω) ∈ B} is shorten to {x ∈ B}, and the
probability of the event x−1(B) is written as P (x ∈ B) or P{x ∈ B}.

The k-moment of a random variable x is defined by E{xk}, for k = 1 this
is referred to as the mean and the expression E{(x − E{x})2} is called the
variance, provided the expectation is finite. Recall that Lp(Ω,F , P ), p > 0,
denotes the of all random variables x such that E{|x|p} <∞, and so, the vector
space Lp(Ω,F , P ) of equivalence classes, which is a Banach space with the norm
x 7→ (E{|x|p}1/p), for 1 ≤ p ≤ ∞, and a complete metric for 0 ≤ p < 1.

1.1.1 Measurable Sets

Given a non empty set E (called space), recall that a σ-algebra (or σ-field) E
is a class (or a subsets of 2E , the family of subsets of E) containing ∅ which is

[Preliminary] Menaldi December 12, 2017



1.1. Random Variables 3

stable under the (formation of) complements and countable unions, i.e., (a) if
A ∈ E then Ac = E r A ∈ E and (b) if Ai ∈ A, i = 1, 2, . . . then

⋃∞
i=1Ai ∈ A.

As mentioned early, the couple (E, E) is called a measurable space and each
element in E is called a measurable set. Moreover, the measurable space is said
to be separable if E is countable generated, i.e., if there exists a countable class
K such that σ(K) = E , usually, the class K is at least stable under the formation
of finite intersections, and most desirable K is a (finite) semi-ring (i.e., stable
under the formation of finite unions and differences, such that the whole space
E can be written as a countable union of sets in K). An atom of a σ-algebra
E is a set A in E such that any other subset B ⊂ A with B in F is either the
empty set, B = ∅, or the whole E, B = E. Thus, a σ-algebra separates points
(i.e., for any x 6= y in E there exist two sets A and B in E such that x ∈ A,
y ∈ B and A∩B = ∅) if and only if the only atoms of E are the singletons (i.e.,
sets of just one point, {x} in E).

Borel Sets

Recall that a topology on E is a class T ⊂ 2E with the following properties:
(1) ∅, E ∈ T, (contain the empty set and the whole space) (2) if U, V ∈ T then
U ∩ V ∈ T (stable under finite intersections) and (3) if Ui ∈ T for an arbitrary
set of indexes i ∈ I then

⋃
i∈I Ui ∈ T (stable under arbitrary unions). Every

element of T is called open and the complement of an open set is called closed.
A basis for a topology T is a class bT ⊂ T such that for any point x ∈ E and any
open set U containing x there exists an element V ∈ bT such that x ∈ V ⊂ U, i.e.,
any open set can be written as a union of open sets in bT. Clearly, if bT is known
then also T is known as the smallest class satisfying (1), (2), (3) and containing

bT. Moreover, a class sbT containing ∅ and such that
⋃{V ∈ sbT} = E is called

a sub-basis and the smallest class satisfying (1), (2), (3) and containing sbT is
called the weakest topology generated by sbT (note that the class constructed as
finite intersections of elements in a sub-basis forms a basis). A space E with a
topology T having a countable basis bT is commonly used. If the topology T is
induced by a metric then the existence of a countable basis bT is obtained by
assuming that the space E is separable, i.e., there exists a countable dense set.

On a topological space (E,T) the Borel σ-algebra B = B(E) is defined as
the σ-algebra generated by the topology T. If the space E has a countable basis

bT, then B is also generated by bT. However, if the topological space does not
have a countable basis then we may have open sets which are not necessarily in
the σ-algebra generated by a basis. The couple (E,B) is called a Borel space,
and any element of B is called a Borel set.

Sometimes, a measurable, a Borel or an open set is mentioned without mak-
ing an explicit reference to the classes E , B or T. A Borel space (E,B) presup-
poses a topological space (E,T), which for us should separate points. When
a measure (or probability) is defined, the concepts of null sets and almost ev-
erywhere (surely) make sense, and a measurable set is the union of a Borel set
and a subset of a null set (so-called regular Borel measure). In most cases, the
σ-algebra of measurable set is assumed to be completed, and the property that
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4 Chapter 1. Probability Theory

for any measurable set A with µ(A) < ∞ there exist an open set and a closed
set such that C ⊂ A ⊂ O with µ(C) = µ(O) is desirable.

The classes Fσ (and Gδ) defined as the countable unions of closed (inter-
sections of open) sets make sense an a topological space E. Moreover, any
countable unions of sets in Fσ is again in Fσ and any countable intersections
of sets in Gδ is again in Gδ. In particular, if the singletons (sets of only one
point) are closed then any countable set is an Fσ. However, we can show (with
a so-called category argument) that the set of rational numbers is not a Gδ in
R = E.

In R, we may argue directly that any open interval is a countable (disjoint)
union of open intervals, and any open interval (a, b) can be written as the
countable union

⋃∞
n=1[a + 1/n, b − 1/n] of closed sets, an in particular, this

shows that any open set (in R) is an Fσ. In a metric space (Ω, d), a closed set
F can be written as F =

⋂∞
n=1 Fn, with Fn = {x ∈ Ω : d(x, F ) < 1/n}, which

proves that any closed set is a Gδ, and by taking the complement, any open set
in a metric space is a Fσ.

Certainly, we can iterate these definitions to get the classes Fσδ (and Gδσ)
as countable intersections (unions) of sets in Fσ (Gδ), and further, Fσδσ, Gδσδ,
etc. Any of these classes are family of Borel sets, but in general, not every Borel
set belongs necessarily to one of those classes.

Cartesian Product

Given a family of spaces Ei with a topology Ti for i in some arbitrary family
of indexes I, the product topology T =

∏
i∈I Ti (also denoted by ⊗iTi) on the

Cartesian product space E =
∏
i∈I Ei is generated by the basis bT of open

cylindrical sets, i.e., sets of the form
∏
i∈I Ui, with Ui ∈ Ti and Ui = Ωi except

for a finite number of indexes i. Certainly, it suffices to take Ui in some basis

bTi to get a basis bT, and therefore, if the index I is countable and each space
Ei has a countable basis then so does the (countable!) product space E. Recall
Tychonoff’s Theorem which states that any (Cartesian) product of compact
(Hausdorff) topological spaces is again a compact (Hausdorff) topological space
with the product topology.

Similar to the product topology, if {(Ei, Ei) : i ∈ I} is a family of measurable
spaces then the product σ-algebra on the product space E =

∏
i∈I Ei is the

σ-algebra E =
∏
i∈I Ei (also denoted by ⊗iFi) generated by all sets of form∏

i∈I Ai, where Ai ∈ Ei, i ∈ I and Ai = Ei, i 6∈ J with J ⊂ I, finite. However,
only if I is finite or countable, we can ensure that the product σ-algebra

∏
i∈I Ei

is also generated by all sets of form
∏
i∈I Ai, where Ai ∈ Ei, i ∈ I. For a finite

number of factors, we write E = E1 × E2 × · · · × En. However, the notation
E = ⊗i∈IEi is preferred (i.e., with ⊗ replacing ×), to distinguish from the
Cartesian product (of classes, which is not used).

• Remark 1.1. It is not so hard to show that if E is a topological space such
that every open set is a countable union of closed sets, then the Borel σ-algebra
B(E) is the smallest class stable under countable unions and intersections which
contains all closed sets.
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1.1. Random Variables 5

As seen later, the particular case when all the spaces Ei in the Cartesian
product are equals, the notation for the Cartesian product and product of topol-
ogy and σ-algebras become EI , TI and BT = BT (E). As mentioned above, for
a countable index I we have BI(E) = B(EI) (i.e., the cylindrical σ-algebra is
equal to the Borel σ-algebra of the product topology), but this does not hold
in general. In particular, if the index I is uncountable then a singleton may
not be measurable. Certainly, the Cartesian product space EI can be regarded
as the space of functions from I into E, and a typical element in EI written
as (ei : i ∈ I) can also be interpreted as the coordinate mappings (ei) 7→ ei or
e 7→ e(i), from EI into E. In this respect, the cylindrical σ-algebra (or product
σ-algebra) BI(E) is the smallest σ-algebra for which all coordinate mappings
are measurable.

1.1.2 Discrete RVs

Discrete random variables are those with values in a countable set, e.g., a discrete
real-valued random variable x has values in some set {an : n = 1, 2, . . .} ⊂ R
almost surely, i.e., P (x = an) > 0 and

∑
n P (x = an) = 1. This means

that the σ-algebra Fx generated by x is composed only by the atoms x = an,
and the distribution of x is a probability measure Px on 2A ⊂ B(R), with
A = {a1, a2, . . .}, some countable subset of real numbers.

Perhaps the simplest one is a deterministic random variable (i.e., constant
function) x(ω) = x0 for every ω in Ω, whose distribution is the Dirac probability
measure concentrated at x0, i.e., Px(B) = 1 if x0 belongs to B and Px(B) = 0
otherwise.

A Bernoulli random variable x takes only two values 1 with probability p and
0 with probability q = 1 − p, for some 0 < p < 1. This yields the distribution
Px(B) = 1 if 1 and 0 belong to B, Px(B) = p if 1 belongs to B and 0 does
not belong to B, Px(B) = 1 − p if 0 belongs to B and 1 does not belong to
B, and Px(B) = 0 otherwise. Iteration of this random variable (i.e., sequence
of Bernoulli independent trials as seen in elementary probability) lead to the
Binomial distribution Px with parameters (n, p), 0 < p < 1, which is defined on
A = {0, 1, . . . , n} and Px({k}) = pk(1 − p)n−k, for any k in A.

The Geometric distribution with parameter 0 ≤ c < 1 and the Poisson
distribution with parameter λ > 0 are both defined on A = {0, 1, 2, . . .}, with
Px({k}) = (1 − c)ck (Geometric, with the convention 00 = 1), and Px({k}) =
e−λλk/k! (Poisson, recall k! = k(k − 1) . . . 1), for any k in A.

For any random variable x, the characteristic function (or the Fourier trans-
form) is defined by the complex-valued function

Φx(t) = E{eitx} =

∞∑

n=0

eitnP (x = n), ∀t ∈ R,

and if X is a random variable with nonnegative integer values then instead
of working with its characteristic function Φx, we use the so-called (moment)
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6 Chapter 1. Probability Theory

generating function

Gx(t) = E{tx} =

∞∑

n=0

tnP (x = n), ∀t ∈ [−1, 1],

from which all moments can be obtained, i.e., by calculating the derivatives,
Gx(1) = E{x}, Gx(1) = E{x(x− 1)}, and so on. Assuming analytic extension,
it is clear that Gx(eit) = Φx(t). For the Binomial distribution with parameter
(n, p) we have Gx(t) = [1 + p(t − 1)]n, for the Geometric distribution with
parameter c we obtain Gx(t) = (1− c)/(1− ct), and for the Poisson distribution
with parameter we get Gx(t) = exp[(t − 1)]. Note that E{x} = λ (mean) and
E{(x− λ)2} = λ (variance) for a Poisson distributed random variable x.

1.1.3 Continuous RVs

In general, the cumulative distribution function of a real-valued random variable
x is defined as Fx(t) = P{x ≤ t}, for any t in R. A probability measure is called
diffuse if there is not atoms, i.e., P{x = t} = 0, for every t in R. In term
of the cumulative distribution function, this is equivalently to require that the
function t 7→ Fx is continuous, i.e., P{x = t} = Fx(t)Fx(t), where Fx(t) is the
left-hand limit. For a real valued random variable, we say that Px or x has
a density (with respect to the Lebesgue measure) if t 7→ Fx(t) is absolutely
continuous and F ′

x(t) = fx(t) defined almost every where for t in R is called
the density function. A simple example is a random variable x with a uniform
distribution on some Borel subset K of R with a positive and finite Lebesgue
measure |K| > 0, which is defined as fx(t) = 1/|K| if t belongs to K and
fx(t) = 0 otherwise, typically K is a bounded interval.

Therefore, by taken the image of (or transporting) a probability we have
established a clear connection between real-valued random variables of a par-
ticular distribution and probability measures on the real axis R. As mentioned
early, random variables represent measurements used to describe random phe-
nomenons, and so, several distributions of interest appear. Two of them are
important for us, first, the Gaussian (or normal) distribution with parameters
m and r > 0, which is also denoted by N(m, r2),

P{x ≤ t} = Fx(t) =

∫ t

−∞

1

r
√

2π
exp

(
− |(x−m)/r|2

2

)
dx, t ∈ R,

and has mean E{x} = m and variance E{(x−m)2} = r2. Second, the exponential
distribution with parameter α > 0, which has support in the semi-line (0,∞),

P{x ≤ t} = Fx(t) =

∫ t

0

α exp
(
− αx

)
dx, t ≥ 0,

and has mean E{x} = 1/α and variance E{(x− 1/α)2} = 1/α2.
The characteristic function of a Gaussian distributed real-valued random

variable x is

Φx(t) = P̂x(t) = E
{

eitx
}

= exp
(
− rt2/2 + imt

)
, t ∈ R,
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1.1. Random Variables 7

while for a exponential distributed real-valued random variable x the Laplace
transform is also defined

P̃x(t) = E
{

e−tx
}

=
α

α+ t
, t ≥ 0,

and Φx(t) = α/(α− it), for any t in R.

1.1.4 Independent RVs

Perhaps the most important concept in probability is about independence, i.e.,
from the elementary idea of two measurable sets A and B (or events as they are
called in probability) being independent (i.e., pairwise independent) if P (A ∩
B) = P (A)P (B) follows independence (i.e., mutually independence) of three
or more events, and in general, independence of sub σ-algebras, and in partic-
ular, of measurable functions (i.e., random variables) via their generated sub
σ-algebras. This yields

Definition 1.2. A family {Ai : i ∈ I} of non-empty classes Ai ⊂ 2Ω of subsets
of Ω is called mutually independent if P (Ai1 ∩ . . . ∩ Ain) = P (Ai1) . . . P (Ain),
for any finite sequence i1, . . . , in of distinct indexes in I and any choice of sets
Ai1 in Ai1 , . . . , Ain in Ain .

In particular, the empty set ∅ (or a null set) and the whole space Ω (or a
set of full probability) are independent of any other sets. Instead of mutually
independent, usually just ‘independent’ is used, while a family {Ai : i ∈ I} is
called pairwise independent if for any pair of indexes i and j of I, the family
{Ai,Aj} is independent, i.e., P (Ai ∩ Aj) = P (Ai)P (Aj) for any choice of sets
Ai in Ai and Aj in Aj . Recalling that a π-class (or π-system) is a class of sets
stable under finite intersections, the about definition implies that if a family
{Ai : i ∈ I} of non-empty classes is independent then the family {σ(Ai) : i ∈ I}
is also independent, where σ(Ai) is the σ-algebra generated by the class Ai.
Thus, the σ-algebra generated by all null sets is independent of any other σ-
algebra.

Similarly, a family {Ai : i ∈ I} of non-empty π-classes is called conditional
independent given another non-empty π-class B if the family {Ai ∩B : i ∈ I} is
independent for every B in B, where Ai ∩ B is the class of subset of the form
Ai ∩ B, with Ai in Ai. Clearly, if B contains all classes Ai then conditional
independent reduces to independent, and if B si the σ-algebra generated by all
null sets then any family {Ai : i ∈ I} is independent given B. In most fo the
cases, the classes Ai and B are either σ-algebras or they reduce to only one
element (as in the elementary case).

It should be clear that given a probability space (Ω,F , P ), it is not possible
a priori to ensure the existence of independent random variables with a pre-
scribed distribution. However, the typical (universal) probability space where
realization are shown is the Lebesgue space on the interval [0, 1]. A well known
example is to write any ω in Ω = [0, 1] in binary, i.e., ω =

∑
k 2−kωk. Then the

sequence of variables πn(ω) = ωn for n = 1, 2, . . . are independent coin-tossing
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8 Chapter 1. Probability Theory

variables each taking the values 0 or 1 with probability 1/2. Thus, given a map-
ping i, j 7→ k(i, j) which is injective from {1, 2, . . .} × {1, 2, . . .} into {1, 2, . . .},
the expression Xi =

∑
j 2−k(i,j)ωk(i,j) for i = 1, 2, . . . defines an independent

sequence of random variables, each with the same distribution as X, X(ω) = ω,
i.e., each with the uniform distribution on [0, 1].

The construction of examples of independent sequences of random variables
involve some conditions (infinitely divisible) on the probability space (Ω,F , P ),
for instance if the σ-algebra F = {∅, F,Ω r F,Ω}, with P (F ) > 0, then any
two independent sets A and B must be such that A = ∅ or B = ∅. There are
many (classic) properties related to an independent sequence or series of random
variables, commonly known as the (weak and strong) law of large numbers and
the central limit theorem, e.g., the reader is referred to the classic probability
books Doob [33], Feller [48] and Gnedenko [64], while an analytic view can be
found in Dudley [37], Folland [52, Chapter 10], Halmos [67]), Stromberg [167]
and Stroock [168].

In general, if Si is a Borel space (i.e., a measurable space isomorphic to a
Borel subset of [0, 1], for instance any complete separable metric space), Pi is
a probability measure on the Borel σ-algebra Bi(Si), for i = 1, 2, . . . then there
exists a sequence {ξ1, ξ2, . . .} of independent random variables defined on the
universal Lebesgue probability space [0, 1] such that Pi(B) = P ({ω : ξi(ω) ∈
B}), for any B in Bi(Si), i = 1, 2, . . . , i.e., the distribution of ξi is exactly Pi,
e.g., see Kallenberg [88, Theorem 3.19, pp. 55–57].

There are several results regarding a sequence of independent events that
are useful for us, e.g., the Borel-Cantelli Lemma and the Kolmogorov 0−1 Law
of which some details are given below.

Theorem 1.3 (Borel-Cantelli). Let {Ai} be a sequence of measurable sets, de-
fine the superior limit set A =

⋂∞
n=1

⋃∞
i=nAi. Then

∑∞
i=1 P (Ai) < ∞ implies

P (A) = 0. Moreover, if {Ai} are also independent and
∑∞
i=1 P (Ai) = ∞ then

P (A) = 1.

Proof. to check the first part, note that A ⊂ ⋃∞
i=nAi and in view of the σ-

sub-additivity, we have P (A) ≤ ∑∞
i=n P (Ai). Since the series converges, the

remainder satisfies
∑∞
i=n P (Ai) → 0 as n→ ∞, i.e., P (A) = 0.

Now, using the complement, Ac =
⋃∞
n=1

⋂∞
i=nA

c
i and because Ai are inde-

pendent, we obtain

1 − P (A) = P (Ac) = lim
n
P
( ∞⋂

i=n

Aci
)

=

= lim
n

lim
m

m∏

i=n

P
( m⋂

i=n

Aci
)

= lim
n

lim
m

m∏

i=n

(
1 − P (Ai)

)
.

Since ln(1 − t) ≤ −t for every 0 ≤ t < 1, we get

m∑

i=n

ln
(
1 − P (Ai)

)
≤ −

m∑

i=n

P (Ai),

[Preliminary] Menaldi December 12, 2017
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i.e.,

m∏

i=n

(
1 − P (Ai)

)
≤ exp

(
−

m∑

i=n

P (Ai)
)
,

which yields P (A) = 1.

As a corollary, we deduce a simple version of the (0− 1) zero-one law, i.e., if
{An} is a sequence of independent sets, then for A ⊂ ⋃∞

i=nAi we have P (A) = 0
or P (A) = 1.

In general, this point can be better seen as follows. For a sequence {xn} of
random variables define the sub σ-algebras:

F∞
n = σ(xk : k ≥ n), Fn = σ(xk : k ≤ n), F∞ =

⋂
nσ(xk : k ≥ n),

where F∞ is called the tail σ-algebra. It is clear that F∞ ⊂ F∞ = σ
(⋃

n Fn
)
.In

the particular case of independent set of the form An = x−1
n (Bn), with Bn Borel

sets, we note that the limit set A ⊂ ⋃∞
i=nAi belongs to the tail σ-algebra F∞.

Theorem 1.4 (Kolmogorov 0−1 Law). Let {xn} be a sequence of independent
random variables and F∞ be the corresponding tail σ-algebra. Then, for each A
in F∞ we must have P (A) = 0 or P (A) = 1.

Proof. By assumption, F∞
n and Fn−1 are independent, i.e., if A ∈ F∞

n and B ∈
Fn−1 we have P (A ∩ B) = P (A)P (B). Hence, A ∈ F∞ ⊂ F∞

n and B ∈ ∪nFn

yield P (A∩B) = P (A)P (B), and by means of a monotone class argument, the
last equality remains true for every B ∈ σ

(⋃
n Fn

)
. Since F∞ ⊂ σ

(⋃
n Fn

)
we

can take A = B in F∞ to have P (A) = P (A)2, i.e., the desired result.

As a consequence of the 0 − 1 law, for any sequence {xn} of independent
random variables, we have (1) since the set {ω : limn xn(ω) exists} belongs
to F∞, the sequence xn converges or diverges almost surely; (2) each random
variable measurable with respect to F∞, is indeed constant almost surely, in
particular

lim sup
n

xn, lim inf
n

xn, lim sup
n

1

n

∑

i≤n
xi, lim inf

n

1

n

∑

i≤n
xi

are all constant almost surely.
It easy to realize that a family {xn : n ∈ N} of independent real valued

random variable satisfies

E
{

ei
∑

i∈J tjxj
}

=
∏

i∈J
E
{

eitjxj
}
, ∀tj ∈ R,

for any finite subset of index J ⊂ N , and it can be proved that the converse is
also true.
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1.1.5 Construction of RVs

It should be clear that random variables could take values in Rd instead of R.
For instance, for any d-dimensional vector m and invertible square matrix R,
a d-dimensional Gaussian random variable x has a distribution Px absolutely
continuous with respect to the Lebesgue measure in Rd,

P{x ∈ B} =

∫

B

[2π det(RR∗)]−d/2 exp
( |R−1(x−m)|2

2

)
dx,

for any Borel set B in Rd, with mean E{x} = m and matrix-covariance RR∗,
where (·)∗ and det(·) denote the adjoint and the determinant of a matrix. Its
characteristic function is

E
{

eix·ξ
}

= eim·ξ−|Rξ|2/2, ∀ξ ∈ Rd,

where · denotes the dot (scalar) product in Rd. However, if π is a finite measure
on Rd∗ = Rdr{0} then a random variable x with a composed Poisson distribution
with parameter π is better expressed by its characteristic function

E
{

eix·ξ
}

= exp
[ ∫

Rd
∗

(
eiζ·ξ − 1

)
π(dζ)

]
, ∀ξ ∈ Rd,

than by its actually distribution.

It is clear by now that modeling a random variable with a prescribed distri-
bution is equivalent to choosing a particular probability measure on the space
Rd. One way of constructing a probability measure is by prescribing its charac-
teristic function, classical Bochner’s Theorem in Rd addresses this question

Theorem 1.5. If Ψ : Rn → C is the characteristic function of a probability
measure (space) (Rn,B(Rn), P ), i.e.,

Ψ(ξ) =

∫

Rn

exp
(
i(ξ, x)

)
P (dx) = E

{
exp

(
i(ξ, ·)

)}
,

with i =
√
−1, then (a) Ψ(0) = 1, (b) Ψ is continuous and (c) Ψ is positive

definite, i.e., for every natural number k, any ξi in Rn and any complex number
zi, i = 1, . . . , k we have

k∑

i,j=1

Ψ(ξi − ξj)ziz̄j ≥ 0,

where (·, ·) denotes the scalar product in Rn and z̄ is the conjugate of a complex
number. Conversely, an arbitrary function Ψ : Rn → C satisfying the above
properties (a), (b) and (c) is the characteristic function of a probability measure
P on Rn.
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The continuity follows from the dominated convergence theorem, and the
equality

k∑

i,j=1

Ψ(ξi − ξj)ziz̄j =

∫

Rd

∣∣
k∑

i=1

zie
iξi

∣∣2 P (dx) ≥ 0, ∀ξi, zi,

shows that Ψ is positive definite. The converse is longer and it uses the fact
that a nonnegative (tempered) distribution is indeeda measure, e.g., see Pallu
de la Barrière [140, Theorem 7.1, pp. 157–159].

Bochner’s Theorem 1.5 is used to construct a probability measure (or equiv-
alent a random variable) in Rd with a composed Poisson distribution corre-
sponding to a finite measure π on Rd∗ as its parameter. Moreover, remarking
that the characteristic function of a d-dimensional Gaussian random variable
makes sense even if the square-matrix (parameter) R is not necessarily invert-
ible, degenerate Gaussian distributions could be studied. Certainly, there are
many other application of this results.

1.2 Conditional Expectation

The conditional expectation is intrinsically related to the concept of indepen-
dence, and this operation is defined either as an orthogonal projection (over a
subspace of functions measurable over a particular sub σ-algebra) or via Radon-
Nikodym theorem. Moreover, the concepts of independent and conditional ex-
pectation are fundamental for probability theory and in fact, this is the main
distinction with classical measure theory.

Definition 1.6 (conditional expectation). Let x is an integrable random vari-
able and G be a sub σ-algebra on a probability space (Ω,F , P ). An integrable
random variable Y is called a conditional expectation of x given G if (a) y is
G-measurable and (b) E{x✶G} = E{y✶G} for every set G in G. The notation
y = E{x | G} is used, and if z is another random variable then E{x | z} =
E{x | σ(z)}, where σ(z) is the σ-algebra generated by z. However, if A is in F
then E{x |A} = E{x✶A}/E{✶A} becomes a number, which is referred to as the
conditional expectation or evaluation of x given A, provided that P (A) > 0.
Even the evaluation E{x | z = z0} = E{x | z−1(z0)} for any value z0 could be
used. It is clear that this definition extends to one sided integrable (either the
positive or the negative part is integrable) and σ-integrable (integrable on a
each part of a countable partition of the whole space) random variables.

In a sense we may say that conditional expectation is basic and fundamental
to probability. A conditional expectation is related to the disintegration of
probability measure, and it is a key concept to study martingales. Note first
that if x′ = x almost surely then y is also a conditional expectation of x′

given G, and second, if y′ is another conditional expectation of x given G then
E{(y − y′)✶G} = 0 for every G in G, which yields y = y′ almost surely, because
y − y′ is G-measurable. This means that conditional expectation should be

[Preliminary] Menaldi December 12, 2017



12 Chapter 1. Probability Theory

properly considered as a operation on equivalence classes of functions, i.e., on
the space L1(Ω,F , P ). However, the conditional expectation is regarded as
acting on the space of integrable random variables L1(Ω,F , P ), where a choice
of an element in the equivalence class have been made.

Definition 1.6 should be complemented with the following existence result:

Theorem 1.7. If G is a sub σ-algebra on a given probability space (Ω,F , P )
then there exists a linear operator from L1(Ω,F , P ) into L1(Ω,G, P ) denoted by
E{· | G} representing the conditional expectation, i.e., if x and y are integrable
random variable satisfying y = E{x | G} almost surely, then Y is a conditional
expectation of x given G.

Proof. As mentioned early, the conditional expectation E{x | G} given G is
(uniquely determined up to null sets) a G-measurable random variable satis-
fying

∫

A

E{x | G}(ω)P (dω) =

∫

A

x(ω)P (dω), ∀A ∈ G. (1.1)

Thus, the expression A 7→ E{✶Ax} defines a signed measure on the measure
space (Ω,G, P ), which is absolutely continuous with respect to P . Hence, the
Radon-Nikodym theorem ensures the existence and uniqueness (up to null sets)
of conditional expectations, i.e., given x and G there exists a null set N (which
may depends on both x and G) such that ω → E{x | G}(ω) is uniquely defined
for ω in Ω r N. It should be understood that the conditional expectation acts
on integrable random variables, which are identified almost surely, i.e., on the
Banach space L1(Ω,F , P ).

An alternative construction (without referring to the Radon-Nikodym the-
orem) is based on the orthogonal projection on the Hilbert space L2(Ω,F , P ),
i.e., the operation x 7→ E{x | G} is initially defined as the orthogonal projection
on L2(Ω,G, P ), which is considered as a closed subspace of L2(Ω,F , P ). This
mapping preserves the positive cone (i.e., if x ≥ 0 then E{x | G} ≥ 0), and so,
a monotone extension yields a definition on the whole space L1(Ω,F , P ), i.e.,
any nonnegative random variable x is written as the almost surely pointwise
increasing limit x = limn xn of a (almost surely monotone) sequence {xn} and
the conditional expectation is defined by E{x | G} = limn E{xn | G} as an almost
surely pointwise increasing limit.

Occasionally, the conditional expectation is used on σ-integrable variables.
First, a random variable x is called σ-integrable with respect to a σ-algebra
G if there exists a (increasing) sequence {Ωn} in G such that P (Ωn) → 1 and
E{|x✶Gn

|} < ∞, for every n ≥ 1. Next, if x is a σ-integrable with respect
to a σ-algebra G then E{x | G} is defined as the unique (almost surely) G-
measurable random variable satisfying condition (1.1), for every A in G such
that E{|x✶A|} <∞.
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1.2.1 Main Properties

Conditional expectation has properties similar to those of the integral, i.e., there
are a couple of properties that are inherited from the integral:

(a) x ≤ y a.s. implies E{x | G} ≤ E{y | G} a.s.

(b) E{y | G} = y a.s. if y is G-measurable, in particular if Y is a constant
function.

(c) If y is bounded and G-measurable, then E{xy | G} = yE{x | G} a.s.

(d) E{x+ y | G} = E{x | G} + E{y | G} a.s.

(e) If A ∈ G and if x = y a.s. on A, then E{x | G} = E{y | G} a.s. on A.

(f) If A ∈ G1 ∩ G2 and A ∩ G1 = A ∩ G2 (i.e., if any subset of A is in G1 if and
only if the subset is in G2), then E{x | G1} = E{x | G2} a.s. on A.

(g) If G1 ⊂ G2, then E{E{x | G1} | G2} = E{E{x | G2} | G1} = E{x | G1} a.s.

(h) If x is independent of G, then E{x | G} = E{x} a.s.

(i) If x is a fixed integrable random variable and {Gi : i ∈ I} denotes all possible
sub σ-algebra on a probability space (Ω,F , P ) then the family {yi : i ∈ I} of
random variables of the form yi = E{x | Gi} is uniformly integrable.

(j) Jensen’s inequality for conditional expectations, i.e., if φ is a convex real-
valued function, and x is an integrable random variable such that φ(x) is also
integrable then φ

(
E{x | G}

)
≤ E{φ(x) | G} a.s.

Most of the above listed properties are immediate obtained from the defini-
tion and construction of the conditional expectation, in particular, from the in-
equality (a) follows that −|x| ≤ x ≤ |x| yields |y| ≤ E{|x| : G} with y = E{x|G},
which can be used to deduce (i). Indeed, the definition of conditional expectation
implies that E{|y|✶|y|>k} ≤ E{|x|✶|y|>k} and kP{|y| > k} ≤ E{|y|} ≤ E{|x|},
i.e., for k large, the probability P{|y| > k} is small and therefore E{|x|✶|y|>k}
is small, which yields E{|y|✶|y|>k} small. Similarly, expressing a convex func-
tion φ as the supremum of all linear functions it majorizes, the property (j) is
obtained. Also, from the monotonicity (see also Vitali type Theorems)

Theorem 1.8 (Fatou Type). Let G be a sub σ-algebras on the probability space
(Ω,F , P ) and let {xn : n = 1, 2, . . .} be a sequence of nonnegative extended
real valued random variables. Under these assumptions lim infn→∞ E{xn | G} ≤
E{lim infn→∞ xn |G}, a.s. Moreover, if the sequence {xn} is uniformly integrable
then lim supn→∞ E{xn | G} ≥ E{lim supn→∞ xn | G}, a.s.

Certainly, all these properties are valid (with obvious modifications) for σ-
integrable random variable with respect to a σ-algebra G.
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14 Chapter 1. Probability Theory

1.2.2 Conditional Independence

Now, let us discuss the concept of conditional independence (for two events or
σ-algebras or random variables) given another σ-algebra or random variable).
If (Ω,F , P ) is a probability space and C is a sub σ-algebras of F , then any two
events (measurable sets) A and B are (conditional) independent given C if

E{✶A✶B | C} = E{✶A | C}E{✶B | C}, a.s. (1.2)

holds. Moreover, two sub σ-algebras H and G are (conditional) independent
given C (relative to the probability P ) if (1.2) is satisfied for any sets A ∈ H,
B ∈ G. Particularly, if the sub σ-algebras are generated by a family of random
variables, i.e., H = σ(x(i) : t ∈ I), G = σ(x(j) : j ∈ J) and C = σ(z(k) : k ∈ K),
then (1.2) is equivalent to

E
{∏

i

hi(X(i))
∏

j

gj(Y (j))
∏

k

ck(Z(k))
}

=

= E
{
E{

∏

i

hi(X(i)) | C}E{
∏

j

gj(Y (j)) | C}
∏

k

ck(Z(k))
}
,

where all products are extended to any finite family of subindexes and any
real-valued bounded measurable functions hi, gj and ck.

Certainly this concept extends to a family of measurable sets, a family of
either sub σ-algebras or random variables, where mutually or pairwise (condi-
tional independent given C) are not the same.

In relation to orthogonality, remark that if G is a σ-algebra of F and x is
an square integrable random variable with zero mean (i.e., E{|x|2} < ∞ and
E{x} = 0) then the conditional expectation E{x|G} is the orthogonal projection
of x onto the subspace L2(Ω,G, P ) of L2(Ω,F , P ). Similarly, two sub σ-algebras
H and G are (conditional) independent given C (relative to the probability P ) if
and only if the subspace {x ∈ L2(Ω,G, P )∩L2(Ω, C, P ) : E{x} = 0} is orthogonal
to {x ∈ L2(Ω,H, P ) ∩ L2(Ω, C, P ) : E{x} = 0} in L2(Ω,F , P ).

1.2.3 Regular Conditional Probability

A technical (but necessary) follow-up is the so-called regular conditional prob-
ability P (B | G) = E{1B | G}, which requires separability of the σ-algebra F
or some topology on the abstract probability space Ω to define a function
(B,ω) 7→ P (B | G)(ω) satisfying the σ-additivity property almost surely. The
conditional probability is useful to establish that a family {Ai : i ∈ I} of non-
empty π-classes is conditional independent given a σ-algebra B if and only if

P (Ai1 ∩ . . . ∩Ain | B) = P (Ai1 | B) . . . P (Ain | B), almost surely,

for any finite sequence i1, . . . , in of distinct indexes in I and any choice of sets
Ai1 in Ai1 , . . . , Ain in Ain . It should be clear that the concept of independence
makes sense only in the presence of a probability, i.e., a family of non-empty
π-classes is independent with respect to a given probability.
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1.2. Conditional Expectation 15

Definition 1.9 (conditional probability). A transition kernel Q(ω,A) on a
probability space (Ω,F , P ) is a mapping from Ω×F into [0, 1] such that (a) for
each A in F the function ω 7→ Q(ω,A) is a F-measurable function and (b) for
each ω in Ω the function A 7→ Q(ω,A) is a probability measure on (Ω,F). A
regular probability measure given a sub σ-algebra G of F is a transition kernel
denoted by (ω,A) 7→ P{A | G}(ω) such that for any A in F the random variable
ω 7→ P{A | G}(ω) is a conditional expectation of ✶A, i.e., E{✶A | G} = P{A | G},
almost surely, which means that

P (A ∩B) =

∫

B

P{A | G}(ω)P (dω), ∀B ∈ G,

and ω 7→ P{A | G}(ω) is G-measurable. If the σ-algebra G is generated by a
random variable Z then P{✶A|Z} = P{✶A|σ(Z)} and E{✶A|Z} = E{✶A|σ(Z)}.
In particular, if Z = ✶G the characteristic function of some measurable set
G then σ(✶G) = {∅,Ω} = σ(G) and P{A | ✶G} = P{A | σ(G)}. However,
P{A | G} = E{✶A | G} = P (A ∩ G)/P (G) is a number that represents the
evaluation of the conditional probability of A given G, provided P (G) > 0.

Note that in the above definition, a kernel transition Q may be defined
almost surely in the sense that there is a set N of probability zero such that the
mapping Q(ω,A) is defined for any ω in Ω rN and any A in F satisfying the
measurability in ω and the σ-additivity in A. In general the mapping (ω,A) 7→
E{✶A|G}(ω) satisfies the measurability in ω but, the σ-additivity is only satisfied
almost surely, i.e., for each sequence {An} of disjoint measurable sets with
A =

∑
nAn there exists a set N of probability zero such that E{✶A | G}(ω) =∑

n E{✶An
|G}(ω), for every ω in ΩrN . Now, we can prove the following result:

Theorem 1.10 (regular). Let G be sub σ-algebra on the probability space
(Ω,F , P ), where Ω is a complete separable metric (Polish) space and F = B(Ω)
is its Borel σ-algebra. Then there exists a regular conditional probability P{·|G},
i.e., (a) for each A in F the function ω 7→ P{A | G}(ω) is G-measurable, (b) for
every A ∈ F and B ∈ G we have

P (A ∩B) =

∫

B

P{A | G}(ω)P (dω),

and (c) for each ω in Ω the function A 7→ P{A | G}(ω) is a probability measure
on Ω and P{B | G}(ω) = ✶B(ω), for any ω in Ω and B in G0, where G0 is any
finite-generated sub σ-algebra of G.

Proof. Because Ω is a Polish (complete separable metrizable) space its Borel
σ-algebra F is separable, e.g., its is generated by the countable set A0 of all
open balls with rational radii and centers in a countable dense set. Certainly,
this countable set A0 generates an algebra A, which is expressed a an increasing
sequence of finite-generated algebras, and so, A is countable.

Also, any probability measure is regular in a Polish space, i.e., for every
A in A there exists a an increasing sequence of compact sets {Ai} such that
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16 Chapter 1. Probability Theory

⋃
iAi = A and the monotone convergence implies that P{Ai | G} → E{A | G}

almost surely. These compact sets {Ai} and the algebra A generate a countable
algebra denoted by Ā. Hence, for a given finite-generated sub σ-algebra G0 of
G, we can choose a negligible set N such that the G-measurable function ω 7→
P{F | G} = E{✶F | G} satisfies, for every ω in Ω rN, the following conditions:

(a).- for every A in Ā we have P{A | G}(ω) ≥ 0,

(b).- we have P{B | G}(ω) = ✶B(ω) for every B in G0,

(c).- the function A 7→ P{A | G}(ω) is finitely additive on the algebra Ā,
(d).- for every A in A and the specify sequence {Ai} chosen above we have
P{Ai | G}(ω) → P{A | G}(ω).

Indeed, the above conditions are countable restriction on ω.
This conditions imply that

P{A | G}(ω) = sup
{
P{K | G}(ω) : K ⊂ A,K ∈ Ā, K is compact

}
,

which yields the σ-additivity of P{· | G}(ω) on A. Indeed, by contradiction, if
not, there exists δ > 0 and a decreasing sequence {Ai} in A such that

⋂
iAi = ∅

and P{Ai | G}(ω) > δ. Then for each i there exists a compact set Ki in Ā with
Ki ⊂ Ai and P{Ai rKi | G}(ω)| < δ3−i. Therefore, for each n we have

P{K1 ∩ · · · ∩Kn | G}(ω) ≥ P{Cn | G}(ω) −
n∑

i=1

δ3−i ≥ δ

2
,

which implies that K1 ∩ · · · ∩Kn is not empty, i.e., the sequence {Ki ∩K1} of
compact subsets of K1 has the finite intersection property. Since K1 is compact,
we must have

⋂
iKi 6= ∅, which contradict the fact that

⋂
iAi = ∅.

Finally, because P{· | G}(ω) is σ-additivity on A, for every ω in ΩrN, it can
be uniquely extended to a measure on F = σ(A). To complete the arguments,
we redefine P{A | G}(ω) = ✶A(ω) for any ω in N.

Note that the condition P{B | G}(ω) = ✶B(ω), for any ω in Ω and B in
G0, any finite-generated sub σ-algebra of G is not really necessary, it suffices
to impose only P{Ω | G}(ω) = 1 and P{∅ | G}(ω) = 0 on the condition (b)
of the construction given on the above proof to obtain a regular conditional
probability.

Remark that in term of random variables, this result can be re-stated as
follows: Let (Ω,F , P ) be a probability space, G ⊂ F be a sub σ-algebra, and x
be a random variable with values in some Polish space E endowed with its Borel
σ-algebra E). Then, we can choose a regular conditional probability Px{A | G}
i.e., (a) for each A in E the function ω 7→ P{x−1(A) | G}(ω) is G-measurable,
(b) for every A ∈ E and B ∈ G we have

P (x−1(A) ∩B) =

∫

B

P{x−1(A) | G}(ω)P (dω),

and (c) for each ω in Ω the function A 7→ P{x−1(A) | G}(ω) is a probability
measure on Ω and P{B | G}(ω) = ✶B(ω), for any ω in Ω and B in G0, where G0

is any finite-generated sub σ-algebra of G.
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1.3. Random Processes 17

1.3 Random Processes

Taking measurements of a random phenomenon as time goes by involves a family
of random variables indexed by a parameter playing the role of the time, which
is know as a random (or stochastic) process X = {Xt : t ∈ T}. Note the use of
either Xt or X(t) to indicated a random variable belonging to the family refer-
eeing to the random process X. The so-called arrow of time yields a complete
order (denoted by ≤ and <) on the index T , which can be considered discrete
T = {t0, t1, . . .} (or simply T = {0, 1, 2, . . .}) or continuous T is an interval in
R (or simply T = [0,∞) or T = [0,∞] if necessary). Note that if T is the set
of all nonnegative rational numbers then T is countable but not completely a
discrete index of times, due to the order. Thus, a family FX = {FX

t : t ∈ T} of
increasing sub σ-algebras of F (so-called filtration) is associated with any ran-
dom process X, where FX

t is generated by the random variable xs with s ≤ t.
This family FX is called the history (or internal history) of X, or in general
the filtration generated by X. A probability space with a filtration is called
a filtered space (Ω,F, P ), where F∞ is the minimum σ algebra containing all
Ft, for any t ∈ T , and usually, F = F∞. An important technical result on
measurability affirms that any Ft-measurable random variable Y should have
the form Y = f(Xs1 , . . . , Xsk , . . .) for some sequence {sk : k ≥ 1} ⊂ [0, t], where
f is a Borel measurable function, and several concepts related to processes are
attached to a filtration, e.g., adapted, predictable, optional, etc.

Typically, the random variables take values in some Borel space (E, E), where
E is an suitable subset of Rd, usually E = R. Mathematically, it is clear that a
family of random variables X (with values in E and indexed by T ) is equivalent
to a random variable with values in the product space ET , which means that
not regularity is imposed on the path, i.e. the functions t 7→ xt(ω), considered
for each fixed ω. In a way to be discussed later, if T is uncountable then the
product space ET is too big or equivalent, the cylindrical Borel σ-algebra BT (E)
is too small.

Realization of a stochastic process X refers to the construction of a proba-
bility space (Ω,F , P ) or better a filtered space (Ω,F, P ), where the stochastic
process X is defined and satisfies some prescribed properties, such as the statis-
tics necessary to describe X as a random variable with valued in the product
space ET and some pathwise conditions that make the mathematical analysis
possible.

1.3.1 Discrete RPs

To motivate some delicate points in the theory of continuous time processes we
discuss first sequences of random variables, i.e., random processes in discrete
time. First, a filtered space is a (usually complete) probability space (Ω,F , P )
and an increasing sequence (so-called filtration) of sub σ-algebras F = (Fn : n =
0, 1, . . .), Fn−1 ⊆ Fn, for all n = 1, 2, . . . , such that F0 contains all null sets of F .
A stochastic sequence (or process) (Xn : n = 0, 1, . . .) is a sequence of R-valued
(or Rd-valued) random variables, ‘identified’ almost surely (i.e., P -equivalence
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18 Chapter 1. Probability Theory

class). Its associated natural filtration is the sequence (Fn : n = 0, 1, . . .) of sub
σ-algebras generated by {X0, X1, . . . , Xn} and augmented with all null sets, i.e.,
σ[X0, X1, . . . , Xn] and all null sets. Given a filtered space, a stochastic sequence
(or process) (Xn : n = 0, 1, . . .) is called adapted if every random variable Xn

is Fn-measurable. Also, it is called predictable if every random variable Xn is
Fn−1-measurable, for any n = 1, 2, . . . , here X0 is ignored or taken equal to
zero. A stopping time η is a maps (identified almost surely) from Ω into the set
{0, 1, . . . ,∞} such that {η ≤ n} (or equivalently {η = n}) belongs to Fn for any
n ≥ 0, where either F∞ = F or F∞ is the minimal σ-algebra containing all Fn,
n ≥ 0. For an given stopping time, the σ-algebra Fη is defined as the collection
of all subsets A in F such that A∩{η ≤ n} (or equivalently A∩{η = n}) belongs
to Fn, for any n ≥ 0. Note that a typical stopping time is the hitting time (or
entry time) of a Borel subset B of B(R) (or B(Rd)) for a stochastic sequence
(Xn : n = 0, 1, . . .), i.e., η = inf{n ≥ 0 : Xn ∈ B}, where η = ∞ if Xn does not
belong to B for any n ≥ 0.

In measure theory the construction of a finite product of measures requires
some analysis, which does not extent to a countable product of measures.
However, a construction of the direct product of probability spaces is pos-
sible (e.g., Halmos [67, Section VII.38, Theorem B, pp. 157–158]), namely,
there exists a unique probability measure P on the (countable) product space
Ω =

∏
n Ωn with the product σ-algebra F (generated by the collection of cylin-

drical (or cylinder) sets Cn =
∏n
k=1 Fk × ∏∞

k=n+1 Ωk, with Fk in Fk,) such
that P (Cn) =

∏n
k=1 Pk(Fk) for every cylindrical set. Note that the countable

assumption is really not an issue, it can be easily dropped.
A direct consequence of the above result is the construction of sequences of

independent and identically distributed Rd-valued random variables, i.e., given
a distribution µ on Rd the exists a stochastic sequence (Zn : n = 0, 1, . . .) on a
complete probability space (Ω,F , P ) such that

(1) P (Zk ∈ B) = µ(B), ∀B ∈ B(Rd),

(2) P (Zk ∈ Bk, ∀k = 1, . . . , n) =

n∏

k=1

P (Zk ∈ Bk),

for every Bk in B(Rd) and any n ≥ 1, where B(Rd) is the Borel σ-algebra
in Rd. In this context, the series of partial sum X0 = 0, Xn =

∑n
k=1 Zk is

called a random walk in Rd or a d-dimensional random walk with incremental
distribution µ.

Ionescu-Tulcea’s theorem (e.g., Neveu [136, Section V.1, pp. 153–159],
Shiryayev [160, Section II.9, Theorem 2, pp. 243–250]), is a generalization of
the infinite product of probabilities, which is specially designed for construction
of Markov chains (processes) from transition functions. To present this result
on product probability , we need some notation. First, a transition probability be-
tween two measurable spaces (Ω,F) and (Ω′,F ′) is a functionQ : Ω×F ′ → [0, 1],
Q(ω, F ′), which is measurable in ω and a probability in F ′. Note two particular
cases, (1) Q(ω, F ′) = P (F ′) a fixed probability on (Ω′,F ′) for every ω in Ω, and
(2) Q(ω, F ′) = ✶{q(ω)∈F ′} where q : Ω → Ω′ is a measurable function.
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For (Ωi,Fi) a sequence of measurable spaces, the product σ-algebra F =∏∞
i=1 Fi on the product space Ω =

∏∞
i=1 Ωi is generated by the cylindrical sets

Cn =

n∏

i=1

Fi ×
∞∏

i=n+1

Ωi, with Fi ∈ Fi, ∀i, n = 1, 2, . . . (1.3)

For a fixed n, denote by Fn a sub σ-algebra of F generated by the n-cylindrical
sets as above. It is clear that Fn can be identified with the σ-algebra

∏n
i=1 Fi

of finite product space
∏n
i=1 Ωi, and that F is generated by the algebra ∪nFn.

Let P1 be a probability on (Ω1,F1) and Qk be a transition probability from

finite product space (
∏k−1
i=1 Ωi,

∏k−1
i=1 Fi) into (Ωk,Fk), for k ≥ 2. We desire to

construct a probability P on the infinite product space (Ω,F) such that

P (Cn) =

∫

F1

P1(dω1)

∫

F2

Q2(ω1, dω2) . . .

∫

Fn

Qn(ω1, . . . , ωn−1, dωn),

for any cylindrical set Cn as in (1.3). Note that if Pn denotes the restric-
tion of P to

∏n
i=1 Fi (i.e., the finite-dimensional distributions of P ) then the

right-hand term prescribes a particular form for Pn, where a disintegration (by
means of the transition probability Qn) is assumed a priori. Comparing with
Kolmogorov’s extension theorem (see next subsections), here it is assumed that
the finite-dimensional distributions enjoy a disintegration condition, instead of
a topological assumption in the spaces Ωi.

Now, for a fixed n, consider the following expression constructed backward
by induction:

P (ω1, . . . , ωn;F ) = ✶Fn(ω1, . . . , ωn), F = Fn×
∞∏

i=n+1

Ωi, F
n ∈

n∏

i=1

Fi,

P (ω1, . . . , ωk−1;F ) =

∫

Ωk

P (ω1, . . . , ωk−1, ωk;F )Qk(ω1, . . . , ωk−1, dωk),

P (ω1;F ) =

∫

Ω2

P (ω1, ω2;F )Q2(ω1, dω2), P (F ) =

∫

Ω1

P (ω1;F )P1(dω1).

A Fubini-Tonelli type theorem ensures that each step of the above construction
is possible and that P (ω1, . . . , ωk;F ) is a transition probability from the (finite)

product space (
∏k
i=1 Ωi,

∏k
i=1 Fi) into (Ω,Fn), for any k = n, . . . , 1; and that

P (F ) is a probability on (Ω,Fn). It is also clear that for cylindrical sets as (1.3)
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we have

P (Cn) =

∫

F1

P1(dω1)

∫

F2

Q2(ω1, dω2) . . .

∫

Fn

Qn(ω1, . . . , ωn−1, dωn),

P (ω1, . . . , ωk−1;F ) =
( k−1∏

i=1

✶Fi
(ωi)

)∫

Fk

Qk(ω1, . . . , ωk−1, dωk) ×

×
∫

Fk+1

Qk+1(ω1, . . . , ωk−1, ωk, dωk+1) . . .

∫

Fn

Qn(ω1, . . . , ωn−1, dωn),

P (ω1, . . . , ωn;Cn) =

n∏

i=1

✶Fi
(ωi),

and therefore, P (ω1, . . . , ωn;F ) = P (ω1, . . . , ωn−1;F ) for any F in Fn−1. This
last property allows us to consider n = 1, 2, . . . and to extend (uniquely) the
definition of P (ω1, . . . , ωn;F ) to F in the algebra F =

∨
n Fn.

Theorem 1.11 (Ionescu-Tulcea). Under the above notation, the function

Pn(ω, F ) = P (ω1, . . . , ωn;F ), with ω = (ω1, . . . , ωn, . . .),

is a transition probability from (Ω,Fn) into (Ω,F). Moreover (Ω,F , P ) is a
probability space on which Pn provides a regular conditional probability for the
σ-algebra Fn.

Proof. Only a brief idea is given. The central point is show the σ-additivity of
Pn on the algebra

∨
n Fn with P0 = P, and then to use Caratheodory exten-

sion to have a probability on F . To this purpose, suppose that there exists a
decreasing sequence {Ak} in

⋃
n Fn such that

⋂
k Ak = ∅ with limk P (Ak) 6= 0.

Then, the above construction of the P1 show that there exists a ω∗
1 such that

limk P (ω∗
1 ;Ak) 6= 0, and by induction, we can construct a sequence ω∗ =

(ω∗
1 , . . . , ω

∗
n, . . .) such that limk P (ω∗

1 , . . . , ω
∗
n;Ak) 6= 0. Since Ak belongs to some

Fm with m = m(k), from the construction of P we obtain P (ω∗
1 , . . . , ω

∗
n;Ak) =

✶Ak
(ω∗) if n ≥ m(k). Hence ω belongs to Ak for every k, which is a contradic-

tion.

It is interesting to note that there is almost no difficulty to extend Tulcea’s
construction to a general product space with an index non necessarily countable.
Indeed, we assume that Ps, with s = (t1, . . . , tn), has the form

Ps(Cn) =

∫

F1

Pt1(dω1)

∫

F2

Qt1,t2(ω1, dω2) . . .

∫

Fn

Qt1,...,tn(ω1, . . . , ωn−1, dωn),

for some family of transition probabilities {Qs : s = (s′, t), s′ ∈ Tn−1, n ≥ 2, t ∈
T} from (Ωs

′

,Fs′) into (Ωt,Ft), and any cylindrical set Cn =
∏
t∈T Ft with

Ft = Ωt if t 6= ti for every i, and Fti ∈ Fti . Hence, we can construct a family of
consistent probability on any countable product. Since only a countable number
of finite-dimensional is involved in proving the σ-additivity, we have a probabil-
ity in general product space Ω. Thus, the disintegration of the finite-dimensional
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distributions in term of the transition probabilities {Qs : s ∈ Tn, n ≥ 2} replace
the extra condition on inner regular measures. Moreover, Tulcea’s construction
yields an expression for a regular conditional distribution on any countable sub-
set of indexes.

1.3.2 Continuous RPs

On a given probability space (Ω,F , P ), the statistics of a stochastic processes
X = {X(t), t ≥ 0} are represented by its finite-distributions, i.e., a family of
probabilities Ps(B) = P (X(s1) ∈ B1, . . . , X(sn) ∈ Bn), with s = (s1, . . . , sn) in
[0,∞)n, n = 1, 2, . . ., and Bi Borel (usually open or closed) subsets of R. Thus, if
a real-valued stochastic process X is interpreted as a family of random variables
X(t), t ≥ 0, then X can also be regarded as a random variable with values
in the product space R[0,∞) endowed with the cylindrical σ-algebra B[0,∞). To
simplify notation, assume processes take values in E and the time t is in T , e.g.,
for a d-dimensional process in continuous time E = Rd and T = [0,∞). Thus,
a point x in the product space ET is denoted by {xt : t ∈ T}, and a cylindrical
set takes the from B = {Bt : t ∈ T} with Bt a Borel subset of E satisfying
Bt = E except for a finite number of indexes t, and clearly, the cylindrical σ-
algebra (which is not exactly the Borel σ-algebra generated by the open sets in
the product topology) is generated by all cylindrical (or cylinder) sets.

If the index set T models the time then it should have an order (perhaps
only partial) denoted by ≤ with the convention that < means ≤ and 6=, when
T = [0,∞) or T = {0, 1, 2, . . .} the order is complete. In any case, if a family of
finite-dimensional distributions {Ps : s ∈ Tn, n = 1, 2, . . . } on a Borel subsets
of E = Rd is obtained from a stochastic process, then they must satisfy a set of
(natural) consistency conditions, namely

(a) if s = (si1 , . . . , sin) is a permutation of t = (t1, . . . , tn) then for any Bi in
B(E), i = 1, . . . , n, we have Pt(B1 × · · · ×Bn) = Ps(Bi1 × · · · ×Bin),

(b) if t = (t1, . . . , tn) and s = (s1, . . . , sm) with t1 < · · · < tn < r < s1 < . . . <
sm and A×B in B(En) ×B(Em) then P(t,r,s)(A×E ×B) = P(t,s)(A×B), for
any n,m = 0, 1, . . . .

The converse of this assertion is given by the following classic Kolmogorov (some-
time called Daniell-Kolmogorov or Čentsov-Kolmogorov) construction or the
coordinate method of constructing a process (see Kallenberg [88], Karatzas and
Shreve [91], Malliavin [116], Revuz and Yor [151], among others, for a compre-
hensive treatment).

Theorem 1.12 (Kolmogorov). Let {Ps : s ∈ Tn, n = 1, 2, . . . } be a consistent
family of finite-dimensional distributions on a Borel subset E of Rd. Then there
exists a probability measure P on (ET ,BT (E)) such that the canonical process
Xt(ω) = ω(t) has {Ps} as its finite-dimensional distributions.

Under the consistency conditions, an additive function can be easily defined
on product space (ET ,BT (E)), the question is to prove its σ-additive property.
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In this respect, we point out that one of the key conditions is the fact that the
(Lebesgue) measure on the state space (E,B(E)) is inner regular (see Doob [34,
pp. 403, 777]). Actually, the above result remains true if E is a Lusin space,
i.e., E is homeomorphic to a Borel subset of a compact metrizable space. Note
that a Polish space is homeomorphic to a countable intersection of open sets of
a compact metric space and that every probability measure in a Lusin space is
inner regular, see Rogers and Williams [153, Chapter 2, Sections 3 and 6].

Note that a cylinder (or cylindical) set is a subset C of ET such that ω
belongs to C if and only if there exist an integer n, an n-uple (t1, t2, . . . , tn) and
B ∈ B(En) such that (ω(t1), ω(t2), . . . , ω(tn)) belongs to B for any i = 1, . . . , n.
The class of cylinder sets with t1, . . . , tn fixed is equivalent to product σ-algebra
in E{t1,...,tn} ≃ En and referred to as a finite-dimensional projection. However,
unless T is a finite set, the class of all cylinder sets is only an algebra. Based on
cylinder sets, another way of re-phrasing the Kolmogorov’s construction theorem
is saying that any (additive) set function defined on the algebra of cylinder
sets such that any finite-dimensional projection is a probability measure, has a
unique extension to a probability measure on ET . In particular, if T = {1, 2, . . .}
then the above Kolmogorov’s theorem shows the construction of an independent
sequence of random variables with a prescribed distribution. In general, this is
a realization of processes where the distribution at each time is given.

Note that a set of only one element {a} is closed for the product topology of
ET and so it belongs to the Borel σ-algebra B(ET ) (generated by the product
topology in ET ). However, the product σ-algebra BT (E) (generated by cylinder
sets) contains only sets that can be described by a countable number of restric-
tions on E, so that {a} is not in BT (E) if T is uncountable. Thus we see the
importance of finding a subset Ω of ET having the full measure under the outer
measure P ∗ derived from P, which is itself a topological space.

1.3.3 Versions of RPs

To fully understand the previous sections in a more specific context, the reader
should acquire some basic background on the very essential about probability,
perhaps the beginning of books such as Jacod and Protter [83] or Williams [178],
among many others, is a good example. This is not really necessary for what
follows, but it is highly recommended.

On a probability space (Ω,F , P ), sometimes we may denote by X(t, ω) a
stochastic process Xt(ω). Usually, equivalent classes are not used for stochastic
process, but the definition of separability and continuity of a stochastic process
have a natural extension in the presence of a probability measure, as almost
sure (a.s.) properties, i.e., if the conditions are satisfied only for ω ∈ Ω r N ,
where N is a null set, P (N) = 0. This is extremely important since we are
actually working with a particular element of the equivalence class. Moreover,
the concept of version is used, which is not exactly the same as equivalence
class, unless some extra property (on the path) is imposed, e.g., separability or
continuity. Actually, the member of the equivalence class used is ignored, but a
good version is always needed. We are going to work mainly with d-dimensional
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valued stochastic process with index sets equal to continuous times intervals
e.g., a measurable and separable function X : Ω × [0,+∞] → Rd.

It is then clear when two processes X and Y should be considered equivalent
(or simply equal, X = Y ), if

P ({ω : Xt(ω) = Yt(ω), ∀t ∈ T}) = 1.

This is often referred as X being indistinguishable from Y , or that X = Y up
to an evanescent set. So that any property valid for X is also valid for Y. When
the index set is uncountable, this notion differs from the assertion X or Y is a
version (or a modification) of the given process, where it is only required that

P ({ω : Xt(ω) = Yt(ω)}) = 1, ∀t ∈ T, (1.4)

which implies that both processes X and Y have the same family of finite-
dimensional distributions. For instance, sample path properties such as (pro-
gressive) measurability and continuity depend on the version of the process in
question.

Furthermore, the integrand of a stochastic integral is thought as an equiv-
alence class with respect to a product measure in (0,∞) × Ω of the form
µ = dα(t, ω)P (dω), where α(t, ω) is an integrable nondecreasing process. In
this case, two processes may belong to the same µ-equivalence class without
being a version of each other. Conversely, two processes, which are versions of
each other, may not belong to the same µ-equivalence class. However, any two
indistinguishable processes must belong to the same µ-equivalence class.

The finite-dimensional distributions are not sufficient to determine the sam-
ple paths of a process, and so, the idea of separability is to use a countable set
of time to determine the properties of a process.

Definition 1.13 (separable). A d-dimensional stochastic process X = {Xt :
t ∈ T}, T ⊂ [0,+∞) is separable if there exists a countable dense set of indexes
I ⊂ T (called separant) and a null set N such that for any t in T and any ω
in Ω r N there exists a sequence {tn : n = 1, 2, . . . } of elements in I which is
convergent to t and such that X(tn, ω) converges to X(t, ω). In other words, the
stochastic process X can be considered either as a random variable in ET or in
the countable product EI , without any loss.

For instance, the reader may want to take a look at the book by Meyer [129,
Chapter IV] to realize the complexity of this notion of separability.

The following result (see Doob [33, Theorem 2.4, pp. 60], Billingsley [14,
Section 7.38, pp. 551-563] or Neveu [136, Proposition III.4.3, pp. 84-85]) is
necessary to be able to assume that we are always working with a separable
version of a process.

Theorem 1.14 (separability). Any d-dimensional stochastic process has a ver-
sion which is separable i.e., if X is the given stochastic process indexed by some
real interval T , then there exists a R̄d-valued stochastic process Y satisfying (1.4)
and the condition of separability in Definition 1.13, which may be re-phrased as
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follows: there exist a countable dense subset I of T and a null measurable set
N, P (N) = 0, such that for every open subset O of T and any closed subset C
of Rd the set {ω ∈ Ω : Y (t, ω) ∈ C, ∀t ∈ O r I} is a subset of N.

By means of the above theorem, we will always assume that we have taken
a (the qualifier a.s. is generally omitted) separable version of a (measurable)
stochastic process provided we accept processes with values in R̄d = [−∞,+∞]d.
Moreover, if we insist in calling stochastic process X a family of random vari-
ables {Xt} indexed by t in T then we have to deal with the separability concept.
Actually, the set {ω : Xt(ω) = Yt(ω), ∀t ∈ T} used to define equivalent or
indistinguishable processes may not be measurable when X or Y is not a mea-
surable process. Even working only with measurable processes does not solve
completely our analysis, e.g., a simple operation as supt∈T Xt for a family of
uniformly bounded random variables {Xt} may not yields a measurable random
variable. The separability notion solves all these problems.

Furthermore, this generalizes to processes with values in a separable locally
compact metric space (see Gikhman and Skorokhod [61, Section IV.2]), in par-
ticular, the above separable version Y may be chosen with values in Rd ∪ {∞},
the one-point compactification of Rd, and with P{Y (t) = ∞} = 0 for every t,
but not necessarily P{Y (t) = ∞ ∀t ∈ T} = 0. Thus in most cases, when we refer
to a stochastic process X in a given probability space (Ω,F , P ), actually we are
referring to a measurable and separable version Y of X. Note that in general,
the initial process X is not necessarily separable or even measurable. By using
the separable version of a process, we see that most of the measurable operations
usually done with a function will make a proper sense. The construction of the
separant set used (in the proof of the above theorem) may be quite complicate,
e.g., see Neveu [136, Section III.4, pp. 81–88].

A stochastic process {Xt : t ∈ T}, T ⊂ [0,+∞) is continuous if for any
ω ∈ Ω the function t 7→ Xt(ω) is continuous. On the other hand, a process X
which is continuous in probability, i.e., for all t ∈ T and ε > 0 we have

lim
s→t

P ({ω ∈ Ω : |X(s, ω) −X(t, ω)| ≥ ε}) = 0.

is called stochastically continuous. Similarly, we define left or right stochastically
continuous. Actually, if the interval T is compact, then the process is uniformly
stochastically continuous. In most of the cases, a stochastic process X will be
(right or left) continuous in probability (see below) and then any dense set in
T will be separant.

Most of the information of a stochastic process X is contained in the history
σ-algebra, i.e., the family Ft or F(t) defined as the minimal sub σ-algebra
of F that makes the random variables {Xs : s ≤ t} measurable. This is an
increasing family of σ-algebra i.e., Fs ⊂ Ft if s ≤ t, which is called the natural
filtration associated with the stochastic process. Also, the processs X is called
progressively measurable with respect to the natural filtration, i.e., the restriction
of X to the set Ω × [0, t] is measurable with respect to the product σ-algebra
Ft × B([0, t]), for any t ≥ 0. Here, and in what follows, B(T ) denotes the
σ-algebra of Borel subsets of T, T ⊂ R.
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If the filtration is given a priori (independently of the stochastic process),
then we will refer to as a stochastic process being adapted or progressively mea-
surable with respect to the given filtration if the above conditions are satisfied.
Moreover, we will see later that it is convenient to normalize the filtration to
standard (or usual) conditions. As a caution, technical, we refers adapted as
“adapted and measurable”. However, note that sometimes it may be conve-
nient to consider the notion of measurable independently of adapted, in this
case, we may have a measurable process Y such that the mapping ω 7→ Y (t, ω)
is F(t)-measurable, but Y is not progressively measurable.

Note that the concept of stochastic continuity (or continuity in probability)
is not a sample path (or pathwise) property, it does not depend on the partic-
ular version of the process involved. On the contrary, most of the smoothness
properties such as separability, measurability or continuity are conditions on the
sample paths and depend on the version of the process used to test the property.

It is known (e.g., see Da Prato and Zabczyk [28, p. 72–75], Gikhman and
Skorokhod [61, Section IV.3]) that

Theorem 1.15 (measurability). Any (right or left) stochastically continuous
d-dimensional stochastic process has a version which is measurable. Moreover,
if the stochastic process is adapted then there is a version which is progressively
measurable.

Sometimes we can take (a.s.) continuous modification of a given process on
a bounded interval [0, T ]

Theorem 1.16 (continuity). Let {Xt : t ∈ [0, T ]} be a d-dimensional stochastic
process in a probability space (Ω,F , P ) such that

E|Xt −Xs|α ≤ C|t− s|1+β , ∀s, t ∈ [0, T ], (1.5)

for some positive constants α, β and C. Then there exists a continuous version
Y = {Yt : t ∈ [0, T ]} of X, which is locally Hölder continuous with exponent
γ, for any γ ∈ (0, β/α) i.e., there exist a null set N, with P (N) = 0, an (a.s.)
positive random variable h(ω) and a constant K > 0 such that for all ω ∈ ΩrN,
s, t ∈ [0, T ] we have

|Yt(ω) − Ys(ω)| ≤ K|t− s|γ if 0 < |t− s| < h(ω). ✷

The previous result is essentially based on the following arguments, e.g.,
Karatzas and Shreve [91, pp. 53–55]). Estimate (1.5) and the dyadic construc-
tion {X(k2−n) : k = 0, 1, . . . , 2n, n = 1, 2, . . .} yields

P{ max
1≤k≤2n

|X(k2−n) −X((k − 1)2−n)| ≥ 2−γ} ≤

≤
2n∑

k=1

P{|X(k2−n) −X((k − 1)2−n)| ≥ 2−γ} ≤ C2−n(β−αγ),
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for any γ > 0 such that β > αγ. Hence, the Borel-Cantelli lemma shows that
there exists a measurable set Ω∗ of probability 1 such that for any ω in Ω∗ there
is an index n∗(ω) with the property

max
1≤k≤2n

|X(k2−n, ω) −X((k − 1)2−n, ω)| < 2−γ , ∀n ≥ n∗(ω).

This proves that for t of the form k2−n we have a uniformly continuous process
which gives the desired modification. Certainly, if the process X itself is separa-
ble, then we get do not need a modification, we obtain an equivalent continuous
process.

An interesting point in this result, is the fact that the condition (1.5) on
the given process X can be verified by means of the so-called two-dimensional
distribution of the process (see below). Moreover, the integrability of the process
is irrelevant, i.e., (1.5) can be replaced by

lim
δ→0

P
{

sup
|t−s|<δ

|X(t) −X(s)| > ε
}

= 0, ∀ε > 0.

This condition is stronger that

lim
δ→0

sup
t
P
{

sup
|s|<δ

|X(t) −X(t+ s)| > ε
}

= 0, ∀ε > 0,

which only yields almost surely continuity at every time t. In any case, if the
process X is separable then the same X is continuous, otherwise, we construct
a version Y which is continuous.

Recall that a real function on an interval [0, T ) (respectively [0,∞) or [0, T ])
has only discontinuities of the first kind if (a) it is bounded on any compact
subinterval of [0, T ) (respectively [0,∞) or [0, T ]), (b) left-hand limits exist on
(0, T ) (respectively (0,∞) or (0, T ]) and (c) right-hand limits exist on [0, T )
(respectively [0,∞) or [0, T )). After a normalization of the function, this is
actually equivalent to a right continuous functions having left-hand limits, these
functions are called cad-lag.

It is interesting to note that continuity of a (separable) process X can be
localized, X is called continuous (or a.s. continuous) at a time t if the set Nt
of ω such that s 7→ X(s, ω) is not continuous at s = t has probability zero
(i.e., Nt is measurable, which is always true if X is separable, and P (Nt) = 0).
Thus, a (separable) process X may be continuous at any time (i.e., P (Nt) = 0
for every t in T ) but not necessarily continuous (i.e., with continuous paths,
namely P (∪tNt) = 0). Remark that a cad-lag process X may be continuous
at any (deterministic) time (i.e., P (Nt) = 0 for every t in T ) without having
continuous paths, as we will se later, a typical example is a Poisson process.

Analogously to the previous theorem, a condition for the case of a modifica-
tion with only discontinuities of the first kind can be given (e.g., see Gikhman
and Skorokhod [61, Section IV.4], Wong [179, Proposition 4.3, p. 59] and its
references)
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Theorem 1.17 (cad-lag). Let {Xt : t ∈ [0, T ]} be a d-dimensional stochastic
process in a probability space (Ω,F , P ) such that

E{|Xt+h −Xs|α|Xs −Xt|α} ≤ Ch1+β , ∀ 0 ≤ t ≤ s ≤ t+ h ≤ T, (1.6)

for some positive constants α, β and C. Then there exists a cad-lag version
Y = {Yt : t ∈ [0, T ]} of X.

Note that sometimes, properties on the conditional distribution of (Xt+h −
Xs) given (Xs −Xt) are such that the condition (1.6) is reduced to

E{|Xs −Xt|α} ≤ C(s− t)
1
2+β , ∀ 0 ≤ t ≤ s ≤ T,

e.g., this is the case of a processes with independent increments. Similarly,
as discussed later, for a Markov process with transition probability function
p(x, t, dy), the expression

∫

Rd

|x− y|αp(x, t, dy) ≤ Ct
1
2+β , ∀ 0 ≤ t ≤ T,

replaces (1.6), and certainly,

∫

Rd

|x− y|αp(x, t, dy) ≤ Ct1+β , ∀ 0 ≤ t ≤ T,

can be used instead of (1.5), to obtain path continuity.
Similarly, for processes of locally bounded variation we may replace the

expression | · | in (1.5) by the variation to get a corresponding condition. In
general, by looking at a process as a random variable in RT we can use a complete
separable metric space D ⊂ RT to obtain results analogous to the above, i.e., if
(1.5) holds for the metric d(Xt, Xs) instead of the Euclidean distance |Xt−Xs|,
then the conclusions of Theorem 1.16 are valid with d(Yt, Ys) in lieu of |Yt−Ys|,
e.g., see Durrett [40, p. 5, Theorem 1.6].

The statistics of a stochastic process are characterized by its finite-dimension-
al distributions, i.e., by the family of probability measures

Ps(B) = P ({(X(s1, ω), . . . , X(sn, ω)) ∈ B}), ∀B ∈ B(Rn),

with s = (s1, . . . , sn), n = 1, 2, . . . , for a real valued process {X(t, ω) : t ∈ T}.
This family of finite-dimensional distributions essentially determines a stochastic
processes (i.e., modulo all possible version of a process), but not the process
itself. The above results allow the verification of the (path) continuity properties
of a given stochastic process in term of its two-dimensional distribution.

A typical (sample) path of a stochastic process is the function X(·, ω) for
each fixed ω, and so, a stochastic process (with prescribed finite-dimensional
distributions) can always be constructed in the product space RT , endowed
with the σ-algebra BT (R) generated by the algebra of cylindrical sets, which
may be smaller than the Borel σ-algebra B(RT ). Thus we can view a stochastic

[Preliminary] Menaldi December 12, 2017



28 Chapter 1. Probability Theory

process X as probability measure PX on (RT ,BT (R)), but in general the σ-
algebra BT (R) is not appropriated, it is too small comparatively with the big
space RT of all functions.

Note that the arguments in Theorems 1.15, 1.16 or 1.17 are such that if we
begin with a separable process, then we find that the measurable, continuous or
cad-lag version Y is actually indistinguishable from the initial process X, i.e.,
P ({ω : Xt(ω) = Yt(ω), ∀t ∈ T}) = 1.

1.3.4 Polish Spaces

As already mentioned, a Polish space (sometimes called Borel space) is a com-
plete, separable and metric space endowed with its Borel σ-algebra. Usually,
the metric that yields its (sequential) topology is complicated and really not so
relevant, and its topology is characterized by other means, i.e., a Polish space
is referred to as a complete, separable and metrizable space.

Pathwise properties of a stochastic process are described by sample spaces,
i.e., where all paths exist almost surely. The following recasting of the concept
of stochastic processes is necessary.

Definition 1.18 (process). Given an index set T (usually T ⊂ R), a measurable
space (E, E) (usually E ⊂ Rd) and a probability space (Ω,F , P ), an E-valued
general stochastic process is a measurable function X from (Ω,F) into (ET , ET ),
i.e. a family of E-valued random variables {Xt : t ∈ T}. Moreover, if E is a
Hausdorff topological space, E is its Borel σ-algebra and there exits a topological
sub-space B of the product space ET (which is called sample space and endowed
with its Borel σ-algebra B) such that the restriction to B of the function ω 7→
X(·, ω) (to emphasized, now denoted by X̄) is a B-valued random variable,
then X̄ (or X) is called an E-valued stochastic process with paths in B. Usually
B does not belong to the product σ-algebra BT (E) (generated by all Borel
cylindrical sets), and X̄ (considered with values in ET ⊃ B) is a version of the
general process X. Actually X̄ is identified with its P -equivalence class, and
for each t in T, the canonical (coordinate, evaluation or projection) mapping
X̄ 7→ X̄t from B into E is defined. The probability measure on B induced by X̄
(denoted by PX) is called the law of the process. Furthermore, if the index set
T = [0,∞) then the minimal filtration satisfying the usual conditions (complete
and right-continuous) (FX(t) : t ≥ 0) such that the E-valued random variables
{X̄s : 0 ≤ s ≤ t} are measurable is called the canonical filtration associated
with the given process. On the other hand, given a family of finite-dimensional
distributions on ET of some (general) stochastic process X, a realization of
a stochastic process X with paths in B and the prescribed finite-dimensional
distributions is the probability space (Ω,F , P ) and the stochastic process X̄ as
above.

In short, with E = R, the above definition means that if there is a proper
subset Ω ⊂ RT containing almost every paths of X, i.e., such that P ∗

X(Ω) = 1
(where P ∗

X is the exterior probability measure defined for any subset of RT ),
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then the stochastic process X becomes a probability measure P on (Ω,B), where
Ω ⊂ RT and

B = Ω
⋂

BT (R) = {Ω ∩B : B ∈ BT (R)}

is the restriction of BT (R) to Ω with P = P ∗
X , i.e., P (Ω ∩ B) = PX(B). It

turn out that B contains only sets that can be described by a countable number
of restrictions on R, in particular a singleton (a one point set, which is closed
for the product topology) may not be measurable. Usually, B is enlarged with
all subsets of negligible (or null) sets with respect to P, and we can use the
completion B∗ of B as the measurable sets. Moreover, if Ω is an appropriate
separable topological space by itself (e.g., continuous functions) so that the
process have some regularity (e.g., continuous paths), then the Borel σ-algebra
B(Ω), generated by the open sets in Ω coincides with the previous B. Note that
another way to describe B is to see that B is the σ-algebra generated by sets
(so-called cylinders in Ω) of the form {ω ∈ Ω : (ω(s1), . . . , ω(sn)) ∈ B} for any
B ∈ B(Rn), with s = (s1, . . . , sn), n = 1, 2, . . . .

At this point, the reader should be even more familiar with the topological
aspect of real analysis. Perhaps some material like the beginning of the books
by Billingsley [13], Pollard [145] and some points in Dudley [37] are necessary
for the understanding of the next three sections.

Actually, we may look at an E-valued stochastic process {X(t) : t ∈ T} as a
random variable X with values in ET endowed with the product Borel σ-algebra
BT (E) (generated by cylinder sets) Technically, we may talk about a random
variable on a measurable space (without a given probability measure), however,
the above Definition 1.18 assumes that a probability measure is given. If some
information on the sample paths of the process is available (e.g., continuous
paths) then the big space ET and the small σ-algebra BT (E) are adjusted to
produce a suitable topological space (Ω,F) on which a probability measure can
be defined.

When the index set T is uncountable, the σ-algebra BT (E), E ⊂ R is rather
small, since only a countable number of restrictions can be used to define a
measurable set, so that a set of only one point {ω} is not measurable. This
forces us to consider smaller sample spaces, where a topological structure is
defined e.g., the space of continuous functions C = C([0,∞), E) from [0,∞)
into E, with the uniform convergence over compact sets. The space C([0,∞), E)
endowed with the natural metric

dc(ω, ω
′) =

∞∑

k=1

2−k sup{1 ∧ |ω(t ∧ k) − ω′(t ∧ k)| : t ∈ [0,∞)}

becomes a complete separable metric space. Thus, the Borel σ-algebra on C
coincides with the σ-algebra generated by the coordinate mappings

Another typical example and perhaps the most commonly used sample space
is the D = D([0,∞), E) the space of right continuous functions ω from [0,∞)
into E having left limits (refers to as cad-lag). Note that any function in
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D([0,∞), E) is locally bounded and has at most countable many points of dis-
continuity. The spaceD([0,∞), E) can be endowed with a topology which makes
it a complete separable metric space. This Skorokhod topology is given by the
metric

d(ω, ω′) = inf{p(λ) ∨
∞∑

k=1

2−kq(ω, ω′, λ, k) : λ ∈ Λ},

where Λ is the collection of strictly increasing functions λ mapping [0,∞) onto
itself and such that

p(λ) = sup{| ln(λ(s) − λ(t)) − ln(s− t)| : 0 ≤ t < s}

is finite and

q(ω, ω′, λ, k) = sup{1 ∧ |ω(t ∧ k) − ω′(λ(t) ∧ k)| : t ∈ [0,∞)}.

We remark that the Skorokhod topology relative to C([0,∞), E) coincides with
the locally uniform topology, so that C can be considered as a closed subspace of
D. On the other hand, given an element ω in D([0,∞), E) and a positive number
ε there exist times 0 = t0 < t1 < · · · < tn = 1/ε such that the oscillation of ω in
each subinterval [ti−1, ti), i = 1, . . . , n is not greater than ε, i.e., for ωε defined
by ωε(t) = ω(ti) for any t in [ti−1, ti), we have |ω(t) − ωε(t)| ≤ ε. This is to
say that any function in D([0,∞), E) can be approximated in the topology of
C([0,∞), E) by right-continuous step functions, but it cannot be approximated
in (the topology of) D([0,∞), E) by continuous functions. Clearly, the cad-
lag functions endowed with the locally uniform convergence (i.e., D with the
topology of C) is not a separable topological space. The interested reader is
referred to, e.g., Billingsley [13, Chapter 3, pp. 109–153] for a comprehensive
study. Sometime it is convenient to define the sample spaces D(]−∞,+∞[, E)
and C(] −∞,+∞[, E), and even to assume that E is only a Polish space (i.e.,
a complete and separable metric space). Some extra difficulties appear when E
is not locally compact.

Any continuous function f with a compact support in [0,∞) (or in ]0,∞[, if
necessary) defines a linear functional on D([0,∞), E), namely

〈f, ω〉 =

∫ ∞

0

f(t)ω(t)dt,

which results continuous (with the Skorokhod topology). Hence, the Hausdorff
topology generated by those linear functional is weaker than the Skorokhod
topology and makes D a Lusin space (note that D is not a topological vector
space, the addition is not necessarily a continuous operation).

Recall that if S is a metric space then B(S) denotes the σ-algebra of Borel
subsets of S, i.e. the smallest σ-algebra on S which contains all open subsets of
S. In particular B(E), B(D) and B(C) are the Borel σ-algebras of the metric
space E, D([0,∞), E) and C([0,∞), E), respectively. Sometimes we may use
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B, when the metric space is known from the context. In particular, the Borel
σ-algebra of C = C([0,∞), E) and D = D([0,∞), E) are the same as the σ-
algebra generated by the coordinate functions {Xt(ω) = ω(t) : t}, i.e., a subset
A of D belongs to B(D) if and only if A ∩ C belongs to B(C). Also, it is of
common use the canonical right filtration (to be completed when a probability
measure is given)

⋂
s>t{σ-algebra generated by (Xr : r ≤ s)}. It can be proved

that if {Pt : t ≥ 0} is a family of probability defined on F0
t = σ{Xs : 0 ≤ s ≤ t}

such that the restriction of Pt to F0
s coincides with Ps for every s < t, then there

exists a probability P defined on B(D) such that P restricted to F0
t agrees with

Pt, e.g., see Bichteler [11, Appendix, Theorem A.7.1].

Again, the concept of continuous processes is reconsidered by means of sam-
ple spaces, i.e.,

Definition 1.19 (continuous). An E-valued, usually E ⊂ Rd, continuous
stochastic process is a probability measure P on (C([0,∞), E),B) together with
a measurable mapping (P -equivalence class) X from C([0,∞), E) into itself. If
the mapping X is not mentioned, we assume that it is the canonical (coordinate,
projection or identity) mapping Xt(ω) = ω(t) for any ω in C([0,∞), E), and
in this case, the probability measure P = PX is called the law of the process.
Similarly, a right continuous having left-hand limits (cad-lag) stochastic pro-
cess is a probability measure P on (D([0,∞), E),B) together with a measurable
mapping X from D([0,∞), E) into itself.

Note that a function X from (C([0,∞), E),B) into itself is measurable if and
only if the functions ω 7→ X(t, ω) from (C([0,∞), E),B) into E are measurable
for all t in [0,∞). Since C([0,∞), E) ⊂ D([0,∞), E) as a topological space with
the same relative topology, we may look at a continuous stochastic process as
probability measure on D with support in the closed subspace C.

Thus, to get a continuous (or cad-lag) version of a general stochastic process
X (see Definition 1.18) we need to show that its probability law PX has support
in C([0,∞), E) (or in D([0,∞), E)). On the other hand, separability of a general
stochastic process can be taken for granted (see Theorem 1.14), after a suitable
modification. However, for general stochastic processes viewed as a collection
of random variables defined almost surely, a minimum workable assumption is
(right or left) stochastic continuity (i.e., continuous in probability). Clearly,
stochastic continuity cannot be stated in term of random variable having values
in some functional space, but rather as a function on [0,∞) with values in some
probability space, such as Lp(Ω, P ), with p ≥ 0.

When two or more cad-lag processes are given, we may think of having
several probability measures (on the suitable space), say P1, . . . , Pn, and we
canonical process X(t) = ω(t). However, sometimes it may be convenience to
fix a probability measure e.g., P = P1, with a canonical process X = X1 as a
reference, and consider all the other processes P2, . . . , Pn as either the proba-
bility measures P2, . . . , Pn on (D,B) or as measurable mapping X2, . . . , Xn, so
that Pi is the image measure of P through the mapping Xi, for any i = 2, . . . , n.
On the space (D,B) we can also define two more canonical processes, the pure
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jumps process ∆X(t) = X(t) −X(t−), for t > 0 and the left-limit process

X(t−) =

{
X(0) if t = 0,

lims↑tX(s) if t > 0,

which may also be denoted by X−(t).
Processes X may be initially given in an abstract space (Ω,F , P ), but when

some property on its sample path is given, such a continuity, then we may look
at X as a random variable taking values in a suitable topological space (e.g.
C or D). Then by taking the image measure of P through X, we may really
forget about the initial space (Ω,F , P ) and refer everything to the sample space,
usually C or D.

It is interesting to remark that D([0,∞),Rd) is not a topological vector
space, i.e., in the Skorokhod topology, we may have αn → α and βn → β, but
αn + βn is not converging to α + β, unless α (or β) belongs to C([0,∞),Rd).
Moreover, the topology in D([0,∞),Rd) is strictly stronger that the product
topology in D([0,∞),Rd1)×D([0,∞),Rd2), d = d1+d2. The reader is referred to
the book Jacod and Shiryaev [84, Chapter VI, pp. 288–347] for a comprehensive
discussion.

1.3.5 Filtrations and Stopping Times

Typical construction in probability theory are on filtered space (Ω,F, P ), i.e.,
a probability space (Ω,F , P ) and a filtration F = (Ft, t ≥ 0) satisfying the
usual conditions, namely, each Ft is a sub σ-algebra of F , Ft ⊂ Fs if t ≤ s,
F0 contains all null sets of F (completed), Ft =

⋂
s>t Fs (continuous from the

right), and usually, also assuming that F = F∞, with F∞ being the smallest σ-
algebra containing all the Ft for t ≥ 0. The filtration is a technical instrument
constructed from (or together with) a given process, each Ft represents the
information available at time t. Usually, the (internal) history of stochastic
process X = {X(t), t ≥ 0} is defined as the filtration H = {Ht : t ≥ 0}, with
Ht being the σ-algebra generated by the random variables {X(s) : s ≤ t}, and
some more work is needed to obtain an adequate filtration satisfying the usual
conditions.

In a filtered space (Ω,F, P ) the arrow of time is properly defined, if t is
considered the present then s < t is the past and s > t is the future. Any
[0,∞]-valued random variable τ is not necessarily a good random time, only
the so-called stopping times (or optimal times), i.e., satisfying (τ ≤ t) = {ω :
τ(ω) ≤ t} ∈ Ft for every t ≥ 0, preserves the past-present-future structure. Note
that if {τn : n ≥ 1} is a sequence of stopping times then supn{τn}, infn{τn},
lim supn{τn}, and lim infn{τn} are also stopping times. For every stopping time
τ , the σ-algebra Fτ all sets F in F satisfying F ∩ (τ ≤ t) in Ft for every t > 0
is defined, and represents the information available at the random time τ . For
instance, if τ and θ are stopping times then the sets (τ ≤ θ), (τ < θ), and
(τ = θ) belong to Fτ∧θ, and something (just for convenience) the notation F(t)
or F(τ) could be used.
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A stochastic process X = {X(t), t ≥ 0} is called adapted to the filtration
F if the random variable X(t) is Ft-measurable for each t ≥ 0. Because the
time is running continuously on [0,∞), the fact that an adapted process is not
necessarily joint-measurable in (t, ω) cause some technical difficulties, and two
σ-algebras are defined on the product space [0,∞)×Ω, namely, (1) the optional
σ-algebra O generated by the sets of the form F0 × {0} and Fs × [s, t), where
Fs ∈ Fs and s < t in [0,∞), and (2) the predictable σ-algebra P generated by
the sets of the form F0 ×{0} and Fs× (s, t], where Fs ∈ Fs and s < t in [0,∞).

First remark that the notations F(t) or Ft is a matter of convenience, as
well as X(t) or Xt for the random processes. Now, let us give more details on
stopping times. The problems of defining what is meant by a random time τ
corresponding to the arrival time of an event whose arrival is determined by the
preceding events and of defining the class F(τ) of preceding events are solved
by the following definition.

Definition 1.20. An optional time (stopping or Markov time) τ with respect
to a filtration F = {F(t) : t ≥ 0} is a function from Ω into [0,+∞] satisfying

{ω : τ(ω) ≤ t} ∈ F(t) ∀t ≥ 0.

If an optional time τ is given, then F(τ), respectively F(τ−), is the σ-algebra
of subsets A in F(+∞) (or in F) for which

A ∩ {τ ≤ t} ∈ F(t), respectively A ∩ {τ < t} ∈ F(t),

for every t ≥ 0.

Sometime, optional times are defined as nonnegative random variables sat-
isfying {ω : τ(ω) < t} ∈ F(t) for every t > 0, e.g., see Karatzas and Shreve [91,
Section 1.2, pp. 6-11]. Since {τ ≥ t} = ∪n≥1{τ > t − 1/n} and F(t − 1/n) ⊂
F(t), we see that stopping time is stronger than optional time. Conversely,
under the right-continuity condition, i.e., F(t) = F(t+), for every t ≥ 0, the
equality {τ ≤ t} = ∩n≥1{τ < t + 1/n} shows that any optional time is also a
stopping time. Thus, unless specially mentioned, we do not differentiate between
optional and stopping times.

Most of the time we use the σ-algebra F(τ), however, when dealing with
jump processes we may need F(τ−).Note that we have ∩ε>0F(τ+ε) = F(τ+) =
F+(τ) for any optimal time τ. If τ1 and τ2 are two optional times with τ1 ≤ τ2,
the stochastic interval [[τ1, τ2]], is defined by

[[τ1, τ2]] = {(t, ω) ∈ R+ × Ω : τ1 ≤ t ≤ τ2}.

Similarly, we define the open stochastic interval ]]τ1, τ2[[ and the half-open ones
[[τ1, τ2[[, and ]]τ1, τ2]]. Several properties are satisfied by optional times, we will
list some of them.

(a) If τ is optional, then τ is F(τ)-measurable.

(b) If τ is optional and if τ1 is a random variable for which τ1 ≥ τ and τ1 is
F(τ) measurable, then τ1 is optional.
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(c) If τ1 and τ2 are optional, then τ1 ∨ τ2 (max) and τ1 ∧ τ2 (min) are optional.

(d) If τ1 and τ2 are optional and τ1 ≤ τ2, then F(τ1) ⊂ F(τ2); if τ1 < τ2, then
F(τ1+) ⊂ F(τ2).

(e) If τ1 and τ2 are optional, then F(τ1) ∩ F(τ2) = F(τ1 ∧ τ2). In particular,
{τ1 ≤ t} ∈ F(τ1 ∧ t).
(f) If τ1 and τ2 are optional, then the sets {τ1 < τ2}, {τ1 ≤ τ2} and {τ1 = τ2}

are in F(τ1 ∧ τ2).

(g) If τ1 and τ2 are optional and if A ∈ F(τ1), then A∩{τ1 ≤ τ2} ∈ F(τ1 ∧ τ2).

(h) Let τ1 be optional and finite valued, and let τ2 be random variable with
values in [0,+∞]. The optionality of τ1 + τ2 implies optionality of τ2 relative
to F(τ1 + ·). Moreover, the converse is true if F(·) is right continuous i.e., if
τ2 is optional for Fτ1(·) = F(τ1 + ·), then τ1 + τ2 is optional for F(·) and
F(τ1 + τ2) = Fτ1(τ2).

(i) Let {τn : n = 1, 2, . . . } be a sequence of optional times. Then supn τn is
optional, and inf τn, lim infn τn, lim supn τn are optional for F+(·). If limn τn =
τ = infn τn, then F+(τ) = ∩nF+(τn). If the sequence is decreasing [resp.,
increasing] and τn(ω) = τ(ω) for n ≥ n(ω), then τ is optional and F(τ) =
∩nF(τn) [resp., F(τ) is equal to the smaller σ-algebra containing ∪nF(τn)].

There are many relations between optional times, progressively measurable
stochastic processes and filtration, we only mention the following result (see
Doob [34, pp. 419–423])

Theorem 1.21 (exit times). Let B be a Borel subset of [0, T ]×Rd and {X(t) :
t ∈ [0, T ]} be a d-dimensional progressively measurable stochastic process with
respect to a filtration F satisfying the usual conditions on a probability space
(Ω,F , P ), Then the hitting, entry and exit times are optional times with respect
to F, i.e., for the hitting time

τ(ω) = inf{t > 0 : (t,X(t, ω)) ∈ B},

where we take τ(ω) = +∞ if the set in question is empty. Similarly, the entry
time is define with t > 0 replaced by t ≥ 0 and the exit time is the entry time of
complement of B, with the convention of being equal to T if the set in question
is empty.

Note that the last hitting time of a Borel set B, which is defined by

τ̂(ω) = sup{t > 0 : (t,X(t, ω)) ∈ B},

is not in general an optional time. However, if τc denotes the hitting time of B by
the process (t+ c,X(t+ c, ω)) then {τ̂ > c} = {τc < +∞} so that measurability
properties for the last hitting time can be considered.
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1.3.6 Random Fields

Sometimes, the index of a collection of E-valued random variables is not nec-
essarily the time, i.e., a family X = {Xr : r ∈ R} of random variables with R
a topological space is called a random field with values in E and parameter R,
typically, R is a subset of the Euclidean space Rn or Rn×T , where T represents
the time. The sample spaces corresponding to random fields are C(R,E) or
other separable Fréchet spaces, and even the Polish space D(R× [0,∞), E) i.e.,
continuous in R and cad-lag in [0,∞).

If X = {Xr : r ∈ R} is a d-dimensional random field with parameter R ⊂ Rn

then the probability distribution of X is initially on the product space ER,
and some conditions are needed to restrict Tulcea or Kolmogorov construction
theorems 1.11 or 1.12 to a suitable sample space, e.g., getting continuity in the
parameter. Similar to Theorem 1.16 we have

Theorem 1.22 (continuity). Let {Xr : r ∈ R} be a d-dimensional random field
with parameter R ⊂ Rn in a probability space (Ω,F , P ) such that

E|Xr −Xs|α ≤ C|r − s|n+β , ∀r, s ∈ R ⊂ Rn, (1.7)

for some positive constants α, β and C. Then there exists a continuous version
Y = {Yr : r ∈ R} of X, which is locally Hölder continuous with exponent γ, for
any γ ∈ (0, β/α) i.e., there exist a null set N, with P (N) = 0, an (a.s.) positive
random variable h(ω) and a constant K > 0 such that for all ω ∈ Ω r N,
s, t ∈ [0, T ] we have

|Yr(ω) − Ys(ω)| ≤ K|r − s|γ if 0 < |r − s| < h(ω). ✷

There are other ways of continuity conditions similar to (1.7), e.g., instead
of |r − s|n+β with β > 0 we may use

n∑

i=1

|ri − si|βi , with
n∑

i=1

1

βi
< 1 (1.8)

forevery r, s in R ⊂ Rn. For instance, the reader may check the books Billings-
ley [13, Chapter 3, pp. 109–153], Ethier and Kurtz [45, Chapter 3, pp. 95–154],
Khoshnevisan [97, Chapter 11, pp. 412–454], or Kunita [104, Section 1.4, pp.
31–42] for a complete discussion.

1.4 Existence of Probabilities

The underlaying objective of this section is the construction of Lévy processes,
but much more can be obtained form the construction of probability measures
with a given characteristic function. Instead of changing the process, the im-
age of the probability measure under a fixed (canonical) measurable function
is studied via its characteristic function. This yields an alternative way for
constructing probability measures with prescribed (or desired) properties on
suitable Borel spaces.
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1.4.1 Fourier Transform

First, recall the space S(Rd) of rapidly decreasing smooth functions, i.e., func-
tions ϕ having partial derivatives ∂αϕ, with a multi-index α = (α1, . . . , αd) of
any order |α| = α1 + · · · + αd, such that the quantities

pn,k(ϕ) = sup{(1 + |x|2)k/2|∂αϕ(x)| : x ∈ Rd, |α| ≤ n}, n, k = 0, 1, . . . ,

are all finite. Thus, the countable family of semi-norms {pn,k} makes S(Rd) a
Fréchet space, i.e., metrizable locally convex and complete topological vector
space.

The Fourier transform can be initially defined in various function spaces,
perhaps the most natural we are S(Rd). In its definition, the constant π can be
placed conveniently, for instance, in harmonic analysis

(Ff)(ξ) =

∫

Rd

f(x) e−2πix·ξ dx, ∀ξ ∈ Rd,

where x · ξ is the Euclidean scalar product in Rd, or

(Ff)(ξ) = (2π)−d/2
∫

Rd

f(x) e−ix·ξ dx,

is used, while

f̂(ξ) =

∫

Rd

f(x) eix·ξ dx, (1.9)

is used in probability (so-called characteristic function), in any case, the con-
stant π plays an important role in the inversion formula. In this section, we
retain the expression (1.9), with the simplified notation either f̂ or Ff . For
instance, the textbook by Stein and Shakarchi [166] is an introduction to this
topic.

Essentially, by completing the square, the following one-dimensional calcu-
lation

∫

R

e−πλx
2−2πix·ξ dx = e−πξ

2/λ

∫

R

e−π(x
√
λ+iξ/

√
λ)2 dx,

∂ξ

∫

R

e−π(x
√
λ+iξ/

√
λ)2 dx = (i/λ)

∫

R

∂xe−π(x
√
λ+iξ/

√
λ)2 dx = 0,

∫

R

e−πλx
2/2 dx = (1/

√
λ)

∫

R

e−πx
2/2 dx = 1/

√
λ,

shows that
∫

R

e−πλx
2−2πix·ξ dx = (1/

√
λ) e−πξ

2/λ.
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Using the product form the exponential (and a rotation in the integration vari-
able), this yields

∫

Rd

e−x·ax+2πix·ξ dx =
πd/2√
det(a)

e−ξ·a
−1ξ, ∀ξ ∈ Rd, (1.10)

for any (complex) symmetric matrix a = (aij) whose real part is positive definite,
i.e., ℜ{x · ax} > 0, for every x in Rd. Therefore, in particular,

F(e−π|x|
2

)(ξ) = e−π|ξ|
2

, ∀ξ ∈ Rd,

i.e., the function x 7→ e−π|x|
2/2 is a fixed point for the Fourier transform. More-

over, this space S(Rd) and its dual S ′(Rd) (the space of tempered distributions)
are invariant under the Fourier transform.

For instance, an introduction at the beginning of the graduate level can
be found in the book Pinsky [144], among others. It can be proved that the
Fourier transform F defined by (1.9) is a continuous linear bijective application
from S(Rd) onto itself. The expression

(F−1ϕ)(x) =

∫

Rd

ϕ(ξ) e2πix·ξ/(2π) dξ, ∀x ∈ Rd.

defines the inverse of F, which is also continuous. It is clear that s change of
variable yields the inverse for the expression (1.9). Certainly, there are many
important properties of the Fourier transform that we do not mention. For
instance, the interested reader may check the books by Duoandikoetxea [39] or
Grafakos [65, 66] for a comprehensive study on Fourier analysis.

1.4.2 Bochner Type Theorems

At this point, the reader may revise some of the basic subjects treated in the
book Malliavin [115]. In particular, a revision on measure theory, e.g., as in
Kallenberg [88, Chapters 1 and 2, pp. 1–44], may be necessary.

To construct a probability measure from the characteristic function of a
stochastic process (instead of a random variable) we need an infinite dimensional
version of Bochner Theorem 1.5.

Theorem 1.23 (Bochner-Minlos). Let Ψ be a complex-valued functional on the
space of test functions S(R). If Ψ satisfies Ψ(0) = 1, and Ψ is continuous and
positive definite (i.e., ϕn → 0 in S(R) implies Ψ(ϕn) → Ψ(0) = 1 in C, and∑k
i,j=1 Ψ(ϕi − ϕj)ziz̄j ≥ 0, for every ϕi in S(R), any k ≥ 1, and any complex

number zi, i = 1, . . . , k, then there exists a (unique) probability measure P on
the space of tempered distributions S ′(R) having Ψ as its characteristic function,
i.e.,

Ψ(ϕ) =

∫

S′(R)

exp
(
i〈ω, ϕ〉

)
P (dω) = E

{
exp

(
i〈·, ϕ〉

)}
,

where 〈·, ·〉 denote the paring between S ′(R) and S(R), i.e., the L2(R) inner
product.
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Proof. In other words, any positive definite complex-valued tempered distribu-
tion is the Fourier transform of some finite measure on S ′(R). In what follows,
only a brief idea is given, for instance, the interested read may take a look at
Holden et al. [74, Appendix A, pp. 193–197]) and the reference therein.

Indeed, several steps are necessary
Step 1 Begin with the (Schwartz) space of rapidly decreasing and smooth func-
tions S(R) and its dual space of tempered distributions S ′(R). These spaces are
identified with the space of sequences s and its dual s′, via Hermite functions,
i.e., given a sequence in s we form a function in S(R) by using the terms as
coefficients in the expansion along the orthonormal basis {ξn(x) : n ≥ 1} in
L2(R), with

ξn+1(x) =
e−x

2/2

π1/4
√
n!
pn(

√
2x), n = 1, 2, . . . ,

where pn is the Hermite polynomial of order n). Thus

s =
{
a = {ak}∞k=0 : lim

k
kmak = 0, ∀m = 1, 2, . . .

}

is the Fréchet space of rapidly decreasing sequences.
Step 2 This Fréchet space of rapidly decreasing sequences is decomposed as
s =

⋂∞
m=0 sm with sm defined for every integer m as the space of all sequences

a = {ak}∞k=0 satisfying

‖a‖m =
[ ∞∑

k=0

(1 + k2)m|ak|2
]1/2

<∞,

which is a Hilbert space.

(b) Its dual space is decomposed as s′ =
⋃∞
m=0 s

′
m, with s′m = s−m and the

natural paring between elements in s′ and s (also between s′m and sm), namely,

〈a′, a〉 =

∞∑

k=0

a′kak, ∀a′ ∈ s′, a ∈ s.

Note that s′ is the space of sequences {ak} with polynomial growth, i.e., kmak →
0 as k → ∞, for same m > 0.
Step 3 Based on Bochner’s result for finite dimensional spaces and Kolmogorov’s
extension, a probability measure with a prescribed characteristic function can
be constructed in the space R∞, the space of all sequences of real numbers. It
takes some more effort to check that the probability measure is concentrated
on the dual space s′. Indeed, use the continuity and the condition Ψ(0) = 1 to
deduce that for any ε > 0 there exist m > 0 and δ > 0 such that ‖a‖m < δ
implies |Ψ(a) − 1| < ε. This yields

∫

R∞

cos(〈a′, a〉)P (da′) ≥ 1 − ε− 2δ−2‖a‖2m, ∀a ∈ s. (1.11)
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as desired.

Step 4 Now, for every sequence b = {bk}, with bk > 0 consider the (Gaussian)
probability measure µn,σ on Rn+1 defined by

µn,σ =
n∏

k=0

(2πσbk)−1/2 exp
[
− a2k

2σbk

]
dak,

for any σ > 0. Recall that

∫

Rn+1

cos(〈a′, a〉)µn,σ(da) = exp
[
− σ

2

n∑

k=0

bk(a′k)2
]
,

∫

Rn+1

‖a‖2m µn,σ(da) = σ

n∑

k=0

(1 + k2)mbk,

and integrate (1.11) with respect to µn,σ on Rn+1 to get

∫

R∞

exp
[
− σ

2

n∑

k=0

bk(a′k)2
]
P (da′) ≥ 1 − ε− 2δ−2σ

n∑

k=0

(1 + k2)mbk.

Hence, if bk = (1 + k2)−m−1 then
∑n
k=0(1 + k2)mbk = C <∞, which imply, by

means of the monotone convergence,

∫

R∞

exp
[
− σ

2
‖a′‖2−m−1

]
P (da′) ≥ 1 − ε− 2δ−2σC.

Finally, let σ vanish to get P (s′m+1) ≥ 1 − ε, which proves that P (s′) = 1.

At this point, we apply this previous result to various particular cases, which
gives the existence of the so-called Lévy and Gaussian noises.

1.4.3 Lévy and Gaussian Noises

Certainly, the previous version of Bochner-Minlos’ Theorem 1.23 extends to
multi-dimensional case, i.e., S(Rd) and vector-valued functions S(Rd;Rn). Thus,
we can state the following very useful result regarding the construction of a Lévy
martingale measures:

Theorem 1.24 (Lévy noise). Let S ′(R;Rd) be the space of tempered distribu-
tions in R with values in Rd. Suppose that σ is a (real-valued) square d × d
matrix and that π is a Radon measure in Rd satisfying

∫

Rd

(
|y|2 ∧ |y|

)
π(dy) <∞, π({0}) = 0. (1.12)
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Then, there exists a unique probability measure P on (Ω,B), with Ω = S ′(R;Rd)
and B = B(Ω) such that

E
{

exp
[
i〈·, ϕ〉

]}
= exp

(
− 1

2

∫

R

|σϕ(t)|2dt
)
×

× exp
(∫

R

dt

∫

Rd

[
ei(ϕ(t),y) − 1 − i(ϕ(t), y)

]
π(dy)

)
, (1.13)

where E{·} denotes the expectation with respect to P and | · | and (·, ·) are the
Euclidean norm and scalar product, respectively. In particular, E

{
〈·, ϕ〉

}
= 0,

and if also

∫

Rm

|y|2 π(dy) <∞, (1.14)

then

E
{∣∣〈·, ϕ〉

∣∣2} =

∫

R

∣∣σϕ(t)
∣∣2dt+

∫

R

dt

∫

Rd

∣∣(ϕ(t), y)
∣∣2π(dy), (1.15)

for any test function ϕ.

Actually, if condition (1.12) is replaced by

π(Rd) <∞, π({0}) = 0,

i.e., a finite measure on Rd∗ = Rd r {0}, then

E
{

exp
[
i〈·, ϕ〉

]}
= exp

(
−1

2

∫

R

|σϕ(t)|2dt+

∫

R

dt

∫

Rd

[
ei(ϕ(t),y)−1

]
π(dy)

)

replaces (1.13). Thus, for σ = 0 this is a compound Poisson noise (which first
moment is not necessarily finite) while, for π = 0 this is a Wiener (or white)
noise (which has finite moments of all order).

Note that by replacing ϕ with λϕ, taking derivatives with respect to λ and
setting λ = 0 we deduce the isometry condition (1.15), which yields an analogous
equality for the scalar product E

{
〈·, ϕ〉 〈·, ψ〉

}
, with ϕ and ψ in S(R;Rd).

It should be clear that, from the calculation point of view, the Fourier trans-
form for h in S(Rd)

ĥ(ξ) = (2π)−d/2
∫

Rd

h(x)e−i(x,ξ)dx,

and its inverse

h(x) = (2π)−d/2
∫

Rd

ĥ(ξ)ei(x,ξ)dξ,
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are useful to estimate

E{
{
h(〈·, ϕ1〉, . . . , 〈·, ϕd〉)

}
=

= (2π)−d/2
∫

Rd

ĥ(ξ)Ψ(ξ1ϕ1 + . . .+ ξdϕd)dξ, (1.16)

where Ψ is the characteristic function, i.e., the right-hand-side in (1.13). In
particular, if for some q > 1,

∫

Rm

|y|2p π(dy) <∞, for any p such that 1 ≤ p ≤ q, (1.17)

then there exists a constant cq > 0 depending only on q and the dimension d
such that

cqE
{∣∣〈·, ϕ〉

∣∣2p} ≤
(∫

R

∣∣σϕ(t)
∣∣2dt

)p
+
(∫

R

dt

∫

Rd

∣∣(ϕ(t), y)
∣∣2π(dy)

)p
+

+
(∫

R

dt

∫

Rd

∣∣(ϕ(t), y)
∣∣2pπ(dy)

)p
, (1.18)

i.e., the 2p-moment is finite for any p ≤ q. Clearly, the assumption (1.17) im-
posed restrictions only the measure π for |y| ≥ 1, and the expectation E could
be written as Eσ,π to indicate the dependency on the data σ and π.

Also, from the finite-dimensional case, we know that the functions

exp
(
− |x|2/2

)
, exp

(
ei(x·b) − 1

)
, exp

(
− i(x · b)

)
,

for b fixed, are characteristic functions of the Gaussian, the Poisson and the
Dirac distributions. Therefore, any matrix a = (aij) of the form

aij = exp
{
− |ζi − ζj |2/2 + ei(ςi−ςj)−1

}

is a positive definite matrix. Thus, by approximating the integrals (by partial
sums) in right-hand-side (called Ψ) of (1.13), we show that Ψ is indeed positive
define.

Hence, we have constructed a d-dimensional smoothed (1-parameter) Lévy
noise associated with (σ, π). Indeed, the canonical action-projection process,
which is the natural paring

X(ϕ) = X(ϕ, ω) = 〈ω, ϕ〉, ∀ϕ ∈ S(R;Rd),

can be regarded as a family of R-valued random variables X(ϕ) on the proba-
bility space (Ω,B(Ω), P ), with Ω = S ′(R;Rd) and P as above. Clearly, this
is viewed as a generalized process and the actual Lévy noise is defined by
Ẋ(ϕ) = −〈ω, ϕ̇〉.

Considering the space L2(P ) and the vector-valued space L2
σ,π(R;Rd) with

the inner product defined by

〈ϕ, ψ〉σ,π =

∫

R

(
σϕ(t), σψ(t)

)
dt+

∫

R

dt

∫

Rd

(ϕ(t), y) (ψ(t), y)π(dy),
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we can view ϕ 7→ X(ϕ, ·) as an isometry from L2
σ,π(R;Rd) into L2(P ), initially

defined on the test space S(R;Rd) and uniquely extended everywhere. Thus,
the expression 〈ω, ϕ〉 makes sense almost surely (passing to the limit) for ϕ in
L2
σ,π(R;Rd). Now, for a given test function ϕ we denote by ϕi,t the test function

with only one non-zero component, namely, the i-component which is given by
the expression ✶(0,t], i.e., ϕi,t = (0, . . . ,✶(0,t], . . . , 0). Thus, a d-dimensional
Lévy (martingale) process ℓi(t) = X(ϕi,t) for i = 1, 2, . . . , d (with diffusion
matrix σ∗σ/2 and Levy measure π) is almost sure defined. Indeed, because the
scalar product is preserved, the stochastic process ℓ has orthogonal increments.
Moreover, the linearity in ϕ and the product (or integral and exponential) form
of the characteristic function (1.13) show that the random variable 〈·, ϕ〉 is
independent of 〈·, ψ〉 as long as ϕ and ψ have disjoint support. Thus, the
stochastic process (ℓ(t) : t ≥ 0) is stationary with independent increments. The
existence of a cad-lag version follows from the estimate

E
{
|ℓi(s+ r) − ℓi(t)|2|ℓi(t) − ℓi(s)|2

}
=

= E
{(
ℓi(s + r − t)

)2}
E
{(
ℓi(t − s)

)2} ≤ Cr2,

for any i, 0 ≤ s ≤ t ≤ s+r ≤ T, any T > 0 and some positive constant C = CT .
On the other hand, we can impose less restrictive assumptions on the Radon

measure π, i.e., to separate the small jumps from the large jumps so that only
assumption

∫

Rd

(
|y|2 ∧ 1

)
π(dy) <∞, π({0}) = 0. (1.19)

is needed. For instance, the Cauchy process in Rd, where σ = 0 and the Radon
measure π has the form

∫

Rd

ϕ(y)π(dy) = lim
ε→0

∫

|y|≥ε
ϕ(y)|y|−d−1dy,

π does not integrate the function ϕ(y) = |y|, and

exp
(∫

R

dt

∫

Rd

[
ei(ϕ(t),y) − 1 − i(ϕ(t), y)✶|y|≤1

]
|y|−d−1dy

)
=

= exp
(∫

R

dt

∫

Rd

2
[

cos(ϕ(t), y) − 1
]
|y|−d−1dy

)
,

replaces the second exponential in (1.13). Sometimes, we require a stronger (at
the origin) integrability assumption on the Radon measure π, namely,

∫

Rm

(
|y| ∧ 1

)
π(dy) <∞, π({0}) = 0.

and the second exponential in (1.13) takes the form

exp
(∫

R

dt

∫

Rd

[
ei(ϕ(t),y) − 1

]
π(dy)

)
,
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for instance, the case of the Γ-process in Rd, d = 1 with parameters c, α > 0,
where σ = 0 and the measure π is given by

∫

R

ϕ(y)π(dy) = lim
ε→0

c

∫ ∞

ε

ϕ(y)y−1e−αydy,

π does not have a finite mass, and

exp
(
c

∫

R

dt

∫ ∞

0

[
eiϕ(t)y − 1

]
y−1e−αydy

)

replaces the second exponential in (1.13).
The Lévy-Itô decomposition of sample functions (e.g., see Sato [157, Chapter

4, 119–144]) shows that the Lévy (martingale) process ℓ can be written as a
continuous part (its Wiener process) and a purely discontinuous part (its Poisson
jumps part). Alternatively, we can split the Rd space into Rn × Rm, namely,
ω = (ωn�, ω�m) where ωn� and ω�m are tempered distributions in R with values
in Rn and Rm, respectively. Thus if ϕ(t) = (ϕn�(t), ϕ�m(t)), where ϕn�(t) and
ϕ�m(t) denote test functions in R with values in Rn and Rm, respectively, then
〈ω, ϕ〉 = 〈ωn�, ϕn�〉+〈ω�m, ϕ�m〉. Hence, we have a (n+m)-dimensional smoothed
(1-parameter) Wiener-Poisson (Lévy) noise, i.e.,

Xn�(ϕ, ω) = 〈ωn�, ϕn�〉, X�m(ϕ, ω) = 〈ω�m, ϕ�m〉,
the projection on Rn and Rm, respectively. Clearly, Xn� provides a Wiener
process independent of the Poisson martingale measure obtained from X�m.

Therefore, by considering the vector-valued space L2
σ,π(R;Rn+m) where we

have separate the first n components from the last m components, we can con-
struct (almost surely defined) a n-dimensional Wiener process wi(t) = X(ϕi,t)
for i = 1, 2, . . . , n (with diffusion matrix σ∗σ/2) and a m-dimensional Poisson
martingale measure qi(t) = X(ϕi,t) for i = n + 1, n + 2, . . . , n + m (with Levy
measure π, so that its jumps ∆qi form a Poisson point process). Indeed, the
stochastic process

Xt = x+
(
w1(t), . . . , wn(t), q1(t), . . . , qm(t)

)
, ∀ t ≥ 0, x ∈ Rn+m (1.20)

(also denoted by Xx
t ) has orthogonal increments, which implies that (Xt : t ≥ 0)

is stationary with independent increments, i.e., a Lévy process in law. To take
a cad-lag version (which results continuous in the first n components) under
assumption (1.14), we may use the estimates

E
{
|wi(t) − wi(s)|4

}
= E

{(
wi(t− s)

)4} ≤ C|t− s|2,

E
{
|qj(s+ r) − qj(t)|2|qj(t) − qj(s)|2

}
=

= E
{(
qj(s+ r − t)

)2}
E
{(
qj(t− s)

)2} ≤ Cr2,

for any i, j, 0 ≤ s ≤ t ≤ s + r ≤ T, any T > 0 and some positive constant
C = CT . However, (for the Poisson point process) if only condition (1.19) holds
then we can obtain suitable estimates using the equality (1.16). We have then
described a way of constructing these processes.
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1.4.4 Countably Hilbertian Spaces

Actually, the only properties used in Lévy’s Theorem 1.24 is the fact that the
complex-valued characteristic function Ψ is continuous (at zero suffices), positive
definite and Ψ(0) = 1. Indeed, this generalizes to separable Hilbert spaces, e.g.,
see the book Da Prato and Zabczyk [28, Theorem 2.13, pp. 49–52], by adding
an extra condition on Ψ. Recall that on a separable Hilbert space H, a mapping
S : H → H is called a nuclear (or trace class) operator if for any (or some)
orthonormal basis {ei : i ≥ 1} in H the series

∑
i |(Sei, ei)| is convergent. On

the other hand, σ : H → H is called a Hilbert-Schmidt operator if for any (or
some) orthonormal basis {ei : i ≥ 1} in H the series

∑
i(σei, σei) is finite.

Theorem 1.25 (Sazonov). A complex-valued function Ψ on a separable Hilbert
space H is the characteristic function of a probability measure P on (H,B(H))
if and only if (a) Ψ is continuous, (b) is positive definite, (c) Ψ(0) = 1 and
satisfies the following condition:

(d) for every ε > 0 there exists a nonnegative nuclear (or trace class) operator
Sε such that each h in H with (Sεh, h) ≤ 1 yields 1 −ℜ{Ψ(h)} ≤ ε.

Let σi : H0 → H0 (i = 1, 2) be two (symmetric) Hilbert-Schmidt operators
on a separable Hilbert space H0 with inner product (·, ·)0 and norm | · |0. Now,
on the Hilbert space H = L2(R, H2

0 ), H2
0 = H0×H0, consider the characteristic

function

Ψ(h1, h2) = exp
(
− 1

2

∫

R

|σ1h1(t)|20dt
)
×

× exp
(∫

R

dt

∫

H0

[
ei(σ2h2(t),σ2u)0 − 1 − i(σ2h2(t), σ2u)0

]
π(du)

)
, (1.21)

where π is a measure on B(H0) such that

∫

H0

(
|σ2u|20 ∧ |σ2u|0

)
π(du) <∞, π({0}) = 0. (1.22)

Under these assumptions the function Ψ is continuous on H, positive definite,
Ψ(0) = 1 and the condition (d) of Theorem 1.25 is satisfied for a given ε > 0
with a trace class operator Sε : H → H of the form

Sε((bk, bℓ)ej) =

{
(σ∗

1σ1bk, σ
∗
2σ2bℓ)ej if j ≤ n,

0 otherwise,

for any k, ℓ = 1, . . . , and for some n = n(ε), where {ej : j ≥ 1} is an orthonormal
basis in Lebesgue space L2(R) and σ∗

i is the adjoint of σi, i = 1, 2, while {bk :
k ≥ 1} and {(bk, bℓ) : k, ℓ ≥ 1} are orthonormal basis in the spaces H0 and H2

0 ,
this means that

(
Sεh, (bk, bℓ)ej

)
H

=

∫

R

[
(σ1h1(s), σ1bk)0 + (σ2h2(s), σ2bℓ)0

]
ej(s)ds,
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for every h = (h1, h2), with hi in H0, for any k, ℓ = 1, . . . , and j = 1, . . . , n
(otherwise, the left-hand term vanishes), where (·, ·)H denotes the inner product
in H.

Therefore Ψ is the characteristic function of a probability measure P on the
Hilbert space H, i.e.,

E
{

ei(h,·)H
}

= Ψ(h1, h2), ∀h = (h1, h2) ∈ H,

where (·, ·)H denotes the inner product in H = L2(R, H2
0 ). Hence a cad-lag ver-

sion of a Lévy process on R or [0,∞) with parameters (σ1, σ2, π) and values in
H0 is obtained as previously discussed in Rn × Rm. Thus, the Lévy measure
π(σ∗

2σ2)−1 is defined on the Hilbert space image H2 = σ∗
2σ2(H0) and the proba-

bility P can be considered on canonical sample space Ω = D([0,∞), H1×H2) or
Ω = D([0,∞), H1) ×D([0,∞), H2), with H1 = σ∗

1σ1(H0), where the canonical
process X(ω) = ω(t) has Ψ as its characteristic function. Clearly, a drift can
be added and the parameters (σ1, σ2, π) can be time-dependent with suitable
assumptions.

The above arguments extend to the case of a countably Hilbertian space
(of which a typical example is the space S(Rd) of rapidly decreasing smooth
functions with its dual S ′(Rd) of tempered distributions), where the role the
Hilbert-Schmidt operators σi is better understood.

A countably Hilbertian space K is a separable Fréchet (i.e., complete locally
convex topological) space where the topology is given by an increasing sequence
{‖ · ‖n : n ≥ 0} of compatible (i.e., any Cauchy sequence in two norms and
convergent to zero in one norm results convergent to zero also in the other
norm) Hilbertian norms. Moreover, a space K is called nuclear if for any n ≥ 0
there exists m > n such that the canonical injection from Km into Kn is Hilbert-
Schmidt, where Kn denote the completion of K with the Hilbertian norm ‖ · ‖n.
Thus Kn is a sequence of decreasing Hilbert spaces and K = ∩nKn. Next, if
we identify K0 with its dual space K ′

0 (by Riezs’ representation theorem) and
we denote the dual space K ′

n by K−n (with its dual Hilbertian norm ‖ · ‖−n,
n ≥ 1) then K−n is a sequence of increasing Hilbert spaces, the dual space K ′

is sequentially complete and K ′ = ∪nK−n.

Theorem 1.26 (Minlos). A complex-valued function Ψ on a countably Hilber-
tian nuclear space K is the characteristic function of a probability measure P
on the dual space (K ′,B(K ′)) if and only if Ψ is continuous at 0 in K, positive
definite and Ψ(0) = 1.

Note that if K is a countably Hilbertian nuclear space then so is S(Rd,K)
(for instance, regarding S(Rd,K) as the tensor product S(Rd,K) = S(Rd) ⊗
K) and K = S(Rd;Rm) with K ′ = S ′(Rd;Rm) is a typical example. Also
C([0,∞), X) is a Fréchet space if X is so. However, D([0,∞), X) is a Polish
(not a topological vector) space X is so. If (·, ·) is continuous inner product in
a countably Hilbertian nuclear space K (i.e., the inner product is continuous in
Kn for some n) and H is the Hilbert space completion of K with respect to (·, ·)
then H is called rigged Hilbert space in K, and we have the triplet K ⊂ H ⊂ K ′.
Certainly, any Kn can be used as H, but this is not necessary in general.
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On the other hand, a set A in D([0,∞),K ′) (resp. C([0,∞),K ′)) is relatively
compact if and only if one of the following conditions is satisfied:

(1) For any k in K the set {〈ω(·), k〉 : ω ∈ A} is relatively compact in
D([0,∞),R) (resp. C([0,∞),R)).

(2) For every T > 0 there exists n such that AT the restriction of A to
D([0, T ],R) (resp. C([0, T ],R)) is relatively compact in D([0, T ],K−n) (resp.
C([0, T ],K−n)).

Clearly, any k in K defines a measurable map πk from D([0,∞),K ′) (resp.
C([0,∞),K ′)) into D([0,∞),R) (resp. C([0,∞),R)), πk(t, ω) = 〈ω, k〉. Then a
sequence {µi : i ≥ 1} is tight in D([0,∞),K ′) (resp. C([0,∞),K ′)) if and only
if for every k in K the sequence {µiπ−1

k : i ≥ 1} is tight as a Borel probability
measure in D([0,∞),R) (resp. C([0,∞),R)). Moreover, if for every T > 0 there
is n with the property that for every ε > 0 there exists M > 0 such that

µi
(
{ω ∈ D([0, T ],K ′) : sup

0≤t≤T
|ω(t)|−n ≤M}

)
≥ 1 − ε,

for every i ≥ 1, then the sequence {µi : i ≥ 1} regarded as Borel probability
measure in D([0, T ],K−m) is tight, with m ≥ n such that the canonical injection
from Km into Kn (and so from K−n into K−m) is Hilbert-Schmidt.

Hence if K ⊂ Hi ⊂ K ′, i = 1, 2 are two rigged Hilbert spaces then there is
a probability measure P on S ′(Rn;H1 ×H2) with characteristic function

E
{

exp
(
i[(ϕ1, ·)1 + (ϕ1, ·)2]

)}
= exp

(
− 1

2

∫

Rn

|ϕ1(t)|21dt
)
×

× exp
(∫

R

dt

∫

H2

[
ei(ϕ2(t),u)2 − 1 − i(ϕ2(t), u)2

]
π(du)

)
, (1.23)

where π is a Radon measure on H2 satisfying

∫

H2

(
|u|22 ∧ |u|2

)
π(du) <∞, π({0}) = 0, (1.24)

and (·, ·)i, | · |i denote the inner product and the norm in Hi, i = 1, 2. By com-
parison with (1.21) and (1.22) we see that the nuclear (or trace class) operators
σ1, σ2 are really part of the Hilbert space where the Lévy process takes val-
ues. Moreover, the parameter t may be in Rd and a Lévy noise is realized as a
generalized process.

For instance, the reader is referred to the book by Kallianpur and Xiong [90,
Chapters 1 and 2, pp, 1–83] for details on most of the preceding definitions.

1.5 Discrete Martingales

It may be worthwhile to recall that independence is stable under weak conver-
gence, i.e., if a sequence (ξ1, ξ2, . . .) of Rd-valued random variables converges
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weakly (i.e., E{f(ξn)} → E{f(ξ)} for any bounded continuous function) to a
random variable ξ then the coordinates of ξ are independent if the coordinates
of ξn are so. On the other hand, for any sequence (F1,F2, . . .) of σ-algebras
the tail or terminal σ-algebra is defined as Ftail = ∩n ∨k≥n Fk, where ∨k≥nFk
is the smaller σ-algebra containing all σ-algebras {Fk : k ≥ n}. An important
fact related to the independence property is the so-called Kolmogorov’s zero-
one law, which states that any tail set (that is measurable with respect to a tail
σ-algebra) has probability 0 or 1.

Another typical application of Borel-Cantelli lemma is to deduce almost
surely convergence from convergence in probability, i.e., if a sequence {xn} con-
verges in probability to x (i.e., P{|xn − x| ≥ ε} → 0 for every ε > 0) with a
stronger rate, namely, the series

∑
n P{|xn−x| ≥ ε} <∞, then xn → x almost

surely.

1.5.1 Main Properties

A key tool to study sequences of integrable random variables is the martingale
concept.

Definition 1.27 (discrete martingale). A stochastic sequence (Xn : n = 0, 1, . . .)
is called a martingale relative to a filtration (Fn : n = 0, 1, . . .) if

E{|Xn|} <∞, ∀n, and E{Xn | Fn−1 } = Xn−1, a.s., n ≥ 1.

A super or sub martingale is defined similarly, replacing the equal sign = by the
≤ or ≥ signs, respectively.

Note that Xn turns out to be Fn-measurable and it is determined almost
surely, actually we take Xn as a Fn-measurable function defined everywhere.
If only the complete probability space (Ω,F , P ) is given, then the filtration
(Fn : n = 0, 1, . . .) is naturally generated by the stochastic sequence (Xn :
n = 0, 1, . . .), i.e., Fn is the smallest sub σ-algebra of F containing all null
sets and rendering measurable the random variables {X0, X1, . . . , Xn}. A super-
martingale decreases on average while a sub-martingale increases on average.
Since X0 is integrable, we may focus our attention on sequences with X0 = 0. A
typical example of martingale is a real valued random walk or Rd-valued random
walk since (super-/sub-) martingales can be defined by coordinates when dealing
with Rd-valued random variables. Also, if ϕ is a convex and increasing real-
valued function such that E{ϕ(Xn)} < ∞ for some sub-martingale (Xn : n =
0, 1, . . .) then the stochastic sequence (ϕ(Xn) : n = 0, 1, . . .) is also a sub-
martingale.

In most cases, the filtration Fn is generated by another sequence of random
variables {Y0, Y1, . . .}, i.e., Fn = σ[Y0, . . . , Yn], which is regarded as the history.
In this case, Xn = hn(Y0, . . . , Yn) for some Borel function hn : Rn+1 → R, e.g.,
see Karr [94].

Many important results are found in the study of martingales, related to
estimates and representation, we will mention only some of them. For Doob’s
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upcrossing estimate, denote by UN (X, [a, b]) the number of up-crossings of [a, b]
by time N for a fixed ω, i.e., the largest k such that 0 ≤ s1 < t1 < · · · <
sk < tk ≤ N, Xsi < a and Xti > b, for any i = 1, 2, . . . k. Then for any
super-martingale the estimate

(b− a)E{UN (X, [a, b])} ≤ E{(XN − a)−} (1.25)

holds. Note that the number of steps does not appear directly on the right-
hand side, only the final variable XN is relevant. To show this key estimate, by
induction, we define C1 = ✶X0<a, i.e., C1 = 1 if X0 < a and C1 = 0 otherwise,
and for n ≥ 2,

Cn = ✶Cn−1=1 ✶Xn−1≤b + ✶Cn−1=0 ✶Xn−1<a

to construct a bounded nonnegative super-martingale Yn =
∑n
k=1 Ck(Xk −

Xk−1). Clearly, the sequence (Cn : n = 1, 2, . . .) is predictable. Based on the
inequality

YN ≥ (b− a)UN (X, [a, b]) − [XN − a]−,

for each ω, the estimate (1.25) follows.

The Doob’s super-martingale convergence states that for a super martingale
(Xn : n = 0, 1, . . .) bounded in L1, i.e., supn |Xn| <∞ the limits X∞ = limnXn

exists almost surely. The convergence is in L1 if and only if the sequence (Xn :
n = 0, 1, . . .) is uniformly integrable, and in this case we have E{X∞ | Fn} ≤ Xn,
almost surely, with the equality for a martingale. To prove this convergence,
we express the set Ω0 of all ω such that the limit limnXn(ω) does not exist in
the extended real number [−∞,+∞] as a countable union of subsets Ωa,b where
lim infnXn(ω) < a < b < lim supnXn(ω), for any rational numbers a < b. By
means of the upcrossing estimate (1.25) we deduce

Ωa,b ⊆
∞⋂

m=1

∞⋃

n=1

{ω : Un(X, [a, b]) > m},

P (
∞⋂

m=1

∞⋃

n=1

{ω : Un(X, [a, b]) > m}) = 0,

which yields P (Ω0) = 0. Thus the limit exists in [−∞,+∞] and by Fatou’s
Lemma, it is finite almost surely.

If p > 1 and (Xn : n = 0, 1, . . .) is a nonnegative sub-martingale bounded in
Lp then Doob’s Lp inequality reads as follows

‖ sup
n
Xn‖p ≤ p′ sup

n
‖Xn‖p, with 1/p+ 1/p′ = 1, (1.26)

where ‖ · ‖p denotes the in Lp = Lp(Ω,F , P ). Note that (p′)p ≤ 4 for every
p ≥ 2. Indeed, if the set Ωrn of all ω where supk≤nXk ≥ r is expressed as the
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disjoint union

Ωrn =

n⋃

k=0

Ωrn,0 with

Ωrn,k = {X0 < r} ∩ {X1 < r} ∩ · · · {Xk−1 < r} ∩ {Xk ≥ r},

and Ωrn,0 = {X0 ≥ r}, then we have Xk ≥ r on Ωrn,k, which yields the Doob’s
maximal inequality

r P
(

sup
n
Xn ≥ r

)
≤ E{Xn✶supnXn≥r} ≤ E{Xn}.

Now, to deduce Doob sup-estimate (1.26) for sub-martingales bounded in Lp,
with p > 1, first check the claim that for any two nonnegative random variables
x and y,

if r P (y ≥ r) ≤ E{x✶y≥r} then E{yp} ≤ (p′)pE{xp}. (1.27)

by using Hölder inequality in the last equality of

E{yp} = p

∫ ∞

0

rp−1P (y ≥ r)dr ≤ p

∫ ∞

0

rp−2E{x✶y≥r}dr =

=
p

p− 1
E{xyp−1} = p′

(
E{xp}

)1/p(
E{yp}

)1/p′
,

and replace y with y∧k with k → ∞ if necessary, to obtain (1.27). Next, choose
y = supnXn and x = Xn to conclude.

1.5.2 Doob’s decomposition

The Doob’s decomposition gives a clean insight into martingale properties. Let
(Xn : n = 0, 1, . . .) be a stochastic sequence of random variables in L1, and
denote by (Fn : n = 0, 1, . . .) its natural filtration, i.e., Fn = σ[X0, X1, . . . , Xn].
Then there exists a martingale (Mn : n = 0, 1, . . .) relative to (Fn : n = 0, 1, . . .)
and a predictable sequence (An : n = 0, 1, . . .) with respect to (Fn : n = 0, 1, . . .)
such that

Xn = X0 +Mn +An, ∀n, and M0 = A0 = 0. (1.28)

This decomposition is unique almost surely and the stochastic sequence (Xn :
n = 0, 1, . . .) is a sub-martingale if and only if the stochastic sequence (An :
n = 0, 1, . . .) is monotone increasing, i.e., An−1 ≤ An almost surely for any n.
Indeed, define the stochastic sequences (An : n = 1, . . .) by

An =

n∑

k=1

E{Xk −Xk−1 | Fk−1}, with Fk = σ[X0, X1, . . . , Xk]

and (Mn : n = 1, . . .) with Mn = Xn − X0 − An to obtain the decomposition
(1.28). This implies that the only deterministic martingale is a constant.
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Given a martingale M = (Mn : n = 0, 1, . . .) with each Mn in L2 and
M0 = 0, we may use the above decomposition to express the sub-martingale
M2 = (M2

n : n = 0, 1, . . .) as M2 = N + A, where N = (Nn : n = 0, 1, . . .) is
a martingale and A = (An : n = 0, 1, . . .) is a predictable increasing sequence,
both N and A null at n = 0. The stochastic sequence A is written as 〈M〉 and
called the angle-brackets sequence of M. Note that

E{M2
n −M2

n−1 | Fn−1} = E{(Mn −Mn−1)2 | Fn−1} = An −An−1,

for every n ≥ 1. Similarly, define the stochastic sequence (of quadratic variation)

[M ]n =

n∑

k=1

(Mk −Mk−1)2, ∀n ≥ 1,

and [M ]0 = 0. Then the stochastic sequence V = (Vn : n = 1, 2, . . .),

Vn = M2
n − [M ]n =

n∑

k=1

2Mk−1Mk

is a martingale. Note that [M ] is an adapted sequence while 〈M〉 is predictable,
so the strength of the Doob’s decomposition. It is clear that

E{|Mn|2} = E{〈M〉n} = E{[M ]n}, ∀n ≥ 1,

which combined with the p-estimate (1.26), p = 2, yields

E{sup
k≤n

|Mk|2} ≤ 4 sup
k≤n

E{〈M〉k}, ∀n ≥ 1.

Actually, this generalize into the following Davis-Burkhölder-Gundy inequality

cp E{([M ]n)p/2} ≤ E{sup
k≤n

|Mk|p} ≤ Cp E{([M ]n)p/2}, (1.29)

valid for any n ≥ 1 and p > 0 and some constants Cp > cp > 0 independent
of the martingale (Mn : n = 0, 1, . . .). Even for p = 1, we may use C1 = 3 in
the right-hand side of (1.29). Moreover, the L2-martingale (Mn : n = 0, 1, . . .)
may be only a local martingale (i.e., there exists a sequence of stopping times
η = (ηk : k = 0, 1, . . .) such that Mη,k = (Mη,k

n : n = 0, 1, . . .), defined by
Mη,k
n (ω) = Mn∧ηk(ω)(ω), is a martingale for any k ≥ 0 and ηk → ∞ almost

surely), the time n may be replaced by a stopping time η (or ∞), the angle-
brackets 〈M〉 can be used in lieu of [M ], and the above inequality holds true.
All these facts play an important role in the continuous time case.

Let X = (Xn : n = 0, 1, . . .) be a sub-martingale with respect to (Fn :
n = 0, 1, . . .) and uniformly integrable, i.e., for every ε there exists a suffi-
ciently large r > 0 such that P (|Xn| ≥ r) ≤ ε for any n ≥ 0. Denote by
A = (An : n = 0, 1, . . .) and M = (Mn : n = 0, 1, . . .) the predictable and mar-
tingale sequences given in the decomposition (1.28), Xn = X0 + Mn + An, for
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all n ≥ 0. Since X is a sub-martingale, the predictable sequence A is monotone
increasing. The Doob’s optional sampling theorem implies that the martingale
M is uniformly integrable, moreover A∞ = limnAn is integrable and the fam-
ilies of random variable {Xη : η is a stopping} and {Mη : η is a stopping} are
uniformly integrable. Furthermore, for any two stopping times η ≤ θ we have

E{Mθ | Fη} = Mη, a.s. and E{Xθ | Fη} ≥ Xη, a.s. (1.30)

We skip the proof (easily found in the references below) of this fundamental
results. Key elements are the convergence and integrability of the limit M∞ =
limnMn (almost surely defined), which allow to represent Mn as E{M∞ | Fn}.
Thus, specific properties of the conditional expectation yield the result.

For instance, the reader is referred to the books Bremaud [19], Chung [23],
Dellacherie and Meyer [32, Chapters I–IV], Doob [33, 35], Karlin and Taylor [92,
93], Nelson [135], Neveu [137], Rosenthal [154], Williams [178], among others.

1.5.3 Markov Chains

Martingales is a purely stochastic concept, in the sense that a deterministic
martingale is necessarily a constant processes, and therefore of little or none
interest. Preserving the expectation (as in the martingale condition) is good
tool, but not an evolution-type property. In a deterministic setting, a differential
or a difference equation is an excellent model to describe evolution, and this is
view in a probabilistic setting as a Markov model, where the evolution is imposed
on the probability of the process. The simplest case are the so-called Markov
chains.

Let {X(t) : t ∈ T}, T ⊂ R be an E-valued stochastic process, i.e. a (com-
plete) probability measure P on (ET ,BT (E)). If the cardinality of the state
space E is finite, we say that the stochastic process takes finitely many val-
ues, labeled 1, . . . , n. This means that the probability law P on (ET ,BT (E))
is concentrated in n points. Even in this situation, when the index set T is
uncountable, the σ-algebra BT (E) is rather small, a set of a single point is
not measurable). A typical path takes the form of a function t 7→ X(t, ω) and
cannot be a continuous function in t. As discussed later, it turn out that cad-
lag functions are a good choice. The characteristics of the stochastic processes
{X(t) : t ∈ T} are the functions t 7→ xi(t) = P{X(t) = i}, for any i = 1, . . . , n,
with the property

∑n
i=1 xi = 1. We are interested in the case where the index

set T is usually an interval of R.
Now, we turn our attention where the stochastic process describes some

evolution process, e.g., a dynamical system. If we assume that the dimension
of X is sufficiently large to include all relevant information and that the index
t represents the time, then the knowledge of X(t), referred to as the state of
the system at time t, should summarize all information up to the present time
t. This translated mathematically to

P{X(t) = j |X(r), r ≤ s} = P{X(t) = j |X(s)}, (1.31)
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almost surely, for every t > s, j = 1, . . . , n. At this point, the reader may
consult the classic book Doob [33, Section VI.1, pp. 235–255] for more details.
Thus, the evolution of the system is characterized by the transition function
pij(s, t) = P{X(t) = j | X(s) = i}, i.e., a transition from the state j at time
s to the state i at a later time t. Since the stochastic process is assumed to
be cad-lag, it seems natural to suppose that the functions pij(s, t) satisfies for
every i, j = 1, . . . , n conditions

n∑

j=1

pij(s, t) = 1, ∀t > s,

lim
(t−s)→0

pij(s, t) = δij , ∀t > s,

pij(s, t) =

n∑

k=1

pik(s, r)pkj(r, t), ∀t > r > s.

(1.32)

The first condition expresses the fact that X(t) takes values in {1, . . . , n}, the
second condition is a natural regularity requirement, and the last conditions are
known as the Chapman-Kolmogorov identities. Moreover, if pij(s, t) is smooth
in s, t so that we can differentiate either in s or in t the last condition, and
then let r − s or t− r approaches 0 we deduce a system of ordinary differential
equations, either the backward equation

∂spij(s, t) =

n∑

k=1

ρ+ik(s) pkj(s, t), ∀t > s, i, j,

ρ+ij(s) = lim
r→s

∂spij(s, r) ∀s, i, j,
(1.33)

or the forward equation

∂tpij(s, t) =

n∑

k=1

pik(s, t) ρ−kj(t), ∀t > s, i, j,

ρ−ij(t) = lim
r→t

∂tpij(r, t) ∀t, i, j,
(1.34)

The quantities ρ+ij(s) and ρ−ij(s) are the characteristic of the process, referred

to as infinitesimal rate. The initial condition of (1.32) suggests that ρ−ij(s) =

−ρ+ij(t) = ρij(t), if s = t. Since
∑n
j=1 pij(s, t) = 1 we deduce

ρ(t, i, j) ≥ 0, ∀i 6= j, ρ(t, i, i) = −
∑

j 6=i
ρ(t, i, j). (1.35)

Using matrix notation, R(·) = {ρij}, P (s, t) = {pij(s, t)} we have

∂sP (s, t) = −R(s)P (s, t), ∀s < t,

∂tP (s, t) = P (s, t)R(t), ∀t > s,

lim
t−s→0

P (s, t) = I, ∀t > s.

(1.36)
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Conversely, given the integrable functions ρij(t), i, j = 1, . . . , n, t ≥ 0 sat-
isfying (1.35), we may solve the system of (non-homogeneous and linear) or-
dinary differential equations (1.33), (1.34) or (1.36) to obtain the transition
(matrix) function P (s, t) = {pij(s, t)} as the fundamental solution (or Green
function). For instance, the reader may consult the books by Chung [23], Yin
and Zhang [182, Chapters 2 and 3, pp. 15–50].

Since P (s, t) is continuous in t > s ≥ 0 and satisfies the conditions in (1.32),
if we give an initial distribution, we can find a cad-lag realization of the corre-
sponding Markov chain, i.e., a stochastic process {X(t) : t ≥ 0} with cad-lag
paths such that P{X(t) = j |X(s) = i} = pij(s, t), for any i, j = 1, . . . , n and
t ≥ 0. In particular, if the rates ρij(t) are independent of t, i.e., R = {ρij},
then the transition matrix P (s, t) = exp[(t− s)R]. In this case, a realization of
the Markov chain can be obtained directly from the rate matrix R = {ρij} as
follows. First, let Yn, n = 0, 1, . . . be a sequence of E-valued random variables
with E = {1, . . . , n} and satisfying P (Yn = j | Yn−1 = i) = ρij/λ, if i 6= j with
λ = − infi ρii, i > 0, and Y0 initially given. Next, let τ1, τ2, . . . be a sequence
of independent identically distributed exponentially random variables with pa-
rameter λ i.e., P (τi > t) = exp(−λt), which is independent of (Y0, Y1, . . . ). If
we define X(t) = Yn for t in the stochastic interval [[Tn, Tn+1[[, where T0 = 0
and Tn = τ1 + τ2 + · · · + τn, then X(t) gives a realization of the Markov chain
with the above infinitesimal rates.

A typical setting includes T = [0,∞) and a denumerable state space E
(with the discrete topology). This type of processes are very useful in modeling
dynamical systems, referred to either as queueing systems or as point processes
very well known in the literature, e.g., Bremaud [20], Kemeny and Snell [95],
Kleinrock [98], Nelson [135].

This study is simplified if the time is discrete, i.e., the Markov chain Xn,
n = 0, 1, . . . , with values in subset E of Rd is defined by recurrence by

P{Xn+1 ∈ · |Xn} = P (Xn, ·), n ≥ 1,

where the stochastic kernel P (x,A) satisfies:

(a) P (x, ·) is a probability measure on B(E) for any x in E

(b) P (·, A) is measurable in E for any A in B(E).

The finite-dimensional distributions of a Markov chain is given by

P{X0 ∈ A0, X1 ∈ A1, . . . Xn ∈ An} =

=

∫

A0

ν(dx0)

∫

A1

P (x0, dx1) · · ·
∫

An

P (xn−1, dxn), (1.37)

for any A0, A1, . . . , An in B(E), and where ν(·) is the initial distribution. Thus,
given the stochastic kernel we can use Kolmogorov’s construction theorem (see
Theorem 1.12 below) to obtain a Markov chain Xn for n = 0, 1, . . . satisfying
the above equation (1.37). Moreover, we have

P{Xn |X0 = x} = Pn(x, ·)
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where Pn(x,A) denote the n kernel convolutions, defined by induction by

Pn(x,A) =

∫

E

Pn−1(x, dy)P (y,A). (1.38)

The reader may consult the book by Chung [23] and Shields [159], among others,
for a more precise discussion.

Before going further, let us mention a couple of classic simple processes which
can be viewed as Markov chains with denumerable states, e.g., see Feller [48,
Vol I, Sections XVII.2–5, pp. 400–411]. All processes below {X(t) : t ≥ 0} take
values in N = {0, 1, . . .}, with an homogeneous transition given by p(j, t−s, n) =
P{X(t) = j | X(r), 0 ≤ r < s, X(s) = n}, for every t > s ≥ 0 and j, n in
N. Thus, these processes are completely determined by the knowledge of the
characteristics p(t, n) = P{X(t) = n}, for every t ≥ 0 and n in N, and a
description on the change of values.

The first example is the Poisson process where there are only changes from
n to n+ 1 (at a random time) with a fix rate λ > 0, i.e.,

∂tp(t, n) = −λ
[
p(t, n) − p(t, n− 1)

]
,

∂tp(t, 0) = −λp(t, 0),
(1.39)

for every t ≥ 0 and n in N. Solving this system we obtain

p(t, n) = e−λt
(λt)n

n!
, t ≥ 0, n ∈ N,

which is the Poisson distribution.

The second example is a pure birth process where the only variation relative
to the Poisson process is the fact that the rate is variable, i.e., the rate is λn > 0
when X(t) = n. This means that (1.39) becomes

∂tp(t, n) = −λnp(t, n) + λn−1p(t, n− 1),

∂tp(t, 0) = −λp(t, 0),
(1.40)

for every t ≥ 0 and n in N. Certainly, this system can be solved explicitly, but
the expression is rather complicate in general. If X represents the size of a pop-
ulation then the quantity λn is called the average rate of growth. An interesting
point is the fact that {p(t, n) : n ∈ N} is indeed a probability distribution, i.e.,

∞∑

n=1

p(t, n) = 1

if and only if the coefficients λn increase sufficiently fast, i.e., if and only if the
series

∑
n λ

−1
n diverges.

The last example is the birth-and-death process, where the variation is the
fact that either a change from n to n + 1 (birth) with a rate λn or from n to
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n − 1, if n ≥ 1 (death) with a rate µn may occur. Again, the system (1.39) is
modifies as follows

∂tp(t, n) = −(λn + µn)p(t, n) + λn−1p(t, n− 1) + µn+1p(t, n+ 1),

∂tp(t, 0) = −λp(t, 0) + µ1p(t, 1),
(1.41)

for every t ≥ 0 and n in N. As in the case of a pure birth process, some
conditions are needed on the rates {λ0, λ1, . . .} and {µ1, µ2, . . .} to ensure that
the birth-and-death process does not get trap in 0 or ∞ and the characteristics
{p(t, n) : n ∈ N} is a probability distribution.

The reader may be interested in taking a look at the books Bensoussan [5],
Bertsekas [9], Bremaud [20], Hernández-Lerma and Lasserre [69, 70, 71], Peskir
and Shiryaev [143] (among many other books), to check some control problems
for Markov chains.
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Chapter 2

Stochastic Processes

For someone familiar with elementary probability theory this may be the be-
ginning of the reading. Indeed, this chapter reinforces (or describes in more
detail) some difficulties that appear in probability theory when dealing with
general processes. Certainly, the whole chapter can be viewed as a detour (or a
scenery view) of the main objective of this book. However, all this may help to
retain a better (or larger) picture of the subject under consideration. Certainly,
there are many books dealing with stochastic processes (at various level of dif-
ficulties) that the reader may consult, e.g., Bass [3], Bobrowski [16], Borodin
and Salminen [18], Doob [33], Dynkin [41], Freedman [54], Friz and Victoir [56],
Gihman and Skorohod [60], Itô [77], Karlin and Taylor [92, 93], Lamperti [108],
Métivier [127], Pollard [145], Rao [150], Wentzell [177], Wong and Hajek [180],
among many others.

First, rewind the scenario probability theory and more details on stochastic
processes are given in Section 1 (where filtered probability spaces are discussed)
and Section 2 (where Lévy processes are superficially considered). Secondly, a
very light treatment of martingales in continuous time is given in Section 3; and
preparing for stochastic modelling, Gaussian and Poisson noises are presented
in Sections 4 and 5. Next, in Section 6, another analysis on Gaussian and
compensated Poisson processes is developed. Finally, integer random measures
on Euclidean spaces is property discussed.

2.1 Calculus and Probability

As mentioned early, a tern (Ω,F , P ) means an abstract probability space, i.e.,
F is a σ-algebra of subset in Ω and P is a σ-additive function defined on F such
that P (∅) = 0 and P (Ω) = 1. A random variable x is a measurable function
from Ω into some Borel space (E, E), usually E = Rd. Stochastic processes
are initially a family of random variables with values in some Rd, but they
are implicitly considered as random variables in some topological space, the so-
called sample space. This section is somehow a repetition of concepts already
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58 Chapter 2. Stochastic Processes

discusses in the previous chapter, however, several viewpoints are possibles and
many details are not really considered, neither in the previous chapter nor in
this section.

2.1.1 Version of Processes

Let (Xt = X(t, ω) : t ≥ 0) be a family of Rd-valued random variables in a
given (complete) probability space (Ω,F , P ). Certainly, measurability is a first
difficulty encountered, i.e., there is not condition on the paths t 7→ X(t, ω),
for a fixed ω, which means that the process is indeed a random variable taken
values in the product space (Rd)[0,∞), but its Borel σ-algebra is too small for
practical purposes (e.g., a set of one point is not measurable). Most construc-
tions in probability are based on the values of Xt for every t, so that there is
not problem in considering two processes X and Y to be same process if they
are indistinguishable, i.e., there exists a null set N such that Xt(ω) = Yt(ω),
for every (t, ω) in [0,∞) × (Ω r N), namely. P{ω : Xt(ω) = Yt(ω), ∀t} = 1.
However, in many circumstances, only a version (or modification) of a process
is known, i.e., the random variable Xt could be modified in a null set for each
fixed t ≥ 0, i.e., for each t ≥ 0 the exists a null set Nt such that Xt(ω) = Yt(ω),
for every ω in Ω rNt, namely, P{ω : Xt(ω) = Yt(ω)} = 1, for every t ≥ 0.

To make aware the reader of some difficulties that may arrive in the theory
of general processes, we discuss some initial issues. Even if it is not explicitly
stated, a (stochastic) process is a family of Rd-valued random variables where
some regularity in the t-variable index have been imposed. For instance:

(1) a stochastically (left or right) continuous process (Xt : t ≥ 0) satisfies
Xs → Xt in probability as s→ t (s < t or s > t for left or right continuous) for
any t ≥ 0, or

(2) a (left or right) continuous process has almost surely (left or right) contin-
uous paths, i.e., t 7→ Xt(ω) is (left or right) continuous for any ω outside of a
null set, or even

(3) a separable process (Xt : t ≥ 0) has a countable dense subset of indexes
(which is called a separant set) I ⊂ [0,∞] such that for some null set N and
for every (t, ω) in [0,∞) × (Ω rN) there exists a sequence {tn} ⊂ I satisfying
tn → t and Xtn(ω) → Xt(ω).

Note that condition (2) implies condition (1), and that any countable dense set
could serve as a separant set under condition (2). Also, (1) implies measurable,
in the sense that any stochastically (left or right) continuous process has a
version which is measurable, in the couple (t, ω). However, it is clear that not
any process has a version which satisfies (1) or (2), but it can be proves that
given a process (Xt : t ≥ 0) there is a version (Yt : t ≥ 0) which is separable,
i.e., Y satisfies (3) and P{Xt = Yt} = 1 for every t ≥ 0. Nevertheless, these
conditions are essentially very different one from each other. Condition (3) is
very useful, but very hard to manipulate. Condition (1) is intrinsic to the joint
finite-dimensional distributions of the family of random variables {X(t) : t ≥ 0}
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and therefore remains valid for any version of the process (Xt : t ≥ 0), while
condition (2) is attached to the particular version of the process, say a pathwise
condition. In the first case (1), we are looking at the process as a function from
[0,∞) into the set of Rd-valued random variables, while in the second case (2),
we have random variables with values in the space of (left or right) continuous
Rd-valued functions, almost surely. Both concept are intended to address the
difficulty presented by the fact that the conditions

(a) P{Xt = Yt} = 0, ∀t ≥ 0, (b) P{Xt = Yt, ∀t ≥ 0} = 0,

are not equivalent, when t ranges on an uncountable set. If both processes
(Xt : t ≥ 0) and (Yt : t ≥ 0) are left or right continuous (or separable) then
(a) and (b) are actually equivalent. Indeed, take a countable dense set I and
consider the event N =

⋃
t∈I{ω : Xt(ω) 6= Yt(ω)} for two processes satisfying

(a). Since the union is countable, P (N) = 0 and the continuity of their paths
imply that Xt(ω) = Yt(ω) for any ω in Ω rN and any t. If both processes are
only separable then we take I = IX ∪ IY (where IX or IY are a separant set
associated with X or Y ) and proceed along the line of the previous argument.

On the other hand, if the processes are only stochastically right (or left)
continuous then (a) and (b) may not be equivalent. However, a simple argument
shows that given a separable stochastically right (or left) continuous process X
then any countable dense set is separant. Indeed, for any countable dense set
I = {t1, t2, . . .} we can find a sequence of positive numbers {δ1, δ2, . . .} such that
P{|X(t)−X(tn)| ≥ 2−n} < 2−n for any t in [tn, tn + δn]. By the Borel-Cantelli
lemma the set

Nt =
⋂

m

⋃

n≥m

{
ω : |X(t, ω) −X(tn, ω)| ≥ 2−n

}

has probability zero. Since R =
⋃
n[tn, tn + δn], for any t in R and any ω in

ΩrNt there is a sequence of indexes in I such that X(tk, ω) converges to X(t, ω).
Because X is separable, there is countable dense set J and null set N, P (N) = 0
such that for any t in R and ω in Ω r N the previous convergence holds with
indexes in J. Therefore, for ω outside of the null set N̄ = N ∪⋃

t∈J Nt, there is a
sequence of indexes in I such that X(tk, ω) converges to X(t, ω). Moreover, for
the given process X, this argument shows that there exists a separable process Y
satisfying (a), but not necessarily (b). Indeed, it suffices to define Yt(ω) = Xt(ω)
for any t and ω such that ω belongs to Ω rNt and Yt(ω) = 0 otherwise.

In a typical example we consider the Lebesgue measure on [0, 1], two pro-
cesses Xt(ω) = t for any t, ω in [0, 1] and Yt(ω) = t for ω 6= t and Yt(ω) = 0
otherwise. It is clear that condition (a) is satisfied, but (b) does not hold. The
process X is continuous (as in (2), sometimes referred to as pathwise continu-
ity), but Y is only stochastically continuous (as in (1), sometimes referred to as
continuous in probability), since is clearly almost sure continuous. Also, note
that a stochastic process (Xt : t ≥ 0) is (right or left) continuous if its restriction
to a separant set is so.

Therefore, the intuitive idea that two processes are equals when their finite-
dimensional distributions are the same translates into being version of each

[Preliminary] Menaldi December 12, 2017



60 Chapter 2. Stochastic Processes

other. However, some properties associate with a process are actually depending
on the particular version being used, i.e., key properties like measurability on the
joint variables (t, ω) or path-continuity depend on the particular version of the
process. As mentioned early, these difficulties appear because the index of the
family of random variables (i.e., the stochastic process) is uncountable. This is to
say that the finite-dimensional distributions of a stochastic process are actually
given on a countable family of index, and some kind of continuity (in probability,
pathwise or separability) is used to completely determine the stochastic process,
i.e., suitable versions of processes are always taken for granted.

2.1.2 Filtered Probability Space

Another key issue is the filtration, i.e., a family of sub σ-algebras (Ft : t ≥ 0)
of F , such that Fs ⊂ Ft for every t > s ≥ 0. As long as the probability P
is unchanged, we may complete the F and F0 with all the subsets of measure
zero. However, in the case of Markov processes, the probability P = Pµ de-
pends on the initial distribution µ and the universally completed filtration is
used to properly express the strong Markov property. On the other hand, the
right-continuity of the filtration, i.e., the property Ft = Ft+, for every t ≥ 0,
where Ft+ =

⋂
s>t Fs, is a desirable condition at the point that by filtration we

understand a right-continuous increasing family of sub σ-algebras (Ft : t ≥ 0)
of F as above.

Usually, the filtration (Ft : t ≥ 0) is attached to a stochastic process (Xt :
t ≥ 0) in the sense that the random variables (Xs : s ≤ t) are Ft-measurable.
The filtration generated by a process (or the history of the process, i.e, Ft = Ht

is the smaller sub σ-algebra of F such that all random variables (Xs : s ≤ t) are
measurable) represents the information obtained by observing the process. The
new information is related to the innovation, which is defined as the decreasing
family of sub σ-algebras (It : t ≥ 0), where It = F⊥

t is the smaller sub σ-
algebra of F containing all set independent of Ft, i.e., a bounded function f is
F⊥
t -measurable if and only if E{f g} = E{f}E{g} for any integrable g in Ft-

measurable. Hence, another stochastic process (Yt : t ≥ 0) is called adapted if
Yt is Ft-measurable for every t ≥ 0 and non-anticipating (or non-anticipative)
if Yt is independent of the innovation I, which is equivalent to say that Yt
is I⊥

t -measurable or F⊥⊥
t -measurable, i.e., E{ϕ(Yt) g} = E{ϕ(Yt)}E{g} for

any bounded real Borel measurable function ϕ and any integrable g satisfying
E{f g} = E{f}E{g} for every integrable f which is Ft-measurable. Note that
the filtration (Ft : t ≥ 0), the process or the concept adapted can be defined
in a measurable space (Ω,F), but the innovation (It : t ≥ 0) or the concept
of non-anticipative requires a probability space (Ω,F , P ), which involves the
regularity in the t-variable index discussed above.

Thus, for a filtered space (Ω,F, P ) or (Ω,F , P,Ft : t ≥ 0), we understand a
probability space (Ω,F , P ) endowed with a filtration F = {Ft : t ≥ 0} which
is always right-continuous. As long as P is fixed, we may assume that F0 is
complete (with respect to F), even more that Ft = F⊥⊥

t for every t ≥ 0 and
F =

∨
t≥0 Ft. Sometimes we may change the probability P, but the filtration
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may change only when the whole measurable space is changed, except that
it may be completed with all null sets as needed. This is referred to as the
‘usual conditions’ (completed and right-continuity), and when necessary, even
F =

∨
t≥0 Ft, with the notations either Ft or F(t).

A minimum condition required for a stochastic process is to be measurable,
i.e., the function (t, ω) 7→ X(t, ω) is measurable with respect to the product
σ-algebra B × F , where B = B([0,∞[) is the Borel σ-algebra in [0,∞[= [0,∞).
When general processes are involved, subsets N of B × F with the property
that P

(⋃
t≥0{ω : (t, ω) ∈ N}

)
= 0 are called evanescent and two processes

which differ in an evanescent set are considered equals (or undistinguished),
every concepts and results are valid except an evanescent set, without special
mention. As mentioned above, if the processes have some extra path regularity,
such as separable or stochastically left (or right) continuous, then this is the
same as modification or version of the process.

However, the standard technique is to make a regular (e.g., cad-lag) modi-
fication of a general process and then, to refer always to this version. Related
to the adapted processes are the progressively measurable processes, which are
stochastic processes such that the function (t, ω) 7→ X(t, ω) is measurable with
respect to the product σ-algebra B([0, T ]) × F , when considered as a mapping
from Ω× [0, T ], for every T in [0,∞[. There are a couple of useful sub σ-algebras
of B × F :

(1) the predictable σ-algebra P, generated by sets of the form {0} × F0 and
(s, t] × Fs for any Fs in Fs, any t > s ≥ 0

(2) the optional (or well measurable) σ-algebra O, generated by sets of the form
{0} × F0 and [s, t) × Fs for any Fs in Fs, any t > s ≥ 0.

Note that sets of the form (s,∞[×Fs/[s,∞[×Fs could be used as generator of the
predictable/optional σ-algebras. For the sake of convenience and as long as no
confusion may arrive, we may exchange the order of the variables t and ω so that
Ω×[0,∞) or [0,∞)×Ω are regarded as the same. Clearly P ⊂ O ⊂ B([0,∞[)×F ,
where in general the inclusions are strict. It can be proved that P is the σ-
algebra generated by continuous (or left continuous) adapted processes, and
that O is generated by right continuous (or cad-lag) adapted processes.

Thus, a stochastic process X is called predictable (or optional) if the func-
tion (t, ω) 7→ X(t, ω) is measurable with respect to P (or O). However, a
F-measurable function from Ω into [0,∞] is called an optional (or stopping)
time if {τ ≤ t} (or {τ < t} because Ft = Ft+) is in Ft for every t ≥ 0 and Fτ
is the σ-algebra of all sets A in F∞ =

∨
t≥0 Ft such that A ∩ {τ ≤ t} belongs

to Ft for every t ≥ 0. If τ and θ are optional times then stochastic intervals of
the form [0, τ ] and (θ, τ ] are predictable. A stopping time is called predictable
if there exists a (announcing) sequence of stopping time {τ1 ≤ τ2 ≤ τk < τ}
convergent to τ. It can be proved that τ is optional (or predictable) if and only
if the function (t, ω) 7→ ✶t≥τ is an optional (or predictable) process. Note that
if two processes X and Y are equals except in an evanescent set then X is pre-
dictable (or optional or progressively measurable or adapted) if and only if Y
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is so. Hence, two such a processes are regarded as the same in practically all
probabilistic aspects.

These measurability properties are not preserved when using versions of the
same process. For instance, if X is a stochastically left continuous adapted
process then for every t, ε > 0 there exists δ = δ(t, ε) such that P{|X(t) −
X(s)| ≥ ε} ≤ ε, for any s in [t − δ, t]. Thus, for every sequence of partitions
πn = {0 = t0,n < t1,n < · · · < tk,n < · · · }, with supk(tk,n − tk−1,n) vanishing as
n→ ∞, we can define

Xn(t, ω) =

{
X(0, ω) if t = 0,

X(tk−1,n, ω) if tk−1,n < t ≤ tk,n, k ≥ 1.

It is clear that Xn is predictable and so is the subset A of Ω× [0,∞), where the
sequence Xn(t, ω) is convergent is also predictable. Therefore the limit

Y (t, ω) =

{
limnXn(t, ω) for (t, ω) ∈ A,

0 otherwise,

is also a predictable process. By Borel-Cantelli lemma the set

Nt =
⋂

m

⋃

n≥m

{
ω : ∃ k such that tk−1,n < t ≤ tk,n,

, |X(t, ω) −X(tk,n, ω)| ≥ 2−n
}

has probability zero for every t > 0. Hence, for any ω in Ω r Nt the sequence
Xn(t, ω) is convergent toX(t, ω), i.e., P{X(t) = Y (t)} = 1, for every t ≥ 0. Thus
any stochastically left continuous adapted process has a predictable version. It
is clear that X and Y does not necessarily differ on an evanescent set, i.e., the
complement of A is not an evanescent set.

To summing-up, in most cases the starting point is a filtered probability
space (Ω,F, P ), where the filtration F = {Ft : t ≥ 0} satisfies the usual condi-
tions, i.e., F0 contains all null sets of F and Ft =

⋂
s>t Fs. An increasing family

{F0
t : t ≥ 0} of σ-algebras is constructed as the history a given process, this

family is completed to satisfy the usual conditions, without any loss of proper-
ties for the given process. Thus other processes are called adapted, predictable
or optional relative to the filtration F, which is better to manipulate than using
the original family {F0

t : t ≥ 0}. Therefore, together with the filtered space
the predictable P and optimal O σ-algebras are defined on the product space
[0,∞) × Ω. Moreover, sometimes even the condition F∞ =

∨
t≥0 Ft = F may

be imposed. It should be clear that properties related to filtered probability
spaces depend on the particular version of the process under consideration, but
they are considered invariant when the process is changed in an evanescent set.

2.2 Lévy Processes

There are several excellent books on Lévy processes at various levels, e.g., the
reader may check Applebaum [1] and Sato [157] (among others) to appreciate
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the differences and difficulties involved.
Random walks capture most of the relevant features found in sequences

of random variables while Lévy processes can be thought are their equivalent
in continuous times, i.e., they are stochastic processes with independent and
stationary increments. The best well known examples are the Poisson process
and the Brownian motion. They form the class of space-time homogeneous
Markov processes and they are the prototypes of semi-martingales.

Definition 2.1. A Rd-valued or d-dimensional Lévy process is a random vari-
able X in a complete probability space (Ω,F , P ) with values in the canonical
D([0,∞),Rd) such that

(1) for any n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn the Rd-valued random variables
X(t0), X(t1) − X(t2),. . . ,X(tn) − X(tn−1) are independent (i.e., independent
increments),

(2) for any s > 0 the Rd-valued random variables X(t) −X(0) and X(t+ s) −
X(s) have the same distributions (i.e., stationary increments),

(3) for any s ≥ 0 and ε > 0 we have P (|X(t) −X(s)| ≥ ε) → 0 as t → s (i.e.,
stochastically continuous) and

(4) P (X(0) = 0) = 1.

An additive process is defined by means of the same properties except that
condition (2) on stationary increments is removed.

Usually the fact that the paths of a Lévy process are almost surely cad-lag
is deduced from conditions (1),. . . ,(4) after a modification of the given process.
However, we prefer to impose a priori the cad-lag regularity. It is clear that
under conditions (2) (stationary increments) and (4) we may replace condition
(3) (on stochastically continuous paths) by condition P (|X(t)| ≥ ε) → 0 as
t→ 0, for every ε > 0.

2.2.1 Generalities of LP

Recall that a classic tool to analyze distributions in Rd is characteristic functions
(or Fourier transform). Thus, for a given distribution µ of a random variable ξ
in Rd, the characteristic function µ̂ : Rd → C is defined by

µ̂(y) =

∫

Rd

ei x·y µ(dx) = E{ei y·ξ}.

If µ1 and µ2 are the distributions of two Rd-valued independent random variables
ξ1 and ξ2 then the convolution µ1 ⋆ µ2 defined by

(µ1 ⋆ µ2)(B) =

∫

Rd×Rd

✶B(x+ y)µ1(dx)µ2(dy), ∀B ∈ B(Rd)

is the distribution of the sum ξ1 + ξ2. We have µ̂1 ⋆ µ2 = µ̂1 µ̂2, and therefore,
the characteristic functions of independence of random variables is product of
characteristic function of each variable.
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If X is a Lévy process then we may consider the characteristic function of
the Rd-valued random variable X(1), i.e.,

µ̂(y) = E{ei y·X(1)}.

Since X(1) = X(1/n) + [X(2/n) − X(1/n)] + · · · + [X(1) − X(1 − 1/n)], the
random variable X(1) can be expressed as the sum of n independent identically
distributed random variables, the distribution µ is the n-fold convolution of some
distribution µn, i.e., µ = µn⋆n , µn is the distribution of X(1/n). A distribution
µ with the above property is called infinitely divisible. For instance, Gaussian,
Cauchy and Dirac-δ distributions on Rd, as well as Poisson, exponential and Γ
distributions on R, are infinitely divisible, for instance see Stroock [168, Section
3.2, pp. 139–153].

Any infinitely divisible distribution µ has a never vanishing characteristic
function µ̂ which can be expressed as an exponential function, i.e.,

µ̂(y) = exp[−φ(y)], ∀y ∈ Rd,

where φ is uniquely determined as a complex-valued continuous function in Rd

with φ(0) = 1, which is called characteristic exponent or the Lévy symbol.
Thus, we have E{ei y·X(t)} = exp[−tφ(y)] for t rational and by continuity for
any t ≥ 0. Since the Fourier transform is one-to-one, the expression

µ̂⋆t(y) = exp[−tφ(y)], ∀y ∈ Rd, t > 0,

define the ⋆t-convolution. Moreover, µ⋆t is also an infinitely divisible distribu-
tion.

A key result is Lévy-Khintchine formula states that a complex-valued func-
tion φ is the characteristic exponent of an infinitely divisible distributions µ if
and only if

φ(y) = i g · y +
1

2
Qy · y +

∫

Rd
∗

[
1 − ei y·x + i y · x✶|x|<1

]
m(dx),

for every y in Rd, where g belongs to Rd, Q is a non-negative semi-definite
d× d-matrix and m is a Radon measure on Rd∗ = Rdr {0} which integrates the
function x 7→ |x|2 ∧ 1. The representation of φ by (g,Q,m) is unique. However,
the cut-off function ✶|x|<1 may be replaced by a bounded smooth function which
is equal to 1 at the origin, e.g. (1+|x|2)−1. In this case, the parameter g changes
and we have for every y in Rd,

φ(y) = i f · y +
1

2
Qy · y +

∫

Rd
∗

[
1 − ei y·x + i

y · x
1 + |x|2

]
m(dx),

f = g +

∫

Rd

x
[ 1

1 + |x|2 − ✶|x|<1

]
m(dx).

We may also use sinx as in Krylov [103, Section 5.2, pp. 137–144], for the
one-dimensional case.
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2.2.2 Compound Poisson Processes

An important class of Lévy processes are the so-called (compound) Poisson
processes. A Lévy process X is called a Poisson process with parameter c > 0,
if X(t) has a Poisson distribution with mean ct, for every t ≥ 0, in other words,
X is a cad-lag process with independent increments, X(0) = 0, and

P
{
X(t) −X(s) = k

}
=

e−c(t−s)(c(t− s)k)

k!
, ∀k = 0, 1, . . . , t ≥ s ≥ 0.

Similarly, a Lévy process X is called a compound Poisson process with param-
eters (c, γ), where c > 0 and γ is a distribution in Rd with γ({0}) = 0 (i.e., γ is
a distribution in Rd∗), if E{ei y·X(t)} = exp[−t c(γ̂(y) − 1)], for any t ≥ 0 and y
in Rd, with γ̂ the characteristic function of the distribution γ. The parameters
(c, γ) are uniquely determined by X and a simple construction is given as fol-
lows. If {ζn : n = 1, 2, . . . } is a sequence of independent identically distributed
(with distribution law γ) random variables, and {τn : n = 1, 2, . . . } is another
sequence of independent exponentially distributed (with parameter c) random
variables, with {ζn : n = 1, 2, . . . } independent of {τn : n = 1, 2, . . . }, then for
θn = τ1 + τ2 + · · ·+ τn (which has a Gamma distribution with parameters c and
n), the expressions

X(t) =

∞∑

n=1

ζn✶t≥θn , with δX(t) = X(t) −X(t−)

δX(θn) = ζn, and δX(t) = 0 if t 6= θn, ∀n, or equivalently

X(t) = ζ1 + ζ2 + · · · + ζn if

n∑

i=1

τi = θn ≤ t < θn+1 =

n+1∑

i=1

τi,

are realizations of a compound Poisson process and its associate point (or jump)
process. Indeed, for any integer k, any 0 ≤ t0 < t1 < · · · < tk and any Borel sub-
sets B0, B1, . . . , Bk of Rd we can calculate the finite-dimensional distributions
of X by the formula

P (X(t0) ∈ B0, X(t1) −X(t0) ∈ B1, . . . , X(tk) −X(tk−1) ∈ Bk) =

= P
(
X(t0) ∈ B0

)
P
(
X(t1) −X(t0) ∈ B1

)
. . .

. . . P
(
X(tk) −X(tk−1) ∈ Bk

)
.

This yields the expression

E{ei y·X(t)} = exp[−t c (1 − γ̂(y))], ∀y ∈ Rd, t ≥ 0,

which is continuous in t. Then, all conditions in Definition 2.1, including the
stochastic continuity of path (3), are satisfied. Note that for a pairwise disjoint
family of Borel sets of the form ]si, ti] × Bi, with 0 ≤ si < ti, Bi in B(Rd),
i = 1, 2, . . . , k the integer-valued random variables

ν(]si, ti] ×Bi) =

∞∑

n=1

✶si<θn≤ti ✶ζn∈Bi
, ∀i = 1, 2, . . . , k
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are independent identically Poisson distributed, with parameter (or mean) c (ti−
si)γ(Bi).

An interesting point is the fact that a compound Poisson process in R+, with
parameters (c, σ) such that c > 0 and σ is a distribution in (0,∞), is increasing
in t and its Laplace transform is given by

E{e−ξX(t)} = exp
[
− t c

∫

(0,∞)

(e−ξx − 1)σ(dx)
]
, ∀ξ ∈ R, t ≥ 0.

These processes are called subordinator and are used to model random time
changes, possible discontinuous. Moreover, the Lévy measure m of any Lévy
process with increasing path satisfies

∫

R1
∗

|x| m(dx) =

∫ ∞

0

x m(dx) <∞,

e.g., see books Applebaum [1, Section 2.3, pp. 99-112], Bertoin [7, Chapter III,
pp. 71-102], Itô [77, Section 1.11] and Sato [157, Chapter 6, pp. 197-236].

The interested reader, may consult the book by Applebaum [1], which discuss
Lévy process at a very accessible level.

2.2.3 Wiener Processes

The next typical class Lévy processes is the Wiener processes or Brownian mo-
tions. A Lévy process X is called a Brownian motion or Wiener process in Rd,
with (vector) drift b in Rd and (matrix) co-variance σ2, a nonnegative-definite
d × d matrix, if E{ey·X(t)} = exp [−t(|σy|2/2 − i b)], for any t ≥ 0 and y in
Rd, i.e., if X(t) has a Gaussian distribution with (vector) mean E{X(t)} = bt
and (matrix) co-variance E{(X(t)− bt)∗(X(t)− bt)} = tσ2. A standard Wiener
process is when b = 0 and σ2 = 1, the identity matrix. The construction of
a Wiener process is a somehow technical and usually details are given for the
standard Wiener process with t in a bounded interval. The general case is an
appropriate transformation of this special case. First, let {ξn : n = 1, 2, . . . } be
a sequence of independent identically normally distributed (i.e., Gaussian with
zero-mean and co-variance 1) random variables in Rd and let {en : n = 1, 2, . . . }
be a complete orthonormal sequence in L2(]0, π[), e.g., en(t) =

√
2/π cos(nt).

Define

X(t) =

∞∑

n=1

ξn

∫ t

0

en(s)ds, t ∈ [0, π].

It is not hard to show that X satisfies all conditions of a Wiener process, except
for the stochastic continuity and the cad-lag sample property of paths. Next,
essentially based on the (analytic) estimate: for any constants α, β > 0 there
exists a positive constant C = C(α, β) such that

|X(t) −X(s)|α ≤ C |t− s|β
∫ π

0

dt

∫ π

0

|X(t) −X(s)|α |t− s|−β−2ds,
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for every t, s in [0, π], we may establish that that series defining the process X
converges uniformly in [0, π] almost surely. Indeed, if Xk denotes the k partial
sum defining the process X then an explicit calculations show that

E{|Xk(t) −Xℓ(s)|4} = E
{∣∣∣

k∑

n=ℓ+1

ξn

∫ t

s

en(r)dr
∣∣∣
4}

≤ 3|t− s|2,

for every t ≥ s ≥ 0 and k > ℓ ≥ 1. After using the previous estimate with α = 4
and 1 < β < 2 we get

E{ sup
|t−s|≤δ

|Xk(t) −Xℓ(s)|4} ≤ C δβ , ∀δ > 0, k > ℓ ≥ 1,

for a some constant C > 0. This proves that X is a Wiener process with continu-
ous paths. Next, the transformation tX(1/t) (or patching k independent copies,
i.e., Xk(t) if (k− 1)π ≤ t < kπ, for k ≥ 1.) produces a standard Wiener process
in [0,∞) and the process b t+ σX(t) yields a Wiener process with parameters
b and σ.

The above estimate is valid even when t is multidimensional and a proof can
be found in Da Prato and Zabczyk [29, Theorem B.1.5, pp. 311–316]. For more
details on the construct arguments, see, e.g., Friedman [55] or Krylov [102].

For future reference, we state the general existence result without any proof.

Theorem 2.2 (construction). Let m be a Radon measure on Rd∗ such that
∫

Rd
∗

|x|2 ∧ 1m(dx) <∞,

Q be a nonnegative-definite d × d matrix and g be a vector in Rd. Then there
exists a unique probability measure P on the canonical probability space Ω =
D([0,∞),Rd) such that the canonical process (X(t) = ω(t) : t ≥ 0) is a Lévy
process with characteristic (g,Q,m), i.e.,

E{ei y·X(t)} = exp[−t φ(y)], ∀y ∈ Rd, t ≥ 0, with

φ(y) = i g · y +
1

2
Qy · y +

∫

Rd
∗

[
1 − ei y·x + i y · x✶|x|<1

]
m(dx).

Conversely, given a Lévy process X the characteristic (g,Q,m) is uniquely de-
termined through the above formula.

Recall that any infinitely divisible probability measure on Rd can be viewed
as the distribution of a Lévy process evaluated at time 1, and, an important
point to remark is that the construction shows that any Lévy process is a Wiener
process plus the limit of a sequence of compound Poisson processes. However,
the structure of a typical graph of Levy process seems to elude us. For instance,
almost surely, the jumping times J = {t : X(t, ω) 6= X(t−, ω)} are countable,
and (a) if the Levy measure satisfies m(Rd) = ∞ then J is dense in [0,∞) while
(b) if m(Rd) <∞ then J can be written as an increasing sequence {τk : k ≥ 1},
τk ≤ τk+1, of independent random variables having exponential distributions
with mean 1/m(Rd), see Sato [157, Theorem 21.3, pp. 136–137].
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2.2.4 Path-regularity for LP

To end this section, let us take a look at the path-regularity of the Lévy pro-
cesses. If we drop the cad-lag condition in the Definition 2.1 then we use the
previous expressions (for either Lévy or additive processes in law) to show that
there exits a cad-lag version, see Sato [157, Theorem 11.5, p. 65], which is ac-
tually indistinguishable of the initial Lévy or additive process was a separable
process.

Proposition 2.3. Let y be an additive process in law on a (non-necessarily com-
pleted) probability space (Ω,F , P ), and let F0

t (y) denote the σ-algebra generated
by the random variables {y(s) : 0 ≤ s ≤ t}. Define Ft(y) = F0

t (y)∨N , the min-
imal σ-algebra containing both F0

t (y) and N , where N = {N ∈ F : P (N) = 0}.
Then Ft(y) =

⋂
s>t Fs(y), for any t ≥ 0.

Proof. Set F+
t (y) =

⋂
s>t Fs(y) and F0

∞(y) = ∨t≥0F0
t (y). Since both σ-algebras

contain all null sets in F , we should prove that E(Z | F+
t (y)) = E(Z | Ft(y)) for

any F0
∞(y)-measurable bounded random variable Z, to get the right-continuity

of the filtration. Actually, it suffices to establish that

E{ei
∑n

j=1 rjy(sj) | F+
t (y)} = E{ei

∑n
j=1 rjy(sj) | Ft(y)}

for any choice of 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn, (r1, r2, . . . , rn), and n. Moreover, only
the case s1 > t need to be considered. To this purpose, we use the character-
istic function ft(r) = E{eiry(t)} which satisfies ft+s(r) = ft(r)fs(r), and the
martingale property of Mt(r) = eiry(t)/ft(r) with respect to Ft(y).

Now, let s1 > t′ ≥ t and consider

E{ei
∑n

j=1 rjy(sj) | Ft′(y)} = fsn(rn)E{ei
∑n−1

j=1 rjy(sj)Msn(rn) | Ft′(y)} =

= fsn(rn)E{ei
∑n−1

j=1 rjy(sj)Msn−1
(rn) | Ft′(y)} =

= fsn−sn−1
(rn)fsn−1

(rn−1 + rn) ×
× E{ei

∑n−2
j=1 rjy(sj)Msn−1

(rn−1 + rn) | Ft′(y)})=

= . . . = fsn−sn−1
(rn)fsn−1−sn−2

(rn−1 + rn) ×
× fsn−2−sn−3

(rn−2 + rn−1 + rn) ×
× . . .× fs2−s1(r2 + · · · + rn−2 + rn−1 + rn)eir1y(s1),

i.e., we have

E{ei
∑n

j=1 rjy(sj) | Ft+ε(y)} = E{ei
∑n

j=1 rjy(sj) | Ft(y)}, ∀ε > 0.

and the proof is finished by passing to the limit as ε→ 0.

• Remark 2.4. Sometimes, an adapted process y (not necessarily cad-lag) is
called additive with respect to a filtration F (non necessarily right-continuous
or complete) if the random variable y(s) − y(t) is independent of F(t), for any
s > t ≥ 0. Because y is adapted and F(t) increasing, this is equivalent to a
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stronger condition, namely, the σ-algebra G(t) generated by {y(s2) − y(s1) :
s2 > s1 ≥ t} is independent of F(t) for any t ≥ 0. Now, let N be the σ-algebra
of all null sets in F and set F(t+) =

⋂
ε>0 F(t + ε). If y is right-continuous

in probability then we want show that E{· | F(t+)} = E{· | F(t)}. Indeed, for
any t there is a sequence {tn}, tn > t convergent to t and a set of measure null
such that y(tn, ω) → y(t, ω), for every ω in Ω rN. Since y(s) − y(tn), s > t, is
independent of F(tn) ⊃ F(t+), we have

E
{
f
(
y(s) − y(tn)

)
✶F

}
= E

{
f
(
y(s) − y(tn)

)}
E{1F }, ∀F ∈ F(t+),

for every continuous function f. Hence, y(s)−y(t), s > t is independent of F(t+),
i.e., G(t)∨N is independent of F(t+), for every t ≥ 0. Now, if A is in F(t) and
B in G(t)∨N then the F(t)-measurable random variable ✶A P (B) is a version of
the conditional expectation E{✶A✶B | F(t+)}, and a class monotone argument
shows that for any bounded and F(t) ∨ G(t) ∨ N -measurable random variable
h we have a F(t)-measurable version of the E{h | F(t+)}. This proves that
F(t+) = F(t)∨N , i.e., another way of proving the previous Proposition 2.3.

The reader is referred to the books by Bremaud [19], Elliott [43], Prot-
ter [149]), and the comprehensive works by Bertoin [7, Chapters O and I, pp.
1–42] and Sato [157, Chapters 1 and 2, pp. 1–68].

2.3 Martingales in Continuous Time

Martingales plays a key role in stochastic analysis, and in all what follows a
martingale is a cad-lag process X with the following property relative to the
conditional expectation

E{X(t) |X(r), 0 ≤ r ≤ s} = X(s), ∀t ≥ s > 0, (2.1)

and when the = sign replaced by the ≥ sign in the above property, the process
X is called a sub-martingale, and similarly a super-martingale with the ≤ sign.
The conditional expectation requires an integrable process, i.e., E{|X(t)|} <∞
for every t ≥ 0 (for sub-martingale E{[X(t)]+} < ∞ and for super-martingale
E{[X(t)]−} < ∞ are sufficient). Moreover, only a version of the process X is
characterized by this property, so that a condition on the paths is also required.
A minimal condition is to have a separable process X, but this theory becomes
very useful when working with cad-lag process X. We adopted this point of view,
so in this context, a martingale is always a cad-lag integrable process. Most of
the time we replace the conditional expectation property with a more general
statement, namely

E{X(t) | F(s)} = X(s), ∀t ≥ s > 0,

where now X is a cad-lag integrable process adapted to the filtration (F(t) :
t ≥ 0), which is always assumed right-continuous and even completed when
necessary. However, the concept of martingale is independent of the filtration
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as soon as some regularity on the paths is given. Actually, the conditional
expectation property is equivalent to the condition

E
{
X(t)

n∏

i=1

hi
(
X(si)

)}
= E

{
X(s)

n∏

i=1

hi
(
X(si)

)}
,

for every 0 ≤ s1 < s2 · · · ≤ sn ≤ s < t, any (real-valued) Borel and bounded
functions hi, i = 1, . . . , n, any integer n. Nevertheless, to weaker the condition
on integrability, a technical localization procedure is used, and a local-martingale
is a cad-lag process X such that Xk : t 7→ X(t ∧ τk) −X(0) is a martingale for
some increasing sequence of stopping times τk satisfying τk → ∞. This forces
the use of a filtration.

Note the contrast of the previous property and the Markov property valid for
a Markov process X: for any n = 1, 2 . . . , any bounded measurable (actually
continuous suffices) functions f1, . . . , fn, g1, . . . , gn, h, and times s1 ≤ · · · ≤
sn ≤ t ≤ t1 ≤ · · · ≤ tn we have

E
{
h(Xt)

( n∏

i=1

f(Xsi)
)( n∏

i=1

g(Xti)
)}

=

= E
{
h(Xt)E{

n∏

i=1

f(Xsi) |Xt)}E{
n∏

i=1

g(Xti) |Xt}
}
,

where E{∏n
i=1 f(Xsi |Xt)} and E{∏n

i=1 g(Xti) |Xt} are Xt-measurable func-
tions satisfying

E
{
h(Xt)

n∏

i=1

f(Xsi)
}

= E
{
h(Xt)E{

n∏

i=1

f(Xsi) |Xt)}
}
,

E
{
h(Xt)

n∏

i=1

g(Xti)
}

= E
{
h(Xt)E{

n∏

i=1

g(Xti) |Xt)}
}
,

i.e., they are the conditional expectations with respect to the σ-algebra gener-
ated by the random variable Xt. This is briefly expressed by saying that the
past and the future are independent given the present. Clearly, this condition in-
volves only the finite-dimensional distributions of the process, and no condition
on integrability for X is necessary for the above Markov property.

Also note that for a random process X = {X(t), t ≥ 0} with independent
increments, i.e., for any n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn the Rd-valued random
variables X(t0), X(t1) −X(t2),. . . , X(tn) −X(tn−1) are independent, we have
the following assertions: (a) if E{|X(t)|} <∞ for every t ≥ 0 then the random
process t 7→ X(t) − E{X(t)} satisfies the martingale inequality (2.1), and (b)
if E{X(t)} = 0 and E{|X(t)|2} < ∞ for every t ≥ 0 then the random process
t 7→ (X(t))2 − E{(X(t))2} also satisfies the martingale inequality (2.1).

For instance, the reader is referred to the books Chung and Williams [25],
Bichteler [11], Dudley [37, Chapter 12, pp. 439–486], Durrett [40], Elliott [43],
Kuo [107], Medvegyev [120], Protter [149], among others, for various presenta-
tions on stochastic analysis.

[Preliminary] Menaldi December 12, 2017



2.3. Martingales in Continuous Time 71

2.3.1 Dirichlet Class

We rephrase the above martingale concept

Definition 2.5 (martingale). A martingale (process) relative to a given filtered
space (Ω,F , P,F(t) : t ≥ 0) is a random variable M (P -equivalence class) with
values into the canonical space D([0,∞),Rd) satisfying the martingale property

E{|M(t)|} <∞, ∀t, E{M(t) | F(s)} = M(s), a.s. ∀t > s,

where M(t) = M(ω)(t). If the filtration F = {F(t) : t ≥ 0} is not mentioned,
then it is assumed that {F(t) : t ≥ 0} is the smallest filtration satisfying the
usual condition, which renders the process {M(t) : t ≥ 0} adapted. Moreover,
the martingale is called continuous if M take values into the canonical space
C([0,∞),Rd) almost surely, and it is called uniformly integrable if the family of
random variables {M(t), t ≥ 0} is uniformly integrable, i.e., for any ε > 0 there
is a r > 0 sufficiently large such that P{|M(t)| ≥ r} ≤ ε, for any t in [0,∞).
When d = 1, i.e., with values in R, we may define also super - or sub-martingale
by replacing the equal sign by either ≤ or ≥ in the above condition. Sometimes,
martingales are considered in a bounded (or unbounded) time interval instead
of the semi-line [0,∞).

First, note the role of uniformly integrability by mentioning Doob’s martin-
gale convergence and optional-sampling results

Theorem 2.6. IfM is martingale bounded in L1, i.e., supt E{|M(t)|} <∞, the
limit M(∞) = limt→∞M(t) exists almost surely and the convergence of M(t)
to M(∞) is in L1 if and only if the martingale is uniformly integrable. On the
other hand, ifM is an uniformly integrable martingale then (a) the family of Rd-
valued random variable {M(τ) : τ is a stopping time} is uniformly integrable,
and (b) for any stopping times τ ≤ θ the equality E{M(θ) |F(τ)} = M(τ) holds
almost surely.

As in the discrete case, the proof is mainly based on the Doob’s upcross-
ing estimate. A (super-/sub-) martingale M satisfying the property (a) of the
above theorem is called of class (D) (Dirichlet class). Note that an uniformly
integrable super(or sub)-martingale need not to be of class (D). However, for
any nonnegative sub-martingale X we have

r P
(

sup
s≤t

X(s) ≥ r
)
≤ E{X(t)✶sups≤tX(s)≥r} ≤ E{X(t)}, (2.2)

and therefore

‖ sup
s≤t

X(s)‖p ≤ p′ ‖X(t)‖p, with 1/p+ 1/p′ = 1, (2.3)

actually, valid even if t is replaced by a stopping time τ. Here ‖ · ‖p denotes the
norm in Lp(Ω, P,F). However, p′ = ∞ for p = 1, this inequality becomes

‖ sup
s≤t

X(s)‖1 ≤ e

e − 1
‖X(t) ln+X(t)‖1, (2.4)

where ln+(·) is the positive part of ln(·), but this is rarely used.
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2.3.2 Doob-Meyer Decomposition

The following decomposition is extremely useful to extend the previous result
to sub-martingales.

Theorem 2.7 (Doob-Meyer). If X is a (continuous) sub-martingale of class
(D) then there exists a uniformly integrable martingale M and an integrable
predictable (continuous) monotone increasing process A, both null at time zero
such that X = X(0) +M +A. Moreover, this decomposition is unique.

Note that (1) a martingale M is uniformly integrable if and only if for any
ε > 0 there exists η > 0 such that E{✶|M(t)>η|M(t)} ≤ ε for every t ≥ 0, while
(2) an integrable monotone increasing process A means a process with cad-lag
monotone paths such that E{|A(t)|} <∞, for every t ≥ 0.

For instance, a comprehensive proof of this fundamental results can be found
Rogers and Williams [153, Section VI.6, pp. 367–382]. In particular, if X is an
adapted (cad-lag) increasing process satisfying E{supt |X(t)|} < ∞ then X is
a sub-martingale of class (D) and the above decomposition yields the so-called
predictable compensator. Certainly, this can be extended to integrable bounded
variation processes, by using the positive and negative variation.

In view of Doob-Meyer Theorem 2.7, the previous convergence Theorem 2.6
can be extended to super-/sub-martingales of class (D) and the process A = AX
is called the (predictable) compensator of the sub-martingale X, and because
M is a martingale, the equality

E{A(θ) −A(τ)} = E{X(θ) −X(τ)},

holds true, for any stopping times τ ≤ θ.

Let us denote by M2(Ω, P,F ,F(t) : t ≥ 0) the space of square-integrable
martingales M null at time zero, i.e., besides the martingale conditions in Defi-
nition 2.5 we impose M(0) = 0 and supt≥0 E{|M(t)|2} <∞. A square-integrable
martingale M is uniformly integrable and the convergence theorem applies to
produce a F(∞)-measurable random variable M∞ = M(∞) with values in R
(or Rd) and square-integrable such that M(t) = E{M(∞) | F(t)}. Hence, the
space M2(Ω, P,F ,F(t) : t ≥ 0) can be identified with the closed subspace of
the Hilbert space L2(Ω, P,F∞), F∞ = F(∞), satisfying E{M(∞) | F(0)} = 0.
Note that if M∗ denotes the sup-process defined by M∗(t) = sups≤t |M(s)| and
its limit M∗(∞) = supt≥0 |M(t)| then we have

E{|M∗(∞)|2} ≤ 4 sup
t≥0

E{|M(t)|2} = 4E{|M(∞)|2},

after using Doob’s estimate (2.3) with p = 2. Thus, M2(Ω, P,F ,F(t) : t ≥ 0)
can be regarded as a Banach space with the norm ‖M∗(∞)‖p, with p = 2, for
any element M, without changing the topology. Moreover, the space of con-
tinuous square-integrable martingale processes, denoted by M2

c (Ω, P,F ,F(t) :
t ≥ 0) is a closed subspace of the Hilbert space M2(Ω, P,F ,F(t) : t ≥ 0).
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Thus, we may consider its orthogonal complement referred to as purely dis-
continuous square-integrable martingale processes null at time zero and de-
noted by M2

d (Ω, P,F ,F(t) : t ≥ 0), of all square-integrable martingale pro-
cesses Y null at time zero satisfying E{M(∞)Y (∞)} = 0 for all elements M in
M2
c (Ω, P,F ,F(t) : t ≥ 0), actually, M and Y are what is called strongly orthogo-

nal, i.e., (M(t)Y (t) : t ≥ 0) is an uniformly integrable martingale. The concept
of strongly orthogonal is actually stronger than the concept of orthogonal in M2

and weaker than imposing M(t) −M(s) and Y (t) − Y (s) independent of F(s)
for every t > s.

Let M be a (continuous) square-integrable martingale process null at time
zero, in a given filtered space (Ω, P,F ,F(t) : t ≥ 0). Based on the above
argument M2 is a sub-martingale of class (D) and Doob-Meyer decomposi-
tion Theorem 2.7 applies to get a unique predictable (continuous) increasing
process 〈M〉, referred to as the predictable quadratic variation process, such
that t 7→ M2(t) − 〈M〉(t) is a martingale. Thus, for a given element M in
M2(Ω, P,F ,F(t) : t ≥ 0), we have a unique pair Mc in M2

c (Ω, P,F ,F(t) : t ≥ 0)
and Md in M2

d (Ω, P,F ,F(t) : t ≥ 0) such that M = Mc + Md. Applying
Doob-Meyer decomposition to the sub-martingales Mc and Md we may define
(uniquely) the so-called quadratic variation (or optional quadratic variation)
process by the formula

[M ](t) = 〈Mc〉(t) +
∑

s≤t
(Md(s) −Md(s−))2, ∀t > 0. (2.5)

Note that [Mc] = 〈Mc〉 and Md(t) −Md(t−) = M(t) −M(t−), for any t > 0.
We re-state these facts for a further reference

Theorem 2.8 (quadratic variations). LetM be a (continuous) square-integrable
martingale process null at time zero, in a given filtered space (Ω, P,F ,F(t) : t ≥
0). Then (1) there exists a unique predictable (continuous) integrable monotone
increasing process 〈M〉 null at time zero such that M2 − 〈M〉 is a (continuous)
uniformly integrable martingale, and (2) there exists a unique optional (contin-
uous) integrable monotone increasing process [M ] null at time zero such that
[M ](t) − [M ](t−) = (M(t) −M(t−))2, for any t > 0, and M2 − [M ] is a (con-
tinuous) uniformly integrable martingale. Moreover M = 0 if and only if either
[M ] = 0 or 〈M〉 = 0.

With all this in mind, for any two square-integrable martingale process null
at time zero M and N we define the predictable and optional quadratic covari-
ation processes by

〈M,N〉 =
(
〈M +N〉 − 〈M −N〉

)
/4,

[M,N ] =
(
[M +N ] − [M −N ]

)
/4,

(2.6)

which are processes of integrable bounded variations.
Most of proofs and comments given in this section are standard and can

be found in several classic references, e.g., the reader may check the books by
Dellacherie and Meyer [32, Chapters V–VIII], Jacod and Shiryaev [84], Karatzas
and Shreve [91], Neveu [137], Revuz and Yor [151], among others.
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2.3.3 Local-Martingales

Starting from a (super-/sub-) martingale (M(t) : t ≥ 0) relative to a filtration
(F(t) : t ≥ 0) and a stopping time τ, we may stop M at time τ and preserve the
martingale property, i.e., define a new (super-/sub-) martingale (M(t ∧ τ) : t ≥
0) relative to the (stopped) filtration (F(t ∧ τ) : t ≥ 0). Thus, the martingale
property is stable under the above stopping time operation and give rise to the
following concept.

Definition 2.9 (localization). Let (Ω,F , P,F(t) : t ≥ 0) be a given filtered
space. The term locally or local is applied to a property relative to a stochastic
processes {X(t) : t ≥ 0} with the understanding that there exists a sequence of
stopping times τn, with τn → ∞, such that the stopped process {X(t∧ τn) : t ≥
0} satisfies the required property for any n, e.g., we say that {X(t) : t ≥ 0} is a
local-martingale or locally integrable or locally bounded if for any n the process
{X(t ∧ τn) : t ≥ 0} is respectively a martingale or integrable or bounded.
The sequence {τn : n = 1, 2, . . .} is called a reducing sequence for the process
{X(t) : t ≥ 0}.

For any local sub-martingale we may define a reducing sequence as follows
τn = inf{t ∈ [0, n] : |X(t)| ≥ n}. Thus, a local sub-martingale is locally of
class (D) and Theorem 2.7 applies to the stopped process. Thus the uniqueness
yields the following local version of Doob-Meyer decomposition: A local sub-
martingale X can be expressed as X = X(0) + M + A, where M is a local-
martingale and A is a predictable locally integrable monotone increasing process,
both null at time zero. The case where the (local) predictable compensator A is
continuous is very import. As mentioned above, these are quasi-left continuous
processes, which are characterized by the condition either F(τ) = F(τ−) or
P{X(τ) = X(τ−)} = 1 valid for any predictable stopping time τ.

Also remark that not all local-martingales are locally square-integrable mar-
tingale. For instance a local-martingale X with locally square-integrable jump
process δX = (X(t) − X(t−) : t > 0) is actually a locally square-integrable
martingale, so that continuous local martingales are locally square-integrable
martingale. Hence, for a given local-martingale M the predictable quadratic
variation process 〈Mc〉 is defined as the unique predictable locally integrable
monotone increasing process null at time zero such that M2

c − 〈Mc〉 is a (con-
tinuous) local-martingale. Next, the (optional) quadratic variation process [M ]
is defined as

[M ](t) = 〈Mc〉(t) +
∑

s≤t
[M(s) −M(s−)]2, ∀t ≥ 0, (2.7)

where the second term in the right-hand side is an optional monotone increasing
process null at time zero, not necessarily locally integrable (in sense of the
localization in Ω defined above).

Nevertheless, if the local-martingale M is also locally square-integrable then
the predictable quadratic variation process 〈M〉 is defined as the unique pre-
dictable locally integrable monotone increasing process null at time zero such
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that M2 − 〈M〉 is a local-martingale. In this case 〈M〉 is the predictable com-
pensator of [M ]. Hence, via the predictable compensator we may define the
angle-bracket 〈M〉 when M is only a local-martingale, but this is not actually
used. An interesting case is when the predictable compensator process 〈M〉
is continuous, and therefore [M ] = 〈M〉, which is the case when the initial
local-martingale is a quasi-left continuous process. Finally, the optional and
predictable quadratic variation processes are defined by coordinates for local-
martingale with values in Rd and even the co-variation processes 〈M,N〉 and
[M,N ] are defined by orthogonality as in (2.6) for any two local martingales
M and N. For instance we refer to Rogers and Williams [153, Theorem 37.8,
Section VI.7, pp. 389–391]) where it is proved that [M,N ] defined as above
(for two local martingales M and N) is the unique optimal process such that
MN − [M,N ] is a local-martingale where the jumps satisfy δ[M,N ] = δM δN.

It is of particular important to estimate the moments of a martingale in term
of its quadratic variation. For instance, if M is a square-integrable martingale
with M(0) = 0 then E{|M(t)|2} = E{[M ](t)} = E{〈M〉(t)}. If M is only locally
square-integrable martingale then

E{|M(t)|2} ≤ E{[M ](t)} = E{〈M〉(t)}.
In any case, by means of the Doob’s maximal inequality (2.3), we deduce

E{ sup
0≤t≤T

|M(t)|2} ≤ 4E{〈M〉(T )},

for any positive constant T, even a stopping time. This can be generalized to
the following estimate: for any constant p in (0, 2] there exists a constant Cp
depending only on p (in particular, C2 = 4 and C1 = 3) such that for any
local-martingale M with M(0) = 0 and predictable quadratic variation 〈M〉 we
have the estimate

E{ sup
0≤t≤T

|M(t)|p} ≤ Cp E{
(
〈M〉(T )

)p/2}, (2.8)

for every stopping time T. If 〈M〉 is continuous (i.e., M is quasi-left continuous),
we can proceed as follows. For a given r > 0 and a local-martingale M we set
τr = inf{t ≥ 0 : 〈M〉(t) ≥ r2}, with τr = 0 if 〈M〉(t) < r2 for every t ≥ 0. Since
〈M〉 is continuous we have 〈M〉(τr) ≤ r2 and (M(t ∧ τr) : t ≥ 0) is a bounded
martingale. Thus, for any c > 0 we have

P ( sup
t≤T∧τr

M2(t) > c2) ≤ 1

c2
E{M2(T ∧ τr)} =

=
1

c2
E{〈M〉(T ∧ τr)} ≤ 1

c2
E{r2 ∧ 〈M〉(T )}.

Hence, for r = c we obtain

P (sup
t≤T

M2(t) > c2) ≤ P (τc < T ) + P ( sup
t≤T∧τc

M2(t) > c2) ≤

≤ P (〈M〉(t) > c2) +
1

c2
E{c2 ∧ 〈M〉(T )}.
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Now, setting c = r1/p, integrating in r and using Fubini’s theorem we deduce

E{sup
t≤T

|M(t)|p} =

∫ ∞

0

P (sup
t≤T

M2(t) > r2/p) dr ≤

≤
∫ ∞

0

[
P (sup

t≤T
〈M〉(t)r2/p)+

+
1

r2/p
E{r2/p ∧ 〈M〉(T )}

]
dr =

4 − p

2 − p
E
{[
〈M〉(T )

]p/2}
,

so that we can take Cp = (4 − p)/(2 − p), for 0 < p < 2. If 〈M〉 is not con-
tinuous, then it takes longer to establish the initial bound in c and r, but the
estimate (2.8) follows. This involves Lenglart–Robolledo inequality, see Liptser
and Shiryayev [111, Section 1.2, pp. 66–68].

A very useful estimate is the so-called Davis-Burkhölder-Gundy inequality
for local-martingales vanishing at the initial time, namely

cp E{
(
[M ](T )

)p/2} ≤ E{sup
t≤T

|M(t)|p} ≤ Cp E{
(
[M ](T )

)p/2}, (2.9)

valid for any T ≥ 0 and p ≥ 1 and some universal constants Cp > cp > 0
independent of the filtered space, T and the local martingale M. In particular,
we can take C1 = C2 = 4 and c1 = 1/6. Moreover, a stopping time τ can be
used in lieu of the time T and the above inequality holds true.

Remark that a Markov chain (in continuous time) {Xt : t ≥ 0} (i.e., cad-lag
process having values in N = {1, 2, . . .} and transition function pij(t − s) =
P{Xt = j | Xs = i}) with infinitesimal generator {qi,j : i, j ∈ N} provides a
typical example of martingale, i.e., if h is a nonnegative function from N × N
into [0,∞[ then the Lévy formula

E
{ ∑

s<r≤t
h(Xr−, Xr) |Xs

}
= E

{∫ t

s

∑

j 6=Xr

qXr,jh(Xr, j)dr |Xs

}
,

with

E
{∫ t

0

∑

j 6=Xr

qXr,jh(Xr, j)dr |Xs

}
<∞,

implies that the process

∑

0<r≤t
h(Xr−, Xr) −

∫ t

0

∑

j 6=Xr

qXr,jh(Xr, j)dr, t ≥ 0

is a martingale.
An other interesting example is the following: If P and P̃ are two probabili-

ties defined on the same measurable space (Ω,F) with a filtration F = {Ft : t ≥
0}, and P̃ is absolutely continuous with respect to P , then the restrictions Pt
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and P̃t to Ft are such that P̃ may be used to define the process Mt = dP̃ /dP ,
as the Radon-Nikodym derivative, which results a (P,Ft)-martingale.

Note that when the martingale M is continuous the optional quadratic varia-
tion [M ] may be replaced with the predictable quadratic variation angle-brackets
〈M〉. Furthermore, the p-moment estimate (2.8) and (2.9) hold for any p > 0
as long as M is a continuous martingale. All these facts play an important
role in the continuous time case. By means of this inequality we show that any

local-martingale M such that E{|M(0)| +
(

supt>0[M ](t)
)1/2} < ∞ is indeed

a uniformly integrable martingale. For instance, we refer to Kallenberg [88,
Theorem 26.12, pp. 524–526], Liptser and Shiryayev [111, Sections 1.5–1.6, pp.
70–84] or Dellacherie and Meyer [32, Sections VII.3.90–94, pp. 303–306], for a
proof of the above Davis-Burkhölder-Gundy inequality for (non-necessary con-
tinuous) local-martingale and p ≥ 1, and to Revuz and Yor [151, Section IV.4,
pp. 160–171] for continuous local-martingales.

2.3.4 Semi-Martingales

Recall that an adapted (optional or predictable) monotone increasing locally
integrable processes A means an adapted (optional or predictable) process such
that A(t) ≥ A(s) for every t ≥ s and there exists a sequence {τn} of stopping
times satisfying P (τn <∞) → 0 as n→ ∞ and E{A(t∧τn)} <∞, for every n ≥
1. Similarly, the difference of two such processes is called an adapted (optional
or predictable) process with locally integrable bounded variation (or locally
finite variation). Now, combining bounded variation processes with martingales
processes and localization arguments, we are led to the following definition.

Definition 2.10 (semi-martingale). Let (Ω,F , P,F(t) : t ≥ 0) be a given
filtered space. A semi-martingale is a random variable X (P -equivalence class)
with values into the canonical space D([0,∞),Rd) which can be expressed as
X = X(0)+A+−A− +M, where X(0) is a Rd-valued F(0)-measurable random
variable, A+, A−, are adapted monotone increasing locally integrable processes
and M is a local-martingale, satisfying A+(0) = A−(0) = M(0) = 0. Thus,
A = A+ −A− is a process with locally integrable bounded variation.

Based on the uniqueness of Doob-Meyer decomposition, a local martingale
null at time zero with locally bounded variation is identically zero if it is pre-
dictable (in particular if it is continuous or deterministic). Since there are
non-constant martingales with locally bounded variation paths (e.g., purely
discontinuous local-martingales), the decomposition in the definition of semi-
martingale is not necessarily unique. Usually, the above definition of semi-
martingale is known as special semi-martingale, but this is sufficiently general
for our study. These (special) semi-martingales include a natural condition of lo-
cal integrability (local first moment) on the bounded variation part (the adapted
process A). The equivalent of this local integrability property, applied to the
martingale part (the process M), is actually a necessary condition for martin-
gale. Unless explicitly mentioned, we drop the adjective special in using of the
name semi-martingale but we may call general or non-special semi-martingale
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when the process A in the above definition may not be locally integrable. Note
that the only reason why the process A may not be integrable is because of the
large jumps. It is clear then that a (special) semi-martingale is the difference
of two local sub-martingales. Moreover, a local sub-martingale zero at the ori-
gin can be written in a unique manner as the sum of a local martingale and
an increasing predictable process, both zero at the origin. Thus, the concept
of special semi-martingales is equivalent to that of quasi-martingales, e.g. see
Kallenberg [88], Protter [149].

Theorem 2.11. Let (Ω,F , P,F(t) : t ≥ 0) be a filtered space. Then every
semi-martingale X = (X(t) : t ≥ 0) admits the unique canonical decomposi-
tion X = X(0) + A + M, where A is a predictable process with locally inte-
grable variation and M is a local-martingale, both satisfying A(0) = M(0) = 0.
Moreover, the quadratic variation [M ] defined by (2.7) is the unique optional
monotone increasing process such that M2 − [M ] is a local-martingale and the
jumps δ[M ] = δM δM, where δM(t) = M(t) −M(t−). Furthermore, the pro-
cesses

√
[M ] (by coordinates) and sup{|X(s) − X(0)| : 0 ≤ s ≤ t} are lo-

cally integrable. If the semi-martingale X is quasi-left continuous (i.e., either
P{X(τ−) = X(τ)} = 1 or F(τ−) = F(τ) for every predictable stopping time
τ), then the process A in the semi-martingale decomposition is continuous.

Note that the local-martingale appearing in the above expression has a
unique representation M = Mc+Md, where Mc (respectively Md) is the continu-
ous (purely discontinuous) part. Also, if M is a local-martingale with M(0) = 0
and [M ] denotes its (optional) quadratic variation (or characteristic) then for
any t > 0 and any sequence of partitions (πk : k = 1, 2, . . .), with πk of the form
(0 = t0 < t1 < · · · < tn = t) and the mesh (or norm) of πk going to zero we have
var2(M,πk) → [M ](t) in probability as k → 0, see Liptser and Shiryayev [111,
Theorem 1.4, pp. 55–59].

Semi-martingales are stable under several operations, for instance under
stopping times operations and localization, see Jacod and Shiryaev [84, The-
orem I.4.24, pp. 44-45].

Observe that a process X with independent increments (i.e., which satis-
fies for any sequence 0 = t0 < t1 < · · · < tn−1 < tn the random variables
{X(t0), X(t1)−X(t0), . . . , X(tn)−X(tn−1)} are independent) is not necessar-
ily a semi-martingale, e.g., deterministic cad-lag process null at time zero is a
process with independent increments, but it is not a general semi-martingale
(not necessarily special!) unless it has finite variation.

The only reason that a semi-martingale may not be special is essentially the
non-integrability of large jumps. If X is a semi-martingale satisfying |X(t) −
X(t−)| ≤ c for any t > 0 and for some positive (deterministic) constant c > 0,
then X is special. Indeed, if we define τn = inf{t ≥ 0 : |X(t)−X(0)| > n} then
τn → ∞ as n → ∞ and sup0≤s≤τn |X(s) −X(0)| ≤ n + c. Thus X is a special
semi-martingale and its canonical decomposition X = X(0) + A + M satisfies
|A(t) −A(t−)| ≤ c and |M(t) −M(t−)| ≤ 2c, for any t > 0.

Similar to (2.9), another very useful estimate is the Lenglart’s inequality: If
X and A are two cad-lag adapted processes such that A is monotone increas-
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ing and E{|Xτ |} ≤ E{Aτ}, for every bounded stopping time τ, then for every
stopping time τ and constants ε, η > 0 we have

P
{

sup
t≤τ

|Xt| ≥ ε
}
≤ 1

ε

[
η + E

{
sup
t≤τ

(At −At−)
}]

+ P
{
Aτ ≥ η

}
, (2.10)

and if A is also predictable then the term with the jump (At−At−) is removed
from the above estimate. A simple way to prove this inequality is first to reduce
to the case where the stopping time τ is bounded. Then, defining θ = inf{s ≥
0 : |Xs| > ε} and ̺ = inf{s ≥ 0 : As > η}, since A is not necessarily continuous,
we have A̺− ≤ η and

Aθ∧τ∧̺ ≤ η + sup
t≤τ

(At −At−),

{
sup
t≤τ

|Xt| > ε
}
⊂

{
θ ≤ τ < ̺

}
∪
{
Aτ ≥ η

}
.

Hence, by means of the inequality

P
{
θ ≤ τ < ̺

}
≤ P

{
|Xθ∧τ∧̺| ≥ ε

}
≤ 1

ε
E
{
Aθ∧τ∧̺

}
,

we obtain (2.10). However, if A is predictable then ̺ is a predictable time,
and there is a sequence of stopping times (̺k : k ≥ 1) converging to ̺ such
that ̺k < ̺ if ̺ > 0. Thus Aθ∧τ∧̺ ≤ A̺− almost surely, which completes
the argument. Given a local-martingale M, a good use of (2.10) is when the
predictable compensator process 〈M〉 is continuous, and therefore [M ] = 〈M〉,
so that

P
{

sup
t≤τ

|Mt| ≥ ε
}
≤ η

ε2
+ P

{
〈M〉τ ≥ η

}
, ∀ε, η > 0, (2.11)

for any stopping time τ. Actually, this is the case of a quasi-left continuous
local-martingale M.

In short, cad-lag (quasi-continuous) local-martingales could be expressed as
the sum of (1) a local-martingales with continuous paths, which are referred
to as continuous martingales, (2) a purely discontinuous local-martingale. The
semi-martingales add an optional process with locally integrable bounded varia-
tion, which is necessarily predictable for quasi-continuous semi-martingales, and
quasi-continuous means that the cad-lag semi-martingale is also continuous in
probability, i.e., there is no deterministic jumps.

For a comprehensive treatment with proofs and comments, the reader is
referred to the books by Dellacherie and Meyer [32, Chapters V–VIII], Liptser
and Shiryayev [111, Chapters 2–4, pp. 85–360], Rogers and Williams [153,
Section II.5, pp. 163–200], among others. For instances, a treatment of semi-
martingale directly related with stochastic integral can be found in He et al. [68]
and Protter [149], among others.
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2.4 Gaussian Noises

The idea of a noise is the extension of a sequence of independent identically
distributed random variables to the continuous context, where the two typical
cases are Gaussian and Poisson noises. First, let us recall that we can build
a (complete) probability space (Ω,F , P ), e.g., P is the Lebesgue measure on
(0, 1), with the property that for any countable family of distributions {Fi} on
Rd there exists a family of independent random variables {ξi} such that ξi is
distributed accordingly to Fi, e.g., see Kallenberg [88, Theorem 3.19, pp. 55–
57]. In particular, there exist two independent countable families of normally
and exponentially distributed random variables, with parameters prescribed a
priori, in some probability space (Ω,F , P ).

However, the situation is complicate in the case of a white noise ẇ = {ξn :
n ≥ 1}, where the independent random variables ξn are standard normally
distributed.

2.4.1 The White Noise

The simplest construction of a Wiener process with the L2 orthogonal theory
begins with an orthogonal basis {ϕn : n ≥ 0} in L2(]0, T [), and a sequence
{ξn : n ≥ 0} of independent standard normally distributed random variables,
which forms also an orthonormal system in L2 = L2(Ω,F , P ). Each function ϕ
in L2(]0, T [) can be written as a converging orthogonal series

ϕ(s) =
∑

n

(ϕ,ϕn)ϕn(s), a.e. s ∈]0, T [,

where (·, ·) denotes the scalar product in L2(]0, T [), and (ϕ,ϕ) =
∑
n |(ϕ,ϕn)|2.

Thus the mapping ϕ 7→ w(ϕ) =
∑
n(ϕ,ϕn)ξn is an isometry from L2(]0, T [)

into L2 such that w(ϕ) is a Gaussian random variable with E{w(ϕ)} = 0
and E{w(ϕ)w(ϕ′)} = (ϕ,ϕ′), for every ϕ and ϕ′ in L2(]0, T [). Hence, ✶]a,b] 7→
w(✶]a, b]) could be regarded as a L2-valued measure and w(ϕ) is the integral.
In particular, the orthogonal series

w(t) = w(✶]0,t[) =
∑

n

ξn

∫ t

0

ϕn(s)dt, ∀t ≥ 0

is converging in L2, and

E{|w(t)|2} =
∑

n

∣∣∣
∫ t

0

ϕn(s)ds
∣∣∣
2

=

∫ T

0

✶]0,t[(s)ds = t, ∀t ≥ 0,

i.e., the above series yields a Gaussian process t 7→ w(t), which is continuous
in L2 and satisfies E{w(t)} = 0 and E{w(t)w(s)} = t ∧ s, for every t, s in
[0, T ]. Conversely, if a Wiener process {w(t) : t ≥ 0} is given then we can
reconstruct the sequence {ξn : n ≥ 0} by means of the square-wave orthogonal
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basis {ϕn : n ≥ 0}, where the integral w(ϕn) reduces to a finite sum, namely,

ξn = w(ϕn) =

2n∑

i=1

(−1)i−1T−1/2
[
w(ti,n) − w(ti−1,n)

]
,

with ti,n = i2−nT, i = 0, . . . , 2n, n ≥ 0. Finally, the almost surely continuity
of the path requires either taking a particular version or using some martingale
inequality. It is clear that in this construction, there is not a precise way to
handle which or how random variables are involves in w(s) when s belongs to
[0, t]. However, a small change along this previous argument makes the trick, as
we see in what follows.

The closed linear subspace H of L2(Ω,F , P ) generated by the orthonormal
sequence {ξn : n ≥ 0} is called a white noise (or Gaussian) space. If Fξ is the
σ-algebra generated by the random variables {ξn : n ≥ 0} and the null sets in
F , then any random variable x in L2(Ω,Fξ, P ) which is independent of H is
actually a constant, i.e., x = E{x}. It is also clear that the Hilbert space H can
be identified with the L2(]0, T [) via the above isometry. As discussed later on
(see Section 2.6.1), based on the Hermit polynomials hn(x) we can construct an
orthonormal basis

Ξn =
∏

i

hni
(ξi)

√
ni!, n = (ni), only a finite number nonzero, (2.12)

for the space L2(Ω,Fξ, P ), which can be written as an infinite orthogonal sum
of subspaces. It is clear that Fξ is equal to Fw, the σ-algebra generated by
the random variables {wt : t > 0}, it seems not obvious how to use the above
construction to get an orthonormal basis corresponding to the σ-algebra F(t)
generated by the random variables {ws : 0 < s ≤ t}.

Sometimes, another Hilbert space H is preferred instead of L2(]0, T [), i.e.,
we may begin with an orthogonal basis {en : n ≥ 1} in H and a sequence
{ξn : n ≥ 1} of independent standard normally distributed random variables
(after some adaptation, perhaps, with values in Rd or in some infinite dimension
Banach space), which forms also an orthonormal system in L2 = L2(Ω,F , P ).
Each function h in H can be written as a converging orthogonal series h =∑
n(h, en)

H
en, and (h, h)

H
=

∑
n |(h, en)

H
|2. Thus the mapping h 7→ w(h) =∑

n(h, en)
H
ξn is an isometry from H into L2 such that w(h) is a Gaussian

random variable with E{w(h)} = 0 and E{w(h)w(h′)} = (h, h′)
H
, for every h

and h′ in H. Of particular interest in the case where H = L2(X,X , µ) for a σ-
finite measure space (X,X , µ). Choose a semi-ring K of X with finite measure,
i.e., µ(K) < ∞, for every K in K to consider the map ✶K 7→ w(✶K) as a L2-
valued measure and w(h) is the integral. Moreover, we may single-out a time
variable, i.e., replace X and µ with X×]0, T [ and µ×dt, and get an orthonormal
system of the form eiϕn. Hence, by relabeling the sequence {ξi,n : i, n ≥ 1} the
orthogonal series

wi(t) = w(ei✶]0,t[) =
∑

n

ξi,n

∫ t

0

ϕn(s)dt, ∀t ≥ 0, i = 1, 2, . . . ,
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is converging in L2, and

E{|wi(t)|2} =
∑

n

∣∣∣
∫ t

0

ϕn(s)ds
∣∣∣
2

=

∫ T

0

✶]0,t[(s)ds = t, ∀t ≥ 0,

i.e., the above series yields Gaussian processes t 7→ wi(t), which are continuous
in L2 and satisfy E{wi(t)} = 0, E{wi(t)wi(s)} = t∧s, for every t, s in [0, T ], and
the process (wi(t) : t ≥ 0) is independent of (wj(t) : t ≥ 0) for every i 6= j. This
construction is referred to as a general Wiener noise or white noise (random)
measure.

2.4.2 The White Noise (details)

Formally, assume that the Hilbert space L2 = L2(Ω,F , P ) contains a sequence
{ei,n : i = 1, 2, . . . , 4n, n ≥ 1} of independent standard normally distributed
random variables, and set {enr = ei,n : r ∈ Rn}, indexed in r belonging to the
dyadic numbers R =

⋃
nRn, with Rn = {r = i2−n : i = 1, 2, . . . , 4n}. Because

each ei,n has zero mean and are independent of each other, the sequence is
orthogonal in L2, actually, it is an orthonormal system since all variances are
equal to 1. To simplify notation, assume that F is the sub σ-algebra generated
by the sequence of random variables ẇ = {enr : r ∈ Rn, n ≥ 1} (and all null sets).
The closed linear subspace H of L2(Ω,F , P ) generated by the elements in ẇ is
called a white noise (or Gaussian) space. The system ẇ is the ideal expression
of the white noise, which is the formal derivative of the Wiener process w.

To given details of a simple construction a Wiener process {wt : t > 0} as the
integral of (the function s 7→ ✶s≤t with respect to) the system ẇ, we make use

of the dyadic property t =
∑
n 4−n

∑4n

i=1 ✶i2−n≤t
1 to define the random variable

wt =
∑

n

2−n
4n∑

i=1

ei,n✶i2−n≤t, (2.13)

as a convergence series in L2(Ω,F , P ), for every t > 0. Indeed, regard the
expression as an orthogonal series expansion, and set w0 = 0, for any t ≥ s ≥ 0,
to have

E{|wt − ws|2}=
∑

n

4−n
4n∑

i=1

E{|ei,n|2}✶s<i2−n≤t =

=
∑

n

4−n
4n∑

i=1

✶s<i2−n≤t = (t− s).

Thus, t 7→ wt provides a L2-norm continuous random process satisfying (a) wt
is a Gaussian random variable with E{wt} = 0 and E{|wt|2} = t, and (b) ws is

1 if t = k2−m = (k2n−m)2−n, 1 ≤ k ≤ 4m then k2n−m ≤ 4n, ✶
i2−n≤t

= 1 if and only if

i = 1, . . . , k2n−m, which yields
∑

4
n

i=1
✶
i2−n≤t

= k2n−m = t2n if k2n−m = t2n ≥ 1.
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independent of wt−ws for every t > s. If a parameter (variance) a > 0 is included
then the Gaussian random variables {ξn : n ≥ 0} and {enr : r ∈ Rn, n ≥ 1} have
variance a and E{|wt|2} = ta. Moreover

P{wt ∈ dx} = e−|x|2/(2ta)dx and E{eiξwt} = e−ta|ξ|
2/2

are the transition density and the characteristic function.
Next, to check that the process {wt : t ≥ 0} has a continuous version, we

recall that wt − ws is a Gaussian variable with zero mean and variance |t− s|,
so that we deduce E{|wt − ws|4} = 3|t − s|2, and therefore, we are allowed to
select a continuous version.

The concept of stopping time relative to a white noise ẇ can be expressed
as preserving orthogonality, i.e., a [0,∞]-valued random variable τ is called ẇ-
stopping time if {ei,n✶i2−n≤τ} (or equivalently {enr✶r≤τ}) remains an orthogonal
system, for every t > 0. For instance, if τ is a ẇ-stopping time then the formula
(2.13) shows that E{|w(t ∧ τ)|2} = E{t ∧ τ} as expected.

Note that if x belongs to H then

E{xwt} =
∑

n

2−n
4n∑

i=1

E{xei,n}✶i2−n≤t,

and by taking r = k2−m with k some odd integer number between 1 and 4m,
we deduce E{x(wr − wr′)} → 2−mE{xek,m} as r′ ↑ r. This proves that any x
in H which is orthogonal to any element in {wt : t ≥ 0} is also orthogonal to
any element in {ei,n : i = 1, . . . , 4n, n ≥ 1}, i.e, the white noise subspace H is
indeed the closed linear span of {wt : t ≥ 0}. Therefore the projection operator

E{x | ws, s ≤ t} =
∑

n

4n∑

i=1

E{x ei,n} ei,n✶i2−n≤t, (2.14)

is valid for every x in H. By means of the Hermit polynomials and {ei,n : i2−n =
r ∈ R, r ≤ t} we can construct an orthonormal basis for L2(Ω,F(t), P ) as in
(2.12), which yields an explicit expression for the conditional expectation with
respect to F(t), for any square-integrable random variable x. In this context,
remark that we have decomposed the Hilbert space H into an orthogonal series
(n ≥ 1) of finite dimensional subspaces generated by the orthonormal systems
ẇn = {enr : r ∈ Rn}.

2.4.3 The White Noise (converse)

Conversely, if a Wiener process {wt : t ≥ 0} is given then the random variables
ēi,n = 2n/2

[
wi2−n − w(i−1)2−n

]
, are identically standard normally distributed,

and the system {ēi,n : i = 1, . . . , 4n} is independent, but {ēi,n : i ≥ 1, n ≥ 1}
is not fully independent, i.e., r = i2−n = 2i2−n−1 yields

√
2ēi,n = ē2i,n+1 +

ē2i−1,n+1, which produces correlations. In this case, the representation (2.13)
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takes the form

wt = lim
n

[
2−n/2

4n∑

i=1

ēi,n✶i2−n≤t
]
,

or equivalently wt = limn wkn(t)2−n , where kn(t)2−n ≤ t < (kn(t) + 1)2−n,
1 ≤ kn(t) ≤ 4n. Moreover, the projection operator becomes

E{x | ws, s ≤ t} = lim
n

4n∑

i=1

E{x ēi,n} ēi,n✶i2−n≤t,

which can be proved to be convergent (as a particular case of a stochastic integral
considered later on) in L2.

To recover a white noise ẇ = {enr : r ∈ Rn, n ≥ 1} as a dyadic sequence
of independent standard normally distributed random variables from a given
Wiener process w = {wt : t ≥ 0}; we may use the square wave procedure,
namely, for i = 1, 2, . . . consider the Haar-type functions fi(s) = ✶2i−1<2s≤2i −
✶2(i−1)<2s≤2i−1 and fi,n(s) = 2−n/2fi(s2n), for n ≥ 0. By construction, if
n ≥ m then fi,nfj,m = 0 except for i within (j − 1)2n−m + 1 and j2n−m, and
moreover, {fi,n} is an orthonormal system in L2(]0,∞[). Therefore

eni2−n = w(fi,n) = 2−n/2
[
w(i−1)2−n − 2w(2i−1)2−n−1 + wi2−n

]
, (2.15)

for i = 1, . . . , 4n, n ≥ 1, define a white noise which produces another Wiener
process via (2.13), also given by the stochastic integral

w̄t =

∞∑

n=1

2−n
4n∑

i=1

w(fi,n)✶i2−n≤t =

∫ t

0

fT (s)dws ∀T ≥ t > 0,

where the real-valued function

ft =

∞∑

n=1

2−n
4n∑

i=1

fi,n✶i2−n≤t,

∫ ∞

0

|ft(s)|2ds = t, ∀t > 0,

is defined as an orthogonal series expansion in L2(]0,∞[). Remark that ft(s) =
fT (s) a.e. s in (0, t) for every t ≤ T , and ft(s) = 0 a.e. for s in (t,∞). Actually,
for the probability measure dt/T defined on Borel σ-algebra on ]0, T [, the family
of random variables {

√
Tft : t ∈ [0, T ]} is a Wiener process.

Furthermore, if a factor 2k−1 is added to the orthogonal series (2.13) then
we may begin the sum with n = k instead of n = 1. Comparing with the
initial isometry given via orthonormal sequences, we note that the orthonormal
system {fi,n} can be completed to be a basis by adding the functions f̃i(s) =

f̃i,0(s) = ✶(i−1)<s≤i, for i = 1, 2 . . . . Indeed, it suffices to check that 1/2{f̃i,0}±
1/2{fi,0} yields {f̃i,1(s) = ✶i−1<2s≤i}, and 1/2{f̃i,1}±1/2{fi,1} yields {f̃i,2(s) =

✶i−1<4s≤i−1} and so on. Thus, the isometry w(fi,n) = ei,n and w(f̃i) = ẽi
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mapping the basis {fi,n : i = 1, . . . , 4n, n ≥ 0} ∪ {f̃i : i ≥ 1} in L2(]0,∞[)
into an orthornormal system {ei,n : i = 1, . . . , 4n, n ≥ 0} ∪ {ẽi : i ≥ 1} in L2

produces an expression very similar to (2.13), namely,

w̃t =
∞∑

i=1

c̃i(t)ẽi +
∞∑

n=0

4n∑

i=1

ci,n(t)ei,n,

c̃i(t) =

∫ t

0

f̃i(s)ds, ci,n(t) =

∫ t

0

fi,n(s)ds,

(2.16)

where the first series in i is a finite sum for each fixed t > 0, and the series in n
reduces to a finite sum if t = j2−m for some m ≥ 0 and j ≥ 1. Essentially based
on Borel-Cantelli Lemma and the estimates

qn = max
t≥0

4n∑

i=1

|ci,n(t)ei,n| = 2−n/2 max
i=1,...,4n

|ei,n|,

P
(
|ei,n| > a

)
≤ 2√

π
e−a

2/2, P
(

max
i=1,...,4n

|ei,n| > a
)
≤ 4n

2√
π

e−a
2/2,

P
(
qn > θ(2−n ln 8n)1/2

)
≤ 2√

π
4n(1−θ

2), θ > 1,

a more careful analysis shows the uniform convergence on any bounded time
interval, almost surely. Actually, this is almost Ciesielski-Levy’s construction
as described in McKean [119, Section 1.2, pp. 5–8] or Karatzas and Shreve [91,
Section 2.3, pp. 56–59]. Remark that with the expression (2.16), we cannot
easily deduce a neat series expansion like (2.14) for the projection operator,
i.e., since the functions {ci,n} have disjoint support only as i changes, for a
fixed t > 0, the orthogonal systems {c̃i(s)ẽi, ci,n(s)ei,n : s ≤ t, i, n} and
{c̃i(s)ẽi, ci,n(s)ei,n : s > t, i, n} are not orthogonal to each other, as in the
case of the orthogonal series expansion (2.13). In the context of the orthogonal
series expansion (2.16), the series

〈 ˙̃w, φ〉 =

∞∑

i=1

ẽi〈f̃i, φ〉 +

∞∑

n=0

4n∑

i=1

ei,n〈fi,n, φ〉, ∀φ ∈ S(]0,∞[),

could be referred to as white noise, the derivative in the sense of Schwartz
distribution of a Wiener process, meaningful only as a generalized process.

On the other hand, note that we cannot take a fractional derivative to recover
a white noise, i.e., the limit (t− r)−1/2

[
wt − wr

]
→ er as t ↓ r for a particular

sequence of {t}. Indeed, if r < t < s then wt−wr and ws−wt are independent,
and hence

E
{∣∣∣ws − wr√

s− r
− wt − wr√

t− r

∣∣∣
2}

= 2 − 2E
{(ws − wr√

s− r

)(wt − wr√
t− r

)}
=

= 2
(

1 −
√
t− r√
s− r

)
.
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Thus, if αn → 0 then (1 −√
αn+k/

√
αn) does not converges to 0 as n, k → ∞,

which implies that the sequence (wr+αn
−wr)/

√
αn cannot be a Cauchy sequence

in L2. Therefore, we may have a subsequence such that (wr+αn
−wr)/

√
αn → er

weakly in L2, but E{|er|2} 6= 1, since otherwise, the sequence would converge
in the L2 norm.

2.4.4 The White Noise (another)

With the previous observation in mind, consider a countable family {enr } of
standard normally distributed random variables, indexed for r in the diadic
numbers R =

⋃
nRn = {r = i2−n : i = 1, . . . , 4n} as early; but, we assume only

that the finite family {enr : r ∈ Rn} is independent, for each fixed n ≥ 1. Based

on the dyadic property 2−n
∑4n

i=1 ✶i2−n≤t = max{r : r ∈ Rn, r ≤ t} → t, define
the sequence of normally distributed random variables wn0 = 0 and

wnt = 2−n/2
4n∑

i=1

eni2−n✶i2−n≤t, ∀t > 0. (2.17)

Note that E{wnt } = 0 and E{|wnr |2} = r, for every r in R. Thus, the classic
Central Theorem shows that {wnr : n ≥ 1} converges in law and limn E{|wnt −
wnr |2} = t − r, for any t > r > 0. Since, for Gaussian variables with zero-mean
we have the equality

E{|wnr − wns |4} = 3
(
E{|wnr − wns |2}

)2
= 3|r − s|2, ∀r, s ∈ R,

this construction yields a Wiener measure W, i.e., a probability measure on
Ω = C([0,∞[) such that the coordinate functions ω : Ω 7→ ω(t) = wt(ω) define
a Wiener process.

Contrary to the previous series (2.13), the convergence in L2 of the whole
sequence {wnt : n ≥ 1} is not automatically insured, we need to assume that the
system {enr : r ∈ Rn} is compatible with the diadic numbers in the sense that
without ambiguity we can remove the super-index n in enr and use the notation
{er : r ∈ Rn}. Indeed, e.g., by compactness, we can extract a subsequence {nk}
such that wnk

r → wr in L2, for every r in R (i.e., only the random variables
{enk
r : r ∈ Rnk

, k ≥ 1} were used), but another convergent subsequence may
have another limit (which uses another subset of random variables {enr }). This
previous argument can not used if we impose the condition enr = emr , for every
n, m and r, i.e., compatibility with the dyadic numbers. Moreover, under this
assumption, we can single out all terms in the sum defining wnr using {er : r ∈
Rn} r {er : r ∈ Rn−1} to obtain the relation

√
2wnr = wn−1

r + vnr , for r in
Rn−1, with vnr being a normally distributed random variable independent of wnr
satisfying E{vnr } = 0 and E{|vnr |2} = r. By induction, we deduce

wnr = 2(n(r)−n−1)/2wn(r)−1
r +

n∑

k=n(r)

2(k−n−1)/2vkr , (2.18)
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where n(r) = inf
{
n ≥ 1 : r ∈ Rn

}
, w0

r = 0 and {wn(r)−1
r , v

n(r)
r , . . . , vnr } is an

orthogonal system. This implies that the whole sequence {wnr : n ≥ 1} converges
in L2, i.e., the limit

wt = lim
n

[
2−n/2

4n∑

i=1

ei2−n✶i2−n≤t
]
, ∀t > 0 (2.19)

exits in L2, almost as an orthogonal series expansion if r belongs to R. Anyway,
only the random variables {enr : r ∈ Rn, n ≥ 1, r ≤ t} intervene in getting
{ws : s ≤ t}, and the projector operator has the form

E{x | ws, s ≤ t} = lim
n

4n∑

i=1

E{x ei2−n} ei2−n✶i2−n≤t, (2.20)

as a limit in L2 of almost an orthogonal series expansion, valid for any x in the
closed linear span of {wt : t ≥ 0}. Hermit polynomials are needed to get a series
expansion for any x in L2(Ω,F , P ).

Let us summarize the main points proved above:

Proposition 2.12. Let {ei,n : i = 1, . . . , 4n, n ≥ 1} be a countable family of
identically distributed random variables with E{ei,n} = 0 and E{|ei,n|2} = 1,
and such that each ẇn = {ei,n : i = 1, . . . , 4n} is a sub-family of independent
random variables. For convenience we may take all ei,n normally distributed,
but this is not necessary.

(a) If ẇ1, . . . , ẇn, . . . are independent then the orthogonal series expansion (2.13)
yields a Wiener process, and the conditional expectation operator (2.14).

(b) If enr = ei,n, with r = i2−n, i = 1, . . . , 4n, then the limit of the expression
(2.17) exists in law and defines a Wiener measure.

(c) If, besides the conditions of (b), also we suppose the dyadic compatibility
assumption, i.e., {enr = er : r = i2−n, i = 1, . . . , 4n, n ≥ 1} is an indepen-
dent family, then the limit (2.19) exits in L2, almost as an orthogonal series
expansion, and the conditional expectation operator takes the form (2.20).

• Remark 2.13. If ẇ = {enr : r ∈ Rn, n ≥ 1} is a diadic family of identically
distributed random variables with E{enr } = 0 and E{|enr |2} = 1 then the diadic
compatibility assumption as in (c) of Proposition 2.12 is satisfied for the diadic

family ẇ′ = {er : r ∈ Rn, n ≥ 1} defined by er =
∑∞
k=1 2k/2e

k+n(r)−1
r , with

n(r) = min{n ≥ 1 : r ∈ Rn}. In this case, note that the orthogonal series
expansion (2.13) for the white noise ẇ is very similar to the expression (2.19)
for the white noise ẇ′. It is clear that there are infinite many choices to obtain a
white noise ẇ′ from the initial ẇ, e.g., any sequence {kn : n ≥ 1} with kn ≥ n(r)

will produce a suitable ẇ′, where er = e
k(n)
r , for r in RnrRn−1, with R0 = ∅.

• Remark 2.14. Under the compatibility assumption as in (c) of Proposition 2.12,
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we may use the equality (2.18) to obtain

∞∑

n=n(r)

2−n/2wnr = 2(n(r)−1)/2wn(r)−1
r +

∞∑

n=n(r)

2−n
n∑

k=n(r)

2(k−1)/2vkr ,

and exchanging the double sum

∞∑

n=n(r)

2−n
n∑

k=n(r)

2(k−1)/2vkr =

∞∑

k=n(r)

2(k−1)/2vkr

∞∑

n=k

2−n =

=

∞∑

k=n(r)

2−(k−1)/2vkr .

This shows that the series (2.13), with ei,n = ei2−n , converges in L2, as an

orthogonal series expansion relative to {wn(r)−1
r , v

n(r)
r , . . . , vnr , . . .}, with t = r

in R. For a non-diadic t, we have an almost orthogonal series expansion.

• Remark 2.15. The above arguments can be used to construct the integral of
a function ϕ belonging to L2(]0,∞[). For instant, if ϕn(s) = ϕ(i2−n) for s in
](i− 1)2−n, i2−n], i = 1, . . . , 4n, then

2−n
4n∑

i=1

|ϕ(i2−n)|2 =

∫ 4n

0

|ϕn(s)|2ds.

Therefore, e.g., we may replace (2.13) and (2.19) with

w(ϕ) =
∑

n

2−n
4n∑

i=1

ϕ(i2−n)ei,n and 2−n/2
4n∑

i=1

ϕ(i2−n)ei2−n → w(ϕ),

to obtain the integral of ϕ with respect to the Wiener noise ẇ. Essentially,
this is like using the diadic system of functions φi,n = (−1)i−1

✶](i−1)2−n,i2−n],
i = 1, . . . , 4n, and {(−1)i−1ei,n} to establish a mapping similar (after a proper
scaling) to the initial isometry in the beginning of this subsection. Note that

{φi,n} is not a fully orthogonal system, but φn =
∑4n

i=1 φi,n is a finite sum of
functions with disjoint supports and φn is orthogonal to φm if n 6= m. It is clear
that behind is the orthonormal system obtained from (2.15).

2.5 Poisson Noises

A simple Poisson noise with parameter λ > 0 can be regarded as a sequence
ṗ = {τn : n ≥ 1} of independent exponentially (with parameter 1/λ) distributed
random variables. Since P (limn

∑n
i=1 τi = ∞) = 1, the counting process pt =∑∞

n=1 ✶τ1+···+τn≤t, i.e.

pt =

{
0 if t < τ1,

n if
∑n
i=1 τi ≤ t <

∑n+1
i=1 τi,
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is defined almost surely and called a Poisson process, i.e., p0 = 0, pt − ps is
Poisson distributed with mean λ(t−s) and independent of ps, for any t > s ≥ 0.
The paths are piecewise constant with jumps equal to 1. Moreover, if δn denotes
the Dirac measure concentrated at n then

P{pt ∈ dx} = e−λt
∞∑

n=0

δn(dx)
(λt)n

n!
and E{eiξpt} = exp

[
tλ(eiξ − 1)

]

are the transition density and the characteristic function. It is also clear that
for qt = pt − tλ,

P{qt ∈ dx} = e−λt
[
δ0(dx) +

∞∑

n=1

(
δn(dx) − 1)

(λt)n

n!

]

is the transition function.
Properties of Poisson processes are well known, for instance, the fact that

the waiting times {τn} have an exponential distribution produces the so-called
‘memoryless’ effect, which yields the Markov character of the process. For
instance, if the waiting times is an identical distributed sequence of random
variables (with a distribution other than exponential) then the corresponding
counting process is a semi-Markov, i.e., one more piece of information (the time
elapsed since the last jump) is necessary to produce a Markov process.

2.5.1 The Poisson Measure

The construction of Poisson (random) measure and some of its properties are
necessary to discuss general Poisson noises. One way is to follow the construction
of the general Wiener noise or white noise (random) measure, but using Poisson
(random) variables instead of Gaussian (random) variables.

If {τi,n : i ≥ 1} is a sequence of independent exponentially (with parameter
1) distributed random variables then random variables ζn(λ) =

∑
k ✶θk,n≤λ,

with θk,n = τ1,n + · · · + τn,n, is a sequence of independent identically dis-
tributed random variables having a Poisson distribution with parameter λ.
Hence, ζ̃n(λ) = ζn(λ) − λ has mean zero and variance E{|ζ̃n(λ)|2} = λ. If
{hn : n ≥ 1} is a complete orthogonal system in a Hilbert space H with
(hn, hn)

H
= 1/kn, then any function h in H can be written as a converg-

ing orthogonal series h =
∑
n(h, hn)

H
knhn, and (h, h)

H
=

∑
n |(h, hn)

H
|2kn.

Thus the mapping h 7→ q(h) =
∑
n(h, hn)

H
ξ̃n(kn) is a linear isometry from

H into L2 = L2(Ω,F , P ), and if (h, hn)
H

= 1 for any n in a finite subset
of indexes Nh and (h, hn)

H
= 0 otherwise then p(h) =

∑
n(h, hn)

H
ξn(kn) is

Poisson random variable with parameter
∑
n∈Nh

kn. In any case, if the series
m(|h|) =

∑
n |(h, hn)

H
|kn < ∞ then p(h) =

∑
n(h, hn)

H
ξn(kn) is convergent,

and p(h) = q(h) +m(h), with
∑
n(h, hn)

H
kn.

Another construction is developed for a more specific Hilbert space, namely,
H = L2(Y,Y, µ) with a σ-finite measure space (Y,Y, µ), where the Poisson
character is imposed on the image of ✶K for any K in Y with µ(K) <∞.
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Two steps are needed, first assume µ(Y ) < ∞ and choose a sequence {ζn :
n ≥ 1} of independent identically distributed following the probability law given
by µ/µ(Y ) and also choose an independent Poisson distributed variable η with
parameter λ = µ(Y ). Define p(A) = 0 when η = 0 and p(A) =

∑η
n=1 ✶ζn∈A

otherwise, for every A in Y. The random variable p(A) takes only nonnegative
integer values, p(Y ) = η, and if A1, . . . , Ak is a finite partition of Y , i.e., Y =∑
iAi, and n1 + · · · + nk = n then

P
(
p(A1) = n1, . . . , p(Ak) = nk

)
=

= P
(
p(A1) = n1, . . . , p(Ak) = nk : p(Y ) = n

)
P
(
p(Y ) = n

)
,

which are multinomial and Poisson distribution, and so

P
(
p(A1) = n1, . . . , p(Ak) = nk

)
=

= n!

(
µ(A1)

)n1

(
µ(Y )

)n1
n1!

· · ·
(
µ(Ak)

)nk

(
µ(Y )

)nknk!
e−µ(Y )

(
µ(Y )

)n

n!
,

and summing over n1, . . . , nk except in ni , we obtain

P
(
p(Ai) = ni

)
= e−m(Ai)

(
µ(Ai)

)ni

ni!
.

Thus the mapping A 7→ p(A) satisfies:

(1) for every ω, A 7→ p(A,ω) is measure on Y ;

(2) for every measurable set A, the random variable p(A) has a Poisson distri-
bution with parameter (or mean) µ(A);

(3) if A1, . . . , Ak are disjoint then p(A1), . . . , p(Ak) are independent.

In the previous statements, note that if µ(A) = 0 then the random variable
p(A) = 0, which is (by convention) also referred to as having a Poisson distri-
bution with parameter (or intensity) zero.

For the second step, because µ is σ-finite, there exists a countable partition
{Yk : k ≥ 1} of Y with finite measure, i.e., Y =

∑
k Yk and µ(Yk) < ∞. Now,

for each k with construct pk (as above) corresponding to the finite measure µk,
with µk(A) = µ(A ∩ Yk), in a way that the random variable involved ζk,n and
ηk are all independent in k. Hence the mapping A 7→ pk(A) satisfies (1), (2)
and (3) above, and also:

(4) for every choice k1, . . . , kn (all different of each other) and A1, . . . , An in A,
the random variables pk1(A1), . . . , pkn(An) are independent.

Since a sum of independent Poisson (random) variables is again a Poisson
variable, the series p(A) =

∑
k pk(A) defines a Poisson (random) variable with

parameter (or mean) µ(A) whenever µ(A) <∞. If µ(A) = ∞ then

∑

k

P
(
pk(A) ≥ 1

)
=

∑

n

(
1 − e−µ(A∩Yk)

)
= ∞,
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since limn(1 − e−µ(A∩Yk)
)

= 1, i.e., if µ(A) = ∞ then p(A) = ∞ almost surely.
Hence, the mapping A 7→ p(A) satisfies (1), (2) and (3), as long as a random
variable which is equal to infinite (or to zero) is considered a Poisson variable
with parameter λ = ∞ (or λ = 0). In this case, a Poisson variable with λ = ∞
(or λ = 0) means a (degenerate) random variable which is equal to +∞ (or
to 0) almost surely. Remark that contrary to the Wiener process, to define
the Poisson measure, the previous construction uses independence instead of
orthogonality.

Recall that for convenience, if µ is a measure and f a function then µ(f)
denotes the integral of f with respect to µ. In particular, µ(A) = µ(✶A) and
p(A) = p(✶A).

Proposition 2.16. If (Y,Y, µ) is a σ-finite measure space then the previous
construction yields a Poisson random measure p with intensity measure µ, i.e.,
(1), (2), (3) above are satisfied. Moreover, if µ(Y ) < ∞ and ϕ : Y → Rm is a
measurable function then

p(ϕ) =

∫

Y

ϕ(y) p(dy)

defines a random variable on Rm with compound Poisson distribution, namely,

E
{

eir·p(ϕ)
}

= exp
[ ∫

Y

(
eir·ϕ(y) − 1

)
µ(dy)

]
, ∀r ∈ Rm.

Moreover, if µ(|ϕ|2) < ∞ then E{p(ϕ)} = µ(ϕ) and E{|q(ϕ)|2} = µ(|ϕ|2),
where q = p − µ. Furthermore, if A1, . . . , An are disjoint measurable sets then
the random variables p(ϕ✶A1

), . . . , p(ϕ✶An
) are independent.

Proof. From the construction we check that for every ω, the measure A 7→
p(A,ω)is supported in a finite number of points, namely, ζi(ω) for i = 1, . . . , η(ω).
Thus, the expression of the random variable p(A) is finite. Using a diadic ap-
proximation of ϕ, i.e., we partition Rm into diadic cubes of the form Cj,n =
](j1 − 1)2−n, j12−n] × · · · ×](jm − 1)2−n, jm2−n], with j = (j1, . . . , jm) and set
ϕn(x) = j2−n for every x in Cj,n, we have |ϕ(x) − ϕn| ≤ 2−n

√
m. Since

p(ϕn, ω) =
∑

j

(j2−n)p(ϕ−1(Cj,n, ω),

from the definition of the Poisson measure p we deduce

E
{

eir·p(ϕn)
}

=
∏

j

E
{

eir·j2
−np(ϕ−1(Cj,n))

}
=

=
∏

j

exp
[
(eir·j2

−n − 1)µ(ϕ−1(Cj,n))
]

= exp
[ ∫

Y

(eir·ϕn(y) − 1)µ(dy)
]

and the first part follows as n→ ∞.
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Once the expression of the characteristic function have been proved, the
mean and the variance are calculated by taking derivative with respect to the
parameter r, and the last part, regarding the independence, is deduced by the
convergence of p(ϕn) to p(ϕ) and the property (3) of Poisson measure discussed
above.

Remark that as it was defined, for each ω fixed, the Poisson random measure
p(·, ω) is a finite sum of Dirac measures. Hence, p is also called Poisson point
measure. The companion measure q = p − µ is referred to as a centered (or
martingale) Poisson (random or point) measure.

Sometimes, we may single-out a time variable, i.e., replace Y and µ with
Y×]0,∞[ and µ×dt. In this case, the variable η can be specifically constructed
as a Poisson process with parameter λ = µ(Y ) <∞, i.e.,

η(t) =
∑

n

✶t≥θn , ∀t > 0,

where θn = τ1 + · · · + τn and {τn : n ≥ 1} is a sequence of independent expo-
nentially distributed (with parameter λ) random variable. In this case

p(A×]a, b]) =

η(b)∑

n=1

✶ζn∈A −
η(a)∑

n=1

✶ζn∈A =
∑

n

✶ζn∈A✶a<θn≤b, ∀a ≤ b.

If µ(Y ) = ∞ then express the space Y as countable number of disjoint sets with
finite measure (i.e., Y =

∑
k Yk with µ(Yk) < ∞), and find sequences of inde-

pendent variables ζn,k with distribution µ(· ∩ Yk)/µ(Yk) and τn,k exponentially
distributed with parameter µ(Yk), for any n, k ≥ 1. The Poisson measure is
given by

p(A×]a, b]) =
∑

n,k

✶ζn,k∈A✶a<θn,k≤b, ∀a ≤ b,

where θk,n = τ1,k + · · · + τn,k. Our interest is the case where Y = Rd∗ and ζn,k
is interpreted as the jumps of a Lévy process.

2.5.2 The Poisson Noise I

Another type of complications appear in the case of the compound Poisson noise,
i.e., like a Poisson process with jumps following some prescribed distribution,
so that the paths remain piecewise constant.

Consider Rd∗ = Rdr{0} and B∗ = B(Rd∗), the Borel σ-algebra, which is gener-
ated by a countable semi-ring K. (e.g., the family of d-intervals ]a, b] with closure
in Rd∗ and with rational end points). Now, beginning with a given (non-zero)
finite measure m in (Rd∗,B∗), we construct a sequence q̇ = {(zn, τn) : n ≥ 1}
of independent random variables such that each τn is exponentially distributed
with parameter m(Rd∗) and zn has the distribution law A 7→ m(A)/m(Rd∗), thus,
the random variables θn = τ1+· · ·+τn have Γ(m(Rd∗), n) distribution. The series
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ηt =
∑
n ✶t≥θn is almost surely a finite sum and defines a Poisson process with

parameter m(Rd∗), satisfying E{ηt} = tm(Rd∗) and E{|ηt− tm(Rd∗)|2} = tm(Rd∗).
Moreover, we may just suppose given a Rd-valued compound Poisson process
{Nt : t ≥ 0} with parameter λ = m(Rd∗) and m/λ, or simply m, i.e., with the
following characteristic function

E{eiζ·Nt} = exp
{
t

∫

Rd
∗

[
eiζ·z − 1

]
m(dz)

}
, ∀ξ ∈ Rd,

as a Lévy process, with Nt =
∑
n zn✶t≥θn .

In any case, the counting measure either

pt(K) =
∑

n

✶zn∈K✶t≥θn , ∀K ∈ K, t ≥ 0,

or equivalently

pt(K) =

η(t)∑

n=1

✶zn∈K , η(t) =
∑

n

✶t≥θn , ∀K ∈ K, t ≥ 0,

is a Poisson process with parameter m(K), η(t) is also a Poisson process with
parameter tm(Rd∗). Moreover, if K1, . . . ,Kk are any disjoint sets in K then
pt(K1), . . . , pt(Kk) are independent processes. Indeed, if n = n1 + · · · + nk and
Rd∗ = K1 ∪ · · · ∪Kk then

P
(
pt(K1) = n1, . . . pt(Kk) = nk

)
=

= P
(
pt(K1) = n1, . . . pt(Kk) = nk | pt(K) = n

)
P
(
pt(K) = n

)
=

= P
( n∑

i=1

✶zi∈K1 = n1, . . .

n∑

i=1

✶zi∈Kk
= nk |pt(Rd∗) = n

)
P
(
η(t) = n

)
,

which are multinomial and Poisson distribution, and so

P
(
pt(K1) = n1, . . . pt(Kk) = nk

)
=

=

(
m(K1)

)n1

(
m(Rd∗)

)n1
n1!

· · ·
(
m(Kk)

)nk

(
m(Rd∗)

)nknk!
e−m(Rd

∗)

(
m(Rd∗)

)n

n!
,

and summing over n1, . . . , nk except in nj , we obtain

P
(
pt(Kj) = nj

)
= e−m(Kj)

(
m(Kj)

)nj

nj !
,

which proves that pt(Kj) are independent Poisson processes. This implies that

E{pt(K)} = tm(K), E
{
|pt(K) − tm(K)|2

}
= tm(K),
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for every K in K and t ≥ 0. Hence, the (martingale or centered) measure

qt(K) =
∑

n

✶zn∈K✶t≥θn − tm(K), E{qt(K)} = 0, ∀K ∈ K

satisfies E{q2t (K)} = tm(K), and if K ∩ K ′ = ∅ then qt(K) and qt(K
′) are

orthogonal and, in general, E{qt(K)qt(K
′)} = tm(K ∩K ′).

• Remark 2.17. Sometime it is more convenient not to distinguish the time
t in the Poisson measure, i.e., to consider p as a random integer measure on
Rd∗ × (0,∞). In this case, either two steps are necessary or only a construction
on Rd∗ × (0, b] (b <∞) is achieved. For instance, given a bounded measure Π on
Rd∗ × (0, b] proceed as follows: (1) find a sequence {zn : n ≥ 1} of independent
random variables with identical distribution Π/c, c = Π(Rd∗ × (0, b]), and (2)
find an independent Poisson distributed (with parameter c) random variable η,
and then define p(B) =

∑
n=1η ✶zn∈B . By using independent copies of p, we

can patch the definition of p from Rd∗ × (0, b] into Rd∗ × (b, 2b] and so on, to
get p defined on the whole Rd∗ × (0,∞), and clearly Π(dz, dt) = m(dz)dt. In
this construction, the origin {0} plays not particular role, so that the intensity
Π needs only to be a σ-finite Borel measure on some Polish space. Later, to
integrate the function z to reproduce the jumps, the Lévy measure condition
appears.

Now, a (real-valued) simple function relative to the semi-ring K is a finite
sum of terms (with disjoint K’s) of the form α✶K(z) (which is equal to α when
z belongs to K and 0 otherwise). Each term integrates with respect to pt(dz)
and qt(dz) as follows

∫

Rd
∗

α✶K(z) qt(dz) = α qt(K), E
{∣∣∣

∫

Rd
∗

α✶K(z) qt(dz)
∣∣∣
2}

= α2tm(K).

This definition is extended by linearity (uniquely) to any simple function, ψ and
because each {qt(K)} are independent when the K’s are disjoint, we preserve
the relation

E{|qt(ψ)|2} = E
{∣∣∣

∫

Rd
∗

ψ(z) qt(dz)
∣∣∣
2}

= t

∫

Rd
∗

|ψ(z)|2m(dz) = tm(|ψ|2).

Remark that to simplify the notation, we write qt(ψ) and m(ψ) to symbolize the
integral of a function ψ, e.g., m(K) = m(✶K) = m(|✶K |2). Moreover, because
m is a finite measure, if m(|ψ|2) <∞ then m(|ψ|) <∞.

Again, this integral ψ 7→ qt(ψ) is extended as a linear isometry between
Hilbert spaces, from L2(m) = L2(Rd∗,B∗, tm) into L2(Ω,F , P ), and

qt(ψ) =
∑

n

ψ(zn)✶t≥θn − tm(ψ), with E{qt(ψ)} = 0, (2.21)

reduces to a finite sum almost surely. This is the same argument as the case of
random orthogonal measures, but in this case, this is also a pathwise argument.
Indeed, we could use the almost surely finite sum (2.21) as definition.
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A priori, the above expression of qt(ψ) seems to depend on the pointwise
definition of ψ, however, if ψ = ψ′ m-almost everywhere then qt(ψ) = qt(ψ

′)
almost surely. Moreover, E{qt(ψ)qs(ψ

′)} = (t ∧ s)m(ψψ′) and the process t 7→
qt(ψ) is continuous in the L2-norm.

As mentioned early, Nt =
∑
n zn✶t≥θn is a Rd-valued compound Poisson

process, and therefore, the expression

t 7→ pt(ψ) =
∑

n

ψ(zn)✶t≥θn , ∀ψ ∈ L2(Rd∗,B∗,m)

defines a real-valued compound Poisson process with characteristic function

E{eipt(ψ)} = exp
{
t

∫

Rd
∗

[
eiψ(z) − 1

]
m(dz)

}
.

This yields

E{eiqt(ψ)} = exp
{
t

∫

Rd
∗

[
eiψ(z) − 1 − iψ(z)

]
m(dz)

}
, (2.22)

for every ψ in L2(Rd∗,B∗,m).

If m(|z|) < ∞ then E{|zn|} < ∞ and E{|Nt|} = tm(|z|). Moreover, we
can define the Rd-valued Lévy process qt(z) = Nt − tm(z) with characteristic
(0, 0,m), i.e.,

E{eiζ·qt(z)} = exp
{
t

∫

Rd
∗

[
eiζ·z − 1 − iζ · z

]
m(dz)

}
(2.23)

and transition density

P (qt(z) ∈ dx) = e−m(Rd
∗)t

[
δ0(dx) +

∞∑

n=1

(
m⋆n(dx) −m⋆n(Rd∗)

) tn
n!

]
,

m⋆(n+1)(B) = (m⋆n ⋆ m)(B) =

∫

Rd
∗×Rd

∗

✶B(x+ y)m⋆n(dx)m(dy),

(2.24)

where m⋆1 = m and m⋆n(Rd∗) = (m(Rd∗))n = λn. Next, remarking that t 7→ qt(z)
is continuous except for t = θn that qt(z) − qt−(z) = Nt − Nt− = zn, the
expression

qt(K) =
∑

s≤t
✶qt(z)−qt−(z)∈K − tm(K) (2.25)

is a finite sum almost surely, and can be used to reconstruct the counting mea-
sure {qt(K) : K ∈ K} from the {qt(z) : t ≥ 0}. Indeed, just the knowledge that
the paths t 7→ qt(z) are cad-lag, implies that the series (2.25) reduces to a finite
sum almost surely.
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The terms ψ(zn)✶t≥θn in the series (2.21) are not independent, but setting
λ = m(Rd∗) and m′ = m/λ we compute

E
{
|ψ(zn)✶t≥θn |2

}
= m′(|ψ|2) rn(t),

E
{
ψ(zn)✶t≥θnψ(zk)✶t≥θk

}
= |m′(ψ)|2rn(t), ∀k > n ≥ 1,

where

E{✶t≥θn} =

∫ t

0

λnsn−1

(n− 1)!
e−λsds = rn(t)

with
∑
n rn(t) = tm(Rd∗). Thus, the Gram-Schmidt orthogonalization procedure

can be used to define e0(ψ, t) = −tm(ψ), e1(ψ, t) = ψ(z1)✶t≥θ1 − m′(ψ)r1(t),
E{|e1(ψ, t)|2} =

(
m′(|ψ|2) − |m′(ψ)|2r1(t)

)
r1(t), and

e2(ψ, t) = ψ(z2)✶t≥θ2 −m′(ψ)r2(t) − |m′(ψ)|2
m′(|ψ|2) − |m′(ψ)|2r1(t)

e1(ψ, t),

and a more complicate expression for n ≥ 2. Actually, this is equivalent to

en(ψ, t) = ψ(zn)✶t≥θn − E{ψ(zn)✶t≥θn |ψ(zi)✶t≥θi , i = 1, . . . , n− 1}

the conditional expectation, and qt(ψ) =
∑
n≥1 en(ψ, t).

Alternatively, if e′n(ψ, t) =
(
ψ(zn) − m′(ψ)

)
✶t≥θn then E{e′n(ψ, t)} = 0,

E{|e′n(ψ, t)|2} =
(
m′(|ψ|2) − |m′(ψ)|2

)
rn(t), and for k > n ≥ 1,

E{e′n(ψ, t)e′k(ψ, t)} = E{(ψ(zn) −m′(ψ))(ψ(zk) −m′(ψ))✶t≥θn} = 0.

Also, define e′′n(ψ, t) = m′(ψ)
(
✶t≥θn − rn(t)

)
, which satisfies E{e′′n(ψ, t)} = 0,

E{|e′′n(ψ, t)|2} = |m′(ψ)|2rn(t)
(
1 − rn(t)

)
, E{e′′n(ψ, t)e′′k(ψ, t)} = 0 if n 6= k,

and E{e′′n(ψ, t)e′k(ψ, t)} = 0 for any n, k. Therefore {e′n(ψ, t), e′′k(ψ, t) : n, k ≥
1} is an orthogonal system such that qt(ψ) =

∑
n e

′
n(ψ, t) +

∑
k e

′′
n(ψ, t) or

qt(ψ) =
∑
n e

′
n(ψ, t)+m′(ψ)Nt, where Nt =

∑
n ✶t≥θn is a Poisson process with

parameter m(Rd∗). Comparing with the white noise, the orthogonality is not
necessary since the series defining (2.21) is finite almost surely.

If Fψ is σ-algebra generated by {qs(ψ) : s ≤ t} (or equivalently by the
countable family {er(ψ) : r ≤ t, r ∈ R}), then the closure linear subspace Hψ

of L2(Ω,Fψ, P ) spanned by {qt(ψ) : t ≥ 0} could be called the Poisson noise
relative to any nonzero ψ in L2(Rd∗,B,m). If we normalize the orthogonal system
then the projection operator

E{x | qs(ψ), s ≤ t} =
∑

n

E{x en(ψ, t)}
E{|en(ψ, t)|2} en(ψ, t), (2.26)

valid only for x in Hψ. Contrary to the white noise, there is not an equivalent to
the Hermit polynomials (in general), and we do not have an easy construction
of an orthonormal basis for L2(Ω,Fψ, P ).
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• Remark 2.18. The above argument used to construct qt(ψ) for every ψ in
L2(m) can be adapted to define qt(Ψ) = q(Ψ✶]0,t]) as the double integral of

functions Ψ = Ψ(t, z) belonging to L2(]0,∞[×Rd∗, dt× dm), where

E{|q(Ψ)|2} =

∫ ∞

0

dt

∫

Rd
∗

|Ψ(t, z)|2m(dz),

and E{q(Ψ)} = 0. Even Rn-valued functions Ψ can be handled with the same
argument.

For instance, the reader may be interested in checking the so-called marked
processes as described in the books Bremaud [19, 20] and Jacobsen [81], among
others.

2.5.3 The Poisson Noise II

Even more complicate is the case of the general Poisson noise, which is regarded
as Poisson point process or Poisson measure, i.e., the paths are cad-lag functions,
non necessary piecewise constant.

Let m be a σ-finite measure in (Rd∗,B∗), with the Borel σ-algebra being
generated by a countable semi-ring K. We partition the space Rd∗ is a disjoint
union Rd∗ =

∑
k Rk with 0 < m(Rk) < ∞ to apply the previous construction

for the finite measures mk = m(· ∩ Rk) in such a way that the sequences q̇k =
{(zn,k, τn,k) : n ≥ 1} are independent for k ≥ 1. Therefore, the sequence
of counting measures {qt,k(K) : k ≥ 1} is orthogonal, with E{|qt,k(K)|2} =
tm(K ∩ Rk), and the series qt(K) =

∑
k qt,k(K) is now defined as a limit in

L2(Ω,F , P ) satisfying E{qt(K)} = 0 and E{|qt(K)|2} = tm(K). Remark that if
we assume given a sequence {Nt,k : k ≥ 1} of independent Rd-valued compound
Poisson processes with parameter mk, the series

∑
kNt,k may not be convergent.

Next, the same argument applies for the integrals, i.e., qt(ψ) =
∑
k qt(ψ)

makes sense (as a limit in the L2-norm) for every ψ in L2(Rd∗,B∗,m), and
E{qt(ψ)} = 0, E{|qt(ψ)|2} = tm(|ψ|2). However the (double) series

qt(ψ) =
∑

k

[∑

n

ψ(zn,k)✶t≥θn,k
− tmk(ψ)

]
, ∀ψ ∈ L2(Rd∗,B∗,m), (2.27)

does not necessarily reduces to a finite sum almost surely, m(|ψ|) may not be
finite and the pathwise analysis can not be used anymore.

Nevertheless, if we add the condition that any K in K is contained in a
finite union of Rk, then qt(K) =

∑
k qt,k(K) does reduce to a finite sum almost

surely, and we can construct the integral almost as in the case of the composed
Poisson noise. This is to say that, for any K in K, the path t 7→ qt(K) is a
piecewise constant function almost surely. Similarly, if ψ vanishes outside of a
finite number of Rk then the series (2.27) reduces to a finite sum almost surely.
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The martingale estimate2

E{sup
t≤T

|qt(ψ)|2} ≤ 3m(|ψ|2)T, ∀T > 0,

shows that the limit defining qt(ψ) converges uniformly on any bounded time
interval [0, T ], and so, it is a cad-lag process. Another way is to make use of the
estimate E{|qt(ψ) − qs(ψ)|2} = m(ψ)|t − s| (and the property of independent
increments) to select a cad-lag version.

Therefore, the (double) integral qt(ψ) is defined above as a L2-continuous
random process by means of a L2 converging limit as in (2.27).

Actually, the random measure {qt(dz) : t ≥ 0, z ∈ Rd∗} is a centered Poisson
measure Lévy measure m, namely, for every ψ in L2(Rd∗,B∗,m), the integral
{qt(ψ) : t ≥ 0} is a Lévy process with characteristic (0, 0,mψ), where mψ is
pre-image measure of m, i.e., mψ(B) = m(ψ−1(B)), for every Borel set B in R,
and the expression (2.22) of the characteristic function of qt(ψ) is valid.

Since the measure m is not necessarily finite, only if m(ψ) <∞ we can add
the counting process to define the integral pt(ψ) as in the case of a compound
Poisson process, i.e., the (double) series

pt(ψ) =
∑

n,k

ϕ(zn,k)✶t≤θn,k

converges in L1(Ω,F , P ), but does not necessarily reduces to a finite sum almost
surely. Any way, we have the equality E{qt(ψ)qs(ψ

′)} = (t∧s)m(ψψ′), for every
ψ and ψ′ in L2(Rd∗,B∗,m) and any t, s > 0.

Thus, if m(|z|) < ∞ then the series
∑
k

∑
n |zn|✶t≥θn,k

=
∑
kmk(|z|) =

m(|z|) converges, and therefore, the Rd-valued Lévy process

Nt =
∑

k

∑

n

zn,k✶t≥θn,k

is meaningful and Nt = qt(z) + tm(z). In general, if only m(|z|2 ∧ |z|) < ∞
then the Rd-valued Lévy process {qt(z) : t ≥ 0} with characteristic function
(2.23) remains meaningful, and the expression (2.25) allows us to reconstruct
the counting measure {qt(K) : K ∈ K} from the {qt(z) : t ≥ 0}. However,
the expression of the transition density is not so immediately, for each finite
measure mk = m(· ∩ Rk) we have an explicit series but the limit in k is not so
clear. Any way, for a bounded set B with m(B) <∞, the transition density of
{qt(z✶B) : t ≥ 0} is given by a series similar to (2.24).

Observe that if the measure m integrates the function z 7→ |z|2 then

qt(z) =
∑

k

[∑

n

zn,k✶t≥θn,k
− tmk(z)

]

2Note that {qt(ψ) : t ≥ 0} is a separable martingale, so that Doob’s inequality or regular-
ization suffices to get a cad-lag version
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converges in L2, and because P (limn,k θn,k = ∞) = 1 and m(✶|z|≥ε) <∞, ε > 0,
the series

∑
k

∑
n ✶|zn,k|≥ε✶t≥θn,k

is a finite sum almost surely, for every ε > 0.
Therefore, a convenient semi-ring K is the countable class of d-intervals ]a, b]
with closure in Rd∗ and with rational end points, in this way, if m(|z|2 ∧ 1) <∞
then qt(K), given by either (2.27) or (2.25), reduces to a finite sum almost
surely, for every K in K. Usually, an intensity measure m (not necessarily in
Rd∗) is associated with {qt(dz)} (regarded as a Poisson martingale measure),
whist a Lévy measure m (on Rd∗), which necessary satisfies m(|z|2 ∧ 1) < ∞,
is associated with {qt(z)} (regarded as a Rd-valued centered Poisson process).
However, we prefer to assume m(|z|2) <∞ to obtain a Rd-valued Lévy process
{qt(z) : t ≥ 0} with finite second-order moments.

If K is a countable semi-ring (with each K separated from {0}) generating
the Borel σ-algebra in Rd∗ then, perhaps, the system q̇t = {en,k(K, t) : n, k ≥
1, K ∈ K}, with

en,k(K, t) =
[
✶zn,k∈K✶θn,k≤t − E{✶zn,k∈K}E{✶θn,k≤t}

]
,

is the ideal expression of a Poisson noise with Lévy measure m. Similarly, if ψ
in L2(Rd∗,B∗,m) then for every n ≥ 1, {en,k(ψ, t) : k ≥ 1}, with

en,k(ψ, t) =
[
ψ(zn,k)✶θn,k≤t − E{ψ(zn,k)}E{✶θn,k≤t}

]
,

is an orthogonal system in L2(Ω,F , P ), with E{en,k(ψ, t)} = 0 and repeating
the orthogonalization of the case with finite measure m, an orthogonal system
{ẽn,k(ψ, t) : n, k ≥ 1} can be constructed. Hence, the projection operator has a
form similar to (2.26). It is also clear that we can extend Remark 2.18 to this
general Poisson noise.

To conclude this long introduction (of Wiener and Poisson noises or pro-
cesses), let us mention that the previous arguments could be used to define
a Wiener process {wt : t ≥ 0} and a Rd-valued (centered) Poisson process
{qt(z) : t ≥ 0} or martingale Poisson measure {qt(dz) : t ≥ 0} with Lévy mea-
sure m on Rd∗, independent one of each other. Essentially, the arguments go
as follows: a convergent orthogonal (better, independent identically distributed
random variables with zero mean) series is used for the Wiener process, and a
two procedure is needed for the Poisson measure, namely, an almost surely finite
series (when the Lévy measure is finite) and next a convergent orthogonal series.
As mentioned early, the above constructions can handle real-valued functions in
L2(]0,∞[) or L2(m(dz) × dt) instead of just integrating functions constant in
time (1 and ψ), and eventually random functions which are appropriate limits
of a linear combination of terms like ✶]0,τ ], with a bounded stopping time τ.

Summing-up, these constructions, specially the extension to random func-
tions, are called stochastic integrals. The class of random functions that are
integrable with respect to either a Rd-valued Wiener process w or a Poisson mar-
tingale measure q with Lévy measure m in Rd∗ are processes either (f(t) : t ≥ 0)
or {g(z, t) : z ∈ Rd∗, t ≥ 0} satisfying almost surely the integrability condition

either

∫ T

0

|f(t)|2dt <∞ or

∫ T

0

dt

∫

Rd
∗

|g(z, t)|2π(dz) <∞,
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100 Chapter 2. Stochastic Processes

and the non-anticipative assumption, i.e., for every t ≥ 0, either f(t) or g(z, t)
is independent of the increments, either {w(s) − w(t) : s > t} or {qs(K) −
qt(K) : s > t, K ∈ K}, with K a countable semi-ring (each K separated from
{0}) generating the Borel σ-algebra in Rd∗. This non-anticipating property with
respect to the previous constructions translates into an independent condition
of either f(t) or g(z, t) with respect to the sequence od random variables

either {ei,n : i = 1, . . . , 4n, n ≥ 1, i2−n > t}
or {✶zn,k∈K✶s≥θn,k>t : n, k ≥ 1, K ∈ K, s > t},

with the notation (2.13) and (2.27). The main point of these constructions is to
note that the stochastic integrals are intrinsically connected with the construc-
tion of Lévy processes. However, in what follows, the focus is on the integrands
(i.e., processes that are integrable) with respect to a Lévy process.

2.6 Probability Measures and Processes

We are interested in the law of two particular type of Lévy processes, the Wiener
and the Poisson processes in Hilbert spaces. There is a rich literature on Gaus-
sian processes, but less is known in Poisson processes, actually, we mean com-
pensated Poisson processes. For stochastic integration we also use the Poisson
random measures and in general integer random measures.

Definition 2.19 (Lévy Space). For any nonnegative symmetric square matrix
a and any σ-finite measure π in Rd∗ = Rd r {0} satisfying

∫

Rd
∗

(
|y|2 ∧ 1

)
π(dy) <∞,

there exists a unique probability measure Pa,π, called Lévy noise space, on the
space S ′(R,Rd) of Schwartz tempered distributions on R with values in Rd such
that

E
{

ei〈·,φ〉
}

= exp
(
− 1

2

∫

R

aφ(t) · φ(t)dt
)
×

× exp
(∫

R

dt

∫

Rd
∗

[
eiφ(t)·y − 1 − i✶{|y|<1} φ(t) · y

]
π(dy)

)
,

for any test function φ in S(R,Rd). Therefore, a cad-lag version ℓ of the stochas-
tic process t 7→ 〈·,✶(0,t)〉 is well define and its law P on the canonical sample

space D = D([0,∞),Rd) with the Skorokhod topology and its Borel σ-algebra
B(D) is called the canonical Lévy space with parameters a and π, the diffusion
covariance matrix a and the Lévy measure π.

Clearly, ℓ is a Lévy process (see Section 2.2 in Chapter 2)

〈ω, φ〉 =

∫

R

ω(t) · φ(t) dt, ∀ω ∈ S ′(R,Rd), φ ∈ S(R,Rd)
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2.6. Probability Measures and Processes 101

and · denotes the scalar product in the Euclidian space Rd. To simplify notation
and not to the use ✶{|y|<1}, we prefer to assume a stronger assumption on the
Lévy measure, namely

∫

Rd
∗

(
|y|2 ∧ |y|

)
π(dy) <∞,

and even to have a finite second moment, we assume
∫

Rd
∗

|y|2π(dy) <∞.

The existence of the probability Pa,π was discussed in Section 1.4 of Chapter 1,
and obtained via a Bochner’s type theorem in the space of Schwartz tempered
distributions (we may also use the Lebesgue space L2(]0, T [,Rd), for T > 0).

The expression of the characteristic function contains most of the properties
of a Lévy space. For instance, we can be construct Pa,π as the product Pa×Pπ
of two probabilities, one corresponding to the first exponential (called Wiener
white noise, if a is the identity matrix)

exp
(
− 1

2

∫

R

ax(t) · x(t)dt
)
,

which has support in C([0,∞),Rd), and another one corresponding to the second
exponential (called compensated Poisson noise)

exp
(∫

R

dt

∫

Rd
∗

[
eix(t)·y − 1 − i✶{|y|<1} x(t) · y

]
π(dy)

)
.

The canonical process corresponding to Pa and Pπ, denoted by w(t) and p̄(t),
are independent. Moreover, they may be assumed to take valued in Rn and Rm,
respectively. The topological space Ω = C([0,∞),Rn)×D([0,∞),Rm) with the
probability P = Pw×Pp̄ on the Borel σ-algebra F and the two canonical process
w and p̄ is called the canonical Wiener-Poisson space.

On the other hand, also the process

t 7→ exp
[
ix · ℓ(t)

]

E
{

eix·ℓ(t)
}

is a complex-valued martingale, where

E
{

eix·ℓ(t)
}

= exp
(
− t

2
ax · x+ t

∫

Rd
∗

[
eix·y − 1 − i✶{|y|<1} x · y

]
π(dy)

)
,

for any x in Rd. The process ℓ is a Rd-valued martingale itself, with ℓ(0) = 0,
and ℓ = w + p̄, where w is a Wiener process (continuous martingale) and p̃ is a
compensated Poisson process (purely discontinuous martingale).

A generalization of this to infinite-dimensional spaces involves Sazonov’s
Theorem 1.25 and Minlos’ Theorem 1.26, and the concept of nuclear operators,
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102 Chapter 2. Stochastic Processes

see Section 1.4 in Chapter 1. For instance, a Wiener random measure and a
(compensated) Poisson random measure are constructed as follows, replacing
Rd by and L2 space. Given a (nonnegative) Radon measure m on Rd, we get a
probability measure Pm on L2

m = L2(R× Rd, dt× dm) such that

E
{

ei(·,h)
}

= exp
(
− 1

2

∫

R

dt

∫

Rd

|h(t, x)|2m(dx)
)
, ∀h ∈ L2

m,

where (·, ·) denotes the scalar product in L2
m. Then we choose a continuous

version w(t, B) of the stochastic process (t, B) 7→ (·,✶(0,t)✶B), t ≥ 0, B in

B(Rd) and bounded. Thus, t 7→ w(t, B)/m(B) is a standard Wiener process,
and B 7→ w(t, B) is a (random) measure. Moreover, if B1, . . . , Bn are disjoint
sets then w(t, B1), . . . , w(t, Bn) are independent processes. Similarly, given a
σ-finite measure π in Rd∗ as in Definition 2.19, we get a probability measure Pπ
on L2

π(R× Rd∗) with the product measure dt× π(dy) such that

E
{

ei(·,φ)
}

= exp
(∫

R

dt

∫

Rd
∗

[
eiφ(t,y) − 1 − iφ(t, y)

]
π(dy)

)
,

for any function φ in L2
π(R × Rd∗), where now (·, ·) denotes the scalar product

in L2
π(R × Rd∗). Therefore, we can justify the use of φ(t, y) = ✶(a,b)(t)✶B(y),

and then we choose a cad-lag version p̃(t, B) of the stochastic process (t, B) 7→
(·,✶(0,t) ✶B), t ≥ 0, B in B(Rd∗), with B̄ ∩ {0} = ∅, B̄ is the closure. Moreover,
B 7→ p̃(t, B) is a (random) measure, and if B1, . . . , Bn are disjoint sets then
p̃(t, B1), . . . , p̃(t, Bn) are independent processes. Actually, p(t, B) = p̃(t, B) +
tπ(B) is a (Poisson) integer-valued measure because

E
{

eirp(t,B)
}

= exp
(
tπ(B)

[
eir − 1

])
, ∀r ∈ R, (2.28)

for any B in B(Rd∗), with B̄ ∩ {0} = ∅, and any t ≥ 0.

• Remark 2.20. First recall the separability of the σ-algebra B(Rd) or B(Rd∗),
i.e., there is an increasing sequence of finite σ-algebras {Bk} such that B = ∨kBk,
e.g. see Malliavin [115, Section 6.1, pp. 219–220]. It is clear now that we are
able to show that for any t in a countable set and for each ω outside of a null
set, the function B 7→ w(t, B, ω) (or B 7→ p̃(t, B, ω)) is a (positive) measure on
any Bk, k ≥ 1. Hence, we can take a version so that for any B in B the process
t 7→ w(t, B) (or t 7→ p̃(t, B)) is continuous or cad-lag, and for any t ≥ 0 the
set function B 7→ w(t, B) (or B 7→ p̃(t, B)) is a measure on B(Rd) (or B(Rd∗),
respectively). Actually, w and p̃ are random measures in both variables, i.e., in
R×Rd. Note that sometimes it is convenient to use the notation p(B, t), p̃(B, t)
and p̄(B, t), i.e., we may exchange the order of the variable t and B as long no
confusion is made.

As discussed later to study the jumps, we may use the construction of the Rd-
valued compensated Poisson process p̄(t) or the compensated Poisson “point”
process if the emphasis is on the jumps δp(s) = p(s) − p(s−). We define the
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2.6. Probability Measures and Processes 103

Rd-valued Poisson measure

p̄(t, B) =
∑

0<s≤t
[p̄(s) − p̄(s−)]✶{p̄(s)−p̄(s−)∈B}, ∀B ∈ B∗,

where the sum has a finite number of terms and B∗ denotes the ring of Borel
sets B in B(Rd∗) satisfying B̄ ∩ {0} = ∅, B̄ is the closure. We have

E
{

eix·p̄(t,B)
}

= exp
(
t

∫

B

[
eix·y − 1

]
π(dy)

)
, ∀x ∈ Rd, B ∈ B∗,

which implies

E
{
x · p̄(t, B ∩ {|y| < 1})

}
= t

∫

B

x · y ✶{|y|<1}π(dy), ∀x ∈ Rd, B ∈ B∗,

for any t ≥ 0.
Sometimes, instead of using the (Poisson) point processes p̄(t) or (Poisson)

vector-valued measure p̄(t, B), we prefer to use the (Poisson) counting (integer)
measure

p(t, B) = p(]0, t] ×B) =
∑

0<s≤t
✶{p̄(s)−p̄(s−)∈B}, ∀B ∈ B∗,

which is a Poisson process with parameter π(B), i.e., (2.28) holds for any B in
B∗, or equivalently

P{p(t, B) = n} =

(
tπ(B)

)n

n!
e−tπ(B), ∀B ∈ B∗, n = 0, 1, . . . ,

for any t > 0. Moreover, because there are a finite number of jumps within B,
the integral

p̄(t, B) =

∫

]0,t]×B
zp(dt, dz), ∀B ∈ B∗, t > 0

is finite and reproduces the Rd-valued Poisson measure initially defined. To
reproduce p̄(t) on this context, we should make sense to the limit

p̄(t) = p̄(t, {|y| ≥ 1}) + lim
ε→0

[
p̄(t, {ε ≤ |y| < 1}) − tπ({ε ≤ |y| < 1})

]
,

by means of the stochastic integral. All theses facts are particular cases of the
theory of random measures, martingale theory and stochastic integral.

2.6.1 Gaussian Processes

A Rd-valued random variable ξ is Gaussian distributed (also called normally dis-
tributed) with parameters (c, C) if its (complex-valued) characteristic function
has the following form

E{exp(iλ · ξ)} = exp(iλ · c− λ · Cλ/2), ∀λ ∈ Rd,
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or equivalently if its distribution has the form

P (ξ ∈ B) =

∫

B

[
(2π)n

√
det(C)

]−1/2
exp

(
− C−1(x− c) · (x− c)

2

)
dx,

for every Borel subset of Rd, where c is the (vector) mean E{ξ} and C is the
(matrix) covariance E{(ξ−c)2}. When c = 0 the random variable ξ is called cen-
tered or symmetric. Notice that the expression with the characteristic function
make sense even if C is only a symmetric nonnegative definite matrix, which
is preferred as the definition of Gaussian variable. It is clear that a Rd-valued
Gaussian variable has moments of all orders and that a family of centered Rd-
valued Gaussian variables is independent if and only if the family is orthogonal
in L2(Ω,F , P ). Next, an infinite sequence (ξ1, ξ2, . . .) of real-valued (or Rd-
valued) random variables is called Gaussian if any (finite) linear combination
c1ξ1 + · · ·+ cnξn is a Gaussian variable. Finally, a probability measure µ on the
Borel σ-algebra B of a separable Banach space B is called a (centered) Gaussian
measure if any continuous linear functional h is (centered) Gaussian real-valued
random variable when considered on the probability space (B,B, µ). If B=H a
separable Hilbert space then the mean c value and covariance C operator are
well defined, namely,

(c, h) =

∫

H

(h, x)µ(dx), ∀h ∈ H,

(Ch, k) =

∫

H

(h, x)(k, x)µ(dx) − (c, h)(c, k), ∀h, k ∈ H,

where (·, ·) is the inner product in H. Moreover, the covariance C operator is a
trace-class operator, i.e., for any (or some) orthonormal basis {en : n ≥ n} in
H the series Tr(C) =

∑
n(Cen, en) converges.

A fundamental result is the following Fernique’s bound
∫

B

eλ ‖x‖2

µ(dx) ≤ e16λ r
2

+
e2

e2 − 1
, (2.29)

valid for any centered Gaussian measure µ on the separable Banach space (B,B)
and any λ, r > 0 such that

ln
(
1 − µ({x : ‖x‖ ≤ r})

)
+ 32λ r ≤ ln

(
µ({x : ‖x‖ ≤ r})

)
− 1,

where ‖ · ‖ is the norm in B.
In particular, any continuous linear functional ϕ on B has a finite second

moment. Thus, the dual space B′ of B can be identified with a subspace of
L2(B,B, µ) and call B̄′ the Hilbert space obtained as the closure of this subspace.
Recalling that any ϕ in B′ is a centered Gaussian variable with covariance |ϕ|2L2 ,
we define the mapping J by setting

J : L2(B,B, µ) → B,

J(ϕ) =

∫

B

xϕ(x)µ(dx), ∀ϕ ∈ L2(B,B, µ),
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but we consider J only acting from B̄′ ⊂ L2(B,B, µ) into B. Since the linearity
and continuity of ϕ and Hölder inequality yield

ϕ(J(ϕ)) =

∫

B

|ϕ(x)|2 µ(dx), and ‖J(ϕ)‖2 ≤ |ϕ|2L2

∫

B

‖x‖2 µ(dx),

so that the mapping J is one-to-one, continuous and linear. The image H =
J(B̄′) is continuously embedded in B as a Hilbert space with the inner product

(f, g)H =

∫

B

J−1(f)(x) J−1(g)(x)µ(dx), ∀f, g ∈ H.

Moreover, any ϕ in the dual space B′ is a centered Gaussian random variable
on (B,B, µ) with covariance |ϕ|2H , where the dual norm is given by |ϕ|2H =
sup{|ϕ(x)| : |x|H ≤ 1}. The space H = Hµ is called a reproducing kernel space
for the centered Gaussian measure (B,B, µ). Now, denote by H0

µ the image of
B′ by J, i.e., H0

µ = J(B′), which is dense in Hµ.
Let {e1, e2, . . .} be a orthonormal basis in Hµ with elements in H0

µ, and
let {ξ1, ξ2, . . .} be a sequence of independent real-valued random variables with
standard normal distribution (i.e., Gaussian with parameters 0, 1) relative to a
(complete) probability space (Ω,F , P ). Then, it can be proved that the sequence
of partial sums {∑n

k=1 ξk ek : n = 1, 2, . . .} converges almost surely in B to a
random variable ξ with law µ. Notice that the above series does not converges
almost surely in Hµ, but the map h 7→ X(h) =

∑
k ξk (h, ek) is well defined for

any h in Hµ, and called white noise, see Da Prato and Zabczyk [28, Theorems
1.2.6–12, pp. 37–48].

This procedure can be done backward, i.e., starting from the Hilbert space
H. With respect to the previous construction, now H is the dual space of Hµ.
Pick an orthonormal basis {e1, e2, . . .} in H and a sequence {ξ1, ξ2, . . .} of in-
dependent real-valued random variables with standard normal distribution in a
(complete) probability space (Ω,F , P ). Since

E{[

n∑

k=ℓ

ξk (h, ek)]2} =

n∑

k=ℓ

[(h, ek)]2E{|ξk|2} =

n∑

k=ℓ

[(h, ek)]2,

for every n > ℓ ≥ 1, we may define X(h) =
∑
k ξk (h, ek), for any h in H, as

a convergent series in L2(Ω,F , P ). The map h 7→ X(h) is linear, X(h) is a
centered Gaussian random variable with covariance E{[X(h)]2} = |h|2, for any
h in H. Actually, the series also converges almost surely and X(h) is indeed
an equivalence class. The space {X(h) : h ∈ H} is a Gaussian subspace of
L2(Ω,F , P ), which is isomorphic to H. In particular E{X(f)X(g)} = (f, g), for
any f and g in H. This show that X(f) is independent of X(g) if and only if f
and g are orthogonal (because independence and orthogonality are equivalent in
a Gaussian space). The family {X(h) : h ∈ H} is called an isonormal Gaussian
stochastic process. If H = L2(A,A, µ), where (A,A, µ) is a σ-finite measure
space, the mapping X is called a Gaussian measure or white noise with intensity
µ on (A,A). When F belongs to A we write X(F ) = X(✶F ). Thus, if F and G
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are sets with µ(F ) <∞ and µ(G) <∞ then E{X(F )X(G)} = µ(F ∩G), and so
that X(F ) and X(G) are independent when F and G are disjoint. Notice that
if {Fk : k = 1, 2, . . .} is a pairwise disjoint sequence of subset in A, F = ∪kFk
with µ(F ) < ∞ then X(F ) =

∑
kX(Fk) almost surely so that some regularity

(as in the case of regular conditional probability) is need to ensure the existence
of a good selection, in order that F 7→ X(F, ω) is a measure for ω outside of a
set of probability zero.

Sometimes, the initial point is a family of centered Gaussian random vari-
ables X = {X(h) : h ∈ H} in a complete probability space (Ω,F , P ), where the
index H is a separable Hilbert space, the σ-algebra F is the smallest complete
σ-algebra such that X(h) is measurable for any h in H and E{X(f)X(g)} =
(f, g)H , for any f and g in H. This is called a Gaussian process on H. Notice
that mapping h 7→ X(h) has to be linear and provides an isometry from H onto
a closed subspace of L2(Ω,F , P ), where all elements are zero-mean Gaussian
random variables.

Consider the Hermite polynomials, which are defined by

h0(x) = 1, hn(x) =
(−1)n

n!
ex

2/2 dn

dxn
e−x

2/2, n = 1, 2, . . . ,

which satisfies several properties, e.g.,

exp
[x2

2
− (x− t)2

2

]
=

∞∑

n=0

tn hn(x), ∀t, x,

h′n = hn−1, (n+1)hn+1(x) = xhn(x)−hn−1(x), hn(−x) = (−1)n hn(x), hn(0) =
0 if n is odd and h2n(0) = (−1)n/(2n n!). It is not hard to show that for any
two random variables ξ and ζ with joint standard normal distribution we have
E{hn(ξ)hm(ζ)} = (E{ξ ζ})/n! if n = m and E{hn(ξ)hm(ζ)} = 0 otherwise.
Essentially based on the one-to-one relation between signed measures and their
Laplace transforms, we deduce that only the null element ξ in L2(Ω,F , P ) (recall
that F is generated by {X(h) : h ∈ H}) satisfies E{ξ exp(X(h))} = 0, for any
h in H. Hence, the space H can be decomposed into an infinite orthogonal sum
of subspaces, i.e.,

L2(Ω,F , P ) = ⊕∞
n=0Hn,

where Hn is defined as the subspace of L2(Ω,F , P ) generated by the family
random variables {hn(X(h)) : h ∈ H, |h|H = 1}. Thus, H0 is the subspace of
constants and H1 the subspace generated by {X(h) : h ∈ H}. This analysis
continues with several applications, the interest reader is referred to Hida et
al. [72], Kallianpur and Karandikar [89], Kuo [106], among others.

Going back to our main interest, we take H = L2(R+) with the Lebesgue
measure, initially the Borel σ-algebra, and we construct the family of equivalence
classes of centered Gaussian random variables {X(h) : h ∈ H} as above. Thus
we can pick a random variable b(t) within the equivalence class X([0, t]) =
X(✶[0,t]). This stochastic process b = (b(t) : t ≥ 0) has the following properties:
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(1) The process b has independent increments, i.e. for any sequence 0 = t0 <
t1 < · · · < tn−1 < tn the random variables {b(t0), b(t1) − b(t0), . . . , b(tn) −
b(tn−1)} are independent. Indeed, they are independent since b(tk) − b(tk−1) is
in the equivalence class X(]tk−1, tk]) which are independent because the interval
]tk−1, tk] are pairwise disjoint.

(2) The process b is a Gaussian process, i.e., for any sequence 0 = t0 < t1 <
· · · < tn−1 < tn the Rn+1-valued random variable (b(t0), b(t1), . . . , b(tn)) is a
Gaussian random variables. Indeed, this follows from the fact that {b(t0), b(t1)−
b(t0), . . . , b(tn) − b(tn−1)} is a family of independent real-valued Gaussian ran-
dom variable.

(3) For each t > 0 we have E{b2(t)} = t and b(0) = 0 almost surely. Moreover,
using the independence of increments we find that the covariance E{b(t) b(s)} =
t ∧ s.
(4) Given a function f in L2(R+) (i.e., in H) we may pick an element in

the equivalence class X(f ✶[0,t]) and define the integral with respect to b, i.e.,
X(f ✶[0,t]).

(5) The hard part in to show that we may choose the random variables b(t) in
the equivalence class X([0, t]) in a way that the path t 7→ b(t, ω) is continuous
(or at least cad-lag) almost surely. A similar question arises when we try to show
that F 7→ X(✶F ) is a measure almost surely. Because b(t) − b(s) is Gaussian,
a direct calculation show that E{|b(t)− b(s)|4} = 3|t− s|2. Thus, Kolmogorov’s
continuity criterium (i.e., E{|b(t) − b(s)|α} ≤ C|t − s|1+β for some positive
constants α, β and C) is satisfied. This show the existence of a continuous
stochastic process B as above, which is called standard Brownian motion or
standard Wiener process. The same principle can be used with the integral
〈f, b〉(t) = X(f ✶[0,t]), as long as f belongs to L∞(R+). This continuity holds
true also for any f in L2(R+), by means of theory of stochastic integral as seen
later.

It is clear that we may have several independent copies of a real-valued
standard Brownian motion and then define a Rd-valued standard Brownian
motion. Moreover, if for instance, the space L2(R,X ), for some Hilbert X
(or even co-nuclear) space, is used instead of L2(R) then we obtain the so
called cylindrical Brownian motions or space-time Wiener processes, which is
not considered here. We may look at B as a random variable with values in
the canonical sample space C = C([0,∞),Rd), of continuous functions with
the locally uniform convergence (a separable metric space), and its Borel σ-
algebra B = B(C). The law of B in the canonical sample space C define a
unique probability measure W such that the coordinate process X(t) = ω(t)
is a standard Brownian motion, which is called the Wiener measure. Thus
(C,B,W ) is referred to as a Wiener space.

Generally, a standard Wiener process is defined as a real-valued continuous
stochastic process w = (w(t) : t ≥ 0) such that (1) it has independent incre-
ments and (2) its increments w(t)−w(s), t > s ≥ 0, k+ 1, 2, . . . , d are normally
distributed with zero-mean and variance t − s. This definition is extended to
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a d-dimensional process by coordinates, i.e., Rd-valued where each coordinate
wk is a real-valued standard Wiener process and {w1, w2, . . . , wn} is a family
of independent processes. For any f in L∞(R+), the integral with respect to
the standard Wiener process w = (w1, . . . , wd) is defined as a Rd-valued contin-
uous centered Gaussian process with independent increments and independent
coordinates such that for any k = 1, 2, . . . , d

∫ t

0

f(s) dwk(s) = Xk(f ✶[0,t]),

E
{(∫ t

0

f(s) dwk(s)
)2}

=

∫ t

0

f2(s)ds,

for any t ≥ 0. Notice that the second equality specifies the covariance of the
process.

Similarly, we can define the Gaussian-measure process w(t, ·), by using the
Hilbert space L2(R+×Rd) with the product measure dt×m(dx), where m(dx) is
a Radon measure on Rd (i.e., finite on compact subsets). In this case w(t,K) is a
Wiener process with diffusion m(K) (and mean zero) and w(t,K1), . . . , w(t,Kn)
are independent if K1, . . . ,Kn are disjoint. Clearly, this is related with the so-
called white noise measure (e.g., see Bichteler [11, Section 3.10, pp. 171–186])
and Brownian sheet or space-time Brownian motion. The reader is referred
to Kallianpur and Xiong [90, Chapters 3 and 4, pp. 85–148] for the infinite
dimensional case driven by a space-time Wiener process and a Poisson random
measure. This requires the study of martingales with values in Hilbert, Banach
and co-nuclear spaces, see also Métivier [127].

The following Lévy’s characterization of a Wiener process is a fundamental
results, for instance see Revuz and Yor [151, Theorem IV.3.6, pp. 150].

Theorem 2.21 (Lévy). Let X be an adapted Rd-valued continuous stochastic
process in a filtered space (Ω,F , P,F(t) : t ≥ 0). Then X is a Wiener if and only
if X is a (continuous) local-martingale and one of the two following conditions
is satisfied:

(1) XiXj and X2
i − t are local-martingales for any i, j = 1, . . . , d, i 6= j,

(2) for any f1, f2, . . . , fd functions in L∞(R+) the (exponential) process

Yf (t) = exp
{
i
∑

k

∫ t

0

fk(s) dXk(s) +
1

2

∑

k

∫ t

0

f2k (s)ds
}
,

defined for every t ≥ 0, is a (bounded) complex-valued martingale.

Clearly, condition (1) means that the (matrix-valued) predictable quadratic
variation process 〈X〉 associated with X is such that 〈Xi, Xi〉(t) = t and
〈Xi, Xj〉(t) = 0 for any i, j = 1, . . . , d, i 6= j. In condition (2) we may also
take fk in L2(R+) and even adapted processes. The assumption on continuity
is essential to the above Lévy’s theorem.

It can be proved that a Gaussian semi-martingale X is continuous if and
only if it is stochastically continuous, i.e., P (|X(t) − X(s)| > ε) goes to zero
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as t → s, for any ε > 0. Moreover, a centered Gaussian local-martingale X
with X(0) = 0 and independent increments, is actually a locally square in-
tegrable and its predictable quadratic variation (non-necessarily continuous)
satisfies 〈X〉(t)∧ 〈X〉(s) = E{X(t)X(s)}, for any t ≥ s ≥ 0. It is also clear that
for a centered Gaussian martingale X with X(0) = 0, the covariance matrix
c(t) = (E{Xi(t)Xj(t)} : t ≥ 0, i, j = 1, 2, . . . , d) satisfies

E{exp[iλ · (X(t) −X(s))]} = exp[−λ · (c(t) − c(s))λ/2],

for every λ in Rd and t ≥ s ≥ 0. This property completely characterizes the finite
distributions of X, see Liptser and Shiryayev [111, Section 4.9, pp. 270–306].

The Ornstein-Uhlenbeck process is another typical example of Gaussian pro-
cess that is given by

X(t) = exp(−αt)X0 +

∫ t

0

exp[−α(t− s)]σdw(s), ∀t ≥ 0,

where α and σ are matrices, α has positive eigenvalues, X0 is an initial random
variable normally distributed and w is an standard Wiener process. Even more
general, if Φ(t, s) denotes the fundamental (matrix) solution of a linear ordinary
differential equation with matrix α(t), i.e.,

Φ̇(t, s) = −α(t)Φ(t, s), ∀t 6= s, and Φ(s, s) = 1, ∀s,
then

X(t) = Φ(t, 0)X0 +

∫ t

0

Φ(t, s)σ(s)dw(s), ∀t ≥ 0,

is a Gaussian process with mean mi(t) = E{Xi(t)} and covariance matrix
vij(s, t) = E{[Xi(s)−mi(s)][Xj(t)−mj(t)]}, which can be explicitly calculated.
For instance, in the one-dimensional case with constant α and σ we have

m(t) = E{X(t)} = e−αtm(0),

v(s, t) = E{[X(s) −m(s)][X(t) −m(t)]} =

=
{σ2

2α

[
e2α(s∧t) − 1

]
+ v(0)

}
e−α(s+t).

Therefore, if the initial random variable has mean zero and the variance is
equal to v0 = σ2/(2α), then X is a stationary, zero-mean Gaussian process with
covariance function ρ(s, t) = v0 exp(−α|t− s|).

2.6.2 Compensated Poisson Processes

A Rd-valued random variable ξ has a compensated Poisson distributed (also
called centered Poisson distributed) with parameter π if its (complex-valued)
characteristic function has the following form

E{exp(iλ · ξ)} = exp
(∫

Rd
∗

[
eiλ·x − 1 − iλ · x

]
π(dx)

)
, ∀λ ∈ Rd,
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where π is a Radon measure on Rd∗ = Rd r {0} satisfying

∫

Rd
∗

|x|2π(dx) <∞.

Usually, the arguments begin with a compound Poisson variable p in Rd (mainly,
d=1) with a finite measure π as parameter, i.e.,

E{exp(iλ · p)} = exp
(∫

Rd
∗

[
eiλ·x − 1

]
π(dx)

)
, ∀λ ∈ Rd,

Then define ξ = p−E{p(t)} as a centered Poisson distribution random variable,
i.e.,

E{exp(iλ · ξ)} = exp
(∫

Rd
∗

[
eiλ·x − 1 − λ · x

]
π(dx)

)
, ∀λ ∈ Rd.

Next, the construction and properties of the compensated Poisson (or centered
Poisson) random variable ξ are extended for characteristic measures π as above.

It is called symmetric if π satisfies

∫

Rd
∗

[
eiλ·x − 1 − iλ · x

]
π(dx) =

∫

Rd
∗

[
e−iλ·x − 1 + iλ · x

]
π(dx),

for every λ in Rd. It is clear that a Rd-valued compensated Poisson variable ξ
has finite first and second moments, i.e.,

E{|ξ|2} =

∫

Rd
∗

|x|2π(dx),

and if we add the condition
∫

Rd
∗

|x|pπ(dx) <∞, ∀p ≥ 2.

then all moments are finite.
An infinite sequence (ξ1, ξ2, . . .) of real-valued (or Rd-valued) random vari-

ables is called compensated Poisson process if any (finite) sum ξ1 + · · · + ξn
is a compensated Poisson variable (the sequence is necessarily independent).
Next, given a (nuclear) countably Hilbertian space Φ =

⋂
n≥0 Φn, its dual space

Φ′ =
⋃
n≥0 Φ−n (see Section 1.4 in Chapter 1), a probability measure µ on the

Borel σ-algebra B(Φ′) is called a compensated Poisson measure if 〈·, ϕ〉 is a com-
pensated Poisson real-valued random variable, for any ϕ in Φ, when considered
on the probability space (Φ′,B(Φ′), µ), i.e., there exists a σ-finite measure π on
Φ′

∗ = Φ′ r {0} such that

Eµ
{

ei〈·,ϕ〉
}

= exp
(∫

Φ′
∗

[
ei〈·,ϕ〉 − 1 − i〈·, ϕ〉

]
dπ

)
, ∀ϕ ∈ Φ.
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Similarly to the finite-dimensional case, besides the condition
∫

Φ′
∗

|〈·, ϕ〉|2dπ <∞, ∀ϕ ∈ Φ,

we assume that
∫

Φ′
∗

|〈·, ϕ〉|2dπ ≤ C0‖ϕ‖2n, ∀ϕ ∈ Φ, (2.30)

for some n ≥ 0 and some constant C0 > 0.

• Remark 2.22. Minlos’ Theorem 1.26 ensures the existence of a probability
measure µ for any given σ-finite measure such that

ϕ 7→
∫

Φ′
∗

[
ei〈·,ϕ〉 − 1 − i〈·, ϕ〉

]
dπ

is continuous, in particular if (2.30) holds. Note that (2.30) is equivalent to the
condition that

ϕ 7→
∫

Φ′
∗

|〈·, ϕ〉|2dπ

is continuous. However, if we wish to replace the space Φ by a Banach space B
some difficulties appears and we cannot guarantee the existence of a probability
measure µ, e.g., see Rudiger [155].

Under the assumption (2.30), there is a separable Hilbert space Φ ⊂ H ⊂ Φ0,
with continuous and dense inclusion, and a nonnegative symmetric trace-class
operator R in L1(H) (i.e., R1/2 is a Hilbert-Schmidt operator), such that the
support of π is included in R(H) ⊂ H ⊂ Φ0, i.e.,

π
(
{χ ∈ Φ′ : 〈χ, ϕ〉 ≤ r}

)
= π

(
{h ∈ R(H) : 〈h, ϕ〉 ≤ r}

)
, ∀ϕ ∈ Φ, r ∈ R,

and defining

π0(B) = π({h ∈ H∗ : R−1h ∈ B}), ∀B ∈ B(H∗)

or equivalently π0 = Rπ, with H∗ = H r {0}, we have
∫

Φ′

ei〈·,ϕ〉dµ = exp
(∫

H∗

[
ei〈R·,ϕ〉 − 1 − i〈R·, ϕ〉

]
dπ0

)
, ∀ϕ ∈ Φ.

The integrability condition becomes
∫

H∗

|(R·, ϕ)|2dπ0 ≤ C0‖ϕ‖2H , ∀ϕ ∈ H,

for some constant C0 > 0, which yields
∫

H∗

(Rh, h)π0(dh) ≤ C0 Tr(R) <∞.
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Hence, Sazonov’s Theorem 1.25 shows that µ is actually supported in H, i.e., µ
is a compensated Poisson measure with parameter π = R−1π0 satisfying

∫

H

ei(h,k)µ(dk) = exp
(∫

H∗

[
ei(Rh,k) − 1 − i(Rh, k)

]
π0(dk)

)
, ∀h ∈ H.

Thus, by working on a nuclear countably Hilbertian space we are reduced to
the case of a Hilbert space. Now, we can justify

Eµ
{
〈·, ϕ〉

}
= 0 and Eµ

{
|〈·, ϕ〉|2

}
=

∫

H∗

|〈Rh,ϕ〉|2π0(dh), ∀ϕ ∈ Φ,

actually, we may take ϕ in H, replace the duality 〈·, ·〉 by (·, ·), and assume
H = Φ0.

Hence, the map ϕ 7→ 〈·, ϕ〉 allows us to identify the space H with a subspace
of L2(Φ′,B(Φ′), µ) = L2(H,B(H), µ) and then to call H̄ the Hilbert space ob-
tained as the closure of this subspace. Recalling that any ϕ in H the random
variable 〈·, ϕ〉 is a compensated Poisson variable with with parameter π, we
define the mapping J by setting

J : L2(H,B(H), µ) → H, J(ϕ) =

∫

H

hϕ(h)µ(dh),

but we consider J only as being from H̄ ⊂ L2(H,B(H), µ) into H. Since the
linearity and continuity of ϕ and Hölder inequality yield

ϕ(J(ϕ)) =

∫

H

|ϕ(x)|2 µ(dx),

‖J(ϕ)‖2
H
≤

(∫

H

|ϕ(x)|2 µ(dx)
)(∫

H

‖h‖2
H
µ(dh)

)
,

the mapping J is one-to-one, continuous and linear. The image Hµ = J(H̄) is
continuously embedded in H as a Hilbert space with the inner product

(f, g)
µ

=

∫

H

J−1(f)(h) J−1(g)(h)µ(dh), ∀f, g ∈ Hµ.

Now, set H0
µ = J(H), which is dense in Hµ ⊂ H ⊂ H̄. Clearly, if f and g belong

to H0
µ then (f, g)

µ
= (J−1f, J−1g) = 〈J−1f, J−1g〉.

Let {e1, e2, . . .} be an orthonormal basis in Hµ with elements in H0
µ, and

for every h in H, consider the expression X =
∑
j〈h, J−1ej〉, which is a sum of

independent real-valued random variables ξj(ω) = 〈ω, J−1ej〉, with joint com-
pensated Poisson distribution

Eµ
{
ei

∑n
j=1 cjξj

}
=

∫

Rn
∗

[
ei

∑n
j=1 cjsj − 1 − i

n∑

j=1

cjsj
]
π̄n(ds), ∀c ∈ Rn,

where π̄n is the projection on Rn∗ of π, i.e., with hj = (h, J−1ej),

π̄n(B) = π
(
{h ∈ H∗ : (h1, · · · , hn) ∈ B, hj = 0, ∀j > n}

)
, ∀B ∈ B(Rn∗ ).
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Thus

Eµ{
n∑

j=1

|ξj |2} =

∫

Rn
∗

( n∑

j=1

s2j

)
π̄n(ds) =

∫

H∗

〈Rhn, hn〉π0(dh),

where hn =
∑n
j=1〈h, J−1ej〉ej . Hence, the series X =

∑∞
j=1 ξj(ω)ej converges in

H̄ ⊂ L2(H,B(H), µ), i.e., it can be considered as a H̄-valued random variable
on the probability space (Ω,F , P ) = (H,B(H), µ). Because {e1, e2, . . .} is an
orthonormal basis in Hµ, the mapping

X(h) = 〈X,h〉 =

n∑

j=1

ξj 〈J−1ej , h〉 =

n∑

j=1

ξj (ej , Jh)µ

is a Hµ-valued random variable (almost surely) well defined for any h = J−1Jh
in Hµ, and called Poisson white noise.

Let {ξ1, ξ2, . . .} be a sequence of independent real-valued compensated Pois-
son random variables with parameters {π1, π2, . . .} in (complete) probability
space (Ω,F , P ), i.e.,

E
{
eirξj

}
= exp

(∫

R∗

[
eirs − 1 − irs

]
πj(ds)

)
, ∀r ∈ R, j ≥ 1,

with πj satisfying

∫

R∗

s2πj(ds) ≤ C0, ∀j ≥ 1, (2.31)

for some constant C0 > 0. Now, for any given sequence of nonnegative real
numbers r = {r1, r2, . . .}, define the measures π̄r,n and πj,rj on Rn as

∫

Rn

f(s)π̄r,n(ds) =
n∑

j=1

∫

R

fj(
√
rjsj)πj(dsj) =

n∑

j=1

∫

Rn

f(s)πj,rj (ds),

for any n ≥ 1 and for every positive Borel function f in Rn satisfying f(0) = 0,
where s = (s1, . . . , sn) and f1(s1) = f(s1, 0, . . . , 0), f2(s2) = f(0, s2, . . . , 0), . . . ,
fn(sn) = f(0, 0, . . . , sn), i.e.,

πj,rj (ds) = δ0(ds1) . . . δ0(dsj−1)πj(r
−1/2
j dsj)δ0(dsj+1) . . . δ0(dsn),

where δ0 is the Dirac measure at 0 and πj(r
−1/2
j dsj) = 0 if rj = 0. We can

check that ξ̄r,n = (
√
r1ξ1, . . . ,

√
rnξn) has a compensated Poisson distribution

with parameter π̄r,n, i.e.,

E
{
eic·ξ̄r,n

}
=

∫

Rn
∗

[
eic·s − 1 − ic · s

]
π̄r,n(ds), ∀c ∈ Rn,
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where the dot “·” denotes the scalar product in Rn. Clearly, (2.31) implies

n∑

j=1

∫

Rn
∗

|sj |2π̄r,n(ds) ≤ C0

n∑

j=1

rj , ∀n ≥ 1,

with the same constant C0 > 0.
Moreover, we may regard the measures π̄r,n and πj,rj as being defined either

on Rn or directly on the infinite product R∞ (the space of all sequences), namely,

∫

R∞

f(s)π̄r,n(ds) =

∫

Rn

f(s1, . . . , sn, 0, 0, . . .)π̄r,n(ds)

or equivalently,

πj,rj (ds) = δ0(ds1) . . . δ0(dsj−1)πj(r
−1/2
j dsj)δ0(dsj+1)δ0(dsj+2) . . . ,

and π̄r,n =
∑n
j=1 πj,rj . Note the projection type property

π̄r,n(B) = π̄r,n+k
(
{s ∈ R∞ : (s1, . . . , sn) ∈ B, sj = 0, j > n}

)
,

for any B in B(Rn). Therefore, the series π̄r =
∑∞
j=1 πj,rj defines a measure on

R∞. Hence, if the series
∑∞
j=1 rj is convergent then

∫

R∞

|s|2π̄r(ds) =

∞∑

j=1

∫

Rn
∗

|sj |2π̄r,n(ds) ≤ C0

∞∑

j=1

rj <∞, (2.32)

i.e., π̄r becomes a σ-finite measure on ℓ2∗ = ℓ2 r {0}, where ℓ2 is the Hilbert
space of square-convergent sequences. Also, we have

∫

ℓ2∗

f(s)π̄r(ds) = lim
n

∫

ℓ2∗

f(s)π̄r,n(ds) =

∞∑

j=1

∫

ℓ2∗

f(s)πj,rj (ds),

for any continuous function f such that |f(s)| ≤ |s|2, for any s in ℓ2∗. Moreover,
since rj = 0 implies πj,rj = 0 on ℓ2∗, we also have πj,rj (R−1{0}) = 0 for any j,
where R is the nonnegative symmetric trace-class operator s 7→ (r1s1, r2s2, . . .).
Hence π̄r(R

−1{0}) = 0. This means that support of π̄r is contained in R(ℓ2∗)
and we could define a new pre-image measure by setting π̄0(B) = π̄r(RB), for
any B in B(ℓ2∗) with the property

∫

ℓ2∗

f(s)π̄(ds) =

∫

ℓ2∗

f(Rs)π̄0(ds), ∀f ≥ 0 and measurable.

It is clear that estimate (2.32) identifies the measures only on ℓ2∗ and so, we may
(re)define all measures at {0} by setting

π̄r({0}) = π̄r,n({0}) = πj,rj ({0}) = π̄0({0}) = 0.
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Then we can consider the measures as σ-finite defined either on ℓ2 or on ℓ2∗.
Now, let H be a separable Hilbert space, R be a nonnegative symmetric

(trace-class) operator in L1(H), and {e1, e2, . . .} be an orthonormal basis of
eigenvectors of R, i.e., Rej = rjej , (ej , ek) = 0 if j 6= k, |ej | = 1, for every j,
and Tr(R) =

∑∞
j=1 rj <∞, rj ≥ 0. Note that the kernel of R may be of infinite

dimension, i.e., there infinite many rj = 0. Consider the product measure π on
H∗ = H r {0}, with support in R(H), defined as

π
(
{h ∈ H∗ : (h, ej) ∈ Bej , ∀j}

)
= π̄r(B), ∀B ∈ B(H∗)

or equivalently

∫

H∗

f(h)π(dh) =

∫

ℓ∗

f(s1e1 + · · · + snen + · · · )π̄r(ds),

nonnegative Borel function f in H∗. In particular,

∫

H

|h|2π(dh) =

∫

H∗

∣∣∣
∞∑

j=1

sjej

∣∣∣
2

π̄r(ds) =

∞∑

j=1

∫

ℓ∗

s2jrjπj(ds) ≤ C0 Tr(R)

and if π0 = Rπ, i.e., π0(B) = π(RB), for every B in B(H∗), then

∫

H∗

f(h)π(dh) =

∫

H∗

f(Rh)π0(dh),

for any nonnegative Borel measurable function f on H∗.

• Remark 2.23. Recall the following result, e.g., see Federer [46, Section 2.2.13,
pp. 69]. Let X be a complete separable metric space, Y be a Hausdorff space,
f : X → Y be a continuous function, and µ be a measure Y such that every
closed subset of Y is µ measurable. Then the f image of every Borel subset of X
is µ measurable. This result is classic in the general study of Borel σ-algebras,
analytic sets and universally measurable sets, i.e., the fact that a projection of
a Borel measurable set is analytic and so, it is universally measurable, e.g., see
Dellacherie and Meyer [32, Section III.75–85, pp. 243–254], Dudley [37, Section
13.2, pp 493–499] or Parthasarathy [141, Section I.3]. It is now clear that the
above measure π0 can be defined in term of π, provided that π has support
contained in R(H∗). Note that for any orthonormal basis {ej} in H and any
measure m on H with m({0}) = 0 we have m(B) =

∑
jm(ejB), for any B in

B(H), where ejB is the (orthogonal) projection of B in the ej direction, i.e.,
ejB = {(b, ej)ej : b ∈ B}. Thus, for any integrable function f with f(0) = 0 we
have

∫

H

f(h)m(dh) =
∑

j

∫

H

f(h)m(ejdh) =
∑

j

∫

H

f(ejh)m(dh),

where f(ejh) = f
(
(h, ej)ej

)
and m(ejdh) is the measure B 7→ m(ejB).
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Therefore, the H-valued random variable

X =

∞∑

j=1

√
rj ξj ej

satisfies

E{|X|2} =

∞∑

j=1

rj E{|ξj |2} =

∞∑

j=1

rj

∫

R∗

s2πj(ds),

and

E
{
ei(h,X)

}
=

∞∏

j=1

E
{
ei

√
rj(h,ej)ξj

}
=

= exp
( ∞∑

j=1

∫

R∗

[
ei

√
rj(h,ej)sj − 1 − i

√
rj(h, ej)sj

]
πj(dsj)

)
=

= exp
( ∞∑

j=1

∫

ℓ2∗

[
ei(h,ej)s − 1 − i(h, ej)s

]
π̄r(ds)

)
,

i.e.,

E
{
ei(h,X)

}
= exp

(∫

H∗

[
ei(h,k) − 1 − i(h, k)

]
π(dk)

)
=

= exp
(∫

H∗

[
ei(Rh,k) − 1 − i(Rh, k)

]
π0(dk)

)
,

for every h in H. Thus, X is a compensated Poisson random variable with values
in H and Lévy measure π in H∗. Next, the mapping

h 7→ X(h) =
∞∑

j=1

√
rj ξj (h, ej)

from H into L2(Ω,F , P ) is linear, X(h) is a (real-valued) compensated Poisson
random variable with covariance E{[X(h)]2} = |h|2, for any h in H. Thus the
space {X(h) : h ∈ H} is a Poisson subspace of L2(Ω,F , P ), which is isomorphic
to H. In particular E{X(f)X(g)} = (f, g), for any f and g in H, and X(f) is
a compensated Poisson variable independent of X(g) if (f, g) = 0, i.e., if f and
g are orthogonal. The family {X(h) : h ∈ H} is called an compensated Poisson
stochastic process. If H = L2(A,A, µ), where (A,A, µ) is a σ-finite measure
space, the mapping X is called a Poisson measure or Poisson white noise with
intensity µ on (A,A). When F belongs to A we write X(F ) = X(✶F ). Thus,
if F and G are sets with µ(F ) < ∞ and µ(G) < ∞ then E{X(F )X(G)} =
µ(F ∩ G), and so that X(F ) and X(G) are independent when F and G are
disjoint. Notice that if {Fk : k = 1, 2, . . .} is a pairwise disjoint sequence of
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subset in A, F = ∪kFk with µ(F ) < ∞ then X(F ) =
∑
kX(Fk) almost surely

so that some regularity (as in the case of regular conditional probability) is
need to ensure the existence of a good selection, in order that F 7→ X(F, ω) is
a measure for ω outside of a set of probability zero.

Sometimes, the initial point is a family of compensated Poisson random
variables X = {X(h) : h ∈ H} in a complete probability space (Ω,F , P ),
where the index H is a separable Hilbert space, the σ-algebra F is the small-
est complete σ-algebra such that X(h) is measurable for any h in H and
E{X(f)X(g)} = (f, g)

H
, for any f and g in H. This is called a compen-

sated Poisson process on H. For the particular case of a standard Poisson
process (and some similar one, like symmetric jumps) we have the so-called
Charlier polynomials cn,λ(x), an orthogonal basis in L2(R+) with the weight
α(x) =

∑∞
n=1 ✶{x≥n}e−λλn/n!, λ 6= 0, which are the equivalent of Hermit poly-

nomials in the case of a Wiener process. Charlier polynomials are defined by
the generating function

t 7→ e−λt(1 + t)x =

∞∑

n=0

cn,λ(x)
tn

n!
,

or explicitly by the expression

cn,λ(x) =

n∑

k=0

(
n

k

)(
x

k

)
k! (−λ)n−k

and they satisfy the orthogonal relations

∫ ∞

0

cm,λ(x) cn,λ(x) dα(x) =

∞∑

k=1

cm,λ(k) cn,λ(k) e−λ
λk

k!
= 0, if m 6= n

and
∫ ∞

0

cn,λ(x) cn,λ(x) dα(x) =

∞∑

k=1

cn,λ(k) cn,λ(k) e−λ
λk

k!
= λnn!.

Also the three-terms recurrence formula

cλ,n+1(x) = (x− n− λ)cλ,n(x) − nλcλ,n−1(x),

and several other properties, e.g., see Chihara [22] or Szegö[170].
The previous analysis applied to the particular case when a Lévy measure

π is given on a separable Hilbert space H. The measure π is constructed from
a nonnegative symmetric (trace-class) operator R in L1(H) with eigenvalues
and eigenvectors {rj , ej , j = 1, 2, . . .}, where {ej} is a orthonormal basis in H
and

∑
j rj <∞, and a sequence {πj} of Lévy measures on R∗ satisfying (2.31).

Thus, we define the Lévy measures π̄r,n on Rn satisfying (2.32), which induces
the Lévy measures π̄r and π̄ on ℓ2∗ and π and π0 on H∗, satisfying

∫

H∗

|h|2
H
π(dh) =

∫

H∗

|R1/2h|2
H
π0(dh) <∞. (2.33)
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By means of Sazonov’s Theorem 1.25, there is a probability measure P on
(Ω,F), with Ω = L2(R, H∗) and F = B(Ω), such that for any φ in L2(R, H∗)
we have

E
{
ei〈·,φ〉

}
= exp

(∫

R

dt

∫

H∗

[
ei(φ(t),h) − 1 − i(φ(t), h)

]
π(dh)

)
=

= exp
(∫

R

dt

∫

H∗

[
ei(Rφ(t),h) − 1 − i(Rφ(t), h)

]
π0(dh)

)
,

where 〈·, ·〉 denotes the inner product in L2(R, H∗) and (·, ·) is the inner product
in H. Hence, we can pick a H∗-valued random variable p̄(t) in ω 7→ (ω, ·✶(0,t))
such that t 7→ p̄(t) is a cad-lag stochastic process, called a (H∗-valued) compen-
sated Poisson point process with Lévy measure π.

On the other hand, consider the space Ω = L2
π(R×H∗) with the σ-finite prod-

uct measure dt×π(dh) on R×H∗. Again, by means of Sazonov’s Theorem 1.25
(remark that the condition (2.33) is not being used), there is a probability mea-
sure P on (Ω,F), with F = B(Ω), such that

E
{
ei〈·,ϕ〉

}
= exp

(∫

R

dt

∫

H∗

[
eiϕ(t,h) − 1 − iϕ(t, h)

]
π(dh)

)
,

for any ϕ in L2
π(R×H∗), where now 〈·, ·〉 denotes the inner product in L2

π(R×
H∗). Note that if {(t, y) : ϕ1(t, y) 6= 0} and {(t, y) : ϕ2(t) 6= 0} are disjoint in
R×H∗ (except for a set of dt×π(dy) measure zero), then the random variables
(ω, ϕ1) and (ω, ϕ2) are independent. Now, in particular, if ϕ = ✶(0,t)✶B , t > 0
and B in B(H∗), with π(B) < ∞, we can pick a real-valued random variable
p(t, B) in

ω 7→
∫

R

(∫

B

ω(t, h)π(dh) + π(B)
)
ϕ(t)dt,

such that t 7→ p(t, B) is a cad-lag stochastic process and B 7→ p(t, B) is a
(random) measure, called a Poisson (integer) measure. Actually, p is a measure
in both variables. These stochastic process has the following properties:

(1) For any B in B(H∗), with π(B) <∞, the real-valued process p(·, B) or the
H-valued process p̄ has independent increments.

(2) For any sequence of disjoint sets B1, . . . , Bn in B(H∗) the stochastic pro-
cesses p(t, B1), . . . , p(t, Bn) are independent.

(3) The process p(t, B) is a Poisson process with parameter π(B) and p̄(t) is
a compensated Poisson point process, i.e., for any sequences of disjoint sets
B1, . . . , Bn in B(H∗) with π(Bi) < ∞, and 0 = t0 < t1 < · · · < tn−1 < tn we
have

E
{
ei

∑n
j=1 rj(p(tj ,Bj)−p(tj−1,Bj))

}
= exp

( n∑

j=1

(tj − tj−1)π(Bj)
[
eirj − 1

])
,
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for any sequence r1, . . . , rn in R, whilst for the H-valued process p̄(t) we obtain

E
{
ei

∑n
j=1(p̄(tj)−p̄(tj−1),hj)

}
=

= exp
( n∑

j=1

(tj − tj−1)

∫

H∗

[
ei(hj ,h) − 1 − i(hj , h)

]
π(dh)

)
=

= exp
( n∑

j=1

(tj − tj−1)

∫

H∗

[
ei(Rhj ,h) − 1 − i(Rhj , h)

]
π0(dh)

)
,

for any sequence h1, . . . , hn in H.

(4) For each s > t ≥ 0, we have E{p̄(t)} = 0,

E
{
|p̄(s) − p̄(t)|2

}
= (s− t)

∫

H∗

|h|2π(dh) = (s− t)

∫

H∗

|R1/2h|2π0(dh),

and p(0, B) = 0 almost surely. Moreover, using the independence of increments
we find that

E
{
|p̄(r) − p̄(s)|2|p̄(s) − p̄(t)|2

}
= (s− t)(r − s)

(∫

H∗

|h|2π(dh)
)2

,

for any r > s > t ≥ 0.

(5) For any deterministic function ϕ in L2
π(R×H) and φ in L2(R, H), we can

define the (stochastic) integrals

∫

R×H∗

ϕ(t, h)p̃(dt, dh) = 〈·, ϕ〉
L2
π(R×H)

=

∫

R

dt

∫

H∗

ω(t, h)ϕ(t, h)π(dh),

∫

R

(
φ(t), p̄(dt)

)
H

= 〈·, φ〉
L2(R,H)

=

∫

R

(
ω(t), φ(t)

)
H

dt,

where p̃(t, B) = p(t, B) − tπ(B). In particular, if we assume (2.33) then π inte-
grates h 7→ |h|2, and we can define the stochastic integral

ω 7→
∫

H∗

hp(t, dh) =

∫

(0,t]

dt

∫

H∗

ω(t, h)hπ(dh),

which has the same distribution as the compensated Poisson point process p̄(t)
obtained before.

The law of the process p̄ on the canonical space either D([0,∞), H) or
D([0,∞), H∗) is called a (H-valued) compensated Poisson measure with Lévy
measure π. The reader may want to check other sources regarding the so-
called Malliavin calculus, e.g., Bichteler [12], Ishikawa [76], Nualart [138], Sanz-
Sole [156], among others.
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2.7 Integer Random Measures

In the same way that a measure (or distribution) extends the idea of a function,
random measures generalize the notion of stochastic processes. In terms of
random noise, the model represents a noise distribution in time and some other
auxiliary space variable, generalizing the model of noise distribution only in the
time variable. Loosely speaking, we allow the index to be a measure. The
particular class where the values of the measure are only positive integers is of
particular interest to study the jumps of a random process.

2.7.1 Integrable Finite Variation

Before looking at random measure, first consider processes with paths having
bounded variation. Usually, no specific difference is made in a pathwise discus-
sion regarding paths with bounded variation within any bounded time-interval
and within the half (or whole) real line, i.e., bounded variation paths (with-
out any other qualification) refers to any bounded time-interval, and so the
limit A(+∞) for a monotone paths could be infinite. Moreover, no condition
on integrability (with respect to the probability measure) was assumed, and as
seen later, this integrability condition (even locally) is related to the concept of
martingales.

Now, we mention that an important role is played by the so-called integrable
increasing processes in [0,∞), i.e., processes A with (monotone) increasing path
such that

E{sup
t
A(t)} = E{ lim

t→∞
A(t)} = E{A(∞)} <∞,

and processes with integrable bounded variation or integrable finite variation
on [0,∞), i.e., processes A where the variation process {var(A, [0, t]) : t ≥ 0}
satisfies

E{sup
t

var(A, [0, t])} = E{var(A, [0,∞[)} <∞,

or equivalently, A = A+ −A− where A+ and A− are integrable increasing pro-
cesses in [0,∞). These two concepts are localized as soon as a filtration is given,
e.g., if there exists a (increasing) sequence of stopping times (τn : n ≥ 1) sat-
isfying P (limn τn = ∞) = 1 such that the stopped process An(t) = A(t ∧ τn)
is an integrable increasing process in [0,∞) for any n then A is a locally inte-
grable increasing process in [0,∞). Note that processes with locally integrable
bounded variation or locally integrable finite variation on [0,∞), could be mis-
interpreted as processes such that their variations {var(A, [0, t]) : t ≥ 0} sat-
isfy E{var(A, [0, t])} < ∞, for any t > 0. It is worth to remark that any
predictable process of bounded (or finite) variation (i.e., its variation process
is finite) is indeed of locally integrable finite variation, e.g., see Jacod and
Shiryaev [84, Lemma I.3.10]. Moreover, as mentioned early, the qualifiers in-
creasing or bounded (finite) variation implicitly include a cad-lag assumption,
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also, the qualifier locally implicitly includes an adapted condition. In the rare
situation where an adapted assumption is not used, the tern raw will be explic-
itly used.

Going back to the relation of locally bounded variation process X with a
Borel (positive or signed) measure on [0,∞)

µ({0}) = X(0, ω), µ(]a, b]) = X(b, ω) −X(a, ω), 0 < a < b

and abandon the pathwise analysis. Similar to the null sets in Ω, a key role
is played by evanescent sets in [0,∞) × Ω, which are defined as all sets N in
the product σ-algebra B([0,∞))×F such that P ({∪tNt}) = 0, where Nt is the
t section {ω : (ω, t) ∈ N} of N. For a given process A of integrable bounded
variation, i.e., such that

E{sup
t

var(A, [0, t]} <∞,

we may define (bounded) signed measure µA (this time) on [0,∞) × Ω by the
formula

µA(]a, b] × F ) = E
{
✶F

∫

]a,b]

dA(t)
}
, ∀b > a ≥ 0, F ∈ F . (2.34)

Since progressively, optional or predictable measurable sets are naturally iden-
tified except an evanescent set, the measure µA correctly represents a process
A with integrable bounded variation. Conversely, a (bounded) signed measure
µ on [0,∞) × Ω corresponds to some process A if and only if µ is a so-called
signed P -measure, namely, if for any set N with vanishing sections (i.e., satis-
fying P{ω : (ω, t) ∈ N} = 0 for every t) we have µ(N) = 0. A typical case is
the point processes, i.e.,

A(t) =
∑

n

an✶τn≥t,

where τn−1 ≤ τn and τn−1 < τn if τn < ∞ is a sequence of stopping times and
an is F(τn)-measurable random variable with values in R∗ = Rr {0}, for every
n. Then, for each fixed ω the function t → A(t, ω) is piecewise constant, but
even if all the random variable an are bounded, the variation of the process A
may not be integrable. The measure µA takes the form

µA(X) =
∑

n

E{anX(τn)} = E
{∫

[0,∞)

∫

R∗

aX(t, ω) νA(dt, da, ω)
}
,

νA(B,ω) = #{n : (τn(ω), an(ω)) ∈ B},

for every B in B([0,∞)×R∗), where # denotes the number of elements in a set
and X is any bounded measurable process, in particular of the form X(t, ω) =
✶]a,b](t)✶F (ω), for some set F in F . It may seem more complicate to use the
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random measure νA defined on [0,∞) × R∗, but indeed this is characteristic
to jumps processes. The reader is referred to the discussions in the books by
Dellacherie and Meyer [32, Section VI.2, pp. 113–164], Jacod and Shiryaev [84,
Section 1.3, pp. 27–32], Métivier and Pellaumail [128, Chapter 5, pp. 147–161],
Rogers and Williams [153, Sections VI.19–21, pp. 347–352], and Elliott [43],
Protter [149], among others, to complement the above remarks and following
theorem–definition

Definition 2.24 (compensator). Let (Ω,F , P,F(t) : t ≥ 0) be a given filtered
space. For any bounded (or integrable) measurable process X there exists a
unique predictable process pX, called predictable projection, such that for any
predictable stopping time τ we have E{pX✶τ<∞} = E{X✶τ<∞}. It is proved
that a process A with integrable bounded variation is predictable if and only
if µA(X) = µA(pX) for any bounded measurable process X, see (2.34). Now,
given a process A with integrable bounded variation with a corresponding signed
P -measure µA on [0,∞)×Ω, the dual predictable projection of µA is defined by
duality as follows

µpA(X) = E
{∫

[0,∞)

pX(t, ω)dA(t, ω)
}
,

for any bounded measurable process X. Since µpA is a signed P -measure which
commutes with the predictable projection, its corresponding process with inte-
grable bounded variation, denoted by Ap, is predictable and satisfies

E{
∫

[0,∞)

X(t, ω)dAp(t, ω) = E{
∫

[0,∞)

pX(t, ω)dA(t, ω),

for any bounded measurable process X, and called the compensator of A.

Similarly to above, we may define the optional projection, and dual optional
projection, with the notations oX, µoA and Ao. Clearly, the above statements can
be localized, i.e., the process X can only be assumed locally bounded or locally
integrable, and the process A can only be supposed with locally integrable finite
variation.

It will be stated later that the dual predictable projection µpA corresponding
to a signed P -measure µA of an adapted process A with integrable bounded
variation is actually characterized by the fact that the (Stieltjes integral) process

∫

[0,t]

X(t−, ω)dA(t, ω) −
∫

[0,t]

X(t−, ω)dAp(t, ω). t ≥ 0

is a martingale for any bounded adapted process X. It is clear that t 7→ X(t−)
is a predictable process and that in the above martingale condition it suffices
to take processes of the form X(t) = ✶t≤τ for some stopping time τ, i.e., the
process t 7→ A(t ∧ τ) −Ap(t ∧ τ) is a martingale.

Related with the compensator definition is the (unique) decomposition of
any positive increasing adapted right-continuous process A into the sum of a
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continuous increasing adapted process cA with cA(0) = 0 and a right-continuous
increasing adapted process jA which can be expressed as follows:

jA(t) =
∑

n

an ✶t≥τn ,

where {τn} is a sequence of stopping times with bounded disjoint graphs and
an is a bounded positive F(τn)-measurable function for every n. The proof of
this fact is rather simple, first define inductively τ i,0 = 0 and

τ i,j = inf{t > τ i,j : A(t+) −A(t−) ≥ 1/i},

and then τ i,jk = τ i,j if A(t+) − A(t−) ≤ k + 1 and τ i,j ≤ k, and τ i,jk = ∞
otherwise. Clearly {τ i,jk } is countable and can be rewritten as {τ ′

n : n = 1, 2, . . .},
which is a sequence of stopping times with bounded graphs. Again, defining
τn = τ

′

n if τi 6= τn for every i = 1, . . . , n and τn = ∞ otherwise, we get the
desired sequence, with an = A(τn+) −A(τn−).

Similarly, if A is as above and ϕ : [0,∞) → [0,∞) is a continuously differen-
tiable function and for a given r ≥ 0 we set

τr = inf{t ≥ 0 : A(t) ≥ r} and θr = inf{t ≥ 0 : A(t) > r},

which are both stopping times (as seen later, τr is predictable), then for every
bounded measurable process X we have

∫ ∞

0

X(s)dϕ(A(s)) =

∫ ∞

0

X(τr)ϕ
′(r)✶τt<∞dr =

=

∫ ∞

0

X(θr)ϕ
′(r)✶θt<∞dr.

Details on the proof of these results can be found in Bichteler [11, Section 2.4,
pp. 69–71].

2.7.2 Counting the Jumps

Returning to the sample space, we know that an element ω in D([0,∞),Rd)
has at most a countable number of jumps, with only a finite number of jumps
of size greater than a positive quantity. For any Borel set B in B(Rd∗) with
Rd∗ = Rd r {0} (so-called punctured d-space) the number of jumps before a
time t and with values in B are finite if B is compact. Thus, for any (cad-lag)
stochastic process with values in Rd or equivalently for any random variable X
with values in D([0,∞),Rd) we can define a measure νX with integer values, as
the number of jumps in B within a bounded time interval, i.e.,

νX(B×]a, b], ω) = #{t : a < t ≤ b, X(t, ω) −X(t−, ω) ∈ B}, (2.35)

for any b > a ≥ 0, B in B(Rd∗), and where # denotes the number of elements
(which may be infinite) of a set. Sometime we use the notation νX(B, ]a, b], ω)
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and we may look at this operation as a functional on D([0,∞),Rd), i.e., for
every b > a ≥ 0 and B in B(Rd∗),

ν(B, ]a, b], ω) =
∑

a<t≤b
✶B

(
ω(t) − ω(t−)

)
,

so that νX(B×]a, b], ω) = ν(B, ]a, b], X(·, ω)). For each ω, this is Radon measure
on Rd∗× (0,∞) with integer values. By setting ν(Rd∗×{0}) = 0 we may consider
ν as a measure on Rd∗ × [0,∞).

This measure ν is used as a characterization of the jumps δX = (δX(t) =
X(t) − X(t−) : t > 0), in the sense that ν vanishes if and only if the process
X is continuous. Note that for any continuous function f(t, x) which vanishes
near x = 0 we have

∫

Rd
∗×(a,b]

f(x, t)ν(dζ, dt) =
∑

δX(t) 6=0

✶{a<t≤b}f
(
δX(t), t

)
,

where the sum is finite. In this sense, the random measure ν contains all infor-
mation about the jumps of the process X. Moreover, remark that ν is a sum
of Dirac measures at (δX(t), t), for δX(t) 6= 0. This sum is finite on any set
separated from the origin, i.e., on any sets of the form

{
(x, t) ∈ Rd∗ × [0,∞) : t ∈]a, b], |x| ≥ ε

}
,

for every b > a ≥ 0 and ε > 0.
Recall that the Skorokhod’s topology, given by the family of functions defined

for ω in D([0,∞),Rd) by the expression

w(ω, δ, ]a, b]) = inf
{ti}

sup
i

sup{|ω(t) − ω(s)| : ti−1 ≤ s < t < ti}

where {ti} ranges over all partitions of the form a = t0 < t1 < · · · < tn−1 <
b ≤ tn, with ti − ti−1 ≥ δ and n ≥ 1, makes D([0,∞),Rd) a complete separable
metric space. Again, note that

ν({z ∈ Rd : |z| ≥ w(ω, δ, ]a, b])}, ]a, b], ω) ≤ b− a

δ
,

for every δ > 0, and b > a ≥ 0.
Another point is the following fact that for any set B in Rd∗ with a positive

distance to the origin, we can define the sequence of jump-times and jump-size
as

τ0(B, ]a, b], ω) = a, ζ0(B, ]a, b], ω) = 0,

τk(B, ]a, b], ω) = inf{t ∈]τk−1, b] : ω(t) − ω(t−) ∈ B}, k ≥ 1,

ζk(B, ]a, b], ω) = ω(τk) − ω(τk−), k ≥ 1,

for any b ≥ a ≥ 0 and 1 ≤ k ≤ ν(B, ]a, b], ω). Thus, if ωn is a sequence
converging to ω in D([0,∞),Rd), and B is also an open set with boundary ∂B

[Preliminary] Menaldi December 12, 2017



2.7. Integer Random Measures 125

satisfying ν(∂B, ]a, b], ω) = 0, and such that the first jump ω(a) − ω(a−) and
the last jump ω(b) − ω(b−) have a positive distance to B, then

ν(B, ]a, b], ωn) → ν(B, ]a, b], ω),

τk(B, ]a, b], ωn) → τk(B, ]a, b], ω),

ζk(B, ]a, b], ωn) → ζk(B, ]a, b], ω),

for any k = 0, 1, . . . , ν(B, ]a, b], ω).

Definition 2.25 (integer measure). Let (Ω,F , P,F(t) : t ≥ 0) be a filtered
space. A random measure on a Polish space E is a random variable ν with
values in the space of σ-finite measures on the Borel σ-algebra B(E). In most
of the cases, the Polish space E is locally compact and the random variable
ν take values in the space of Radon (nonnegative) measures (finite on every
compact sets) on B(E). If the time-variable is singled-out, e.g., E = Rm∗ × [0,∞)
then it is required that ν(Rm∗ × {0}) = 0. In this case a random measure on
Rm∗ × [0,∞) is called a optional or predictable (respectively, locally integrable) if
for any stopping time τ < ∞ and any compact subset K of Rm∗ the stochastic
process t 7→ ν(K × [0, t ∧ τ ]) is optional or t 7→ ν(K × [0, t ∧ τ [) is predictable
(respectively, E{ν(K × [0, t ∧ τ ])} <∞ for every t > 0). Moreover, an optional
locally integrable random measure ν is called integer measure or integer-valued
random measure if it takes values in {0, 1, . . . ,∞}, ν(Rm∗ ×{0}) = 0 and ν(Rm∗ ×
{t}) = 0 or = 1 for any t > 0.

When referring to an integer-valued random measure, the above defini-
tion implies that we mean an optional locally integrable integer-valued random
measure. Moreover, the local integrability ensures that the product measure
ν(dx× dt, ω)P (dω) is σ-finite. It is clear that we may replace Rm∗ by a locally
compact Polish E. An essential point is the use of the following two properties:
(1) the σ-algebra E is generated by a countable algebra and (2) any (E, E)-
valued random variable x on a probability space (Ω,F , P ) admits a regular
conditional distribution relative to a sub-σ-algebra G of F . This disintegration
property (2) can be restated as: for any positive and finite measure m on the
product space (E×B, E ×B) there exist a measurable kernel k(dx, b) such that
m(dx, db) = k(dx, b)mB(db), where mB(db) = m(E, db) is the B-marginal dis-
tribution of m. Clearly, this is related to the conditional property, and this is
used to define the compensator, a key instrument for the stochastic integral.
These properties are satisfied by the so-called Blackwell spaces, see Dellacherie
and Meyer [32]. Only the case of locally compact Polish spaces will be used
here.

A typical example of optional (respectively, predictable) integer measure on
Rm∗ is the one constructed by (2.35) for an adapted (i.e., optional) (respectively,
predictable) locally integrable stochastic process with values in Rm. Notice that
integrability at infinity is not an issue in the above definition of integer-valued
measure, the key part is the integrability away of the origin, i.e., we may use
E{ν(B × [0, t])} < ∞, for any Borel subset B of Rm∗ with a positive distance
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to the origin. Certainly, this can be viewed as a localization (via a sequence of
stopping times) of the integral condition

E
{∫

Rm
∗ ×[0,t]

(|ζ|2 ∧ 1)ν(dζ, dt)
}
<∞,

for every t ≥ 0, which is used later for Lévy measures.

Given an integer-valued random measure ν on Rm∗ , the set {t : ν(Rm∗ ×{t}) =
1} is countable for any ω and can be written as a sequence (τn(ω) : n = 1, 2, . . .).
Moreover, because ν assumes only integers values, there is a sequence (an(ω) :
n = 1, 2, . . .) such that ν({(an, τn)}) = 1 and ν(Rm∗ × [0,∞) r {(an, τn)}) = 0.
Because ν is finite on compact subsets of Rd∗, for each ε, t > 0 there exists only
a finite number of (an, τn) such that ε ≤ |an| ≤ 1/ε and τn ≤ t. Hence we may
always rewrite ν as

ν(B,ω) =
∑

n

✶(an(ω),τn(ω))∈B , ∀B ∈ B(Rm∗ × [0,∞)),

Aεν(t, ω) =
∑

n

an(ω)✶ε≤|an|≤1/ε ✶τn(ω)≤t, ∀t ≥ 0,
(2.36)

this determines an optional locally integrable jump process Aεν on Rm∗ , and so
the following expression for every F in F(s) and t ≥ s ≥ 0,

µε(]s, t] × F ) = E
{

[Aεν(t) −Aεν(s)]✶F
}
, (2.37)

defines a bounded (Rd-valued) measure on [0,∞) × Ω.

If the jump processes {Aεν : ε > 0} have a uniformly locally integrable
bounded variation, i.e., E{∑n |an|} <∞,, then Aν = (

∑
n an ✶τn≤t : t ≥ 0) has

a locally integrable bounded variation (when d = 1 we have a signed measure
µε) and a measure µ (limit as ε → 0, which is called Doléans measure), can
be defined. To come back from this (Rd-valued) measure µε to the process
Aε (or to the integer-valued random measure ν), we need µε to vanish for
any evanescent set, i.e., µε(N) = 0 for any subset N of [0,∞) × Ω such that
P (∪t{ω : (t, ω) ∈ N)}) = 0. The point is that the integer measure ν captures all
the features of the family of processes Aε, even when A can not be defined. In
other words, if Aε is a semi-martingale we will see that µε may define a measure
as ε vanishes.

2.7.3 Compensating the Jumps

Returning to the compensator, as in Definitions 2.24 (in Chapter 2) and 2.25, we
have a unique dual predictable projection νp of any optional locally integrable
random measure ν, characterized (almost surely) as being a predictable random
measure such that E{ν(K × [0, t∧ τ ])− νp(K × [0, t∧ τ ])} = 0 for any stopping
time τ < ∞, any compact subset K of Rm∗ and any t > 0, or equivalently the
process t 7→ ν(K×]0, t]) − νp(K×]0, t]) is a martingale. Hence, by an argument
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of monotone class, we have

E
{∫

Rm
∗ ×[0,∞)

X(z, t) ν(dz, dt)
}

= E
{∫

Rm
∗ ×[0,∞)

X(z, t) νp(dz, dt)
}
,

for any nonnegative function (z, t, ω) 7→ X(z, t, ω) measurable with respect
to the product σ-algebra B(Rm∗ ) × O (with O being the optional σ-algebra)
where the product measure ν(dz, dt, ω)P (dω) is defined. Recall that we assume
ν(Rm∗ × {0}) = 0, so that ν(K × {0}) = νp(K × {0}) = 0. Moreover, based
on the disintegration property, the predictable compensator can be written as
νp(dz, dt, ω) = k(dz, t, ω)dA(t, ω), where A is a integrable predictable increasing
process and k(dz, t, ω) is a measurable kernel. We refer to Bichteler [11, Sections
3.10, 4.3, pp. 171–186, 221–232], He et al. [68], Jacod and Shiryaev [84, Section
II.1, pp. 64–74], and Kallenberg [87] for a full discussion on random measures,
only some results are reported here.

Theorem 2.26. Let νp be compensator of an integer-valued random measure
ν. Then the predictable random measure νp (which is not necessarily an integer-
valued random measure) has the following properties. First (a) its predictable
support, namely the set {(t, ω) : 0 < νp(Rm∗ × {t}, ω) ≤ 1}, can be written as a
sequence of predictable stopping times, i.e., {(τpn(ω), ω) : n = 1, 2, . . .} with τpn a
predictable stopping time for any n, and P ({ω : 0 < νp(Rm∗ ×{t}, ω) ≤ 1}) = 1,
for any t ≥ 0. Next (b) we have

νp(K × {τ}) = E
{∑

n

✶an∈K | F(τ−)
}
,

on the predictable support, for any predictable stopping time τ < ∞ and any
compact subset K of Rm∗ . Moreover, if ν is defined as the number of jumps
(2.35) of a (special) semi-martingale X then the predictable processes in t > 0,

√ ∑

0<s≤t
νp(Rm∗ × {s}) and

√∫

Rm
∗ ×]0,t]

(|z|2 ∧ |z|) νp(dz, dt),

are locally integrable. They also are integrable or (locally) square integrable if
the semi-martingale X has the same property. Furthermore, X is quasi-left
continuous if and only if its predictable support is an empty set, i.e., νp(Rm∗ ×
{t}) = 0, for any t ≥ 0.

Note if ν(dz, dt, ω) is a quasi-left continuous integer random measure then its
predictable compensator can be written as νp(dz, dt, ω) = k(dz, t, ω)dA(t, ω),
where k is a measurable (predictable) kernel and A is a continuous increasing
process.

To check the point regarding the quasi-left continuity for a square integrable
martingale X, let τ < θ < ∞ be given two stopping times. Since, for any
compact subset K of Rd∗ the quantity

E
{ ∑

τ<t≤θ
✶δX(t)∈K |δX(t)|2

}
= E

{∫

K×]τ,θ]

|z|2 ν(dz, dt)
}
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is a finite, the number of jumps is finite for each ω and ν can be replaced by νp

in the above equality, we deduce

ε2 E{ν(K×]τ, θ]) | F(τ)} ≤ E
{∫

K×]τ,θ]

|z|2 ν(dz, dt) | F(τ)
}
≤

≤ E{|X(θ)|2 − |X(τ)|2 | F(τ)},

where {|z| < ε} ∩ K = ∅, ε > 0. Hence, ν(K × [0, t]) and νp(K × [0, t]) are
quasi-left continuous if and only if X is quasi-left continuous.

Note that the previous theorem selects a particular representation (or real-
ization) of the compensator of an integer-valued random measure suitable for
the stochastic integration theory. Thus, we always refer to the compensator
satisfying the properties in Theorem 2.26. Moreover, given an integer-valued
random measure ν the process νqc(]0, t ∧ τ ] ×K) given by the expression

νqc(K×]0, t ∧ τ ]) = ν(K×]0, t ∧ τ ]) −
∑

0<s≤t∧τ
νp(K × {s}),

is quasi-left continuous, and its compensator is the continuous part of the com-
pensator νp, denoted by νpc . Hence, for any stopping time τ < ∞ and any
compact subset K of Rm∗ the stochastic process t 7→ ν̃qc(K×]0, t ∧ τ ]), with
ν̃qc = νqc − νpc is a local (purely discontinuous) martingale, whose predictable
quadratic variation process obtained via Doob-Meyer decomposition is actually
the process νpc (K×]0, t ∧ τ ]), i.e.,

〈ν̃qc(K × [0, · ∧ τ ])〉(t) = νpc (K×]0, t ∧ τ ]), ∀ t ≥ 0.

Thus, the optional locally integrable random measure ν̃ = ν− νp = ν̃qc is called
the (local) martingale random measure associated with ν or with the cad-lag
process X.

• Remark 2.27. Two (or more) random measures ν1 and ν2 are called inde-
pendent if for any stopping time τ < ∞ and any compact subset K of Rm∗ the
stochastic process t 7→ ν1(K×[0, t∧τ ]) and t 7→ ν2(K×[0, t∧τ ]) are independent.
Therefore, if ν1 and ν2 are defined as the number of jumps (2.35) of two (or
more) (special) semi-martingale X1 and X2 then the (purely) jumps processes
δX1 and δX2 are independent if and only the random measures ν1 and ν2 (and
therefore νp1 and νp1 ) are so. However, the random measure associated via (2.35)
with the jumps (δX1, δX2) considered in R2m

∗ , and the almost product measure
ν in R2m

∗ defined by ν(K1 ×K2×]0, t]) = ν1(K1×]0, t]) ν1(K2×]0, t]), for every
K1,K2 compact subset of Rm∗ and t > 0 may not agree. Certainly, they are the
same if the process X1 and X2 do not jump simultaneously. In particular, if X1

and X2 are Poisson processes with respect to the same filtration then they are
independent if and only if they never jump simultaneously.

A fundamental example of jump process is the simple point process (N(t) :
t ≥ 0) which is defined as a increasing adapted cad-lag process with nonnegative
integer values and jumps equal to 1, i.e., δN(t) = 0 or δN(t) = 1 for every t ≥ 0,
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and N(t) represents the number of events occurring in the interval (0, t] (and so
more then one event cannot occur exactly a the same time). Given (N(t) : t ≥ 0)
we can define a sequence {Tn : n ≥ 0} of stopping times Tn = {t ≥ 0 : N(t) =
n}. Notice that T0 = 0, Tn < Tn+1 on the set {Tn+1 <∞}, and Tn → ∞. Since

N(t) =

∞∑

n=0

✶Tn≤t, ∀t ≥ 0,

the sequence of stopping times completely characterizes the process, and because
N(Tn) ≤ n, any point process is locally bounded. An extended Poisson process
N is an adapted point process on the filtered space (Ω,F , P,F(t) : t ≥ 0)
satisfying:

(1) E{N(t)} <∞, for every t ≥ 0,

(2) N(t) −N(s) is independent of F(s), for every t ≥ 0,

The function a(t) = E{N(t)} is called intensity (of N). It can be proved that if
the function a is continuous then N is a Poisson process and if a(t) = t for every
t ≥ 0 then N is a standard Poisson process. In this example, the compensator
can be calculated, it can be proved (e.g., Jacod and Shiryaev [84, Proposition
I.3.27, pp. 34–35]) that the compensator of an extended Poisson process is equal
to its intensity, i.e., Np(t) = E{N(t)} and that N is quasi-left continuous if and
only if it is a Poisson process (i.e., its intensity is continuous). In general, even
though the jumps are always countable they can not be ordered as in a point
process. This yields the notion of integer-valued random measures.

Our main interest is on integer-valued random measure νX associated with
a quasi-left continuous semi-martingale X, so that t 7→ νpX(K×]0, t ∧ τ ]) is
continuous and for ν̃X = νX − νpX we have the following expressions for the
optional and predictable quadratic variation processes

[ν̃X(K×]0, · ∧ τ ])](t) = 〈ν̃X(K×]0, · ∧ τ ])〉(t) = νpX(K×]0, t ∧ τ ]), (2.38)

for any t > 0, any stopping time τ < ∞ and any compact subset K of Rm∗ . Ig-
noring the local character of the semi-martingale X, this yields the compensated
jumps equality

E
{∣∣∣

∫

K×]0,t∧τ ]
ϕ(z, s) ν̃X(dz, ds)

∣∣∣
2}

=

= E
{∫

K×]0,t∧τ ]
|ϕ(z, s)|2 νpX(dz, ds)

}

and estimate

E
{

sup
0≤t≤T

∣∣∣
∫

K×]0,t∧τ ]
ϕ(z, s) ν̃X(dz, ds)

∣∣∣
2}

≤

≤ 4E
{∫

K×]0,T∧τ ]
|ϕ(z, s)|2 νpX(dz, ds)

}
,
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for any Borel measurable function ϕ(z, s) such that the right-hand side is finite.
Thus, we can define the integral of ϕ with respect to ν̃X

ν̃X(ϕ✶]0,t∧τ ]) = lim
ε→0

∫

{|x|≥ε}×]0,t∧τ ]
ϕ(z, s)[νX(dz, ds) − νpX(dz, ds)], (2.39)

where ϕ vanishes for |z| large and for |z| small. All this is developed with the
stochastic integral, valid for any predictable process instead of ϕ✶]0,t∧τ ]. The
point here is that the integral

∫

{|x|<1}×]0,t∧τ ]
z ν̃X(dz, ds)

is meaningful as a limit in L2 for every ϕ square integrable with respect to νpX ,
and the compensated jumps estimate holds.

In this way, the stochastic process X and the filtered space (Ω,F , P,F(t) :
t ≥ 0) determine the predictable compensator νpX . Starting from a given integer-
valued random measure ν and by means of the previous Theorem 2.26, we can
define its compensated martingale random measure ν̃ = ν − νp, where νp is
the compensator. The Doléans measure on Rm∗ × [0,∞) × Ω relative to the
integer measure ν is defined as the product measure µ = ν(dz, ds, ω)P (dω), i.e.,
associated with the jumps process ZK induced by ν, namely, for every compact
subset K of Rm∗

ZK(t, ω) =

∫

K×]0,t]

z ν(dz, ds), ∀t ≥ 0.

Therefore whenever ν integrate the function z 7→ |z| we can consider the process
ZRm

∗
as in (2.37). Conversely, if a given (m-valued) Doléans measure µ vanishes

on any evanescent set, i.e., µ(K ×N) = 0 for every compact K of Rm∗ and for
any subset N of [0,∞) × Ω such that P (∪t{ω : (t, ω) ∈ N)}) = 0, then there
is an optional (Rm-valued) jump process A with integrable bounded variation
associated with µ. This argument can be localized as long as we assume νp(]0, t∧
τ)×K) <∞, for any compact K in Rm (not only in Rm∗ ) to get a jump process
A with locally integrable bounded variation path associated to ν. Now, for this
jump process A we can defined an integer-valued measure ν with the same initial
predictable compensator νp.

The following canonical representation of (special) semi-martingale holds.
Let νX be the (random) integer measure associated with the semi-martingale
X, namely, νX(B×]a, b]) is the number of jumps on the time interval (a, b] of
the process X with a value δX belonging to the set B, i.e. for every b > a ≥ 0
and B in B(Rd∗),

νX(B×]a, b]) = #{t : a < t ≤ b, X(t) −X(t−) ∈ B},
and let νpX be its (dual predictable) compensator (satisfying the properties given
in Theorem 2.26), so that ν̃X = νX − νpX is a local-martingale measure, then

X(t) = X(0) +A(t) +Xc(t) +

∫

Rd
∗×]0,t]

zν̃X(dz, ds), ∀t ≥ 0, (2.40)
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where A is a predictable process with locally integrable variation and Xc is
a continuous local-martingale, both satisfying A(0) = Xc(0) = 0 and Xc is
uniquely determined. Clearly, the integer measure ν depends only on the jump
process δX, i.e., only the discontinuous part of X determines νX . If the semi-
martingale X is quasi-left continuous (i.e., either F(τ−) = F(τ) for every pre-
dictable stopping time τ or equivalently the predictable compensator νpX satisfies
νpX(Rd∗×{t}) = 0 almost surely), then the process A in (2.40) is continuous and
uniquely determined.

Note the characteristic elements of a semi-martingale X, which are (1) the
predictable process A with locally integrable variation (which is uniquely de-
termined only when the semi-martingale is quasi-left continuous), (2) the pre-
dictable quadratic variation 〈Xc〉 and (3) the (dual predictable) compensator
measure νpX . If X = M is a quasi-left continuous local-martingale then A = 0
and there are only two characteristic elements to consider: (a) the predictable
quadratic variation 〈M c〉 (or the optional quadratic variation [M ]) and (b) the
predictable compensator νp (or the integer-valued measure ν). If the special
character of the semi-martingale is removed, then the jumps may be not locally
integrable and then the predictable compensator νp may be not integrable at in-
finity, i.e., only the function z 7→ |z|2∧1 in νp-integrable, so that the predictable
process

t 7→
∫

Rd
∗

∫

]0,t]

(|z|2 ∧ 1) νp(dz, ds)

is locally integrable. Thus the representation (2.40) becomes

X(t) = X(0) +A(t) +Xc(t) +

∫

{|z|<1}×]0,t]

z ν̃X(dz, ds), ∀t ≥ 0, (2.41)

where A contains a term of the form
∫

|z|≥1

∫

]0,t]

z νX(dz, dt),

and h(z) = z✶|z|<1 is used as the truncation function. However, our main
interest is on processes with finite moments of all order, so that νp should
integrate z 7→ |z|n for all n ≥ 2. The reader may consult He et al. [68, Section
XI.2, pp. 305–311], after the stochastic integral is covered.

2.7.4 Poisson Measures

A fundamental example is the Poisson measures. We have

Definition 2.28 (Poisson-measure). Let (Ω,F , P,F(t) : t ≥ 0) be a filtered
space. An integer-valued random measure ν on Rm∗ × [0,∞) is called Poisson
measure if

(a) the (nonnegative) measure Π(B) = E{ν(B)} is a Radon measure on Rm∗ ×
[0,∞), i.e., E{ν(K × [0, t])} <∞ for any compact subset K of Rm∗ and for any
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t ≥ 0,

(b) for any Borel measurable subset B of Rm∗ × (t,∞) with Π(B) < ∞ the
random variable ν(B) is independent of the σ-algebra F(t),

(c) Π satisfies Π(Rm∗ × {t}) = 0 for every t ≥ 0.

The measure Π is called intensity measure relative to the Poisson measure ν. If
Π has the form Π(dz, dt) = π(dz) × dt for a (nonnegative) Radon measure π
on Rm∗ then ν is called a homogeneous (or standard) Poisson measure. If the
condition (c) is not satisfied then ν is called extended Poisson measure.

A standard Poisson measure ν on a Polish space O×[0,∞) (e.g., Rm∗ ×[0,∞)
or even a non-locally compact separable metric space) relative to a σ-finite
measure π×dt on B

(
O×[0,∞)

)
(called intensity) can be also defined as a random

measure satisfying (a) for any Borel subset B of O with π(B) <∞ and t ≥ 0 the
random variable ν(B×]0, t]) = ν(B, t) has a Poisson distribution with parameter
tπ(B) and (b) for any n ≥ 1 and any disjoint Borel sets B1, B2, . . . , Bn and
0 ≤ t0 < t1 < · · · tn the random variables ν(B1, t1) − ν(B1, t0), ν(B2, t2) −
ν(B2, t1), . . . , ν(Bn, tn)−ν(Bn, tn−1) are independent. Given a σ-finite measure
π on B(O), a standard Poisson measure ν can be constructed as follows. First,
if π is a finite measure then we can find a sequence {τ1, τ2, . . .} of independent
exponentially distributed random variables, with parameter c = π(O) and a
sequence (ξ1, ξ2, . . .) of O-valued independent identically distributed random
variables, with distribution π/π(O) and independent of {τ1, τ2, . . .}, in some
(complete) probability space (Ω,F , P ). Thus the random integer measure on O
defined by

ν(B, t) =

∞∑

i=1

✶ξi∈B✶τi≤t, ∀B ∈ B(O), ∀t > 0

is the desired standard Poisson measure satisfying E{ν(B, t)} = tπ(B). Next,
if ν is merely σ-finite then there exists a Borel partition of the whole space,
O =

⋃
nOn, with π(On) <∞ and On ∩ Ok = ∅ for n 6= k. For each On we can

find a Poisson measure νn as above, and make the sequence of integer-valued
random measure (ν1, ν2, . . .) independent. Hence ν =

∑
n νn provides a standard

Poisson measure with intensity π. Remark that νn is a finite standard Poisson
measure on On × [0,∞) considered on the whole O × [0,∞) with intensity πn,
πn(B) = π(B ∩ On).

Moreover, if O = Rd∗ then the jump random process corresponds to the
measure π restricted to On

jn(t, ω) =

∞∑

i=1

ξni ✶τn
i ≤t, ∀t > 0

is properly defined, and if π integrates the function z 7→ |z| the jumps j =
∑
n jn

(associated with νn) are defined almost surely. However, if π integrates only
the function z 7→ |z|2 ∧ 1 then the stochastic integral is used to define the
compensated jumps, formally j− E{j}.
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The same arguments apply to Poisson measures, if we start with an intensity
measure defined on O× [0,∞). In this case, the (compensated) jumps is defined
as a stochastic process, by integrating on O × [0, t].

If the variable t is not explicitly differentiated, the construction of a Poisson
(random is implicitly understood) measures ν on a Polish space Z, relative to
a σ-finite measure Π can be simplified as follows: First, if Π is a finite measure
then we can find a Poisson random variable η with parameter c = Π(Z) and
a sequence (ζ1, ζ2, . . .) of Z-valued independent identically distributed random
variables, with distribution Π/c and independent of η in some (complete) prob-
ability space (Ω,F , P ). Then ν(B) =

∑η
k=1 ✶ζk∈B , for any B in B(Z), satisfies

E{ν(B)} =
∑

n

E
{ n∑

k=1

✶ζk∈B | η = n
}

=
∑

n

nΠ(B)

c
P (η = n) = Π(B).

In particular, if Z = O × [0,∞) and Π = π × dt then E{ν(B×]0, t])} = tπ(B),
for every B in B(O) and t ≥ 0.

Thus, if Π is only σ-finite then partition the space Z =
∑
n Zn into sets

with finite measure Π(Zn) < ∞, and redo the construction with independent
sequences {ηn} and {ζni } to define ν(B) =

∑
n

∑
k ✶k≤ηn✶ζnk ∈B .

As in Çınlar [26, Theorems 3.2 and 3.19, Chapter 6, pp. 264-270], we can
now consider

Proposition 2.29. Let Z =
∑
n Zn and X =

∑
nXn be partitions of the Pol-

ish spaces Z and X, and let mn(z, dy) be a transition kernel from Zn into Xn,
i.e., (a) for every B in B(X) the mapping z 7→ mn(z,B) is B(Zn)-measurable
and (b) for every z in Zn the set function B 7→ mn(z,B) is a probability on
Xn. Suppose that {ξn1 , ξn2 , . . .} are Xn-valued random variables conditionally
independent given {ηn, ζni : i ≥ 1}, for each n ≥ 1, such that ξni has dis-
tribution m(ζni , ·). Then µ(B) =

∑
n

∑ηn
k=1 ✶ξ

n
k
∈B, for any B in B(X), is

a Poisson measure with (marginal) intensity
∑
n

∫
Zn

mn(z, ·)Π(dz) in X, and

λ(B) =
∑
n

∑ηn
k=1 ✶(ζn

k
,ξn

k
)∈B, for any B in B(Z × X), is a Poisson measure

with (product) intensity
∑
n Πn × mn =

∑
n mn(z, dx)✶Zn

Π(dz) in Z ×X.

Proof. Since the random variable {(ζni , ξ
n
i ) : i ≥ 1} is a sequence of independent

identically distributed random variables with (product) distribution

P
{

(ζni , ξ
n
i ) ∈ B

}
=

∫

Zn

Π(dz)

∫

Xn

✶Bmn(z, dx),

based on the above construction, we deduce that λ is a Poisson measure with
(product) intensity

∑
n Πn × mn. Moreover, conditioning with respect to B(Z),

we obtain the first assertion. Note that the marginal distribution is indeed

B 7→ mn(·, B)Πn =

∫

Zn

mn(z,B ∩Xn)Π(dz),

for every B in B(X).

[Preliminary] Menaldi December 12, 2017



134 Chapter 2. Stochastic Processes

If ϕ is a random transformation from Z into X, i.e., (ω, z) 7→ ϕ(ω, z) is a F×
B(Z)-measurable function from Ω×Z into X. Then the marginal distributions

m(z,B) = P{ϕ(ω, z) ∈ B}, ∀z ∈ Z, ∀B ∈ B(X)

defined a transition kernel as in Proposition 2.29. If ν is a Poisson measure with
intensity Π on Z then

µ(B) =

∫

Z

✶{ϕ(·,z)∈B} ν(dz) =
∑

n

ηn∑

k=1

✶ϕ(ζn
k
,·)∈B , ∀B ∈ B(X)

and

λ(B) =

∫

Z

✶{(z,ϕ(·,z))∈B} ν(dz) =
∑

n

ηn∑

k=1

✶(ζn
k
,ϕ(ξn

k
,·))∈B ,

for every B ∈ B(Z ×X), are Poisson measures with intensities
∫
Z
m(z, ·)Π(dz)

on X and Π × m = m(z, dx)Π(dz) on Z ×X.
It is clear that Z = Rm∗ and X = Rd∗×[0,∞) are special cases. The (nonnega-

tive) intensity measure can be written as sum of its continuous and discontinuous
parts, i.e.,

Π = Πc + Πd, Πd(dz, dt) = ✶{t : Π(Rm
∗ ×{t})>0} Π(dz, dt).

There is a characterization of Poisson measures as follows

Theorem 2.30. An integer-valued random measure ν is a Poisson measure if
and only if its compensator νp is deterministic and continuous, i.e., νp = Π and
Π(Rm∗ × {t}) = 0 for every t ≥ 0. Moreover, for any Poisson measure ν and
any pairwise disjoint measurable sets (B1, B2, . . . , Bn) with finite Π-measure,
the set {ν(B1), ν(B2), . . . , ν(B1)} is a family of independent random variables
and ν(Bi) has a Poisson distribution with mean Π(Bi), for any i.

In view of the above characterization, νp = Π for a Poisson measure and
because of the previous Theorem 2.26 we deduce that ν should integrate the
function |z|2∧1 when the jumps process A associated with the Poisson measure
ν is a general semi-martingale. For an (special) semi-martingale the intensity
Π should integrate |z|2 ∧ |z|. Thus, we are only interested in Lévy measures ν
which necessarily integrate the function |z|2 ∧ 1.

It is clear that homogeneous (or standard) Poisson measures are associated
with the jumps of Lévy processes via (2.35), and with Remark 2.27 in mind,
the integer measures νi associated with each component of Xi in R∗ may not
reconstruct the measure ν associated with the X in Rm∗ , even if each component
is independent of the others.

For a proof (including extended Poisson measure) we refer to Jacod and
Shiryaev [84, Theorem II.4.8, pp. 104–106]. The reader may consult, for in-
stance, Bremaud [19], where jump processes are discussed as point processes in
the framework of the queue theory.
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Chapter 3

Stochastic Calculus I

This is the first chapter dedicated to the stochastic integral. Certainly, there
are many excellent books on stochastic integrals, e.g., Bichteler [11], Chung and
Williams [25], Da Prato [27], Kuo [107], Medvegyev [120], Métivier and Pel-
laumail [128], Protter [149], each with a particular objective. Our interest is
stochastic integrals with respect to a Wiener process and a Poisson measure.
Indeed, in the first section, a more analytic approach is used to introduce the
concept of random orthogonal measures. Section 2 develops the stochastic in-
tegrals, first relative to a Wiener process, second relative to a Poisson measure,
and then in general relative to a semi-martingale and ending with the vector
valued stochastic integrals. The third and last Section is mainly concerned with
the stochastic differential or Itô formula, first for Wiener-type integrals and then
for Poisson-type integrals. The last two subsections deal with the previous con-
struction as its dependency with respect to the filtration. First, non-anticipative
processes are discussed and then quick analysis on functional representation is
given.

3.1 Random Orthogonal Measures

Before going further, we take a look at the Lp and Lp spaces, for 1 ≤ p < ∞.
Let µ be a complete σ-finite measure on the measurable space (S,B) and Π be
a total π-system of finite measure sets, i.e., (a) if F and G belong to Π then
F ∩G also belongs to Π, (b) if F is in Π then m(F ) < ∞, and (c) there exists
a sequence {Sk : k ≥ 1} ⊂ Π such that Sk ⊂ Sk+1 and S =

⋃
k Sk. For any

measurable function f with values in the extended real line [−∞,+∞] we may
define the quantity

‖f‖p =
(∫

|f |p dµ
)1/p

,

135



136 Chapter 3. Stochastic Calculus I

which may be infinite. The set of step or elementary functions E(Π, µ) is defined
as all functions of the form

e =

n∑

i=1

ci✶Ai
,

where ci are real numbers and Ai belongs to Π for every i = 1, . . . , n, i.e., the
function e assumes a finite number of non-zero real values on sets in Π. Denote
by Lp(Π, µ) the sets of B-measurable functions f with values in [−∞,+∞] for
which there exists a sequence (e1, e2, . . .) of step functions E(Π, µ) such that
‖f − en‖p → 0 as n→ ∞. Since

|f |p ≤ 2p−1|en|p + 2p−1|f − en|p,

all functions in Lp(Π, µ) satisfies ‖f‖p <∞, and in view of the triangle inequal-
ity

‖f + g‖p ≤ ‖f‖p + ‖g‖p, ∀f, g ∈ Lp(Π, µ),

the map f 7→ ‖ · ‖p is a semi-norm. For p = 2, we may use the bilinear form

(f, g) =

∫
f g dµ, ∀f, g ∈ L2(Π, µ)

as a semi-inner product, which yields the semi-norm ‖ · ‖2.
If f, fn belong to Lp(Π, µ) and ‖f − fn‖p → 0 as n → ∞ we say that

fn converges to f in Lp(Π, µ). Also if fm, fn belong to Lp(Π, µ) and ‖fm −
fn‖p → 0 as m,n→ ∞ we say that {fn} is a Cauchy sequence in Lp(Π, µ). It is
clear that any Cauchy sequence in Lp(Π, µ) has a almost everywhere convergent
sub-sequence. Next, essentially based on the triangular inequality and Fatou’s
Lemma, we deduce that Lp(Π, µ) is a complete vector space, i.e., (1) for any
f, g in Lp(Π, µ) and any a, b in R the function af + bg is in Lp(Π, µ) and (2)
any Cauchy sequence in Lp(Π, µ) converges to a function in Lp(Π, µ). Thus, if
σµ(Π) is the smaller sub-σ-algebra of B containing Π and all µ-null sets then
Lp(Π, µ) = Lp(σµ(Π), µ), after using a monotone class argument.

If we should identify functions which are equals almost everywhere, i.e., use
classes of equivalence f ∼ g if and only if f = g almost everywhere, then the
quotient space Lp(Π, µ) = Lp(Π, µ)/∼ is a Banach (Hilbert for p = 2) space.

Definition 3.1 (random orthogonal measure). A family of real-valued random
variables {ζ(A) : A ∈ Π} on a complete probability space (Ω,F , P ) is called a
random orthogonal measure with structural measure µ if

(a) E{|ζ(A)|2} <∞ for any A in Π,

(b) E{ζ(A) ζ(B)} = µ(A ∩B) for any A,B in Π.

Note that the random variables ζ(A) are almost surely defined, i.e., they are
elements in L2(Ω,F , P ), and the measure µ and the π-system Π are as above.
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Clearly, the above condition (b) translates the orthogonal condition, whist
the word measure can be justified as follows: if A is a disjoint union of sets in
Π, i.e., A = ∪iAi, Ai ∩Aj = ∅ if i 6= j, then

(
✶A −

∑

i

✶Ai

)2

= ✶Ar∪iAi
= ✶A −

∑

i

✶Ai
,

which yields

E
{(

✶A −
∑

i

✶Ai

)2}
= µ

(
✶Ar∪iAi

)
,

i.e., for each sequence {Ai} as above, there exists a set Ω0 in F with P (Ω0) = 1
such that ζ(A,ω) =

∑
i ζ(Ai, ω) for every ω in Ω0. This is not to say that a

regular selection exists, i.e., to show that (except for set of probability zero)
the mapping A 7→ ζ(A) can be extended to a measure in σ(Π), which involves
a countable generated π-system Π and some topology on ω, as in the case of
regular conditional probability measures.

Let as define the operator e 7→ I(e) from the set of elementary (or step)
functions E(Π, µ) into the Hilbert space L2(Ω,F , P ) = L2(F , P ) by the formula

if e =

n∑

i=1

ci✶Ai
then I(e) =

∫
edζ =

n∑

i=1

ci ζ(Ai), (3.1)

which is clearly independent of the particular representation of the given ele-
mentary function. Thus, we have

(I(e), ζ(A))F = (e,✶A)Π, ∀A ∈ Π,

‖I(e)‖2,F = ‖e‖2,Π,

where (·, ·)F and (·, ·)Π denote the inner or scalar products in the Hilbert spaces
L2(Ω,F , P ) and L2(Π, µ) = L2(σµ(Π), µ), respectively. Next, by linearity the
above definition is extended to the vector space generated by E(Π, µ), and by
continuity to the whole Hilbert space L2(Π, µ). Hence, this procedure constructs
a linear isometry map between the Hilbert spaces L2(Π, µ) and L2(F , P ) satis-
fying

I : f 7→
∫
fdζ, ∀f ∈ L2(Π, µ),

(I(f), I(g))F = (f, g)Π, ∀f, g ∈ L2(Π, µ).

(3.2)

Certainly, there is only some obvious changes if we allow integrand functions
with complex values, and if the spaces Lp(Π, µ) are defined with complex valued
functions, and so, the inner product in L2 need to use the complex-conjugation
operation.

The above construction does not give a preferential role to the time vari-
able as in the case of stochastic processes, and as mentioned in the book by
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Krylov [102, Section III.1, pp. 77-84], this procedure is used in several oppor-
tunities, not only for the stochastic integral. The interested reader may consult
Gikhman and Skorokhod [61, Section V.2] for a detailed analysis on (vector
valued) orthogonal measures.

3.1.1 Orthogonal or Uncorrelated Increments

Random orthogonal measures is a generalization of stochastic processes with
orthogonal (or uncorrelated) increments, the reader is referred to the classic
book Doob [33, Chapter IX, pp. 425–451] for more details. A Rd-valued (for
complex valued use conjugate) x is said to have uncorrelated increments if the
increments are square-integrable and uncorrelated, i.e., if (a) E{|x(t)−x(s)|2} <
∞, for every t > s ≥ 0 and (b) E{(x(t1) − x(s1)) (x(t2) − x(s2))} = E{x(t1) −
x(s1)}E{x(t2)−x(s2)} for any 0 ≤ s1 < t1 ≤ s2 < t2. Similarly, x has orthogonal
increments if E{(x(t1) − x(s1)) (x(t2) − x(s2))} = 0. It is clear that a process
with independent increments is also a process with uncorrelated increments and
that we may convert a process x with uncorrelated increments into a process
with orthogonal (and uncorrelated) increments y by subtraction its means, i.e.,
y(t) = x(t) − E{x(t)}. Thus, we will discuss only orthogonal increments.

If y is a process with orthogonal increments then we can define the (deter-
ministic) monotone increasing function Fy(t) = E{|y(t)− y(0)|2}, for any t ≥ 0,
with the property that E{|y(t) − y(s)|2} = Fy(t) − Fy(s), for every t ≥ s ≥ 0.
Because the function Fy has a countable number of discontinuities, the mean-
square left y(t−) and right y(t+) limit of y(t) exist at any t ≥ 0 and, except
for a countable number of times y(t−) = y(t) = y(t+). Therefore, we can define
real-valued random variables {ζ(A) : A ∈ Π+}, where Π+ is the π-system of
semi-open intervals (a, b], b ≥ a ≥ 0 and

ζ(A) = y(b+) − y(a+), A = (a, b],

which is a random orthogonal measure with structural measure µ, the Lebesgue-
Stieltjes measure generated by Fy, i.e., µ(A) = Fy(b+) − Fy(a+), for any A =
(a, b]. Certainly, we may use the π-system Π− of semi-open intervals [a, b), b ≥
a ≥ 0 and ζ(A) = y(b−) − y(a−), with A = [a, b), or the combination of the
above π-system, and we get the same structural measure (and same extension
of the orthogonal measure ζ). Moreover, we may even use only the π-system
of interval of the form [0, b) (or (0, b]) to initially define the random orthogonal
measure.

Now, applying the previous we can define the stochastic integral for any
(deterministic) function in L2(σµ(Π), µ)

∫

R

f(t)dy(t) =

∫
fdζ

as an equivalence class of square-integrable random variables, even if we actually
think of a particular member. Moreover, the way how this is defined (via limit
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of elementary or step functions) allows us to that the stochastic integral process

Φ(s) =

∫

R

ϕ(s, t)dy(t)

can be chosen measurable if ϕ is a measurable function with respect to the
Lebesgue-Stieltjes measure ds dF (t) satisfying

∫

R

ϕ(s, t)dF (t),

all s except in a set of zero Lebesgue measure. Clearly, the stochastic integral
over a Borel (even µ-measurable) set of time A can be define as

∫

A

f(t)dy(t) =

∫
f✶Adζ.

A Fubini type theorem holds, for the double integral, and in particular, if h is
an absolutely continuous function and ✶{s≤t} denotes the function equal to 1
when s ≤ t and equal to 0 otherwise, then exchanging the order of integration
we deduce

∫ b

a

ds

∫

(a,b]

h′(s)✶{s≤t}dy(s) =

∫

(a,b]

[h(t) − h(a)]dy(t) =

= [h(b) − h(a)][y(b+) − y(a+)] −
∫ b

a

[y(t) − y(a+)]dt,

for any b > a ≥ 0.

3.1.2 Typical Examples

There two typical constructions of random orthogonal measures, based on the
Poisson and the Gaussian distributions, or equivalent on the Poisson process
and the Wiener process, both are processes with independent increments.

Perhaps a simple (constructed) example of a random orthogonal measure
begins with a given (structural) finite measure m on S = Rd∗ = Rd r {0},
where the π-system Π plays almost not role. Let {τn, zn : n ≥ 1} be a se-
quence of independent random variables in a probability space (Ω,F , P ), such
that each τn is exponentially distributed with parameter m(Rd∗) and zn has
the distribution law A 7→ m(A)/m(Rd∗). Define the compound Poisson process

pt =
∑
n zn ✶t≥θn , with θn = τ1+ · · ·+τn. This can be written as pt =

∑Nt

n=1 zn,
where Nt =

∑
n ✶t≥θn is the Poisson process counting the jumps, which has a

Poisson distribution with intensity λ = m(Rd∗), i.e., P{Nt = n} = e−λt(λt)n/n!,
n = 0, 1, 2, . . . , and thus E{Nt} = λt and E{(Nt − λt)2} = λt.

If the emphasis is only on the jumps then the series defining the Poisson
process pt is regarded as the sum-of-jumps of the sequence of jumps {zn, θn :
n ≥ 1}, which is referred to as a Poisson point process, where zn is the size of
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the jump at the time θn. Note that if initially the measure m is given on Rd and
m({0}) 6= 0 then the above expression of Nt does not count the actual jumps of
the compound Poisson process pt, i.e., the random process qt =

∑
n ✶zn=0✶t≥θn

intervenes.
The independence of the random variables {zn} and {θn} and the fact all

random variables zn have the same distribution, imply that

E{pt} = E{z}
∑

n

E{✶t≥θn} = m(z)t,

where m(z) means the integral of the function z 7→ z with respect to the measure
m, i.e., m(z) = E{z1}m(Rd∗). Similarly, if m(|z|2) = E{|z1|2}m(Rd∗) then more
calculations show that the variance E{|pt −m(z)t|2} = m(|z|2)t, and also

E{eirpt} = exp
[
m(Rd∗)t

(
E{eirz1} − 1

)]
= exp

[
tm(eirz − 1)

]

is its characteristic function. Moreover, these distributions also imply that

E{✶zn∈A} =
m(A)

m(Rd∗)
and

∑

k

E{✶θn+k≤t} = m(Rd∗)t,

for every t ≥ 0 and A in Π. Therefore, this yields the Poisson orthogonal
measure

ζt(A) =
∑

n

[
✶zn∈A ✶t≥θn − E{✶zn∈A ✶t≥θn}

]
, ∀A ∈ Π.

Indeed, by construction E{ζt(A)} = 0,
∑
n E{✶zn∈A ✶t≥θn} = m(A)t, and

E{✶zn∈A ✶t≥θn ✶zk∈B ✶t≥θk} =
m(A)m(B)

m(Rd∗)
E{✶t≥θn∨k

},

E{✶zn∈A ✶t≥θn ✶zn∈B ✶t≥θn} =
m(A ∩B)

m(Rd∗)
E{✶t≥θn}, ∀n, k,

and because
∑
n,k =

∑
n +2

∑
n

∑
k=n+1 we have

∑

n,k

E{✶zn∈A ✶t≥θn ✶zk∈B ✶t≥θk} = m(A ∩B)t+ 2m(A)m(B)t

which yields

E{ζt(A)ζt(B)} =
∑

n

E{✶zn∈A∩B ✶t≥θn} = tm(A ∩B),

as desired. Recall that the mapping A 7→ ζ(A,ω) is regarded as defined for any
A in Π and taking values in L2(Ω,F , P ), i.e., properly saying the symbol ζ(A)
is a class of equivalence of square-integrable random variables.

In general, if m is measure in Rd∗ = Rd r {0} that integrates the function
x 7→ 1 ∧ |x|2 and {Rk : k ≥ 1} is a countable partition of finite m-measure, i.e.,
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Rd∗ =
⋃
k Rk with m(Rk) < ∞ and Rk ∩ Rn = ∅, for k 6= n, then we repeat

the previous procedure with the finite measure A 7→ m(A ∩ Rk) to construct
an independent sequence of compound Poisson processes {pt(Rk) : k ≥ 1},
which yields the independent sequence Poisson orthogonal measures {ζt(Rk) :
k ≥ 1}. Since E{ζt(Rk)} = 0, the sequence of Poisson orthogonal measures is
an orthogonal system in L2(Ω,F , P ), and so the series ζt(A) =

∑
k ζk(A), for

every A in Π, defines a Poisson orthogonal measure with structural measure
A 7→ tm(A). Summing-up, if for a fixed k = 1, 2, . . . , (Nk

t , t ≥ 0) is the Poisson
process and {zkn : n ≥ 1} is the iid sequence with distribution m(·∩Rk) then the
compound Poisson processes pt(R1), pt(R2), . . . are independent and the series

of jumps
∑
k

∑Nk
t

n=1 z
k
n defines a Poisson point process with Lévy measure m,

which yields the same Poisson orthogonal measure, namely,

ζt(A) =
∑

k

[ Nk
t∑

n=1

✶zkn∈A − E
{ Nk

t∑

n=1

✶zkn∈A
}]
, ∀A ∈ Π, t ≥ 0, (3.3)

where the series (in the variable k) converges in the L2-norm, i.e., for each k
the series in n reduces to a finite sum for each ω, but the series in k defines
ζt(A) as an element in L2(Ω,F , P ). Note that in this construction, the variable
t is considered fixed, and that A 7→ µ(A) = tm(A) is the structural measure
associated with the Poisson orthogonal measure A 7→ ζt(A). Therefore, any
square-integrable (deterministic) function f , i.e., any element in L2(Π, µ) =
L2(σµ(Π), µ).

As seen in the previous section, any process with orthogonal increments
yields a random orthogonal measure, in particular, a one-dimensional standard
Wiener process (w(t), t ≥ 0) (i.e., w(t) is a standard normal variables, t 7→
w(t) is almost surely continuous, and E{w(t) ∧ w(s)} = t ∧ s) has independent
increments and thus the expression ζ(]a, b]) = w(b) − w(a) defines a random
orthogonal measure on the π-system of semi-open intervals Π+ = {]a, b] : a, b ∈
R} with the Lebesgue measure as its structural measure, i.e., E{ζ(]a, b])} = b−a.

Similarly, the Poisson orthogonal measure ζt(A) defined previously can be
regarded as a random orthogonal measure on π-system Π (which is composed
by all subsets of S = Rd∗ × (0,∞) having the form K × (0, t] for a compact set
and a real number t ≥ 0) with structural measure µ = m× dt, where dt is the
Lebesgue measure.

With this argument, we are able to define the stochastic integral of an (deter-
ministic) integrand function L2(σµ(Π), µ) with respect to a random orthogonal
measure constructed form either a Poisson point process with Lévy measure m
or a (standard) Wiener process, which are denoted by either

ζ(K × (0, t]) = p̃(A× (0, t]), and

∫

Rd
∗×]0,T

f(t)p̃(dz, dt),

or

ζ(]a, b]) = w(]a, b]), and

∫ b

a

f(t)dw(t).
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Note that this is not a pathwise integral, e.g., the paths of the Wiener process
are almost surely of unbounded variation on any bounded time-interval and
something similar holds true for the Poisson point process depending on the
Lévy measure.

Perhaps a simple construction of a Wiener process begins with a sequence
of independent standard normally distributed random variables {ei,n : i =
1, 2, . . . , 4n, n ≥ 1}. Since each ei,n has zero mean and are independent of each
other, the sequence is orthogonal in L2 = L2(Ω,F , P ), actually, it is an orthonor-
mal system since all variances are equal to 1. Recalling the dyadic expressions
that if t = k2−m = (k2n−m)2−n, 1 ≤ k ≤ 4m then k2n−m ≤ 4n, ✶i2−n≤t = 1

if and only if i = 1, . . . , k2n−m, which yields
∑4n

i=1 ✶i2−n≤t = k2n−m = t2n if

k2n−m = t2n ≥ 1, we deduce t =
∑
n 4−n

∑4n

i=1 ✶i2−n≤t, so that the random
variable

w(t) =
∑

n

2−n
4n∑

i=1

ei,n✶i2−n≤t, (3.4)

is defined as a convergent series in L2(Ω,F , P ), for every t > 0. Indeed, regard
the expression as an orthogonal series expansion, and set w(0) = 0, for any
t ≥ s ≥ 0, to have

E{|w(t) − w(s)|2} =
∑

n

4−n
4n∑

i=1

E{|ei,n|2}✶s<i2−n≤t =

=
∑

n

4−n
4n∑

i=1

✶s<i2−n≤t = (t − s).

Thus, t 7→ w(t) provides a L2-norm continuous random process satisfying (a)
w(t) is a Gaussian random variable with mean E{w(t)} = 0 and variance
E{|w(t)|2} = t, and (b) w(s) is independent of w(t) − w(s) for every t > s.
The fact that there is a continuous version of the limiting process (w(t) : t ≥ 0),
which is called a Wiener process plays not an important role in this analysis.
Indeed, the expressions (3.4) of a Wiener process and (3.3) of a centered Poisson
point process are cad-lag and therefore, the corresponding random orthogonal
measures are measures, for every fixed ω almost surely.

Certainly, for dimension d higher than 1 we should use the covariance ma-
trix, i.e., E{w(t)w∗(t)} = tId, with Id the identity matrix. In this case, this
could take us to discuss vector-valued random orthogonal measure, or simply
consider a sum of independent Wiener processes and their corresponding or-
thogonal measures.

However, with little effort, an index j = 1, . . . , d could be added to the iid
sequence {eji,n}, so that d-intervals (0, t] = (0, t1]×· · ·× (0, td] on S = (0,+∞)d

could be used to define

w(t1, . . . , td) =
∑

n

2−n
4n∑

i=1

d∑

j=1

eji,n✶i2−n≤t1, ..., i2−n≤td , (3.5)
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as a convergent series in L2(Ω,F , P ). Besides being a Gaussian random variable
with mean zero, note that

✶i2−n≤t1 · · ·✶i2−n≤td = ✶i2−n≤t1, ..., i2−n≤td

implies

E{|w(t1, . . . , td)|2} =
∑

n

4−n
4n∑

i=1

d∑

i=1

E{|eji,n|2}✶i2−n≤t1, ..., i2−n≤td =

=
d∏

j=1

[∑

n

4−n
4n∑

i=1

✶i2−n≤tj

]
=

d∏

j=1

tj ,

which yields the (random) Gaussian orthogonal measure ζ(]0, t]) = w(t1, . . . , td)
in Rd, with the Lebesgue measure on (0,∞)d.

Clearly, this last example is related with the so-called white noise measure,
and Brownian sheet or space-time Brownian motion, e.g., see Kallianpur and
Xiong [90, Section 3.2, pp. 93–109].

3.1.3 Filtration and Martingales

At this point, only deterministic integrand can be taken when the integrator
is a standard Wiener process or a Poisson point process with Lévy measure
m. To allow stochastic integrand a deeper analysis is needed to modify the π-
system. Indeed, the two typical examples of either the Poisson or the Gaussian
orthogonal measure suggests a π-system of the form either Π = {K×]0, τ ] ⊂
Ω×Rd∗× (0,∞)}, with the structural measure µ(K×]0, τ ]) = E{τ}m(K) for the
underlying product measure P ×m× dt, or Π = {]0, τ ] ⊂ Ω× (0,∞)}, with the
structural measure µ(]0, τ ]) = E{τ} for the underlying product measure P ×dt,
for a compact set K of Rd∗ and a bounded stopping time τ . This means that
there is defined a filtration F in the probability space (Ω,F , P ), i.e., a family of
sub σ-algebras Ft ⊂ F such that (a) Ft ⊂ Fs if s > t ≥ 0, (b) Ft =

⋂
s>t Fs if

t ≥ 0, and (c) N belongs to F0 if N is in F and P (N) = 0. Therefore, of relevant
interest is to provide some more details on the square-integrable functions that
can be approximated by a sequence of Π-step functions, i.e., the Hilbert space
L2(Π, µ) or better L2(Π, µ).

This filtration F should be such that either t 7→ ζ(K×]0, t]) or t 7→ ζ(]0, t]) is
a F-martingale. Because, both expressions (3.4) of a Wiener process and (3.3) of
a Poisson point process have zero-mean with independent increments, the mar-
tingale condition reduces to either ζ(K×]0, t]) or ζ(]0, t]) being Ft-measurable,
i.e., adapted to the filtration F.

Under this F-martingale condition, either the Poisson or the Gaussian or-
thogonal measure can be considered as defined on the above Π with structural
(product) measure either P × m × dt or P × dt, i.e., just replacing a deter-
ministic time t with a bounded stopping time τ . All this requires some work.
In particular, a key role is played by the so-called predictable σ-algebra P in
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either Ω × Rd∗ × (0,∞) or Ω × (0,∞), which is the σ-algebra generated by the
π-system Π, and eventually completed with respect to the structural measure µ.
For instance, in this setting, a real-valued process (f(t), t ≥ 0) is an integrand
(i.e., it is an element in L2(Π, µ)) if and only if (a) it is square-integrable, (i.e.,
it belongs to L2(F × B, µ), B is the Borel σ-algebra either in Rd∗×]0,∞[ or in
]0,∞[), and (b) its µ-equivalence contains a predictable representative. In other
words, square-integrable predictable process are the good integrand, and there-
fore its corresponding class of µ-equivalence. Sometimes, stochastic intervals are
denoted by Ka, bK (or Ja, bJ) to stress the randomness involved. Certainly, this
argument also applies to the multi-dimensional Gaussian orthogonal measures
(or Brownian sheet). On the other hand, the martingale technique is used to
define the stochastic integral with respect to a martingale (non-necessarily with
orthogonal), and various definitions are proposed. In any way, the stochastic
integral becomes very useful due to the stochastic calculus that follows.

Among other sources, regarding random orthogonal measures and processes,
the reader may consult the books by Krylov [102, Section III.1, pp. 77-84],
Doob [33, Section IX.5, pp. 436–451], Gikhman and Skorokhod [61, Section
V.2] and references therein for a deeper analysis.

3.2 Stochastic Integrals

Let us fix a filtered space (Ω,F , P,Ft : t ≥ 0). A simple predictable process
(or piecewise constant over stochastic intervals) is a stochastic process of the
form Y (t) = Y (τi−1) if τi−1 < t ≤ τi with some i = 1, . . . , n, where 0 = τ0 ≤
τ1 ≤ · · · ≤ τn are stopping times and Y (τi−1) is a F(τi−1) measurable random
variable for any i, and Y (t) = 0 otherwise. It is called bounded if all Y (τi−1)
are bounded random variables. Note that any simple predictable process Y is
left continuous with right-hand limits, so that t 7→ Y (t+) is a cad-lag process.

If X is an optional cad-lag process then we define the expression

Z(t) =

∫

(0,t]

Y (s)dX(s) =

n∑

i=1

Y (τi−1)[X(t ∧ τi) −X(t ∧ τi−1)], (3.6)

as the integral of the simple predictable process (integrand) Y with respect
to the optional cad-lag process (integrator) X. This integral process Z is cad-
lag and optional, which is also continuous if X is so. On the other hand, the
integration-by-part formula

X(b)Y (b) −X(a)Y (a) =

∫

(a,b]

X(t−)dY (t) +

∫

(a,b]

Y (t−)dX(t) +

+
∑

a<t≤b
[X(t) −X(t−)] [Y (t+) − Y (t)], (3.7)
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yields the expression

Z(t) =

∫

(0,t]

Y (s)dX(s) =

= X(t)Y (t) −
n∑

i=1

X(τi)[Y (t ∧ τi) − Y (t ∧ τi−1)], (3.8)

which can be used to define the same integral process.
If t 7→ X(t, ω) has also locally bounded variation for almost every ω then

the measure theory can be used on (3.6) to extend the definition of the integral
to a class of predictable processes, including all continuous adapted processes.
On the other hand, we can use (3.8) to extend the definition of the integral
to a class of predictable processes, including all continuous adapted processes
with locally bounded variation. In either case, with this pathwise analysis,
we are unable to see how two continuous processes of unbounded variation
can be integrated, which is the case of a Wiener process as integrand and as
integrator. In contrast with what follows, the fact that we use adapted processes
is irrelevant in pathwise analysis. The reader may want to consult the classic
reference McKean [119] for a comprehensive treatment. Also remark that recent
development (e.g., see Dudley and Norvaisa [36], Lyons and Qian [113], Lyons
et al. [114]) allows to view the stochastic integral as a pathwise Young integral
with process of infinite variation (by means of the p-variation norm and without
using martingales), referred to as processes with rough paths.

3.2.1 Relative to Wiener Processes

Let (w(t) : t ≥ 0) be a real-valued standard Wiener process in a given filtered
space (Ω,F , P,Ft : t ≥ 0), i.e., w(t) and w2(t) − t are continuous martingales
relative to the filtration (Ft : t ≥ 0), with w(0) = 0. Denote by E the vector
space of all processes of the form f(t, ω) = fi−1(ω) if ti−1 < t ≤ ti with
some i = 1, . . . , n, where 0 = t0 < t1 < · · · < tn are real numbers and fi−1

is a F(ti−1) measurable bounded random variable for any i, and f(t, ω) = 0
otherwise. Elements in E are called elementary predictable processes. it is clear
what the integral should be for any integrand in E , namely

∫
f(s)dw(s) =

n∑

i=1

fi−1[w(ti) − w(ti−1)], (3.9)

and

∫

(0,t]

f(s)dw(s) =

n∑

i=1

fi−1[w(t ∧ ti) − w(t ∧ ti−1)], ∀t ≥ 0,

∫

(a,b]

f(s)dw(s) =

∫

(0,b]

f(s)dw(s) −
∫

(0,a]

f(s)dw(s), ∀b > a ≥ 0.
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Note that
∫

(a,b]

f(s)dw(s) =

∫
f(s)✶(a,b](s)dw(s),

for every b > a ≥ 0. This definition (3.9) is independent of the particular
representation used and because fi−1 is a F(ti−1) measurable we obtain

E
{∣∣

∫
f(s)dw(s)

∣∣2
}

=

n∑

i=1

E{|fi−1|2(ti − ti−1)} = E{
∫

|f(s)|2ds},

(3.10)

for every f in E . Moreover the processes

∫

(0,t]

f(s)dw(s) and
∣∣∣
∫

(0,t]

f(s)dw(s)
∣∣∣
2

−
∫ t

0

|f(s)|2ds, (3.11)

for every ∀t ≥ 0, are continuous martingales, and

E
{[ ∫

f(s)dw(s)
] [ ∫

g(s)dw(s)
]}

= E
{∫

f(s) g(s)ds
}
, (3.12)

for any two stochastic processes f and g in E . Denote by Ē the L2-closure of
E , i.e., the Hilbert space of all processes f for which there exists a sequence
(f1, f2, . . .) of processes in E such that

lim
n→∞

E
{∫

|fn(s) − f(s)|2ds
}

= 0.

Based on the martingale inequality

E
{

sup
0≤t≤T

∣∣
∫

(0,t]

f(s)dw(s)
∣∣2} ≤ 4E

{∫ T

0

|f(s)|2ds
}
, (3.13)

for every T ≥ 0, and the isometry identity (3.10), this linear operation can
be extended to the closure Ē , preserving linearity and the properties (3.10),
(3.11), (3.12). This is called Itô integral or generally stochastic integral. Besides
a density argument, the estimate (3.13) is used to show that the stochastic
integral on (0, t] is a continuous process as a function of t ≥ 0, for any f in Ē .

If τ and θ are stopping times with θ ≤ τ ≤ T (with T a constant) then the
process

✶]]θ,τ ]] : (ω, t) 7→ ✶θ(ω)<t≤τ(ω)

is elementary predictable process, indeed, for any partition 0 = t0 < t1 < · · · <
tn, with tn ≥ T we have

✶]]θ,τ ]] =
n∑

i=1

✶[θ≤ti−1]r[τ≤ti] ✶]ti−1,ti],
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so that

∫
✶]]θ,τ ]](s)dw(s) =

n∑

i=1

✶[θ≤ti−1] ✶[τ≤ti] [w(ti) − w(ti−1] =

=
∑

0≤i<j≤n
✶[θ=ti] ✶[τ=tj ] [w(τ) − w(θ)] = w(τ) − w(θ),

Even more general, we have the equality

∫

(θ,τ ]

c f(s)dw(s) = c

∫

(θ,τ ]

f(s)dw(s), (3.14)

for every bounded random variable c which is Fθ-measurable and any f in Ē .
A way of proving (3.14) is to approximate the stopping times by finite-valued
stopping times, which also show that in (3.9) we may replace the deterministic
times ti by stopping times τi, i.e.,

∫

(0,t]

f(s)dw(s) =

n∑

i=1

fi−1[w(t ∧ τi) − w(t ∧ τi−1)], (3.15)

for every t ≥ 0 and any processes of the form f(t, ω) = fi−1(ω) if τi−1 < t ≤ τi
with some i = 1, . . . , n, where 0 = τ0 < τ1 < · · · < τn ≤ T, with T a real
number, and fi are F(τi) measurable bounded random variable for any i, and
f(t, ω) = 0 otherwise.

Now, we may extend this stochastic integral by localizing the integrand,
i.e., denote by Ēloc the space of all processes f for which there is a sequence
(τ1 ≤ τ2 ≤ · · · ) of stopping times such that P (τn < ∞) converges to zero and
the processes fk(t, ω) = f(t, ω) for t ≤ τk (with fk(t, ω) = 0 otherwise) belong
to Ē . Since, almost surely we have

∫

(0,t]

fk(s)dw(s) =

∫

(0,t]

fn(s) dw(s), ∀t ≤ τk, k ≤ n,

and both processes are continuous, we can define

∫

(0,t]

f(s)dw(s) = lim
n

∫

(0,t]

fn(s) dw(s), ∀t ≥ 0,

in a unique way and independent of the localizing sequence (τ1 ≤ τ2 ≤ · · · ) used.
For processes in Ēloc the equalities (3.10) and (3.12) are no longer meaningful,
but the processes (3.11) become continuous local-martingales. A very useful
estimate, similar to the martingale inequality (3.13) but adapted to the local
case is the following inequality

P
{

sup
0≤t≤T

∣∣
∫

(0,t]

f(s)dw(s)
∣∣ ≥ ε

}
≤ δ

ε2
+ P

{∫ T

0

|f(s)|2ds ≥ δ
}
, (3.16)
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for any positive numbers T, ε and δ. Note that the martingale estimate (3.13)
could be obtained either from Doob’s maximal inequality

E
{

sup
0≤t≤T

|M(t)|2
}
≤ 4E

{
|M(T )|2

}
,

which is applied to the sub-martingale

t 7→M(t) =
∣∣∣
∫

(0,t]

f(s)dw(s)
∣∣∣,

and the isometric equality (3.12), or from Davis-Burkhölder-Gundy inequality
after identifying the optional quadratic variation by means of the second mar-
tingale assertion in (3.11). Similarly, instead of the martingale estimate (3.16),
which is usually refer to as Lenglart’s inequality, we could apply Doob’s maximal
inequality

εP
{

sup
0≤t≤T

|M(t)| ≥ ε
}
≤ E

{
|M(T )|✶{sup0≤t≤T |M(t)|≥ε}

}
≤ E

{
|M(T )|

}
,

the stopping times

τr = inf
{
t ∈ (0, T ] :

∫ t

0

|f(s)|2ds ≥ r/2
}
, r > 0,

which satisfy P{τr < T} → 0 and

∫ t

0

|fn(s)|2ds
)
≤ r, ∀t ≤ τr,

for any n sufficiently large (after using the triangular inequality for the L2-
norm), to deduce

P
{

sup
0≤t≤T

∣∣
∫

(0,t]

fn(s)dw(s) −
∫

(0,t]

f(s)dw(s)
∣∣ ≥ ε

}
≤

≤ P{τr < T} +
1

ε2
E
{
r ∧

∫ T

0

|fn(s) − f(s)|2ds
}
.

Hence, by letting firstly n→ ∞ and secondly r → ∞, the stochastic integral is
defined for processes in Ēloc, such that the two processes in (3.11) are continuous
local-martingales.

It is important to remark that the stochastic integral is initially defined in a
L2 space, where an element is an equivalence class relative to the product mea-
sure P ×dℓ, with dℓ the Lebesgue measure on the semi-line [0,∞). For the sake
of simplicity, we write Ω× [0,∞) or [0,∞)×Ω indistinctly as long as no confu-
sion may arrive, i.e., processes are written f(t, ω) or f(ω, t). Next, by means of
martingale properties we can select a good version to make the processes (3.11)
continuous (local) martingales. By a simple argument of monotone classes, we
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deduce that Ē contains the Hilbert space L2(Ω× [0,∞),P, P ×dℓ). On the other
hand, it is also clear that any stochastic process in Ēloc is measurable relative
to the σ-algebra P̄, generated by P and all P × dℓ-null subsets of Ω × [0,∞).
As mentioned above, all concepts (in particular the stochastic integral) are up
to or except to an evanescent set. However, the stochastic integral is defined up
to a P × dℓ-null subset of Ω × [0,∞), and then a good version is chosen. Thus,
the next question is what processes are in Ē or Ēloc besides those that are pre-
dictable, i.e., what can be said about completion σ-algebra P̄ of the predictable
σ-algebra P.

Adapted, Predictable and Other Properties

Recall that in a filtered probability space (Ω,F, P ), elementary predictable pro-
cesses are denoted by E , i.e., E is the vector space of all processes of the form
f(t, ω) = fi−1(ω) if ti−1 < t ≤ ti with some i = 1, . . . , n, where 0 = t0 < t1 <
· · · < tn are real numbers and fi−1 is a F(ti−1) measurable bounded random
variable for any i, and f(t, ω) = 0 otherwise.

Also Ē denotes the L2-closure of E , i.e., the Hilbert space of all processes f
for which there exists a sequence (f1, f2, . . .) of processes in E such that

lim
n→∞

E
{∫

|fn(s) − f(s)|2ds
}

= 0,

while Ēloc denotes its localization, i.e., the space of all processes f for which
there is a sequence (τ1 ≤ τ2 ≤ · · · ) of stopping times such that P (τn < ∞)
converges to zero and the processes fk(t, ω) = f(t, ω) for t ≤ τk (with fk(t, ω) =
0 otherwise) belong to Ē .

Proposition 3.2. Any adapted square integrable process f(t, ω) is in Ē.

Proof. This follows Doob [33] arguments.

Step 1 First assume f is bounded and vanishes for t outside of a bounded
interval. Then partition the real line R into intervals (kε, (k + 1)ε] with k =
0,±1,±2, . . . , ε > 0, and define fε,s(t, ω) = f(αε(t−s)+s, ω), where αε(r) = kε
for any r in the subinterval (kε, (k+ 1)ε], where f has been extended for t ≤ 0.
The restriction to [0,∞) of the process fε,s belongs to E , for any ε > 0 and s
in R. The claim is that there exist a sequence (ε1 > ε2 > · · · ) and some s such
that

lim
n→∞

E
{∫

|fεn,s(t, ω) − f(t, ω)|2dt
}

= 0.

Indeed, the continuity of the translation in R with respect to the Lebesgue
measure and the fact that αε(r) − r → 0 as ε→ 0 show that

lim
ε→0

∫
|f(αε(t) + s, ω) − f(t+ s, ω)|2ds = 0, ∀t, ω.
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Since all processes considered are bounded and vanish outside of a fixed finite
interval, we have

lim
ε→0

∫
E
{∫ ∣∣f(αε(t) + s, ω) − f(t+ s, ω)

∣∣2ds
}

dt = 0.

Fubini’s Theorem allows us to exchange the integration order of the variables s
and t, proving the claim.
Step 2 For the general case, define fn(t, ω) = f(t, ω) if 0 ≤ t ≤ n and |f(t, ω)| ≤
n, and fn(t, ω) = 0 otherwise. Applying the previous approximation to fn the
proof is completed. Sometimes, it may be convenient to redo this argument on
the compact time-interval [0, T ] instead of the semi-line [0,∞).

Proposition 3.3. Any measurable adapted process f(t, ω) is measurable with
respect to the (P × dt)-completion P̄ of the predictable σ-algebra P. Moreover,
if f(t, ω) is locally square integrable, i.e.,

P{
∫ t

0

|f(s, ω)|2ds <∞} = 1, ∀t ≥ 0 (3.17)

then f(t, ω) belongs to Ēloc.
Proof. It is clear that the first assertion follows from the previous Proposi-
tion 3.2. To establish the second assertion, first assume that f(t, ω) is also
progressively measurable i.e., the restriction of (t, ω) 7→ f(t, ω) to [0, T ] × Ω is
measurable with respect to B([0, T ]) × F , for every T > 0. In this case, the
expression

τn = inf{t ≥ 0 :

∫ t

0

|f(t, ω)|2ds ≥ n}

define a localizing sequence of stopping times for the process f, which proves
the claim.

However, when f is only a measurable adapted process, τn may not be a
stopping time. In this case, we can always approximate f by truncation, i.e,
fn(t, ω) = f(t, ω) if |f(t, ω)| ≤ n and fn(t, ω) = 0 otherwise, so that

lim
n
P{

∫ T

0

|fn(t, ω) − f(t, ω)|2ds ≥ δ} = 0, ∀T, δ ≥ 0.

Since fn belongs to Ē , for every n ≥ 1, the estimate (3.16) proves also that Ēloc
contains all measurable adapted processes satisfying (3.17).

Now, going back to the stochastic integral relative the a Wiener process, if f
is a cad-lag adapted process then t 7→ f(t−) and f are progressively measurable
then ∫

(0,t]

f(s)dw(s) =

∫

(0,t]

f(s−)dw(s), ∀t > 0.

and condition (3.17) is satisfied. Moreover, regarding a process regarded as an
equivalent class with respect to the product measure dt× P on [0,∞) × Ω,
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Proposition 3.4. If the equivalence class of a process f contains an element
in Ēloc then the stochastic integral is defined. Moreover, the stochastic integral
can be written with respect to any predictable representative of its equivalence
class, e.g., adapted stochastically left continuous process is suitable predictable
representative of its equivalent class.

Proof. It is clear that in the case of a cad-lag adapted process f , t 7→ f(t−), for
any t > 0, is a suitable predictable representative of its equivalent class.

Since the stochastic integral is defined as an equivalent class of processes,
only the situation when f is an adapted stochastically left continuous process
needs some details. Indeed, if 0 = τn0 ≤ τn1 < · · · < τnk < · · · is a sequence of
stopping times such that P{supk τ

n
k <∞} → 0 and P{supk(τnk −τnk−1 > δ} → 0,

for any δ > 0, as n→ ∞, then define the sequence of simple predictable processes
fn,m(t, ω) = f(τnk , ω) when |f(τnk , ω)| ≤ m and τnk < t ≤ τnk+1, k = 0, 1, 2, . . . ,
and fn,m(t, ω) = 0 otherwise. A typical case is when τnk = k2−n.

Thus, it is clear that

lim
n
P{|fn,m(t, ω) − fm(t, ω)| ≥ δ} = 0, ∀t, δ,m > 0,

where fm(t, ω) = f(t, ω) if |f(t, ω)| ≤ m and fm(t, ω) = 0 otherwise. Since
|fm,n| is bounded by m, the limit

lim
n
P
{∫ T

0

|fn,m(t, ω) − fm(t, ω)|2dt ≥ δ
}

= 0, ∀T, δ,m > 0,

follows. Hence, by means of (3.16)

lim
n
P
{

sup
0≤t≤T

∣∣
∫

]0,t]

[fn,m(t) − fm(t)]dw(t)
∣∣ ≥ ε

}
= 0,

for every T, ε,m > 0. Thus, for each t,m > 0, the expression

∫

]0,t]

fn,m(s)dw(s) =
∞∑

k=0

fm(τnk , ω) [w(t ∧ τnk+1, ω) − w(t ∧ τnk , ω)],

for every t > 0, is an approximation of the stochastic integral provided f satisfies
(3.17). Recall that fm(t, ω) = f(t, ω) if |f(t, ω)| ≤ m, so that fm converges to
f almost surely in L2.

It can be proved, see Dellacherie and Meyer [32, Theorem VIII.1.23, pp.
346-346] that for any f in Ēloc we have

if f(s, ω) = 0, ∀(s, ω) ∈]a, b] × F, F ∈ F

then

∫

(a,b]

f(s)dw(s) = 0 a.s. on F. (3.18)

This expresses the fact that even if the construction of the stochastic integral is
not pathwise, it retains some local character in Ω.

[Preliminary] Menaldi December 12, 2017



152 Chapter 3. Stochastic Calculus I

From the definition it follows that if f is a cad-lag adapted process with
locally bounded variation then

∫

(0,t]

f(s)dw(s) =

∫

(0,t]

f(s−)dw(s) = f(t)w(t) −
∫

(0,t]

w(s)df(s),

where the last integral is in the Riemann-Stieltjes or Lebesgue-Stieltjes sense.
However, the Wiener process w has unbounded local variation. Let ̟ = (0 =
t0 < t1 < · · · < tn = t) be a partition of [0, t], with mesh |̟| = maxi(ti − ti−1)
and consider the Riemann sums

S̟ =

n∑

i=1

w(t∗i )[w(ti) − w(ti−1)], with ti−1 ≤ t∗i ≤ ti,

which can be rewritten as

S̟ =
w2(t)

2
− 1

2

n∑

i=1

[w(ti) − w(ti−1)]2 +
n∑

i=1

[w(t∗i ) − w(ti−1)]2 +

+
n∑

i=1

[w(ti) − w(t∗i )][w(t∗i ) − w(ti−1)].

Since

E
{ n∑

i=1

[w(ti) − w(ti−1)]2
}

=

n∑

i=1

[ti − ti−1] = t,

E
{[ n∑

i=1

[w(t∗i ) − w(ti−1)]2 −
n∑

i=1

(t∗i − ti−1)
]2}

=

= E
{ n∑

i=1

[w(t∗i ) − w(ti−1)]4
}
−

n∑

i=1

(t∗i − ti−1)2 ≤ 2t|̟|,

and

E
{[ n∑

i=1

[w(ti) − w(t∗i )][w(t∗i ) − w(ti−1)]
]2}

=

=

n∑

i=1

(ti − t∗i )(t
∗
i − ti−1) ≤ t|̟|,

we deduce that

lim
‖̟‖→0

[
S̟ −

n∑

i=1

(t∗i − ti−1)
]

=
w2(t)

2
− t

2
,

in the L2-sense. In the Itô integral, t∗i = ti−1 so that
∫

(0,t]

w(s)dw(s) =
w2(t)

2
− t

2
, ∀t ≥ 0.
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However, any choice t∗i = (1− r)ti−1 + rti, with 0 ≤ r ≤ 1, could be possible. In
particular Fisk-Stratonovich integral, where r = 1/2, t∗i = (ti−1 + ti)/2, yields a
symmetric calculus, very useful in some physical and mechanical models. How-
ever, Itô integral, i.e., the choice r = 1, t∗i = ti−1, is more oriented to control
models, where the adapted (or predictable) character (i.e., non-interaction with
the future) is an essential property. Moreover, the martingale property is pre-
served.

Working by coordinates, this stochastic integral can be extended to a Rd-
valued Wiener process and n× d matrix-valued predictable processes.

3.2.2 Relative to Poisson Measures

Let {p(t) : t ≥ 0} be a real-valued compound Poisson process with parameters
(c, ν), where c > 0 and γ is a distribution in Rd∗ = Rd r {0}, in a given filtered
space (Ω,F , P,Ft : t ≥ 0). This means that

p(t, ω) =

{
0 if t < θ1(ω),

Zn(ω) if θn(ω) ≤ t < θn+1(ω),

where θn = τ1 + τ2 + · · · + τn, {τn : n = 1, 2, . . .} is a sequence of indepen-
dent exponentially distributed (with parameter c) random variables, Zn =
ζ1 + ζ2 + · · · + ζn, {ζn : n = 1, 2, . . . } is a sequence of independent identi-
cally distributed (with distribution law γ) random variables, independent of the
sequence τ1, τ2 . . . . In particular, if γ is δ1, the Dirac measure at z = 1 then
Zn = n, the case of a standard Poisson process. Note that p(t)−ct and p2(t)−ct
are martingales relative to the filtration (Ft : t ≥ 0), with p(0) = 0. Since the
function t 7→ p(t, ω) is cad-lag, piecewise constant and with bounded variation
for any ω, the integral with respect to p(t) is covered by the measure theory,
i.e., a pathwise integration. For a bounded left-continuous process f(t, ω) we
can define

∫

(0,t]

f(s, ω)dp(s, ω) =

∞∑

n=1

f(θn(ω), ω)✶θn(ω)≤t =

=

N(t,ω)∑

n=1

f(θn(ω), ω), (3.19)

for each ω, where N(t, ω) = n if θn(ω) ≤ t < θn+1(ω), i.e., a standard Poisson
process. Because t 7→ E{p(t)} is continuous, we have

∫

(0,t]

f(s, ω)dE{p(s, ·)} =

∫

(0,t]

f(s+, ω)dE{p(s, ·)},
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but
∫

(0,t]

p(s−, ω)dp(s, ω) =

∞∑

n=1

p(θn(ω)−, ω)✶θn(ω)≤t =

=

N(t,ω)∑

k=1

Zk−1(ω) ζk(ω),

and

∫

(0,t]

p(s, ω)dp(s, ω) =

∞∑

n=1

p(θn(ω), ω)✶θn(ω)≤t =

N(t,ω)∑

k=1

Zk(ω) ζk(ω).

Thus, for a given compound Poisson process p(t) as above and a left-continuous
(or only predictable) process f(t) (without begin locally integrable), we can use
(3.19) to define the stochastic integral, which is just a pathwise sum (integral)
in this case, with is a jump process similar to the compound Poisson process.
Similar arguments apply to the centered compound Poisson process t 7→

(
p(t)−

E{p(t)}
)
, and the integral is the difference of random pathwise integral and a

deterministic integral.
Next step is to consider a standard Poisson measure {p(·, t) : t ≥ 0} with

Lévy (intensity) measure π(·) in a given filtered space (Ω,F , P,Ft : t ≥ 0), i.e.,
(a) π(·) is a Radon measure on Rm∗ = Rmr{0}, i.e., π(K) <∞ for any compact
subset K of Rm∗ ; (b) {p(B, t) : t ≥ 0} is a Poisson process with parameter π(B),
for any Borel subset B in Rd∗ with π(B) < ∞ (here p(B, t) = 0 if π(B) =
0); (c) the Poisson processes p(·, B1), p(·, B2), . . . , p(·, Bn) are independent if
B1, B2, . . . , Bn are disjoint Borel set in Rm∗ with π(Bi) <∞, i = 1, . . . , n.

Given a Radon measure π in Rm∗ (which integrates the function |z|2 ∧ 1, so
that it can be called a Lévy measure), we write π =

∑
k πk, where πk(B) =

π(B ∩ Rk), Rm∗ =
⋃
k Rk, π(Rk) < ∞ and Rk ∩ Rℓ = ∅ if k 6= ℓ. To each

πk we may associate a compound Poisson process and a point process by the
expressions

Yk(t) =

∞∑

n=1

ζn,k✶t≥θn,k
and δYk(t) = Yk(t) − Yk(t−) = ζn,k✶t=θn,k

,

for t > 0, where θn,k = τ1,k + τ2,k + · · · + τn,k, {τn,k : n = 1, 2, . . . } is a
sequence of independent exponentially distributed (with parameter π(Rk) = ck)
random variables, and {ζn,k : n = 1, 2, . . . } is another sequence of independent
identically distributed (with distribution law πk/ck) random variables, and the
two sequences {τn,h : n, k ≥ 1}, {ζn,k : n, k ≥ 1} are independent. The jump
process δY =

∑
k δYk is indeed a Poisson point process with characteristic

measure π, i.e., with Zn,k = ζ1,k + ζ2,k + · · · + ζn,k,

p(B×]s, t]) =
∞∑

n,k=1

✶s<θn,k≤t ✶Zn,k∈B , ∀t > s ≥ 0, B ∈ B(Rm∗ ),
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is a standard Poisson random measure with intensity measure

E{p(B×]s, t])} = (t− s)π(B).

In general, we cannot arrange the jumps in the increasing order like the case of
a compound Poisson process, because there may occur accumulation of small
jumps. With any of the notation p(B, t) or p(B×]0, t]) or p(B, ]0, t]) the integer-
valued random measure p (see Section 2.7) is also called a standard Poisson ran-
dom measure. From the process viewpoint, p(B, ]s, t]) is defined as the (finite)
number of jumps (of a cad-lag process Y ) belonging to B within the interval
]s, t]. Note that the predictable compensator of the optional random measure
p(·, t) is the deterministic process πt. Thus, for a predictable process of the form
F (z, t, ω) = f(t, ω)✶z∈B the expression

∫

Rk×]0,t]

F (z, s, ω) p(dz, ds) =

∞∑

n=1

f(θn,k(ω), ω)✶0<θn,k(ω)≤t ✶Zn,k(ω)∈B

is indeed a finite stochastic pathwise sum (as previously). However, the passage
to the limit in k is far more delicate and requires more details.

With the above introduction, let ν be an integer-valued random measure,
which is a Poisson measure as in Definition 2.28, with Lévy measure

Π(B×]s, t]) = E{ν(B×]s, t])}, Π(Rm∗ × {t}) = 0, for every t ≥ 0,

and local-martingale measure ν̃ = ν − Π, in a given filtered space (Ω,F , P,Ft :
t ≥ 0). In particular, a standard Poisson measure {p(·, t) : t ≥ 0} with Lévy
(characteristic or intensity) measure π(·), and Π(dz, dt) = π(dz)×dt. Note that
we reserve the notation p for a standard Poisson measure. Denote by E the
vector space of all processes of the form f(z, t, ω) = fi−1,j(ω) if ti−1 < t ≤ ti
and z belongs to Kj with some i = 1, . . . , n, and j = 1, . . . ,m, where 0 =
t0 < t1 < · · · < tn are real numbers, Kj are disjoint sets with compact closure
in Rm∗ and fi−1,j is a F(ti−1) measurable bounded random variable for any
i, and f(t, ω) = 0 otherwise. Elements in E are called elementary predictable
processes. It is clear what the integral should be for any integrand in E , namely

∫

Rm
∗ ×(0,∞)

f(z, s) ν̃(dz, ds) =

n∑

i=1

m∑

j=1

fi−1,j ν̃(Kj×]ti−1, ti]),

∫

Rm
∗ ×(a,b]

f(z, s) ν̃(dz, ds) =

∫
f(z, s)✶(a,b](s) ν̃(dz, ds),

(3.20)

for every b > a ≥ 0. Note that

∫

Rm
∗ ×(0,∞)

f(z, s)✶(0,t](s) ν̃(dz, ds) =

=

n∑

i=1

m∑

j=1

fi−1,j ν̃(Kj×]t ∧ ti−1, t ∧ ti])
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and
∫
f(z, s)✶(a,b](s) ν̃(dz, ds) =

=

∫

Rm
∗ ×(0,b]

f(z, s) ν̃(dz, ds) −
∫

Rm
∗ ×(0,a]

f(z, s) ν̃(ds, dz),

for every t > 0.
If ν is a standard (or homogeneous) Poisson measure, i.e., E{ν(B×(]s, t])} =

(t − s)π(B), then p(K, t) = ν(K×]0, t]) is a Poisson process with parameter
π(K), then for any left-continuous adapted process of the form f(z, t, ω) =
fj(t, ω) when z belongs to Kj , we can calculate the stochastic integral, namely,

∫

Rm
∗ ×(0,t]

m∑

j=1

fi(s)✶Kj
(z) ν(dz, ds) =

m∑

j=1

p(t,Kj ,ω)∑

k=1

fj(θk(ω,Kj), ω),

for every t ≥ 0, where θk(ω,Kj) is the time of the k jumps of the Poisson
process t 7→ p(Kj , t). In the case of a compound-Poisson process as above, we
may forget about the K dependency, and make the previous pathwise definition,
both concepts agree. In general, from ν = ν̃+Π, with Π = π×dt, we can define
the stochastic integral relative to an integer-valued random measure ν.

This definition is independent of the particular representation used. Since
for any K1 disjoint of K2 and any t ≥ 0 the random variables p(K1, t) and
p(K2, t) are orthogonal, and because fi−1 is a F(ti−1) measurable we obtain

E
{∣∣

∫

Rm
∗ ×(0,t]

f(z, s) ν̃(dz, ds)
∣∣2} = E{

∫

Rm
∗ ×(0,t]

|f(z, s)|2 Π(dz, ds)}, (3.21)

for every f in E . Moreover the processes

∫

Rm
∗ ×(0,t]

f(z, s) ν̃(dz, ds) and

∣∣∣
∫

Rd
∗×(0,t]

f(z, s) ν̃(dz, ds)
∣∣∣
2

−
∫

Rm
∗ ×(0,t]

|f(z, s)|2 Π(dz, ds), (3.22)

with t ≥ 0 are cad-lag (quasi-left continuous) martingales, and

E
{[ ∫

Rm
∗ ×(0,∞)

f(z, s) ν̃(dz, ds)
][ ∫

Rm
∗ ×(0,∞)

g(z, s) ν̃(dz, ds)
]}

=

= E
{∫

Rm
∗ ×(0,∞)

f(z, s) g(z, s) Π(dz, ds)
}
, (3.23)

for any two stochastic processes f and g in E . Denote by ĒΠ the L2-closure of
E , i.e., the Hilbert space of all processes f for which there exists a sequence
(f1, f2, . . .) of processes in E such that

lim
n→∞

E
{∫

(0,∞)×Rm
∗

|fn(z, s) − f(z, s)|2 Π(dz, ds)
}

= 0.
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As in the previous section, the martingale inequality

E
{

sup
0≤t≤T

∣∣
∫

Rd
∗×(0,t]

f(z, s) ν̃(dz, ds)
∣∣2} ≤

≤ 4E
{∫

Rd
∗×(0,T ]

|f(z, s)|2 Π(dz, ds)
}
, (3.24)

holds for every T ≥ 0, and also the isometric identity (3.21). Hence, this
linear operation can be extended to the closure ĒΠ, preserving linearity and the
properties (3.21), (3.22), (3.23). This is called Itô integral or generally stochastic
integral, with respect to a Poisson measure. Next, by localizing the integrand,
this definition is extended to ĒΠ,loc, the space of all processes f for which there is
a sequence (τ1 ≤ τ2 ≤ · · · ) of stopping times such that P (τn <∞) converges to
zero and the processes fk(t, ω) = f(t, ω) for t ≤ τk (with fk(t, ω) = 0 otherwise)
belong to ĒΠ. As in the case of the Wiener process, a key role is played by the
following inequality

P
{

sup
0≤t≤T

∣∣
∫

Rm
∗ ×(0,t]

f(z, s) ν̃(dz, ds)
∣∣ ≥ ε

}
≤ δ

ε2
+

+ P
{∫

Rm
∗ ×(0,T ]

|f(z, s)|2 Π(dz, ds) ≥ δ
}
, (3.25)

for any positive numbers T, ε and δ.
The class of processes that we can integrate are those in ĒΠ or more general

in ĒΠ,loc, but the stochastic integral is initially defined in a L2 space, where
an element is an equivalence class relative to the product measure P × Π, with
Π = Π(dz, ds) the Lévy measure on Rm∗ ×[0,∞). Again, for the sake of simplicity,
we write Ω×Rm∗ ×[0,∞) or Rm∗ ×]0,∞)×Ω or ]0,∞)×Rm∗ ×Ω indistinctly as long
as no confusion may arrive, i.e., processes are written f(ω, t, z) or f(z, ω, t) or
f(t, z, ω). Next, by means of martingale properties we can select a good version
to make the process (3.22) a cad-lag (local) martingale. By a simple argument
of monotone classes, we deduce that (as in the case of the Wiener process) the
closure ĒΠ (of all elementary processes in Rd∗× [0,∞)) contains the Hilbert space
L2(Rd∗ × [0,∞) × Ω,B × P,Π × P ), Π = Π(dz, ds).

On the other hand, it is also clear that any stochastic process in ĒΠ,loc
is measurable relative to the σ-algebra B × P, generated by B × P and all
Π × P -null subsets of Rd∗ × [0,∞) × Ω. Again, we note that the value at time
0 is irrelevant. It is also clear that the arguments in Subsection 3.2.1 relative
to Adapted, Predictable and Other Properties can be repeated any stochastic
integral, not necessarily relative to a Wiener process.

Comments on Lévy and Point Processes

If the Lévy measure is absolutely continuous with respect to the Lebesgue mea-
sure dℓ on [0,∞), i.e., Π(dz, ds) = π(dz) × dℓ, then (as in the case of the

[Preliminary] Menaldi December 12, 2017



158 Chapter 3. Stochastic Calculus I

Wiener process) any measurable adapted process f(z, s, ω) is equivalent to a
B × P-measurable process, so it belongs to ĒΠ,loc whenever

P
{∫

Rd
∗×(0,T ]

|f(z, s)|2 Π(dz, ds) <∞
}

= 1, ∀T > 0 (3.26)

is satisfied. This holds for standard Poisson measures.
Because the Lévy measure does not charge on Rd∗ × {t}, for every t ≥ 0, see

Theorem 2.30, the stochastic integral is a cad-lag quasi-left continuous and the
argument developed for Wiener processes applies proving that any progressively
measurable process satisfying (3.26) belongs to ĒΠ,loc.

The above stochastic integral can be constructed also for an extended Poisson
measure (see Jacod and Shirayaev [84, Definition 1.20, Chapter 2, p. 70]), where
Π(Rd∗×{t}) may not vanish for some t > 0. Actually, the stochastic integral can
be constructed for any orthogonal measures, see Definition 3.1 in Chapter 3.

On the other hand, a (homogeneous) Poisson measure p(dz, ds) with Lévy
measure π always satisfies p(Rm∗ , {0}) = 0 and can be approximated by another
Poisson measure pε(dz, ds) with Lévy measure πε = ✶Kε

π, where the support
Kε = {0 < ε ≤ |z| ≤ 1/ε} of πε is a compact on Rm∗ , i.e., all jumps smaller
than ε or larger than 1/ε have been eliminated. The integer measure pε is
associated with a compound Poisson process and has a finite (random) number
of jumps, i.e., for any t > 0 there is an integer N = N(t, ω), points zi = zi(t, ω)
in Kε for i = 1, . . . , N and positive reals θi = θi(t, ω), i = 1, . . . , N such that

p(B, ]a, b], ω) =
∑N
n=1 ✶zi∈B✶a<θi≤b, for every B ∈ B(Rm∗ ), 0 ≤ a < b ≤ t. In

this case, the forward stochastic integral can be written as

∫

Rm
∗ ×(0,t]

f(z, s) p̃(dz, ds) =

N∑

i=1

f(zi, θi−) −
∫ t

0

ds

∫

K

f(z, s)π(dz), (3.27)

for any adapted cad-lag process f(z, s), continuous in z.
Alternatively, we may regard the integer measure ν as a point process, i.e.,

ν(B, ]a, b]) =

∞∑

i=1

✶{pi∈B}✶{a<τi≤b}

to consider the pathwise integrals

∫

Rm×]0,t]

f(z, s) ν(dz, ds) =

∞∑

i=1

f(pi, τi)✶0<τi≤t

and

∫

Rm×]0,t]

f(z, s) Π(dz, ds),

defined for integrable (with respect to ν and Π) processes f . Later, a martingale
argument allows the extension to square-integrable with respect Π, e.g., see
Ikeda and Watanabe [75, Chapter 2]. Both approaches are equivalent and the
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expression (3.27) remains valid for f integrable with respect to ν and square-
integrable with respect to Π.

It should be clear that the starting point is an integer-valued random mea-
sure ν (see Definition 2.25) which yields a compensated local-martingale mea-
sure ν̃ = ν − νp, where νp is the (unique dual) predictable projection of ν (see
Theorem 2.26 and Definition 3.2.24 of the previous chapter). Recall that a
local-martingale M is called purely discontinuous if M(0) = 0 and the product
M N is a local martingale for any continuous local-martingale N. Stochastic
integrals with respect to a compensated local-martingale measure ν̃ are purely
discontinuous local-martingales. Also, given an optional locally integrable pro-
cess X with X(0) = 0 there exists a unique predictable projection pX, i.e. a
predictable locally integrable process such that E{pX✶τ<∞} = E{X✶τ<∞} for
any predictable stopping time τ, such that t 7→ ✶τ≤t is a predictable process. In
particular (e.g., Jacod and Shirayaev [84, Theorem 2.28, Corallary 2.31, Chapter
1, p. 23–24]) for a local-martingale M we have pM(t) = M(t−) and δM(t) = 0
for every t > 0.

• Remark 3.5. Let p(dz, ds) be a Poisson measure with Lévy measure given by
Π(dz, ds) = π(dz, s)ds in Rm∗ × [0,∞) with Π(Rm∗ , {0}) = 0 and let γ be a Borel
function from Rm∗ × [0,∞) into Rd square-integrable with respect to Π on any
set of the form Rm∗ × (0, T ], for any constant T > 0, and cad-lag in [0,∞). The
Poisson measure p can be viewed as a Poisson point process in Rm∗ , i.e.,

p(B, ]a, b]) =

∞∑

i=1

✶{pi∈B}✶{a<τi≤b},

where the masses {pi} are in Rm∗ and {τi} are stopping times (non necessary
non-decreasing in i). Then we may define the stochastic integral

I(t, p̃) =

∫

Rm
∗ ×(0,t]

γ(z, s) p̃(dz, ds),

which has a jump only at t = τi if γ(pi, τi−) 6= 0 for some i. If z 7→ γ(z, ·) is
integrable with respect to p and Π (e.g., bounded, continuous in z and vanishing
near z = 0) then

I(t, γ, p̃) =
∞∑

i=1

γ(pi, τi−)✶{0<τi≤t} −
∫ t

0

ds

∫

Rm
∗

γ(z, s)π(dz, s)ds,

which is a pathwise integral. The integer measure pγ associate with the mar-
tingale t 7→ I(t, γ, p̃) satisfies

pγ(B, ]a, b]) =

∞∑

i=1

✶{γ(pi,τi−)∈B}✶{a<τi≤b},

which is a Poisson measure with

πγ(B, s) = π
(
{(z, s) ∈ Rm∗ × [0,∞) : γ(z, s) ∈ B}, s

)

and Πγ(dz, ds) = πγ(dz, s)ds as its Lévy measure on Rd0 × [0,∞).
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Recall that δ denotes the jumps operator δX(t) = X(t)−X(t−), the jumps
of a local-martingale have the following structure,

Theorem 3.6 (jump structure). Let X be an optional locally integrable pro-
cess with X(0) = 0. Then there exists a (unique purely discontinuous) local-
martingale M such that δM and X are indistinguishable (i.e., except on a set
of measure zero we have δM(t) = X(t), for every t ≥ 0) if and only if the

predictable projection pX = 0 and the increasing process t 7→
√∑

s≤t |X(s)|2 is

(locally) integrable. Moreover, M is a (locally) square integrable martingale if
and only if t 7→ ∑

s≤t |X(s)|2 is (locally) integrable and M is a local-martingale
with (locally) bounded variation paths if and only if t 7→ ∑

s≤t |X(s)| is (locally)
integrable.

Proof. One part of the argument goes as follows. (1) First, if X is locally square
integrable predictable process with pX = 0 then a local martingale M satisfying
δM(t) = X(t), for every t ≥ 0, can be constructed, essentially the case of the
stochastic integral. (2) Second, if X is locally integrable predictable process with
pX = 0 then A(t) =

∑
s≤tX(s) and A − Ap have locally integrable bounded

variation paths, where Ap is its compensator. Since δ(Ap) = p(δA) = pX = 0, we
can set M = A−Ap to obtain δM = X, which is a local-martingale with locally
integral bounded variation paths. Finally, the general case is a superposition of
the above two arguments. Indeed, let X be an optional process with pX = 0 and√
A locally integrable, where A =

∑
s≤t |X(s)|2. Set Y = X✶|X|>1, X

′′ = Y −pY

and X ′ = X−X ′′, so pX ′ = pX ′′ = 0. The increasing process B(t) =
∑
s≤t |Y (s)|

satisfies |δB| ≤
√

|δA| so that B is locally integrable. Because p(δB) = δ(Bp)
we have

∑
s≤t |pY (s)| ≤ Bp(t), so that α(t) =

∑
s≤t |X ′′(s)| is also locally

integrable. In view of the previous argument (2), there is a local martingale
M ′′ with locally integrable bounded paths such that δM ′′ = X ′′. Next, because
|X ′|2 ≤ 2|X|2 + 2|X ′′|2 the process β(t) =

∑
s≤t |X ′(s)|2 takes finite values.

Since pX = 0 we have pY = −p(X✶|X|≤1), |pY | ≤ 1 and |X ′| ≤ 2, which yields
δβ(t) ≤ 4, proving that the increasing process β is locally integrable. Again,
in view of the previous argument (1), there is a local martingale M ′ such that
δM ′ = X ′. The proof is ended by setting M = M ′ +M ′′.

Since any local-martingale M can (uniquely) expressed as the sum M =
M c + Md, where M c is a continuous local-martingale and Md is a purely dis-
continuous local-martingale (with Md(0) = 0), the purely discontinuous part
Md is uniquely determined by the jumps δM. So adding the property purely
discontinuous to the above martingale, we have the uniqueness. Full details can
be found in Jacod and Shirayaev [84, Theorem 4.56, Chapter 1, p. 56–57].

Let ν be a quasi-left continuous integer-valued random measure (in particu-
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lar, a Poisson measure), i.e,

ν(B×]a, b], ω) =

∞∑

n=1

✶an(ω)∈B✶τn(ω)∈]a,b],

E{ν(Rm∗ × {t})} = E
{ ∞∑

n=1

✶τn(ω)=t

}
= 0,

for every B in B(Rm∗ ), b > a ≥ 0 and t ≥ 0, where {an : n ≥ 1} is a se-
quence of points in Rm∗ such that an is F(n)-measurable, and {τn : n ≥ 1}
is a (unordered) sequence of predictable stopping times. Then, the stochas-
tic integral with respect to ν is (uniquely) defined for any predictable process
f(z, s, ω) such that F : t 7→

√∑
n |f(an, τn)|2 is locally integrable, in partic-

ular if E{|f(an, τn)|2} < ∞ for every n ≥ 1. If ν is not quasi-left continuous
(e.g., an extended Poisson measure) then the predictable projection of F may
not vanish, i.e., pF (t) =

∑
n f(an, t)✶τn=t, when every the (pathwise) series

converges absolutely. Thus f is integrable with respect to ν if the (optional)
process F (t)−pF (t) is locally integrable, see Jacod and Shirayaev [84, Definition
1.27, Chapter 2, p. 72].

For future reference, we conclude this subsection with the following summery
of key properties and relations.

Let us go back to the case of a Poisson measure ν with Lévy measure
(properly saying, intensity or characteristic measure) Π, i.e., Π(B×]s, t]) =
E{ν(B×]s, t])}, Π(B × {t}) = 0, for every t > s > 0 and Borel subset B of
Rm∗ , and Π integrates the function z 7→ |z|2 ∧ |z| on Rm∗ ×]0, T ], for every T > 0.

Next, we construct a local-martingale measure ν̃ = ν−Π, and its associated
purely jumps (which is quasi-continuous from the left, i.e., with no deterministic
jumps) local-martingale process L = (Li) with values in Rm,

Li(t) =

∫

Rm
∗ ×]0,t]

ziν̃(dz, ds), ∀ t ≥ 0, i = 1, . . . ,m,

with predictable compensator

Lpi (t) =

∫

Rm
∗ ×]0,t]

ziΠ(dz, ds), ∀ t ≥ 0, i = 1, . . . ,m.

Usually, L is referred to as the canonical compensated Poisson (jump) process
associated with the Poisson measure ν, and reciprocally, ν is referred to as the
canonical Poisson measure associated with the compensated Poisson (jump)
process L.

For a predictable process f(x, s, ω) satisfying the integrability condition
(3.26) we can define the stochastic integral (a real-valued local-martingale)

I(t) =

∫

Rm
∗ ×]0,t]

f(z, s)ν̃(dz, ds) ∀ t ≥ 0,

[Preliminary] Menaldi December 12, 2017



162 Chapter 3. Stochastic Calculus I

and I(0) = 0, as a cad-lag process (and quasi-continuous from the left). If the
integrand takes the form f(z, s, ω) =

∑m
i=1 gi(t, ω)zi then we can write

I(t) =

m∑

i=1

∫

]0,t]

gi(s)dLi(s) t ≥ 0.

Always, we have the following properties on their jumps:

I(t) − I(t−) = δI(t) = f(δL(t), t)✶{|δL(t)|>0}, ∀ t > 0.

The stochastic integral process I(t) is a locally integrable bounded variation
process if and only if

P
{∫

Rd
∗×(0,t]

|f(z, s)|Π(dz, ds) <∞
}

= 1, ∀ t > 0

or equivalently

P
{ ∑

0<s≤t
|δI(s)| <∞

}
= 1, ∀ t > 0,

and in this case we have

I(t) =
∑

0<s≤t
f(δL(s), s)✶{|δL(s)|>0} −

∫ t

0

f(z, s)Π(dz, ds), ∀ t > 0,

where the series converges absolutely almost surely. It is clear that the separa-
tion of the stochastic integral into a series of jumps and Lebesgue-type integral
is not possible in general. However, the definition allows a suitable limit I(t) =
limε→0 Iε(t), where Iε(t) is the stochastic integral (of finite jumps almost surely)
associated with the Lévy measure Πε(B×]s, t]) = Π

(
(B∪{|z| ≥ ε}×]s, t]

)
, which

can be written as previously (actually the series of jumps becomes a stochastic
finite sum). In any case, the series of the jumps squared is absolutely convergent
almost surely, and the process

t 7→
∑

0<s≤t
[I(s) − I(s−)]2 −

∫ t

0

|f(z, s)|2Π(dz, ds)

is a local-martingale.
Note that the integer measure νI on R∗ induced by the jumps of I(t), namely,

νI(K×]0, t]) =
∑

0<s≤t
✶{f(δL(s),s)∈K}, ∀t > 0, K ⊂ R∗, compact,

with predictable compensator

νpI (K×]0, t]) =

∫ t

0

Π
(
{z ∈ Rm∗ : f(z, s) ∈ K}, ds

)
,
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yield the martingale measure ν̃I = ν − νp.
If we take an integrand f(z, t, ω) with values in Rn then the stochastic in-

tegral I will take values in Rn and its associated integer measure νI would be
defined in Rn∗ .

Certainly, if we begin with a Lévy measure Π that integrates only |z|2∧1 then
we need to split the jumps into two classes (small and large) to express the above
properties. Also, recall that if we begin with Lévy processes ℓi(t), i = 1, . . . ,m
we may construct the integer measure ν (which is actually a standard Poisson
measure) associated with the jumps of the Rm-valued process ℓ = (ℓ1, . . . , ℓm).
The Lévy measure associated with (standard) Poisson measure ν or the Lévy
m-dimensional process ℓ is the same (of the form π(dz)ds), and the canonical
compensated Poisson process L has exactly the same jumps as ℓ, i.e., δℓ(t) =
δL(t), for every t > 0. Note that the Lévy measure π(dz) in Rm∗ is not necessarily
the product measure of the individual Lévy measures πi(dzi) in R∗ of each ℓi,
even if the ℓi are independent, one needs also to assume no simultaneous jumps.
Actually, if ℓi are independent then π(dz) =

∑
i πi(dzi), after identifying the

measure πi(dzi) in R1
∗ with the measure πi(dzi) × 0i in Rm∗ where 0i is the

zero-measure in (dz1, . . . , dzi−1, dzi+1, . . . , dzm).

3.2.3 Extension to Semi-martingales

Remark that the initial intension is to integrate a process f(s) or f(z, t) which
is adapted (predictable) with respect to a Wiener process w(s) or centered
Poisson measure ν̃(dz, ds). This is to say that in most of the cases, the filtration
{F(t) : t ≥ 0} is generated by the Wiener process or the Poisson measure, which
is completed for convenience. However, what is mainly used in the construction
of the stochastic integral are the following conditions:

(a) the filtration F = {F(t) : t ≥ 0} is complete and right-continuous,

(b) the integrand f is predictable with respect to filtration F,

(c) the integrator w (or ν̃) is a (semi-)martingale with respect to filtration F.

Thus we are interested in choosing the filtration F as large as possible, but
preserving the (semi-)martingale character. e.g., the non-anticipative filtration
A, where A(t) is defined as the σ-algebra of all sets in F which are independent of
either w(t1)−w(t0), . . . , w(tn)−w(tn−1) or ν̃(Kj×]ti−1, ti]), for any j = 1, . . . ,m
and t ≤ t0 < t1 < · · · < tn. Note that A(t) contains all null sets in F and
the cad-lag property of w (or ν̃) shows that A(t) =

⋂
s>tA(s). Because w(t)

(or ν̃(K×]s, t])) is independent of any future increment, the σ-algebra F(t)
generated by {w(s) : s ≤ t} (or by {ν̃(K×]0, s]) : s ≤ t}) is included in A(t).
Moreover, since

E{w(t) | A(s)} = E{w(t) − w(s) | A(s)} + E{w(s) | A(s)} =

= E{w(t) − w(s)} + w(s) = w(s),

the martingale character is preserved.
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Actually, the cancelation is produced when the integrator is independent and
has increment of zero-mean, even least, when the increments of the integrator
are orthogonal to the integrand, e.g., E{f(s)[w(t) − w(s)]} = E{f(s)}E{w(t) −
w(s)} = 0 for t > s. Thus, define the class E∗ of processes of the form f(z, t, ω) =
fi−1,j(ω) if ti−1 < t ≤ ti and z belongs to Kj with some i = 1, . . . , n, and
j = 1, . . . ,m, where 0 = t0 < t1 < · · · < tn are real numbers, Kj are disjoint
sets with compact closure in Rm∗ and fi−1,j is a bounded random variable which
is orthogonal to ν̃(Kj×]ti−1, ti]) (in particular F(ti−1)-measurable) for any i,
and f(t, ω) = 0 otherwise, and an analogous definition for the Wiener process
case. The stochastic integral is then initially defined on the class E∗ and the
extension procedure can be carried out successfully, we refer to Section 3.1 of
the the previous chapter on Random Orthogonal Measures. In any case, remark
that if f is a deterministic function then to define the stochastic integral we
need the local L2-integrability in time, e.g., an expression of the form s 7→ sα

or (z, s) 7→ (z ∧ 1)sα is integrable as long as α > −1/2.

Space of Semi-martingales

Let us now consider the space Sp(Ω,F , P,Ft, t ≥ 0), 1 ≤ p ≤ ∞ of p-integrable
semi-martingale on [0,∞] is defined as the cad-lag processes X with a decom-
position of the form X = M + A+ − A− where M is a local martingale and
A+, A− are adapted monotone increasing processes with A+(0) = A−(0) = 0,
both relative to (Ft : t ≥ 0) and such that the quantity

‖X‖Sp = inf
X=M+A+−A−

‖M,A+, A−‖Sp ,

where

‖M,A+, A−‖Sp = E
{[√

[M ](∞) + |A+(∞)| + |A−(∞)|
]p}1/p

,

is finite. This is a semi-norm and by means a of equivalence classes we define
the non-separable Banach space Sp(Ω,F , P,Ft, t ≥ 0) or Sp(Ω,F, P ) with F =
{Ft, t ≥ 0}.

Going back to the above definition of the semi-norm ‖X‖Sp , if the square
bracket process

√
[M ](∞, ω) is replaced with maximal process M∗(∞, ω) =

supt≥0 |M(t, ω)| then we obtain an equivalent semi-norm.

This procedure can be localized, i.e., define Sploc(Ω,F , P,Ft, t ≥ 0) and
the space of equivalence classes Sploc(Ω,F , P,Ft, t ≥ 0) as the spaces of semi-
martingales X such that there is a sequence of stopping times τk → ∞ as k → ∞
satisfying Xk(·) = X(· ∧ τk) belongs to Sp(Ω,F , P,Ft, t ≥ 0), for any k ≥ 1.
Thus S1

loc(Ω,F , P,Ft, t ≥ 0) is the space of special semi-martingales.

A further step is to consider S0(Ω,F , P,Ft, t ≥ 0) the space of all semi-
martingales (including non-special) X on the closed real semi-line [0,∞], i.e.,
X = M + A+ − A− where M is a local-martingale in [0,∞] and A+, A−

are adapted monotone increasing processes with A+(0) = A−(0) = 0 and
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A+(∞), A−(∞) are almost surely finite. With the topology induced by the
semi-distance

[|X|]S0 = inf
X=M+A+−A−

[|M,A+, A−|]S0 ,

[|M,A+, A−|]S0 = E{1 ∧
(√

[M ](∞) + |A+(∞)| +

+ |A−(∞)|
)
} + sup

τ
E{|M(τ) −M(τ−)|},

for any stopping time τ. Thus S0(Ω,F , P,Ft, t ≥ 0), after passing to equiva-
lence classes, is a non-separable complete vector space. A closed non-separable
subspace is the set Spc(Ω,F , P,Ft, t ≥ 0) of all continuous p-integrable semi-
martingales, which admits a localized space denoted by Spc,loc(Ω,F , P,Ft, t ≥ 0).
The reader may take a look at Protter [149, Section V.2, pp. 138–193] for others
similar spaces of semi-martingales.

A companion (dual) space is the set Pp(Ω,F , P,Ft, t ≥ 0) of p-integrable
predictable processes X, i.e., besides being predictable we have

||X||Pp =
{∫ ∞

0

dt

∫

Ω

|X(t, ω)|p P (dω)
}1/p

,

which yields the non-separable Banach space Pp(Ω,F , P,Ft, t ≥ 0). Its localized
spaces Pploc(Ω,F , P,Ft, t ≥ 0) and Pploc(Ω,F , P,Ft, t ≥ 0), p ≥ 1, are defined
by the conditions (1) X is a predictable process and (2) such that there is an
increasing sequence of stopping times τk → ∞ as k → ∞ such that the processes
Xk = ✶]0,τk]X belong to Pp(Ω,F , P,Ft, t ≥ 0), for any k ≥ 1.

Note that the uncountable set of bounded and adapted left-continuous (hav-
ing right-hand limit) processes is a dense subspace of Pp(Ω,F , P,Ft, t ≥ 0).
However, the set Ppc(Ω,F , P,Ft, t ≥ 0) of bounded and continuous (adapted,
p-integrable) processes is neither dense nor closed. We refer to Dellacherie and
Meyer [32, Sections VII.3.96–105, pp. 308–324].

Back to the Stochastic Integral

It is clear by now that semi-martingales are desirable integrators while pre-
dictable processes are desirable integrands. Semi-martingales contain two type
of (localized) processes, (1) a bounded variation process which is integrated fol-
lowing the classic measure theory and (2) a local-martingale which is the main
study of stochastic integrals. To focus in the stochastic integral itself, the natu-
ral integrators (without localizing) are the so-called quasi-martingales, defined
as an adapted cad-lag process X satisfying Var(X) = sup{Var(X,π) : π} <∞,
where π = {t0, t1, . . . , tn}, 0 = t0 < ti < ti+1,

Var(X,π) =

n∑

i=1

∣∣E{X(ti) −X(ti−1) | F(ti−1)}
∣∣ + |X(tn)|. (3.28)

It can be proved, e.g. see Rogers and Williams [153, Section VI.41, pp. 396–
398]), that any quasi-martingale admits a representation X = Y − Z, where Y
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and Z are two nonnegative super-martingales such that Var(X) = Var(Y ) +
Var(Z) and that if X = Ȳ − Z̄ are two other nonnegative super-martingales
then Ȳ − Y = Z̄ − Z is also a nonnegative super-martingale.

Given a filtered probability space (Ω, P,F ,Ft : t ≥ 0), let M, O and P be
the measurable, optional and predictable σ-algebras on [0,∞)×Ω. Now, a subset
N of [0,∞) × Ω is called evanescent if P{ω ∈ Ω : (t, ω) ∈ N} = 0 for every
t ≥ 0. We suppose that M, O and P have been augmented with all evanescent
sets.

For a given integrable monotone increasing (bounded variation) cad-lag pro-
cess A, with its associated continuous and jump parts A(t) = Ac(t) + [A(t+) −
A(t−)], we may define a (signed) measure µ by the expression

µ(X) = E
{∫

[0,∞)

X(t)dA(t)
}

=

= E
{∫ ∞

0

X(t)dAc(t) +
∑

t≥0

X(t) [A(t+) − A(t−)]
}

for any nonnegative M measurable process X. This measure vanishes on evanes-
cent sets. Conversely, it can be proved (Doléans’ Theorem, e.g., Rogers and
Williams [153, Section VI.20, pp. 249–351]) that any bounded measure µ on
M, which vanishes on evanescent sets, can be represented (or disintegrated) as
above for some process A as above. Furthermore, if µ satisfies

µ(X) = µ(oX) or µ(X) = µ(pX)

then A is optional or predictable.
Denote by D0 the vector space either (1) of all adapted cad-lag and bounded

processes or (2) of all processes X of the form

X =
n∑

i=0

Xi ✶[τi,τi+1[, 0 = τ0 ≤ τ1 ≤ · · · ≤ τn ≤ τn+1 = ∞,

for any n and stopping times τi. Now, if A[·] is a linear and positive functional
on D0 satisfying the condition

P{lim
n

sup
0≤s≤t

|Xn(s)|} = 0, ∀t ≥ 0 implies lim
n
A(Xn) = 0, (3.29)

then there should exist two integrable monotone increasing cad-lag processes
Ao, Ap, with Ao(−0) = 0, Ao optional and purely jumps, and with Ap pre-
dictable, such that

A[X] = E
{∫

(0,∞]

X(t−) dAp(t) +
∑

t≥0

X(t) [Ao(t) −Ao(t−)]
}
,

for any X in D0, and the above representation is unique up to an evanescent
set. Indeed, by means of condition (3.29) the functional A[·] can be extended
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to a bounded positive measure which vanishes on evanescent sets and the result
follows from the previous representation.

Similarly, an adapted process A, which is right-continuous in probability
(not necessarily cad-lag), is a suitable integrator if and only if the set of random
variables

∫
XdA =

n∑

i=0

Xi [A(τi+1) −A(τi)]

remains bounded (e.g., in probability or in L2) for every elementary predictable
process X satisfying

X =

n∑

i=0

Xi ✶[τi,τi+1[, |X| ≤ 1.

For instance, the reader is referred to the book Bichteler [11, Chapter 2, pp.
43–86] for a carefully analysis on this direction.

Then, a desirable property for a linear positive function M [·] defined on D0

to be called stochastic integral is the following condition

if P{lim
n

sup
0≤s≤t

|Xn(s)| ≥ δ} = 0, ∀ t ≥ 0, δ > 0

then P{lim
n

sup
0≤t≤T

|M [Xn ✶]0,t]]| ≥ ε} = 0, (3.30)

for every T ≥ 0 and ε > 0, or even a weaker version of it.
For a given adapted cad-lag integrable real-valued process {Z(t) : t ≥ 0} we

can define a functional Z[·] on D0 as follows:

Z[

n∑

i=0

Xi ✶[τi,τi+1[] =

n∑

i=0

Xi

(
Z(τi+1) − Z(τi)

)
, (3.31)

which can be initially defined on predictable rectangles F×]a, b], F in F(a) by
means of

λZ(]a, b] × F ) = E{✶F [Z(b) − Z(a)]},
λZ({0} × F0) = 0, ∀F0 ∈ F(0), (3.32)

and then extended by additivity. If the process Z is only locally integrable, we
may suppress the last term with τn+1 = +∞ or consider only (deterministic)
times ti instead of stopping times τi. If the functional Z[·] or equivalent the
additive set function λZ is nonnegative, then λZ is called a content.

It is clear that λZ ≥ 0 if Z is monotone increasing. However, λZ = 0 if Z
is a martingale and λZ ≥ 0 if Z is a sub-martingale. If {M(t) : t ≥ 0} is a
square integrable then {M2(t) : t ≥ 0} is a sub-martingale and hence λM2 ≥ 0,
moreover

λM2(]a, b] × F ) = E{✶F [M2(b) −M2(a)]} =

= E{✶F [M(b) −M(a)]2}, ∀ b > a ≥ 0, F ∈ F(a). (3.33)
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The extension of λM2 to a measure on (R+×Ω,P) is called Doléans measure.
It can be proved (e.g. Chung and R.J. Williams [25, Theorem 2.16, Chapter 2,
pp. 52–53]) that if the process Z is a positive sub-martingale then the content
λZ can be uniquely extended to a σ-finite measure on P. In particular this
applies to λM2 .

Extension Argument

Denote by E the vector space of all processes of the form X(t, ω) = Xi−1(ω)
if ti−1 < t ≤ ti with i = 1, . . . , n, where 0 = t0 < t1 < · · · < tn are real
numbers and Xi−1 is a F(ti−1) measurable bounded random variable for any
i, and X(t, ω) = 0 otherwise. Elements in E are called elementary predictable
processes. Given a square integrable {M(t) : t ≥ 0} we denote by µM its
Doléans measure and define the stochastic integral as follows:

∫
X(s)dM(s) =

n∑

i=1

Xi−1[M(ti) −M(ti−1)],

∫

(0,t]

X(s)dM(s) =

n∑

i=1

Xi−1[M(t ∧ ti) −M(t ∧ ti−1)],

∫

(a,b]

X(s)dM(s) =

∫

(0,b]

f(s)dM(s) −
∫

(0,a]

X(s)dM(s),

(3.34)

for every t ≥ 0 and b > a ≥ 0. Note that
∫

(a,b]

X(s)dM(s) =

∫
X(s)✶(a,b](s)dM(s),

for every b > a ≥ 0. This definition (3.34) (defined up to an evanescent set) is
independent of the particular representation used and the fact that Xi−1 is a
F(ti−1) measurable implies

E
{∣∣

∫
X(s)dM(s)

∣∣2} =

n∑

i=1

E{|Xi−1|2[M2(ti) −M2(ti−1)]} =

=

∫

R+×Ω

|X|2dµM , (3.35)

for every X in E , and

E
{[ ∫

X(s)dM(s)
] [ ∫

Y (s)dM(s)
]}

=

∫

R+×Ω

XY dµM , (3.36)

for any two stochastic processes X and Y in E .
Moreover the process Z(t) = (X ⋄M)(t),

(X ⋄M)(t) =

∫

(0,t]

X(s)dM(s), ∀t ≥ 0, (3.37)
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is (cad-lag) square integrable martingale, which is continuous if M is so. Since,

µZ(]a, b] × F ) = ✶F [Z(b) − Z(a)]2) =

= E
{
✶F

[ ∫

(a,b]

X(s)dM(s)
]2}

=

∫

(a,b]×F
|X|2dµM ,

we deduce that

µX⋄M (B) =

∫

B

|X|2dµM , ∀B ∈ P. (3.38)

If X belongs to E , F is a F(a)-measurable set and τ a stopping time which
takes only finitely many values then ✶FX and ✶]0,τ ]X belong to E and

∫

]a,b]

✶FX(s)dM(s) = ✶F

∫

]a,b]

X(s)dM(s),

[X ⋄M ](τ) =

∫
✶]0,τ ](s)X(s)dM(s).

(3.39)

It is also clear from the expression (3.34) that the jumps of (X⋄M) are produced
only by jumps of the integrator M, i.e.,

(X ⋄M)(t) − (X ⋄M)(t−) = X(t)[M(t) −M(t−)], ∀ t > 0, (3.40)

except for a set of measure zero.
Denote by ĒM the L2-closure of E , i.e., the Hilbert space of all processes X

for which there exists a sequence (X1, X2, . . .) of processes in E such that

lim
n→∞

∫

R+×Ω

|Xn −X|2dµM = 0.

Based on the isometry identity (3.35), and the maximal martingale inequality,
for every T ≥ 0,

E
{

sup
0≤t≤T

∣∣
∫

(0,t]

X(s)dM(s)
∣∣2} ≤ 4E

{∣∣
∫ T

0

X(s)dM(s)
∣∣2}, (3.41)

this linear operation (called stochastic integral) can be extended to the closure
ĒM , preserving linearity and the properties (3.35), . . . , (3.40). Moreover, (3.39)
holds for any bounded F(a)-measurable function f replacing ✶F (even if a is a
bounded stopping times) and any bounded stopping time τ.

In general, it is proved in Doob [33, Section IX.5, pp. 436–451] that any
martingale M with orthogonal increments (i.e., a square-integrable martingale),
the Hilbert space ĒM contains all adapted process X and square-integrable
respect to the product measure P (dω) times the Lebesgue-Stieltjes measure
dE{|M(t) −M(0)|2}.

It is convenient to localize the above processes, i.e., we say that a measurable
process X belongs to ĒM,loc if and only if there exists a sequence of stopping
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times {τk : k ≥ 1} such that τk → ∞ almost sure and ✶]0,t∧τk]X belongs to
ĒMk

, for every t > 0, where Mk = {M(s∧ τk) : s ≥ 0}. Therefore, the stochastic
integral X ⋄M is defined as the almost sure limit of the sequence {Xk ⋄Mk :
k ≥ 1}, with Xk = ✶]0,τk]X. This should be validated by a suitable condition
to make this definition independent of the choice of a localizing sequence, see
Chung and Williams [25, Theorem 2.16, Chapter 2, pp. 23–48].

The use of the quadratic variation process is simple when dealing with a
continuous square integrable martingale. The general case is rather technical.
Anyway, a key point is the following: If M = {M(t) : t ≥ 0} is a locally square
integrable martingale then there exists an increasing predictable process 〈M〉
such that M2 − 〈M〉 is a local-martingale, which is continuous if and only if M
is quasi-left continuous (e.g., Jacod and Shiryaev [84, Theorem 4.2, Chapter 1,
pp. 38–39]). It is clear that we have, first for X in E and then for every X in
EM , the relation

〈X ⋄M〉(t) =

∫ t

0

|X(s)|2d〈M〉(s), ∀t ≥ 0, (3.42)

so that the process

[ ∫

(0,t]

X(s)dM(s)
]2

−
∫ t

0

|X(s)|2d〈M〉(s), ∀t ≥ 0, (3.43)

is a (cad-lag) local-martingale.
Lenglart’s domination property (see inequality (2.10) in Chapter 3 or more

details in Jacod and Shiryaev [84, Section 1.3c, pp. 35–36]) yields the useful
estimate

P
{

sup
0≤t≤T

∣∣
∫

(0,t]

X(s)dM(s)
∣∣ ≥ ε

}
≤ δ

ε2
+

+ P
{∫ T

0

|X(s)|2d〈M〉(s) ≥ δ
}
, (3.44)

for any positive numbers T, ε and δ. By means of this estimate, all properties
(3.35), . . . , (3.40), (3.43), (3.44) hold, except that the process (3.37) is now a
(cad-lag, continuous whenever M is such) local square martingale. Moreover,
the continuity property (3.30) is now verified.

Since any continuous local-martingale is a local square integral martingale,
the stochastic integral is well defined. To go one step further and define the
stochastic integral for any (cad-lag, not necessarily continuous and not necessar-
ily local square integrable) local-martingale M, we need to define the (optional)
quadratic variation, see (2.7) in Chapter 3 or for more detail see for instance
Dellacherie and Meyer [32, Chapters V–VIII] or Liptser and Shiryayev [111],

[M ](t) = 〈M c〉(t) +AM (t), AM (t) =
∑

s≤t
[M(s) −M(s−)]2, (3.45)
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for any t ≥ 0, where M c is the continuous part of the (local) martingale M and
the second term in the right-hand side AM is an optional monotone increasing
process null at time zero, not necessarily locally integrable, but such that

√
AM

is locally integrable. It can be proved (see Rogers and Williams [153, Theorem
37.8, Section VI.7, pp. 389–391]) that the process [M ] given by (3.45) is the
unique optional monotone increasing process null at time zero such that M2 −
[M ] is a local-martingale and [M ](t) − [M ](t−) = [M(t) −M(t−)]2, for every
t > 0.

On the other hand, a local-martingale admits a unique decomposition M =
M0 + M c + Md, where M0 is a F(0)-measurable random variable, M c is a
continuous local-martingale (null at t = 0) and Md is a purely discontinuous
local-martingale, i.e., Md(0) = 0 and for every continuous local-martingale N
the product MdN is a local-martingale. Let us show that for a given ε > 0, any
local-martingale M admits a (non unique) decomposition M = M0 +M

′

ε +M
′′

ε ,
where M0 is a F(0)-measurable random variable, M

′

ε is a (cad-lag, only the small
jumps) local-martingale (null at t = 0) satisfying |M ′

ε(t)−M
′

ε(t−)| ≤ ε for every
t > 0, andM

′′

ε is a (cad-lag, only the large jumps) local martingale (null at t = 0)
which have local bounded variation. Indeed, set δM(t) = M(t) −M(t−) and
because M is a cad-lag process we can define A(t) =

∑
s≤t δM(s)✶|δM(s)|>ε/2,

whose variation process var(A, t) =
∑
s≤t |δM(s)|✶|δM(s)|>ε/2 is finite for almost

every path. Setting τk = inf{t > 0 : var(A, t) > k or |M(t)| > k} we obtain
var(A, τk) ≤ k + |δM(τk)|, i.e, var(A, τk) ≤ 2k + |M(τk)| so that the sequence
of stopping times {τk : k ≥ 1} is a reducing sequence for var(A, ·), proving that
the process var(A, ·) is local integrable. Therefore A admits a dual predictable
compensator Ap, see Definition 2.24 in Chapter 3. It is clear that M

′′

ε = A−Ap
is a local-martingale with local bounded variation. A simple calculation show
that M

′

ε = M − A + Ap satisfies |δM(t)| ≤ ε, for every t > 0. Moreover, since
M

′′

ε is also a purely discontinuous martingale, i.e., M
′′

ε is orthogonal to any
continuous local-martingale N , namely M

′′

ε N is a local martingale, see Jacod
and Shiryaev [84, Section 1.4b, pp. 40–43]).

Thus, an essential fact needed to complete the definition of stochastic integral
is that either a local-martingale or semi-martingale M admits a (non-unique)
decomposition M = M0 + M1 + M2, where M0 is a F(0)-measurable random
variable, M1 is a cad-lag process with locally bounded variation paths and M2

is a local square integrable martingale, both null at time zero. Therefore, inte-
gration with respect to M1 is pathwise (as in the classic measure theory) and
integration with respect to M2 is as above, via the martingale argument.

The only continuous local-martingale which has bounded variation paths
is the constant process. However, there are (e.g., the Poisson process, after
subtracting its compensator) (cad-lag, non-continuous) local martingale with
bounded variation paths. Therefore there are two possible interpretations when
taking those processes as integrators. This is resolved by using the predictable
version representing the equivalence class of the integrand process. For instance,
if X is a cad-lag process and M is a local-martingale with bounded variation
paths, e.g., for a sequence {ai, τi : i ≥ 1} of stopping times τ1 ≤ τ2 ≤ · · · , with
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τi → ∞, and F(τi)-measurable random variables ai we have

A(t) =

∞∑

i=1

ai✶τi≤t, ∀ t ≥ 0, M = A−Ap,

where Ap is the dual compensator of A. The expression

∫

]0,t]

X(t)dA(t) =

∞∑

i=1

X(τi)ai✶τi≤t, ∀ t ≥ 0,

is pathwise interpreted (and well defined) in the Riemann-Stieltjes sense if and
only if the process X is left-continuous at each jump time, i.e., X(τi) = X(τi−),
for every i ≥ 1. On the other hand, the measure induced by A or by A− : t 7→
A(t−) (its left-continuous version) is the same sum of Dirac measures so that
the expression

∫

]0,t]

X(t)dA−(t) =

∞∑

i=1

X(τi)ai✶τi≤t, ∀ t ≥ 0,

is pathwise interpreted (and well defined) in the Riemann-Stieltjes sense if and
only if the processX is right-continuous at each jump time, i.e., X(τi) = X(τi+),
for every i ≥ 1. In the Lebesgue-Stieltjes sense, it does not matter which version
A or A− is used to derived the measure, proving that a bounded process X is
integrable if it is right (or left) continuous at τi for every i ≥ 0.

The dual compensator Ap of a (cad-lag) process A with locally integrable
bounded variation satisfied, see Definition 2.24 in Chapter 3,

E{
∫

[0,Tk)

X(t, ω)dAp(t, ω) = E{
∫

[0,Tk)

pX(t, ω)dA(t, ω),

for every k ≥ 1 and for any bounded measurable process X, where the pre-
dictable projection pX, is such that for any predictable stopping time τ we have
E{pX✶τ<∞} = E{X✶τ<∞}. The sequence of stopping times {Tk : k ≥ 1} local-
izes A, i.e., the process t 7→ A(t∧Tk) has integrable bounded variation (meaning
in this case E{A(Tk)} < ∞) and Tk → ∞ almost surely. We deduce that the
stochastic integral with respect to an integrator A − Ap is always zero for any
predictable process X. Recall that the stochastic integral is meaningful only for
the predictable member representing a given equivalence class of processes used
as integrand.

Therefore, we conclude that as long as the predictable (in particular any
adapted left-hand continuous) version of the integrand (equivalence class) pro-
cess is used, the pathwise and stochastic integral coincide.

Back to Integer Random Measures

Let ν be an integer-valued (random) measure, see Definition 2.25, and let νp

be a good version of its compensator, see Theorem 2.26. For instance, if ν
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is a extended Poisson measure then νp is a deterministic Radon measure on
Rm∗ × [0,∞) with νp(Rm∗ × {0}) = 0. Denote by νqc the quasi-continuous part
of ν, i.e.,

νqc(B×]a, b]) = ν(B×]a, b]) − νpd(B×]a, b]),

νpd(B×]a, b]) =
∑

a<s≤b
νp({s} ×B),

with νpc = (νqc)
p, where

νpc = νp(B×]a, b]) − νpd(B×]a, b]),

is a good version of the compensator of νqc. The measure νpd contains all non-
predictable discontinuities, which are not handled with the stochastic integral,
they must be treated pathwise, by means of the classic measure theory. For
instance, if ν = νX defined as the number of jumps associated to a (cad-lag)
local-martingale (or semi-martingale) X, see (2.35) then νpd is locally integrable.
The integral with respect to the predictable discontinuous part νd = ν − νqc is
part of the stochastic integral. Thus, using the (cad-lag and quasi-left continu-
ous, purely discontinuous) local-martingale measure ν̃qc = νqc−νpc = ν−νp, we
proceed as in Section 3.2.2 to define the stochastic integral, essentially replac-
ing the Lévy measure m(ds, dz) by (continuous part of) the compensator νpc .
Thus, for a elementary predictable process f of the form f(t, z, ω) = fi−1,j(ω)
if ti−1 < t ≤ ti and z belongs to Kj with i = 1, . . . , n, and j = 1, . . . ,m, where
0 = t0 < t1 < · · · < tn are real numbers, Kj are disjoint compact subsets of
Rm∗ and fi−1,j is a F(ti−1) measurable bounded random variable for any i, and
f(t, ω) = 0 otherwise, we set

∫

Rm
∗ ×(0,∞)

f(z, s) ν̃qc(dz, ds) =

n∑

i=1

m∑

j=1

fi−1,j ν̃qc(Kj×]ti−1, ti]),

and

∫

Rm
∗ ×(a,b]

f(z, s) ν̃qc(dz, ds) =

∫

Rm
∗ ×(0,∞)

f(z, s)✶(a,b](s) ν̃qc(dz, ds),

for every b > a ≥ 0. The L2-closure of all elementary predictable processes E
is denoted by Ēν , i.e., processes f such that there is a sequence (f1, f2, . . .) of
processes in E such that

lim
k→∞

E
{∫

Rm
∗ ×(0,∞)

|fk(z, s) − f(z, s)|2 νpc (dz, ds)
}

= 0.
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Note that we may use (indistinctly), νpc or νqc in the above condition, both are
random measure. Based on the isometry and estimate

E
{∣∣

∫

Rm
∗ ×(0,T ]

f(z, s) ν̃qc(dz, ds)
∣∣2} = E

{∫

Rm
∗ ×(0,T ]

|f(z, s)|2 νpc (dz, ds)
}
,

E
{

sup
0≤t≤T

∣∣
∫

Rm
∗ ×(0,t]

f(z, s) ν̃qc(dz, ds)
∣∣2} ≤

≤ 4E
{∫

Rm
∗ ×(0,T ]

|f(z, s)|2 νpc (dz, ds)
}

,

for every T ≥ 0, the stochastic integral is defined in the Hilbert space Ēν , which
can be also extended to the localized space Ēν,loc. Therefore, the integral with
respect to ν̃ when it is not quasi-left continuous is defined by

∫

Rm
∗ ×]a.b]

f(z, s) ν̃(dz, ds) =

∫

Rm
∗ ×]a,b]

f(z, s) ν̃qc(dz, ds) +

+

∫

Rm
∗ ×]a.b]

f(z, s) νpd(dz, ds), (3.46)

where the second term is a pathwise Lebesgue-Stieltjes integral.
Taking the quasi-left continuous part ν̃qc, the process

f ⋄ ν̃qc : t 7→
∫

Rm
∗ ×(0,t]

f(z, s) ν̃qc(dz, ds),

is a (local) martingale with predictable quadratic variation process

〈f ⋄ ν̃qc〉 =

∫

Rm
∗ ×(0,t]

|f(z, s)|2 νpc (dz, ds),

so that denoting by νqc(f) its associate integer-valued measure with (good pre-
dictable) compensator νpqc(f) and local-martingale measure ν̃qc(f) = νqc(f) −
νpqc(f) we have the substitution formula

∫

Rm
∗ ×(0,t]

g(z, s) ν̃fqc(dz, ds) =

∫

Rm
∗ ×(0,t]

g(z, s) f(z, s) ν̃qc(dz, ds), (3.47)

first for elementary predictable processes g, which is extended by continuity to
any integrable processes f and g.

When the stochastic integral is defined for random measures associated to a
semi-martingale, i.e., the integer-valued measure νM associated with a (cad-lag)
local-martingale (or semi-martingale) M is the same as the one associated with
its jumps part, Md = M −M c, i.e., νM = νMc , a general form of the stochastic
integral takes the form

∫

]a,b]

X(s) dM c(s) +

∫

Rm
∗ ×]a,b]

f(z, s) ν̃qc(dz, ds) +

∫

Rm
∗ ×]a,b]

f(z, s) νpd(dz, ds),
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where the first (stochastic) integral is a continuous local-martingale, the second
(stochastic) integral is a purely discontinuous local-martingale and the last term
makes sense as a Lebesgue-Stieltjes pathwise integral. Note that integral with
respect to νpc or νp is part of the stochastic integral with respect to ν̃qc or µ,
respectively, i.e., if

P{
∫

Rm
∗ ×]a.b]

|f(z, s)| ν(dz, ds) <∞} = 1

then we have
∫

Rm
∗ ×]a.b]

f(z, s) ν(dz, ds) =

=

∫

Rm
∗ ×]a,b]

f(z, s) ν̃(dz, ds) +

∫

Rm
∗ ×]a.b]

f(z, s) νp(dz, ds) =

=

∫

]a,b]×Rm
∗

f(z, s) ν̃qc(dz, ds) +

∫

Rm
∗ ×]a.b]

f(z, s) νpc (dz, ds),

almost surely. Moreover, any integer-valued measure ν has the form

ν(B×]a, b]) =

∞∑

i=1

✶a<τi≤b ✶ζi∈B , ∀ b > a ≥ 0, B ∈ B(Rm∗ ),

for some sequence {τi, ζi : i ≥ 1}, where the stopping times τi cannot be ordered,
i.e., it is not necessarily true that τi ≤ τi+1, and the Rm∗ -valued random variables
ζi are F(τi)-measurable, but ν(Rm∗ × {0}) = 0 and ν(K×]a, b]) < ∞ for any
b > a ≥ 0 and any compact subset K of Rm∗ . Thus, we expect

∫

Rm
∗ ×]a.b]

f(z, s)ν(dz, ds) =

∞∑

i=1

✶a<τi≤b f(ζi, τi),

whenever the above series converges absolutely and f is a continuous process.
To integrate a general predictable process f = f(s, z, ω), we may proceed

as follows: first we separate the integrable jumps (jumps of order 1) from the
square integrable jumps (jumps of order 2), namely, first we define

f1(s) =
∞∑

i=1

✶τi=s f(ζi, τi),

whenever sum is absolutely convergent, i.e.,

∞∑

i=1

✶τi=s |f(ζi, τi)| <∞,

and f1(s) = 0 otherwise. The particular case where f(z, t, ω) = 0 for any z such
that |z| < ε, for some ε = ε(ω) > 0 is the leading example, since the above series
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becomes a finite sum. Recalling that the jump process t 7→ ∑∞
i=1 ✶τi≤t f1(τi) is

a cad-lag process, so it has only a finite number of jumps greater than ε > 0 on
any bounded time interval [0, T ], T > 0, we can set, for any b > a ≥ 0

∫

Rm
∗ ×]a.b]

f(z, s) νp(dz, ds) =

∞∑

i=1

✶a<τi≤b f1(τi),

as a pathwise integral (defined as a finite sum or a convergent series, for each
ω almost surely) with respect to measure νp (all locally integrable jumps), and
we give a L2-sense (it cannot be pathwise!) to

∫

Rm
∗ ×]a.b]

f(z, s) (ν − νp)(dz, ds) =

∞∑

i=1

✶a<τi≤b [f(ζi, τi) − f1(τi)],

whenever the process

t 7→

√√√√
∞∑

i=1

✶τi≤t [f(ζi, τi) − f1(τi)]2

is (locally) integrable. The compensator argument is used to define a measure
νp, which agrees with ν on predictable processes and such that ν̃ = ν − νp is
a local-martingale measure. Briefly, for each ω, we make use of a series with
indices i such that either

∑
i |ζi| ∧ 1 converges or such that the quadratic series∑

i |ζi|2 ∧ 1 converges to define νp. All other indices are ignored.
Here, the martingale theory is used to define the stochastic integral with

respect to ν̃ for any predictable process (class of equivalence) f(z, s) such that
the monotone increasing process

t 7→
[ ∫

Rm
∗ ×]0.t]

|f(z, s)|2 νp(dz, ds)
]1/2

is (locally) integrable. Moreover, we can require only that the following process

t 7→

√√√√
∞∑

i=1

✶τi≤t [f(ζi, τi) − f1(τi)]2

be (locally) integrable.
For a neat and deep study, the reader may consult Chung and Williams [25],

while a comprehensive treatment can be found in Dellacherie and Meyer [32,
Chapters V–VIII], Jacod and Shiryaev [84, Chapters 1 and 2]), Rogers and
Williams [153, Volume 2]). Also, a more direct approach to stochastic integrals
can be found in the book Protter [149], covering even discontinuous martingales.

3.2.4 Vector Valued Integrals

Firstly, recall that any local-martingale M can be written in a unique form as the
sum M0 +M c+Md, where M0 = M(0) is a F-measurable random variable, M c
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is a continuous local-martingale (and therefore locally square integrable) and
Md is a purely discontinuous local martingale, both M c(0) = Md(0) = 0. Also,
any local-martingale M with M(0) = 0 (in particular a purely discontinuous
local-martingale) can be written in a (non unique) form as the sum M ′ + M ′′,
where both M ′ and M ′′ are local-martingale, the jumps of M ′′ are bounded by
a constant a (i.e., |δM ′′| ≤ a so that M ′′ is locally square integrable) and M ′

has locally integrable bounded variation paths. The predictable projection of a
local-martingale M is (M(t−) : t > 0) so that a predictable local-martingale is
actually continuous. Finally, a continuous or predictable local-martingale with
locally bounded variation paths is necessarily a constant.

Secondly, recall the definitions of the predictable and the optional quadratic
variation processes. Given real-valued local square integrable martingale M
the predictable (increasing) quadratic variation process t 7→ 〈M〉(t) obtained
via the Doob-Meyer decomposition Theorem 2.7 applied to t 7→ M2(t) as a lo-
cal sub-martingale of class (D). This is the only increasing predictable locally
integrable process 〈M〉 such that M2 − 〈M〉 is a martingale. However, the pre-
dictable quadratic variation process is generally used for continuous local mar-
tingales. For a real-valued (non necessarily continuous) local (non necessarily
square integrable) martingale M, the optional (increasing) quadratic variation
process t 7→ [M ](t) is defined as 〈M〉(t) +

∑
s≤t |M(s) −M(s−)|2. This is the

only increasing optional process (not necessarily locally integrable) [M ] such
that M2− [M ] is a local-martingale and δ[M ] = (δM)2. The increasing optional
process

√
[M ] is locally integrable, and if [M ] is locally integrable then it is a lo-

cal sub-martingale of class (D) and again via the Doob-Meyer decomposition we
obtain a predictable increasing locally integrable 〈M〉 (called the compensator
of [M ]), which agrees with the predictable quadratic variation process previ-
ously defined for local square integrable martingales. Therefore, the predictable
quadratic variation process 〈M〉 may not be defined for a discontinuous local-
martingale, but the optional quadratic variation [M ] is always defined. The
concept of integer-valued random measures is useful to interpret [M ] as the in-
creasing process associated with the integer-valued measure νM derived from
M. Thus 〈M〉 is the increasing predictable process (not necessarily integrable)
associated with the predictable compensator νpM of νM . If M is quasi-left contin-
uous then 〈M〉 is continuous, and therefore locally integrable. Next, for any two
real-valued local-martingale M and N the predictable and optional quadratic
co-variation processes are defined by the formula 4〈M,N〉 = 〈M+N〉−〈M−N〉
and 4[M,N ] = [M +N ] − [M −N ]. Note that

E
{∫

]a,b]

f(t)d〈M,N〉(t)
}

= E
{∫

]a,b]

f(t)d[M,N ](t)
}
,

for every predictable process such that the above integrals are defined.

An important role is played by the Kunita-Watanabe inequality , namely for
any two real-valued local-martingales M and N and any two (extended) real-
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valued measurable processes α and β we have the inequality

∫ t

0

|α(s)| |β(s)| |d[M,N ](s)| ≤
√∫ t

0

|α(s)|d[M ](s) ×

×
√∫ t

0

|β(s)|d[N ](s), (3.48)

almost surely for every t > 0, where |d[M,N ]| denotes the total variation
of the signed measure d[M,N ]. Certainly, the same estimate is valid for the
predictable quadratic co-variation process 〈M,M〉 instead of optional process
[M,N ]. The argument to prove estimate (3.48) is as follow. Since [M+rN,M+
rN ] = [M ] − 2r[M,N ] + r2[N ] is an increasing process for every r, we deduce
(d[M,N ])2 ≤ d[M ] d[N ]. Next, Cauchy-Schwarz inequality yields (3.48) with
d[M,N ](s) instead of |d[M,N ](s)|. Finally, by means of the Radon-Nikodym
derivative, i.e., replacing α by α = (d[M,N ]/|d[M,N ](s)|)α, we conclude. For
instance, a full proof can be found in Durrett [40, Section 2.5, pp. 59–63] or
Revuz and Yor [151, Proposition 1.15, Chapter, pp. 126–127].

Let M = (M1, . . . ,Md) a d-dimensional continuous local-martingale in a
filtered space (Ω,F , P,F(t) : t ≥ 0), i.e., each component (Mi(t) : t ≥ 0),
i = 1, . . . , d, is a local continuous martingale in (Ω,F , P,F(t) : t ≥ 0). Recall
that the predictable quadratic co-variation 〈M〉 = (〈Mi,Mj〉 : i, j = 1, . . . , d) is
a symmetric nonnegative matrix valued process. The stochastic integral with
respect to M is defined for a d-dimensional progressively measurable process
f = (f1, . . . , fd) if for some increasing sequence of stopping times {τn : n ≥ 1}
with τn → ∞ we have

E
{∫ τn

0

d∑

i,j=1

fi(s)fj(s)d〈Mi,Mj〉(s)
}
<∞. (3.49)

Based on (3.48), it is clear that, if each component fi is locally square integrable
with respect to 〈Mi〉, i.e.,

E
{∫ τn

0

|fi(s)|2d〈Mi〉(s)
}
<∞,

then the above condition (3.49) is satisfied. However, the converse may be false,
e.g., if w = (w1, w2) is a two-dimensional standard Wiener process then set
M1 = w1, M2 = kw1 + (1− k)w2, where k is a (0, 1)-valued predictable process.
Choosing f = (f1, f2) = (− k

1−k ,
1

1−k ), we have
∑
i,j fifjd〈Mi,Mj〉 = dℓ, the

Lebesgue measure, so we certainly have (3.49), but

∫ t

0

|f1(s)|2d〈M1〉(s) =

∫ t

0

∣∣∣ k(s)

1 − k(s)

∣∣∣
2

ds <∞ a.s. ∀t > 0,

may not be satisfied.
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For a n-dimensional continuous local-martingale M = (M1, . . . ,Mn) and an
adapted Rn-valued (measurable) process f = (f1, . . . , fn) we have the following
estimate: for every p > 0 there exists a positive constant C = Cp depending
only on p, such that

E
{

sup
0≤t≤T

[ n∑

i=1

∣∣∣
∫ t

0

fi(s)dMi(s)
∣∣∣
2]p/2}

≤

≤ C E
{[ n∑

i,j=1

∫ T

0

fi(s) fj(s)d〈Mi(s),Mj(s)〉
]p/2}

. (3.50)

for any stopping time T. In particular, for a standard n-dimensional Wiener
process (w(t) : t ≥ 0), we can write

E
{

sup
0≤t≤T

∣∣∣
∫ t

0

f(s)dw(s)
∣∣∣
p}

≤ C E
{[∫ T

0

|f(s)|2ds
]p/2}

. (3.51)

This estimate follows from Burkhölder-Davis-Gundy inequality (as in (2.9) of
Chapter 3), e.g., see Karatzas and Shreve [91, Section 3.3.D, pp. 163–167]. Note
that we make take C1 = 3 and C2 = 4.

Regarding the stochastic integral with respect to a Poisson measure in the
Polish space Rm∗ (or more general in a Blackwell space), we should mention
that the key elements are the compensated local martingale measure ν̃ and the
compensator νp, which is a predictable random measure. Both are constructed
from an integer-valued random measure, which is naturally obtained from a
optional locally integrable jump process or better a (purely discontinuous) local
(sub-)martingale. A posteriori, we may use a predictable real-valued process
γ(z, t) on Rm∗ × (0,∞) such that

P
{∫

]0,t]

ds

∫

Rm
∗

γ2(z, s)π(dz) <∞
}

= 1, ∀t > 0,

and use the stochastic integral to define a local-martingale measure

ν̃γ(B×]a, b]) =

∫

Rm
∗ ×]a,b]

✶B γ(z, s) ν̃(dz, ds),

for every B in B(Rm∗ ) and b > a ≥ 0, with a predictable quadratic variation (or
compensator) given by

νpγ(B×]a, b]) =

∫

Rm
∗ ×]a,b]

✶B γ
2(z, s) νp(dz, ds),

for every B in B(Rm∗ ), b > a ≥ 0, and for the case of the Poisson measure
νp(dz, ds) = π(dz) ds. Thus νpγ has a density δ = γ2 with respect to νp.

The estimate (3.50) is also valid for a Poisson integral, with a small cor-
rection, namely, for any p in (0, 2] there exists a positive constant C = Cp
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(actually Cp = (4 − p)/(2 − p) if 0 < p < 2 and C2 = 4) such that for any
adapted (measurable) process f(ζ, s) (actually, the predictable version is used)
we have

E
{

sup
0≤t≤T

∣∣∣
∫

Rm
∗ ×]0,t]

f(ζ, s)ν̃(dζ, ds)
∣∣∣
p}

≤

≤ C E
{[∫ T

0

ds

∫

Rm
∗

|f(ζ, s)|2π(dζ)
]p/2}

, (3.52)

for every stopping time T. This follows immediately from estimate (2.8) of Chap-
ter 3. The case p > 2 is a little more complicate and involves Itô formula as
discussed in the next section.

For the sake of simplicity and to recall the fact that stochastic integral are
defined in an L2-sense, instead of using the natural notation ĒM,loc, ĒM , Ēπ,loc,
Ēπ, Ēloc, Ē of this Section 3.2 we adopt the following

Definition 3.7 (L2-Integrand Space). (a) Given a d-dimensional continuous
square integrable martingale M with predictable quadratic variation process
〈M〉 in a filtered space (Ω,F , P,F(t) : t ≥ 0), we denote by L2(M) or in long
L2(Ω,F , P,F(t) : t ≥ 0,M, 〈M〉), the equivalence class with respect to the com-
pletion of product measure P × 〈M〉 of Rd-valued square integrable predictable
processes X, i.e. (3.49) with τn = ∞. This is regarded as a closed subspace of
the Hilbert space L2([0,∞)×Ω, P̄, 〈M〉×P ), where P̄ is the 〈M〉×P -completion
of the predictable σ-algebra P as discussed at the beginning of this chapter.
(b) Given a Rm-valued quasi-left continuous square integrable martingale M
with integer-valued measure νM and compensated martingale random mea-
sure ν̃M in the filtered space (Ω,F , P,F(t) : t ≥ 0), we denote by L2(ν̃M )
or L2(Ω,F , P,F(t) : t ≥ 0,M, ν̃M ) the equivalence class with respect to the
completion of product measure ν̃M × P of real-valued square integrable pre-
dictable processes X, i.e., as a closed subspace of the Hilbert space L2(Rm∗ ×
[0,∞) × Ω,B(Rm∗ ) × P, ν̃M × P ), where B(Rm∗ ) is the Borel σ-algebra in Rm∗
and the bar means completion with respect to the product measure ν̃M × P. If
an integer-valued random measure ν is initially given with compensated mar-
tingale random measure ν̃ = ν − νp, where νp is the predictable compensator
satisfying νp(Rm∗ × {t}) = 0 for every t ≥ 0, then we use the notation L2(ν̃) or
L2(Ω,F , P,F(t) : t ≥ 0, ν̃M ). Moreover, the same applies if a predictable νp-
locally integrable density δ is used, i.e., if ν̃ and νp are replaced by ν̃δ =

√
δ ν̃

and νpδ = δ ν̃.
(c) Similarly, localized Hilbert spaces L2

loc(Ω,F , P,F(t) : t ≥ 0,M, 〈M〉) or
L2
loc(M) and L2

loc(Ω,F , P,F(t) : t ≥ 0,M, ν̃M ) or L2
loc(ν̃M ) are defined. If M is

only a local continuous martingale then X in L2
loc(M) means that for some local-

izing sequence {τn : n ≥ 1} the process Mn : t 7→M(t∧τn) is a square integrable
martingale and ✶]0,τn]X belongs to L2(Mn), i.e, (3.49) holds for every n ≥ 1.
Similarly, if M is only a local quasi-left continuous square integrable martingale
then X in L2

loc(ν̃M ) means that for some localizing sequence {τn : n ≥ 1} the
process Mn : t 7→M(t∧τn) is a square integrable martingale, with compensated
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martingale random measure denoted by ν̃Mn
, and ✶]0,τn]X belongs to L2(ν̃Mn

),
i.e., the M and X share the same localizing sequence of stopping times.

Note that we do not include the general case where M is a semi-martingale
(in particular, local-martingales which are neither quasi-left continuous nor local
square integrable), since the passage to include these situation is essentially a
pathwise argument covered by the measure theory. If the predictable quadratic
variation process 〈M〉 gives a measure equivalent to the Lebesgue measure dℓ
then the spaces L2(M) and L2

loc(M) are equals to Pp(Ω,F , P,Ft, t ≥ 0) and
Pploc(Ω,F , P,Ft, t ≥ 0), for p = 2, as defined at the beginning of this Section 3.2
in the one-dimensional case. If M is a (local) quasi-left continuous square inte-
grable martingale then we can write (uniquely) M = M c+Md, where M c is the
continuous part and Md the purely discontinuous part with Md(0) = 0. Then,
we may write L2

loc(M
d) = L2

loc(ν̃Md), L2
loc(M) = L2

loc(M
c)+L2

loc(M
d), and simi-

larly without the localization. Furthermore, if predictable quadratic co-variation
(matrix) process 〈M〉 or the predictable compensator νp is deterministic then
the (local) space L2

loc(M) or L2
loc(ν̃) is characterized by the condition

P
{∫

]0,t]

d∑

i,j=1

fi(s)fj(s)d〈Mi,Mj〉(s) <∞
}

= 1

or

P
{∫

Rm
∗ ×]0,t]

f2(z, s)νp(dz, ds) <∞
}

= 1,

for every t > 0. This applies even if the local-martingale M or the integer-valued
random measure ν is not quasi-left continuous, in which case the predictable
quadratic co-variation process 〈Mi,Mj〉(s) may be discontinuous or the pre-
dictable compensator measure νp may not vanish on Rm∗ × {t} for some t > 0,
we must have νp(Rm∗ × {0}) = 0.

The Case of Semi-martingales

Another point to stress is the following fact. If M is a n-dimensional continuous
local-martingale and f is a d × n matrix-valued process in L2

loc(M), i.e., each
columns vector fi· = (fik : k = 1, . . . , n) belongs to L2

loc(M), then we can define
d-dimensional continuous local-martingale

(f ⋆ M)i(t) =

n∑

k=1

∫ t

0

fik(s)dMk(s), ∀t ≥ 0,

and i = 1, . . . , d. The predictable quadratic co-variation process becomes

〈(f ⋆ M)i, (f ⋆ M)j〉 =

n∑

k,ℓ=1

fik〈Mk,Mℓ〉fjℓ .
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On the other hand, if ν̃ is a local-martingale measure with a predictable compen-
sator νp in Rm∗ and g is a d vector-valued process in L2

loc(ν̃), i.e., each component
gi belongs to L2

loc(ν̃), then we can define d-dimensional purely discontinuous lo-
cal martingale

(g ⋆ ν̃)i(t) =

∫

]0,t]

gi(ζ, s)ν̃(dζ, ds) ∀t ≥ 0,

and i = 1, . . . , d. The local-martingale measure ν̃(g⋆ν̃) associated with g ⋆ ν̃ in

B(Rd∗) can be expressed as

ν̃(g⋆ν̃)(B×]a, b]) =

∫

Rm
∗ ×]a,b]

✶{g(ζ,s)∈B}ν̃(dζ, ds)

with its predictable compensator νp(g⋆ν̃)

ν̃p(g⋆ν̃)(B×]a, b]) =

∫

Rm
∗ ×]a,b]

✶{g(ζ,s)∈B}ν
p(dζ, ds),

for every b > a ≥ 0 and B in B(Rd∗). In short we write ν̃(g⋆ν̃) = gν̃ and ν̃p(g⋆ν̃) =

gν̃p. Note that the optional quadratic variation process is given by

[(g ⋆ ν̃)i, (g ⋆ ν̃)j ](t) =

∫

Rm
∗ ×]0,t]

gi(ζ, s)gj(ζ, s)ν
p(dζ, ds),

for every t ≥ 0.

Let g(z, s) be a d-dimensional predictable process which is integrable in Rm∗
with respect to the measure νp(dz, ds) almost surely, i.e.,

P
{∫

Rm
∗ ×]0,t]

|g(z, s)|νp(dz, ds) <∞
}

= 1, ∀t > 0,

which is a classic pointwise integral in the Lebesgue-Stieltjes. Moreover, if
{(ζn, τn) : n = 1, 2, . . .} are the atoms of ν (i.e., its associated point process)
then

E
{∫

Rm
∗ ×]0,t]

|g(z, s)|νp(dz, ds)
}

=

= E
{∫

Rm
∗ ×]0,t]

|g(z, s)|ν(dz, ds)
}

= E
{ ∑

0<τn≤t
|g(ζn, τn)|

}
.

Since

∑

0<τn≤t
|g(ζn, τn)|2 ≤ max

0<τn≤t
|g(ζn, τn)|

∑

0<τn≤t
|g(ζn, τn)|,
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the process g(z, s) also belongs to L2
loc(ν̃) and we have

∫

Rm
∗ ×]0,t]

g(z, s)ν(dz, ds) =

∫

Rm
∗ ×]0,t]

g(z, s)ν̃(dz, ds) +

+

∫

Rm
∗ ×]0,t]

g(z, s)νp(dz, ds),

for every t > 0.
When comparing both stochastic integrals, with respect to (1) a continuous

local-martingale (typically a Wiener process) and (2) a quasi-left continuous
(cad-lag) purely jump local-martingale (typically a Poisson compensated-jump
or martingale measure) we have two notations, which are different only in form.
If w = (wk(t) : t ≥ 0, k ≥ 1) is a (standard) Wiener process and σ = (σk(s) :
s ≥ 0, k ≥ 1) is a adapted process then

(σ ⋆ w)t =
∑

k

∫ t

0

σk(s)dwk(s)

makes sense as long as

∑

k

∫ t

0

|σk(s)|2ds <∞, ∀t ≥ 0,

almost surely. On the other hand, if ν̃(dζ, ds) is a (standard) Poisson martingale
measure with Lévy measure and γ = (γ(ζ, s) : s ≥ 0, ζ ∈ Rm∗ ) is a adapted
process then

(γ ⋆ ν̃)t =

∫

Rm
∗ ×]0,t]

γ(ζ, s)ν̃(dζ, ds)

makes sense as long as

∫ t

0

ds

∫

Rm
∗

|γ(ζ, s)|2π(dζ) <∞, ∀t ≥ 0,

almost surely. At this point it is clear the role of the parameters k and ζ in the
integrands σk(·) and γ(ζ, ·), i.e., the sum in k and the integral in ζ with respect
to the Lévy measure m(·). Moreover, the integrands σ and γ can be considered
as ℓ2-valued processes, i.e.,

∑

k

|σk|2 <∞ and

∫

Rm
∗

|γ(ζ)|2π(dζ) <∞,

so that the parameters k and ζ play similar roles. The summation in k can be
converted to an integral and the separable locally compact and locally convex
space Rm∗ can be replaced by any Polish (or Backwell) space.
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In general, if the (local) martingale measure ν̃ is known then the Lévy mea-
sure π(·) is found as its predictable quadratic variation, and therefore ν is con-
structed as the integer measure associated with the compensated-jump process

p̃(t) =

∫

Rm
∗ ×]0,t]

ζν̃(dζ, ds), ∀t ≥ 0.

Hence, the integer measure ν, the (local) martingale measure ν̃ and the Rm-
valued compensated-jump process p̃ can be regarded as different viewpoints of
the same concept. Each one of them completely identifies the others.

To conclude this section we mention that any quasi-left continuous (cad-
lag) semi-martingale X can be expressed in a unique way as X(t) = X(0) +
A(t)+M(t)+z ⋆ ν̃X , where X(0) is a F(0)-measurable random variable, A(0) =
M(0) = 0, A is a continuous process with locally integrable bounded variation
paths, M is a continuous local-martingale, and z ⋆ ν̃X is the stochastic integral
of the process (z, t, ω) 7→ z with respect to the local-martingale measure ν̃X
associated with X.

Integral Relative to Lévy Processes

As mentioned early, a Wiener process in Rd has a canonical construction from a
its characteristics (i.e., its variance, a symmetric positive definite matrices, and
its drift or mean, a vector). Similarly, a Poisson measure on Rm∗ has a canonical
construction from its characteristics (i.e., its Lévy –rather intensity– measure
Rm∗ ), and a Poisson Martingale measure is obtained. The stochastic integrals
with respect to a Wiener or a Martingale (Poisson) measure are not pathwise,
since pathwise integrals are with respect to processes having a local bounded
variation.

Also, a Lévy process in Rd has a canonical construction from its character-
istics (i.e., its Lévy measure in Rd∗ and the part corresponding to its ‘Wiener’
part in Rd). If m(dx) denotes the given Lévy measure in Rd∗, i.e., m(dx) in-
tegrate the function x 7→ 1 ∧ |x|2, then the jumps of the Lévy process ℓ(t)
define its point process p(t) = ℓ(t)− ℓ(t−) in Rd∗, its Poisson (random) measure
p(dx, dt) =

∑
s∈dt ✶ℓ(t)−ℓ(t−)∈dx on Rd∗, and its Poisson Martingale measure (or

compensated Poisson random measure) p̃(dx, dt) = p(dx, dt)−m(dx) dt on Rd∗.
In the previous sections, the stochastic integral with respect to a Martingale
measure was established, i.e.,

∫

{x∈Rd
∗:|x|<1}×]0,t]

f(x, s)|x|2p̃(dx, ds)

is well defined for any predictable and bounded function f , and also, the (reg-
ular) theory of measure/integration can be applied to

∫

{x∈Rd
∗:|x|≥1}×]0,t]

g(x, s)p(dx, ds) =
∑

0<s≤t
g(p(s), s)✶|p(s)|≥1,
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which is a finite sum (depending on ω) and well defined for any predictable and
bounded function g, actually an integral with respect to a compounded Poisson
process (very similar to an integral with respect to a Poisson process). This
is probably why the stochastic integrals are defined with respect to a Wiener
process and a Poisson Martingale measure, instead of directly with respect to a
Lévy process (regarded as a semi-martingale). For example, the reader should
check Applebaum [1], Bichteler [11], Ishikawa [76], Protter [149], among others,
to have a wider point of view.

3.3 Stochastic Differential

One of the most important tools used with stochastic integrals is the change-
of-variable rule or better known as Itô’s formula. This provides an integral-
differential calculus for the sample paths.

To motivate our discussion, let us recall that at the end of Subsection 3.2.1
we established the identity

∫

(0,t]

w(s)dw(s) =
w2(t)

2
− t

2
, ∀t ≥ 0,

for a real-valued standard Wiener process (w(t) : t ≥ 0), where the presence of
new term, t/2, is noted, with respect to the classic calculus.

In general, Fubini’s theorem proves that given two processes X and Y of
locally bounded variation (cad-lag) we have the integration-by-part formula

X(b)Y (b) −X(a)Y (a) =

∫

(a,b]

X(t−)dY (t) +

+

∫

(a,b]

Y (t−)dX(t) +
∑

a<t≤b
δX(t) δY (t), (3.53)

where X(t−) and Y (t−) are the left-limits at t and δ is the jump-operator,
e.g., δX(t) = X(t) − X(t−). Since the integrand Y (t−) is left-continuous and
the integrator X(t) is right-continuous as above, the pathwise integral can be
interpreted in the Riemann-Stieltjes sense or the Lebesgue-Stieltjes sense, in-
distinctly. Consider, for example, a Poisson process with parameter c > 0, i.e.,
X = Y = (p(t) : t ≥ 0), we have

∫

(0,t]

p(s−)dp(s) =
p2(t)

2
− p(t)

2
, ∀t ≥ 0,

because all jumps are equals to 1. However, strictly in the Lebesgue-Stieltjes
sense we write

∫

(0,t]

p(s)dp(s) =
p2(t)

2
+
p(t)

2
, ∀t ≥ 0.
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Recall that the stochastic integral is initially defined as the L2-limit of Riemann-
Stieltjes sums, where the integrand is a predictable (essentially, left-continuous
having right-limits) process and the integrator is a (local) square integrable
martingale. The (local) bounded variation integral can be defined by either way
with a unique value, as long as the integrand is the predictable member of its
equivalence class of processes. Thus, as mentioned at the end of Subsection 3.2.3,
the stochastic integral with respect to the compensated Poisson process (or
martingale) p̄(t) = p(t) − ct satisfies

∫

(0,t]

p̄(s)dp̄(s) =

∫

(0,t]

p̄(s−)dp̄(s), ∀t ≥ 0,

the expression in left-hand side is strictly understood only as a stochastic in-
tegral, because it makes non sense as a pathwise Riemann-Stieltjes integral
and does not agree with one in the pathwise Lebesgue-Stieltjes sense. How-
ever, the expression in right-hand side can be interpreted either as a pathwise
Riemann-Stieltjes integral or as a stochastic integral. Note that the processes
(p(t) : t ≥ 0) and (p(t−) : t ≥ 0) belong to the same equivalence class for the
dt× P (dω) measure, under which the stochastic integral is defined.

We may calculate the stochastic integral as follows. For a given partition
π = (0 = t0 < t1 < · · · < tn = t) of [0, t], with ‖π‖ = maxi(ti − ti−1), consider
the Riemann-Stieltjes sums

Sπ =
n∑

i=1

p̄(ti−1)[p̄(ti) − p̄(ti−1)] =

∫

]0,t]

p̄π(s)dp̄(s) =

=

∫

]0,t]

p̄π(s)dp(s) − c

∫ t

0

p̄π(s)ds,

for the predictable process p̄π(s) = p̄(ti−1) for any s in ]ti−1, ti]. Since p̄π(s) →
p̄(s−) as ‖π‖ → 0, we obtain

∫

(0,t]

p̄(s−)dp̄(s) =

∫

(0,t]

p̄(s−)dp(s) − c

∫ t

0

p̄(s−)ds,

which is a martingale null at time zero. For instance, because E{p(t)} = ct and
E{[p(t) − ct]2} = ct we have E{p2(t)} = c2t2 + ct, and therefore

E
{∫

(0,t]

p(s−)dp(s) − c

∫ t

0

p(s−)ds
}

= 0,

as expected.

Given a smooth real-valued function ϕ = ϕ(t, x) defined on [0, T ] × Rd and
a Rd-valued semi-martingale {M(t) : t ≥ 0} we want to discuss the stochastic
chain-rule for the real-valued process {ϕ(t,M(t)) : t ≥ 0}. If ϕ is complex-valued
then we can tread independently the real and the imaginary parts.
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For a real-valued Wiener process (w(t) : t ≥ 0), we have deduced that

w2(t) = 2

∫

(0,t]

w(s)dw(s) + t, ∀t ≥ 0,

so that the standard chain-rule does not apply. This is also seen when Taylor
formula is used, say taking mathematical expectation in

ϕ(w(t)) = ϕ(0) + ϕ′(0)w(t) + ϕ′′(0)
w2(t)

2
+

∫ 1

0

ϕ′′′(sw(t))
w3(t)

6
ds,

we obtain

Eϕ(w(t)) = ϕ(0) + ϕ′′(0)
t

2
+

∫ 1

0

E{ϕ′′′(sw(t))
w3(t)

6
}ds,

where the error-term integral can be bounded by 2t3/2 sup |ϕ|. The second order
derivative produces a term of order 1 in t.

Given a (cad-lag) locally integrable bounded variation process A = (A(t) :
t ≥ 0) and a locally integrable process X = (X(t) : t ≥ 0) with respect to A, we
can define the pathwise Lebesgue-Stieltjes integral

(X ⋆ A)(t) =

∫

]0,t]

X(s)dA(s), ∀ t ≥ 0,

which produces a new (cad-lag) locally integrable bounded variation process
X ⋆ A = ((X ⋆ A)(t) : t ≥ 0). The substitution formula establishes that for any
locally integrable process Y = (Y (t) : t ≥ 0) with respect to X ⋆ A, the process
Y X = (Y (t)X(t) : t ≥ 0) is locally integrable process with respect to A and

∫

]0,t]

Y (s)d(X ⋆ A)(s) =

∫

]0,t]

Y (s)X(s)dA(s), (3.54)

for every t ≥ 0. Certainly, if the processes X and Y are left-continuous then
the above integral can be interpreted in the (pathwise) Riemann-Stieltjes sense.
Moreover, if both processes X and Y are predictable and A is adapted then the
⋆ symbol, representing the pathwise Lebesgue-Stieltjes, can be replaced by the
⋄ symbol, representing the stochastic integral relative to an adapted (cad-lag)
process with locally integrable bounded variation.

Similarly, given a (cad-lag) local-martingaleM = (M(t) : t ≥ 0) and a locally
integrable predictable process X = (X(t) : t ≥ 0) relative to M (i.e., there is
a reducing sequence of stopping times (τn : n ≥ 0) for both processes X and
M, simultaneously), we can define the stochastic integral which produces a new
(cad-lag) local-martingale X ⋄M = ((X ⋄M)(t) : t ≥ 0). Let Y = (Y (t) : t ≥ 0)
be a locally integrable predictable process relative to X⋄M (i.e., there is another
reducing sequence of stopping times (τ̄n : n ≥ 0) for both processes Y and
X ⋄M). The stochastic substitution formula says that the predictable process
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Y X = (Y (t)X(t) : t ≥ 0) is locally integrable with respect to M admitting the
(minimum) reducing sequence (τn ∧ τ̄n : n ≥ 0) and

∫

]0,t]

Y (s)d(X ⋄M)(s) =

∫

]0,t]

Y (s)X(s)dM(s), (3.55)

for every t ≥ 0.
The first step in the proof of the above stochastic substitution formula is

to observe that by taking the minimum localizing sequence (τn ∧ τ̄n : n ≥ 0)
it suffices to show the result for an L2-martingales M. Secondly, it is clear
that equality (3.55) holds for any elementary predictable processes Y and that
because of the isometry

∫

]0,t]

Y 2(s)d[X ⋄M ](s) =

∫

]0,t]

Y 2(s)X2(s)d[M ](s), ∀ t ≥ 0,

for every t ≥ 0, where [·] denotes the (optimal) quadratic variation of a mar-
tingale (as in Section 3.2.3), the process Y X is integrable with respect to M.
Finally, by passing to the limit we deduce that (3.55) remains valid almost surely
for every t ≥ 0. Since both sides of the equal sign are cad-lag processes, we con-
clude. A detailed proof can be found in Chung and Williams [25, Theorem 2.12,
Section 2.7, pp. 48–49].

Let M be a (real-valued) square integrable martingale with its associated op-
tional and predictable integrable monotone increasing processes [M ] and 〈M〉.
Recall that M2 − [M ] and M2 − 〈M〉 are uniformly integrable martingale,
[M ](t) = 〈Mc〉(t) +

∑
s≤t[M(s) −M(s−)]2, where Mc is the continuous part

of M. Moreover, if 〈M〉 is continuous (i.e., the martingale is quasi-left con-
tinuous) and pvar2(M,π) denotes the predictable quadratic variation operator
defined by

pvar2(M,πt) =
m∑

i=1

E{|M(ti) −M(ti−1)|2 | F(ti−1)}, (3.56)

for πt = (0 = t0 < t1 < · · · < tm = t), then pvar2(M,π) converges in L1 to 〈M〉
as the mesh (or norm) of the partition ‖πt‖ = maxk(ti − ti−1) goes to zero, see
Theorem 2.8 in Chapter 3. Another key point is the study of the variation of
M, as defined by the operator

varℓ(M,πt) =

m∑

i=1

|M(ti) −M(ti−1)|ℓ, (3.57)

as the mesh ‖π‖ vanishes, the cases ℓ = 2 (quadratic variation) and ℓ = 4 are of
particular interest. As we have seen, the quadratic variation plays an important
role in the stochastic integral.

Proposition 3.8 (Quadratic Variation Convergence). If M is a (real-valued)
continuous square integrable martingale then for every ε, t > 0 there exists δ >
0 such that for any partition πt of the interval [0, t] with ‖πt‖ < δ we have
P{|var2(M,πt) − 〈M〉(t)| > ε} < ε.
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Proof. We only give some details for the case whenM is continuous and bounded
in L4. Indeed, the martingale property yields

m∑

i=k+1

E{[M(ti) −M(ti−1)]2 | F(ti−1)} =

=

m∑

i=k+1

E{M2(ti) −M2(ti−1) | F(ti−1)} ≤ E{M2(tm)| F(tk)},

so that

m−1∑

k=1

m∑

i=k+1

E{[M(ti) −M(ti−1)]2 [M(tk) −M(tk−1)]2} =

=

m−1∑

k=1

E
{

[M(tk) −M(tk−1)]2
m∑

i=k+1

E{[M(ti) −M(ti−1)]2 | F(ti−1)}
}
≤

≤
m−1∑

k=1

E{[M(tk) −M(tk−1)]2
m∑

i=k+1

E{M2(tm)| F(tk)}} =

= E{M2(tm)}
m−1∑

k=1

E{[M(tk) −M(tk−1)]2}.

Since

m∑

k=1

E{[M(tk) −M(tk−1)]4} ≤

≤ E
{(

max
i

[M(ti) −M(ti−1)]2
) m∑

k=1

[M(tk) −M(tk−1)]2
}
≤

≤
(
E{max

i
[M(ti) −M(ti−1)]4}

) 1
2
(
E
{[ m∑

k=1

[M(tk) −M(tk−1)]2
]2}) 1

2 ,

we deduce

E{[var2(M,πt)]
2} =

m∑

k=1

E{[M(tk) −M(tk−1)]4} +

+ 2

m−1∑

k=1

m∑

i=k+1

E{[M(ti) −M(ti−1)]2 [M(tk) −M(tk−1)]2} ≤

≤ 2E{M2(t)}E{[var2(M,πt)]} + E{max
i

[M(ti) −M(ti−1)]4},

after using Hölder inequality. This shows that

sup
0<s≤t

E{|M(s)|4} <∞ ⇒ E{[var2(M,πt)]
2} <∞, (3.58)
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and if M is continuous then E{var4(M,πt)} → 0 as ‖πt‖ → 0.
Therefore, because M2 − 〈M〉 is a martingale we also have

E{[var2(M,πt) − 〈M〉(t)]2} =

=

m∑

k=1

E{[(M(tk) −M(tk−1))2 − (〈M〉(tk) − 〈M〉(tk−1))]2} ≤

≤ 2

m∑

k=1

E{[M(tk) −M(tk−1)]4 − [〈M〉(tk) − 〈M〉(tk−1)]2} ≤

≤ 2E{var4(M,πt)} + 2E{〈M〉(t) max
i

[〈M〉(ti) − 〈M〉(ti−1)]},

which proves that var2(M,π) converges in L2 to 〈M〉, whenever M is continuous
and belongs to L4.

For instance, a complete proof of this result can be found in Chung and
Williams [25, Theorem 4.1, Section 4.3, pp. 76–79] or Karatzas and Shreve [91,
Theorem 5.8, Chapter 1, pp. 32–34].

3.3.1 Itô’s processes

Let (w(t) : t ≥ 0) be a n-dimensional standard Wiener process in a given
filtered space (Ω,F , P,Ft : t ≥ 0), i.e., with w(t) = (w1(t), . . . , wn(t)) we have
wk(t) and wk(t)wℓ(t)− ✶k=ℓt are continuous martingales null at time zero (i.e.,
wi(0) = 0) relative to the filtration (Ft : t ≥ 0), for any k, ℓ = 1, . . . , n. Thus
(Ω,F , P,Ft, w(t) : t ≥ 0) is called a n-dimensional (standard) Wiener space.

A Rd-valued stochastic process (X(t) : t ≥ 0) is called a d-dimensional Itô’s
process if there exist real-valued adapted processes (ai(t) : t ≥ 0, i = 1, . . . , d)
and (bik(t) : t ≥ 0, i = 1, . . . , d, k = 1, . . . , n) such that for every i = 1, . . . , d
we have

E
{∫ τr

0

[
|ai(t)| +

n∑

k=1

|bik(t)|2
]
dt
}
<∞, ∀ r = 1, 2, . . . ,

Xi(t) = Xi(0) +

∫ t

0

ai(s)ds+

n∑

k=1

∫ t

0

bik(s)dwk(s), ∀ t ≥ 0,

(3.59)

in some n-dimensional Wiener space (Ω,F , P,Ft, w(t) : t ≥ 0), where {τr : r ≥
1} is a non-decreasing sequence of stopping times satisfying τr → ∞ almost
surely. In short we write dX(t) = a(t)dt+ b(t)dw(t), for every t ≥ 0, with a in
L1
loc and b in L2

loc. Note that for a Wiener process or in general for a continuous
local martingale M, we write the stochastic integral

∫

]0,t]

f(s)dM(s) =

∫

(0,t]

f(s)dM(s) =

∫ t

0

f(s)dM(s),

indistinctly. Remark that any Itô process is a (special) semi-martingale, and a
quasi-martingale whenever a and b belong to L1([0, T ] × Ω) and L2([0, T ] × Ω),
for any T > 0, respectively.
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Theorem 3.9 (Itô formula). Let (X(t) : t ≥ 0) be a d-dimensional Itô’s process
in a given Wiener space (Ω,F , P,Ft, w(t) : t ≥ 0), i.e, (3.59), and ϕ = ϕ(t, x)
be a real-valued smooth function on [0,∞) × Rd, i.e., C1 in the first variable t
on [0,∞) and C2 in the second variable x on Rd. Then (ϕ(t,X(t)) : t ≥ 0) is a
(real-valued) Itô’s process and

ϕ(t,X(t)) = ϕ(0, X(0)) +

∫ t

0

A(s,X)ϕ(s,X(s))ds+

+

n∑

k=1

∫ t

0

Bk(s,X)ϕ(s,X(s))dwk(s), ∀ t ≥ 0, (3.60)

where the linear differential operators A(s,X) and B(s,X) = (Bk(s,X) : k =
1, . . . , n) are given by

A(s,X)ϕ(t, x) = ∂tϕ(t, x) +

d∑

i=1

ai(s) ∂iϕ(t, x) +

+
1

2

d∑

i,j=1

( n∑

k=1

bik(s)bjk(s)
)
∂2ijϕ(t, x),

and

Bk(s,X)ϕ(t, x) =

d∑

i=1

bik(s)∂iϕ(t, x),

for any s, t ≥ 0 and x in Rd, with ∂t, ∂i and ∂
2
i,j denoting the partial derivatives

with respect to the variable t, xi and xj .

Proof. The first step is to localize, i.e., setting

Tr = τr ∧ inf
{
t ≥ 0 : |X(t)| ≥ r

}

we have a non-decreasing sequence of stopping times satisfying Tr → ∞ almost
surely. Moreover, if Xn(t) = X(t∧Tn) then Xn is a processes with values in the
compact ball of radius r and therefore the processes A(s) = A(s,X)ϕ(s,Xn(s))
and Bk(s) = Bk(s,X)ϕ(s,Xn(s)) are in L1 and L2, respectively, i.e.,

E
{∫ Tr

0

[
|A(t)| +

n∑

k=1

|Bk(t)|2
]
dt
}
<∞, ∀ r = 1, 2, . . . ,

so that the right-hand side of the so-called Itô formula or rule (3.60) is an real-
valued Itô’s process. This shows that without loss of generality, we may assume
that the function ϕ has a compact support. Furthermore, details on the proof
are only provided for the one-dimensional case, i.e., d = 1 and n = 1, with
X(t) = X(0) +A(t) +B(t) and

A(t) =

∫ t

0

a(s)ds, B(t) =

∫ t

0

b(s)dw(s), (3.61)
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a(s) and b(s) are predictable (actually, adapted is sufficient) processes such that

|B(t)| +

∫ t

0

[|a(s)| + |b(s)|2]ds ≤ C,

for any t ≥ 0 and some deterministic constant C > 0.
The second step is to apply Taylor formula for a smooth real-valued function

ϕ = ϕ(x) on R, with a partition π = (0 = t0 < t1 < · · · < tm = t) of [0, t],

ϕ(X(t)) − ϕ(X(0)) =
m∑

k=1

[ϕ(X(tk)) − ϕ(X(tk−1)] =

=
m∑

k=1

[X(tk) −X(tk−1)]ϕ′
k +

1

2

m∑

k=1

[X(tk) −X(tk−1)]2ϕ′′
k , (3.62)

where X(t) = X(0) +A(t) +B(t) satisfying (3.61),

ϕ′
k = ϕ′(X(tk−1)), ϕ′′

k =

∫ 1

0

ϕ′′((1 − s)X(tk−1) + sX(tk))ds,

and the mesh (or norm) ‖π‖ = maxi(ti − ti−1) is destined to vanish.
Considering the predictable process ϕ′

π(s) = ϕ′(X(tk−1)) for s belonging to
]tk−1, tk], we check that

m∑

k=1

[X(tk) −X(tk−1)]ϕ′
k =

∫

]0,t]

ϕ′
π(s)dA(s) +

∫

]0,t]

ϕ′
π(s)dB(s),

which converges in L1 +L2 (or pathwise for the first term and L2 for the second
term) to

∫

]0,t]

ϕ′(X(s))dA(s) +

∫

]0,t]

ϕ′(X(s))dB(s)

where the first integral is in the Riemann-Stieltjes (or Lebesgue-Stieltjes) sense
and the second term is a stochastic integral. By means of the substitution
formula (3.54) and (3.55), the above limit can be rewritten as

∫

]0,t]

ϕ′(X(s))a(s)ds+

∫

]0,t]

ϕ′(X(s))b(s)dw(s),

where the first integral is now in the Lebesgue sense, which agrees with the
stochastic sense if a predictable version of the integrand is used.

To handle the quadratic variation in (3.62), we note that

[X(tk) −X(tk−1)]2 = −2[A(tk) −A(tk−1)] [B(tk) −B(tk−1)] +

+ [A(tk) − A(tk−1)]2 + [B(tk) − B(tk−1)]2,
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and for any k ≥ 1,

|ϕ′′(X(tk−1)) − ϕ′′
k | ≤ max

k
ρ(ϕ′′, |X(tk) −X(tk−1)|),

where ρ(ϕ′′, r) is the modulus of continuity of ϕ′′, i.e.,

ρ(ϕ′′, r) = sup
|x−y|≤r

|ϕ′′(x) − ϕ′′(y)|.

Therefore

m∑

k=1

[X(tk) −X(tk−1)]2ϕ′′
k =

=

m∑

k=1

ϕ′′(X(tk−1))[B(tk) − B(tk−1)]2 + o(‖π‖)

where

|o(‖π‖)| ≤ max
k

{
ρ(ϕ′′, |X(tk) −X(tk−1)|)

}{ m∑

k=1

[B(tk) −B(tk−1)]2
}

+

+ max
k

{
[2|B(tk) −B(tk−1)| + |A(tk) −A(tk−1)|] |ϕ′′

k |
}
×

×
{ m∑

k=1

|A(tk) −A(tk−1)|
}
,

i.e., o(‖π‖) is bounded by a deterministic constant and o(‖π‖) → 0 as ‖π‖ → 0,
almost surely.

Since ϕ̄′′
k = ϕ′′(X(tk−1)) is F(tk)-measurable and

B2(t) −
∫ t

0

|b(s)|2ds,

is a martingale, we have

E
{
{
m∑

k=1

[(B(tk) −B(tk−1))2 −
∫ tk

tk−1

|b(s)|2ds] ϕ̄′′
k}2

}
=

= E
{ m∑

k=1

[
(B(tk) −B(tk−1))2 −

∫ tk

tk−1

|b(s)|2ds
]2 |ϕ̄′′

k |2
}
,

which is bounded by the expression

(
max
i

E{|ϕ̄′′
k |2}

)
E
{ m∑

k=1

[
(B(tk) −B(tk−1))2 −

∫ tk

tk−1

|b(s)|2ds
]2}

.
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In view of Proposition 3.8, we deduce that

E
{∣∣∣

m∑

k=1

[B(tk) −B(tk−1)]2ϕ′′
k −

∫

]0,t]

|b(s)|2ϕ̄′′
π(s)ds

∣∣∣
2}

→ 0,

as ‖π‖ → 0, where ϕ′′
π(s) = ϕ′′(X(tk−1)) = ϕ̄′′

k for any s in ]tk−1, tk].
Thus, we have establish the one-dimensional Itô formula for a (real-valued)

smooth function with compact support ϕ(x), which conclude the proof.

Note the short vector notation for Itô formula when ϕ = ϕ(x), namely,

dϕ(X(t)) = ∇ϕ(X(t))dX(t) +
1

2
Tr[b(t)b∗(t)∇2ϕ(x)]dt (3.63)

for every t ≥ 0, where ∇ is the gradient operator and ∇2ϕ is the matrix of
second derivatives.

From the above proof, it is clear also that several generalizations of Itô
formula are possible. Note that it is not necessary to separate the t variable,
since we may add one more dimension with a(s) = 1 and b(s) = 0 to pass from
ϕ(x) to ϕ(t, x). By reviewing the previous steps and remarking the use of the
continuity and the quadratic variation of the martingale M, we can show the
following rule.

Theorem 3.10. Let (Xi(t) : t ≥ 0) be a continuous semi-martingale in a given
filtered space (Ω,F , P,Ft : t ≥ 0), for each i = 1, . . . , d, and ϕ = ϕ(x) be a real-
valued C2 function on Rd. Then (ϕ(X(t)) : t ≥ 0), X(t) = (X1(t), . . . , Xd(t)) is
a continuous semi-martingale and

ϕ(X(t)) = ϕ(X(0)) +

d∑

i=1

∫

]0,t]

∂iϕ(X(s))dXi(t) +

+
d∑

i,j=1

∫

]0,t]

∂2ijϕ(X(s))d〈Xi, Xj〉(s), ∀ t ≥ 0, (3.64)

where ∂i and ∂2ij denote partial derivatives, and 〈Xi, Xj〉(s) is the only pre-
dictable process with locally integrable bounded variation such that the expression
XiXj − 〈Xi, Xj〉 is a martingale.

We can also extend the integration-by-part formula (3.53) for two (cad-lag)
real-valued semi-martingales X = VX + MX and Y = VY + MY where VX , VY

have locally bounded variation and MX , MY are continuous local-martingales
as follows

X(t)Y (t) −X(0)Y (0) = 〈MX ,MY 〉(t) +

∫

(0,t]

X(s−)dY (s) +

+

∫

(0,t]

Y (s−)dX(s) +
∑

0<s≤t
δVX (s) δVY (s), (3.65)
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for every t ≥ 0, where X(t−) and Y (t−) are the left limits at t, and δ is the
jump-operator, e.g., δX(t) = X(t) − X(t−). Note that the correction term
satisfies

〈MX ,MY 〉(t) +
∑

0<s≤t
δVX (s) δVY (s) = [X,Y ](t),

i.e., it is equal to the optional quadratic covariation process [X,Y ] associated
with the semi-martingale X and Y.

As seen in (3.51) of the previous section, for a standard n-dimensional Wiener
process (w(t) : t ≥ 0), for any adapted (measurable) process f(s) and for any
stopping time T, we can write

E
{

sup
0≤t≤T

∣∣∣
∫ t

0

f(s)dw(s)
∣∣∣
p}

≤ Cp E
{[∫ T

0

|f(s)|2ds
]p/2}

. (3.66)

for some constant positive Cp. Actually, for p in (0, 2] the proof is very simple
(see (2.8) of Chapter 3) and Cp = (4 − p)/(2 − p) if 0 < p < 2 and C2 = 4.
However, the proof for p > 2 involves Burkhölder-Davis-Gundy inequality. An
alternative is to use Itô formula for the function x 7→ |x|p and the process

X(t) =

∫ t

0

f(s)dw(s), ∀t ≥ 0

to get

E{|X(t)|p} =
p(p− 1)

2
E
{∫ t

0

|X(s)|p−2|f(s)|2ds
}
.

By means of the Doob’s maximal inequality, for some constant C̃p depending
only on p we have

E{ sup
0≤t≤T

|X(t)|p} ≤ C̃p E
{(

sup
0≤t≤T

|X(t)|p−2
)(∫ T

0

|f(s)|2ds
)}

and in view of Hölder inequality with exponents p/2 and p/(p− 2), we deduce
the desired estimate (3.66). Similarly, we can treat the multidimensional case.

3.3.2 Discontinuous Local Martingales

Let (Ω,F , P,Ft, w(t) : t ≥ 0) be a n-dimensional (standard) Wiener space and
(p(B, ]0, t]) : B ∈ Rm0 , t ≥ 0) be an independent (standard) Poisson measure
with (intensity) Lévy measure π(B) = E{p(B, ]0, t])}/t, which satisfies 1

∫

Rm
∗

|ζ|2
1 + |ζ|π(dζ) <∞,

1the Polish space Rm

0
= Rm r {0} may be replaced by a general Backwell space.
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and martingale measure p̃(B, ]0, t]) = p(B, ]0, t]) − tπ(B), as discussed in Sec-
tions 2.7 and 3.2.2. This is referred to as a (standard) Wiener-Poisson space.
Clearly, a non-standard Wiener-Poisson space corresponds to a Poisson measure
with (deterministic) intensity Π(dζ, ds), which is not necessarily absolutely con-
tinuous (in the second variable ds) with respect to the Lebesgue measure ds, but
Π(Rm∗ , {t}) = 0 for every t ≥ 0. Also, an extended Wiener-Poisson space corre-
sponds to an extended Poisson measure with (deterministic) intensity Π(dζ, ds),
which may have atoms of the form Rm∗ ×{t}. In any case, the deterministic inten-
sity Π(dζ, ds) = E{p(dζ, ds)} is the (predictable) compensator of the optional
random measure p.

So, a (standard) Wiener-Poisson space with Lévy measure π(·) is denoted by
(Ω,F , P,Ft, w(t), p̃(dζ, dt) : ζ ∈ Rm∗ , t ≥ 0), and the (local) martingale measure
p̃ is identified with the Rm-valued compensated-jump (Poisson) process

p̃(t) =

∫

Rm
∗ ×]0,t]

ζν̃(dζ, ds), t ≥ 0,

which induces, on the canonical space D = D([0,∞[,Rm) of cad-lag functions,
a probability measure Pν̃ , namely,

Pν̃(B) = P
{
p̃(·) ∈ B

}
, ∀B ∈ B(D).

with the characteristic function (or Fourier transform) given by

E
{

exp
[
i

∫

Rm
∗ ×]0,t]

(z · ζ)p̃(dζ, ds)
]}

=

= exp
[
− t

∫

Rm
∗

(
1 − ei z·ζ + i z · ζ

)
π(dζ)

]
,

for every t ≥ 0 and z in Rm. Also note that the Wiener process w induces a
probability measure Pw on the canonical space C = C([0,∞[,Rn) of continuous
functions, namely,

Pw(B) = P
{
w(·) ∈ B

}
, ∀B ∈ B(C).

and its the characteristic function (or Fourier transform) is given by

E
{

exp
[
i ξ · w(t)

]}
= exp

(
− t

|ξ|2
2

)
,

for every t ≥ 0 and ξ in Rn. Therefore, a canonical (standard) Wiener-Poisson
space with Lévy measure π(·) is a probability measure P = Pw×Pp̃ on the Polish
space C([0,∞[,Rn)×D([0,∞[,Rm). In this case, the projection map (ω1, ω2) 7→(
ω1(t), ω2(t)

)
on Rn × Rm, for every t ≥ 0, is denoted by

(
Xw(t, ω), Xp̃(t, ω)

)
,

and under the probability P the canonical process (Xw(t) : t ≥ 0) is a n-
dimensional (standard) Wiener process and the canonical process Xp̃(t) is a
Rm-valued compensated-jump Poisson process with Lévy measure π(·) on Rm∗ .
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The filtration (Ft : t ≥ 0) is generated by the canonical process Xw and Xp̃

and completed with null sets with respect to the probability measure P. Note
that since the Wiener process is continuous and the compensated-jump Poisson
process is purely discontinuous, they are orthogonal (with zero-mean) so that
they are independent, i.e., the product form of P = Pw × Pp̃ is a consequences
of the statistics imposed on the processes w and p̃.

Definition 3.11 (Itô process with jumps). A Rd-valued stochastic process
(X(t) : t ≥ 0) is called a d-dimensional Itô’s process with jumps if there ex-
ist real-valued adapted processes (ai(t) : t ≥ 0, i = 1, . . . , d), (bik(t) : t ≥
0, i = 1, . . . , d, k = 1, . . . , n) and (γi(ζ, t) : t ≥ 0, ζ ∈ Rm∗ ), such that for every
i = 1, . . . , d and any r = 1, 2, . . . , we have

E
{∫ τr

0

[
|ai(t)| +

n∑

k=1

|bik(t)|2 +

∫

Rm
∗

|γi(ζ, t)|2π(dζ)
]
dt
}
<∞, (3.67)

and

Xi(t) = Xi(0) +

∫ t

0

ai(s)ds+

n∑

k=1

∫ t

0

bik(s)dwk(s) +

+

∫

Rm
∗ ×]0,t]

γi(ζ, s)p̃(dζ, ds), ∀ t ≥ 0,

in some (standard) Wiener-Poisson space

(Ω,F , P,Ft, w(t), p̃(dζ, dt) : ζ ∈ Rm∗ , t ≥ 0),

with Lévy measure π, where {τr : r ≥ 1} is a non-decreasing sequence of stop-
ping times satisfying τr → ∞ almost surely. In short we write

dX(t) = a(t)dt+ b(t)dw(t) +

∫

Rm
∗

γ(ζ, t)p̃(dζ, dt),

for every t ≥ 0, with a in L1
loc, b in L2

loc and γ in L2
loc,π. The local-martingale

measure p̃(dζ, dt) = p(dζ, dt) − E{p(dζ, dt)} is also referred to as the compen-
sated jumps (martingale) measure. If the compensator has the form Π(dζ, ds) =
E{p(dζ, dt)} then the local integrability assumption on the coefficients γi should
be changed accordingly, and γi should be progressively measurable. Moreover,
if Π(Rm∗ × {t}) 6= 0 for some t, then γi must be predictable.

Note that any Itô process with jumps is a quasi-left continuous (cad-lag)
semi-martingale, and a quasi-martingale whenever a, b and γ belong to the
spaces L1(]0, T [×Ω), L2(]0, T [×Ω) and L2

π(Rm∗ ×]0, T [×Ω), for any T > 0, re-
spectively. Condition (3.67) is equivalent to

P
{∫ t

0

[
|a(s)| + Tr[b(s)b∗(s)] +

∫

Rm
∗

|γ(ζ, s)|2π(dζ)
]
ds <∞

}
= 1, (3.68)
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for every t ≥ 0, where Tr[·] denotes the trace of a matrix and | · | is the Euclidean
norm of a vector in Rm. Again, for non-standard case, we modify all conditions
accordingly to the the use of Π(dζ, ds) in lieu of π(dζ)ds.

Theorem 3.12 (Itô formula with jumps). Let (X(t) : t ≥ 0) be a d-dimensional
Itô’s process with jumps in a Wiener-Poisson space (Ω,F , P,Ft, w(t), p̃(dζ, dt) :
ζ ∈ Rm∗ , t ≥ 0) with Lévy measure π(dζ), i.e., (3.67), and let ϕ = ϕ(x) be a
real-valued twice continuously differentiable function on Rd, satisfying

E
{∫ Tr

0

dt

∫

Rm
∗

[
|ϕ
(
X(t) + γ(ζ, t)

)
− ϕ

(
X(t)

)
|2 + ϕ

(
X(t) + γ(ζ, t)

)
−

− ϕ
(
X(t)

)
− γ(ζ, t) · ∇ϕ

(
X(t)

)]
π(dζ)

}
< ∞, (3.69)

for some increasing sequence {Tr : r ≥ 1} of stopping times such that Tr → ∞
almost surely. Then (ϕ(X(t)) : t ≥ 0) is a (real-valued) Itô’s process with jumps
and

ϕ(X(t)) = ϕ(X(0)) +

∫ t

0

A(s,X)ϕ(X(s))ds+

+

n∑

k=1

∫ t

0

Bk(s,X)ϕ(X(s))dwk(s) +

+

∫

Rm
∗ ×]0,t]

C(ζ, s,X)ϕ(X(s))p̃(dζ, ds), ∀ t ≥ 0, (3.70)

where the linear integro-differential operators A(s,X), B(s,X) = (Bk(s,X) :
k = 1, . . . , n) and C(ζ, s,X) are given by

A(s,X)ϕ(x) =

d∑

i=1

ai(s) ∂iϕ(x) +
1

2

d∑

i,j=1

( n∑

k=1

bik(s)bjk(s)
)
∂2ijϕ(x) +

+

∫

Rm
∗

[ϕ(x+ γ(ζ, s)) − ϕ(x) −
d∑

i=1

γi(ζ, s) ∂iϕ(x)]π(dζ),

and

Bk(s,X)ϕ(x) =
d∑

i=1

bik(s) ∂iϕ(x),

C(ζ, s,X)ϕ(x) = ϕ(x+ γ(ζ, s)) − ϕ(x),

for any s ≥ 0 and x in Rd, with ∂i, ∂ij , denoting the first and second partial
derivatives with respect to the i and j, and ∇ being the gradient operator.

Proof. First, we replace the coefficients a(s), b(s) and γ(ζ, s) by

a(s)✶s≤τ , b(s)✶s≤τ , γ(ζ, s)✶s≤τ✶ε<|ζ|≤1/ε,
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where τ = τr and ε > 0. We could use elementary predictable processes a, b and
γ to force concrete a calculation. Thus we can pass to the limit in r → ∞ and
ε→ 0 to revalidate (3.70), as long as the smooth function ϕ satisfies (3.69).

The continuity of the semi-martingale was needed in the proof of Theo-
rem 3.9. Nevertheless, when γ(ζ, s) = 0 for any |ζ| ≤ ε, the integer-valued mea-
sure of the Poisson measure used to integrate has bounded variation and the
stochastic integral relative to the local-martingale measure becomes a pathwise
Lebesgue-Stieltjes integral. Then we can use the integration by parts formula
(3.65) to get

X(t)Y (t) −X(0)Y (0) =

∫

(0,t]

X(s−)dY (s) +

+

∫

(0,t]

Y (s−)dX(s) + [X,Y ](t), ∀ t ≥ 0, (3.71)

where [X,Y ] is the optional quadratic co-variation process. Actually, we may
apply (3.65) for jumps with bounded variation and as ε vanishes, we deduce the
validity of (3.71) for any two (real-valued) Itô’s processes with jumps X and Y.

Note that

[X,Y ](t) = 〈Xc, Y c〉(t) +
∑

0<s≤t

(
X(s) −X(s−)

)(
Y (s) − Y (s−)

)
=

= 〈Xc, Y c〉(t) +

∫

Rm
∗ ×]0,t]

γX (ζ, s) γY (ζ, s) p(dζ, ds),

where 〈·, ·〉 is the optional quadratic co-variation process, Xc and Y c are the
continuous parts of X and Y, e.g.,

Xc(t) =

∫ t

0

aX (s)ds+

∫ t

0

bX (s)dw(s),

and ν is the integer-valued measure, i.e., ν̃(·, ]0, t]) = ν(·, ]0, t]) − t π(·). We can
rewrite (3.65) explicitly as

X(t)Y (t) −X(0)Y (0) =

∫

(0,t]

X(s−)dY c(s) +

+

∫

(0,t]

Y (s−)dXc(s) + 〈Xc, Y c〉(t) +

+

∫

Rm
∗ ×]0,t]

[X(t)γY (ζ, s) + Y (t)γX (ζ, s)] p̃(dζ, ds) +

+

∫

Rm
∗ ×]0,t]

γX (ζ, s) γY (ζ, s) p(dζ, ds), ∀ t ≥ 0.
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In particular, if X = Y we get

X2(t) −X2(0) = 2

∫

(0,t]

X(s−)dY c(s) + 〈Xc〉(t) +

+ 2

∫

Rm
∗ ×]0,t]

X(t)γ(ζ, s) p̃(dζ, ds) +

∫

Rm
∗ ×]0,t]

γ2(ζ, s) p(dζ, ds),

for every t ≥ 0, which exactly reproduces Itô formula (3.70) for ϕ(x) = x2.
Iterating this argument, we check the validity of (3.70) for any multi-dimen-

sional polynomial function ϕ(x1, . . . , xd), and by density, for any smooth func-
tion ϕ(x).

Finally, for any smooth function satisfying (3.69) we may let r → ∞ and
ε→ 0 to conclude.

Note that we also have

X(t)Y (t) −X(0)Y (0) =

∫

(0,t]

X(s−)dY (s) +

+

∫

(0,t]

Y (s−)dX(s) + 〈X,Y 〉(t), ∀ t ≥ 0, (3.72)

i.e., in the integration by parts the optional quadratic variation [X,Y ] may
be replaced by the predictable quadratic variation 〈X,Y 〉 associated with the
whole quasi-left continuous square integrable semi-martingales X and Y. Also
for a function ϕ = ϕ(t, x), we do not need to require C2 in the variable t. Also,
when ϕ = ϕ(x), we could use a short vector notation

dϕ(X(t)) = ∇ϕ(X(t))dXc(t) + [ϕ ⋄γ p̃](·, dt)(t,X(t)) +

+
[1

2
Tr[b(t)b∗(t)∇2ϕ(x)] + [ϕ •γ π](t,X(t))

]
dt, (3.73)

for every t ≥ 0, where

[ϕ ⋄γ p̃(·, dt)](t, x) =

∫

Rm
∗

[ϕ(x+ γ(ζ, t)) − ϕ(x)] p̃(dζ, dt),

[ϕ •γ π](t, x) =

∫

Rm
∗

[ϕ(x+ γ(ζ, t)) − ϕ(x) − γ(ζ, t) · ∇ϕ(x)]π(dζ),

and ∇ and Tr[·] are the gradient and trace operator, respectively. The above
calculation remains valid for a Poisson measure not necessarily standard, i.e., the
intensity or Lévy measure has the form Π(dζ, dt) = E{p(dζ, dt)} and Π(Rm∗ ×
{t}) = 0 for every t ≥ 0. For an extended Poisson measure, the process is no
longer quasi-left continuous and the rule (3.70) needs a jump correction term,
i.e., the expression X(s) is replaced by X(s−) inside the stochastic integrals.
For instance, the reader may consult Bensoussan and Lions [6, Section 3.5, pp.
224–244] or Gikhman and Skorokhod [62, Chapter II.2, pp. 215–272] for more
details on this approach.
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Semi-martingale Viewpoint

In general, the integration by parts formula (3.71) is valid for any two semi-
martingales X and Y, and we have the following general Itô formula for semi-
martingales, e.g., Chung and Williams [25, Theorems 38.3 and 39.1, Chapter
VI, pp. 392–394], Dellacherie and Meyer [32, Sections VIII.15–27, pp. 343–352],
Jacod and Shiryaev [84, Theorem 4.57, Chapter 1, pp. 57–58].

Theorem 3.13. Let X = (X1, . . . , Xd) be a d-dimensional semi-martingale and
ϕ be a complex-valued twice-continuously differentiable function on Rd. Then
ϕ(X) is a semi-martingale and we have

ϕ(X(t)) = ϕ(X(0)) +

d∑

i=1

∫

]0,t]

∂iϕ(X(s−))dXi(s) +

+
1

2

d∑

i,j=1

∫

]0,t]

∂2ijϕ(X(s−))d〈Xc
i , X

c
j 〉(s) +

+
∑

0<s≤t

{
ϕ(X(s)) − ϕ(X(s−)) −

d∑

i=1

∂iϕ(X(s−))δX(s)
}
,

where ∂i and ∂2ij denotes partial derivatives, δX(s) = [Xi(s) − Xi(s−)] and
X(s−) is the left limit at s and Xc

i is the continuous part.

First remark that
∫

]0,t]

∂2ijϕ(X(s−))d〈Xi, Xj〉(s) =
∑

0<s≤t
∂2ijϕ(X(s−))

[
δX(s)

]2
+

+

∫

]0,t]

∂2ijϕ(X(s−))d〈Xc
i , X

c
j 〉(s),

where the integrals and series are absolutely convergent. Hence, the above
formula can be rewritten using the predictable quadratic variation 〈Xi, Xj〉, i.e.,
the predictable processes obtained via the Doob-Meyer decomposition when X is
locally square integrable or in general the predictable projection of the optional
quadratic variation [Xi, Xj ].

Let X be a (special) quasi-left continuous semi-martingale written in the
canonical form

X(t) = X(0) +Xc(t) +A(t) +

∫

Rd
∗×]0,t]

zν̃(dz, ds), ∀t ≥ 0,

where Xc is the continuous (local-martingale) part, A is the predictable lo-
cally bounded variation (and continuous) part, and ν̃ is the compensated (local-
martingale) random measure associated with the integer-valued measure ν = νX
of the process X with compensator νp. Then

dXi(s) = dXc
i (s) +

∫

Rd
∗

ziν̃(dz, ds),
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so that

d∑

i=1

∫

]0,t]

∂iϕ(X(s−))dXi(s) =
d∑

i=1

∫

]0,t]

∂iϕ(X(s−))dXc
i (s) +

+

d∑

i=1

∫

Rd
∗×]0,t]

zi∂iϕ(X(s−))ν̃(dz, ds),

and the jump part can be written as

∑

0<s≤t

[
ϕ(X(s)) − ϕ(X(s−)) −

d∑

i=1

∂iϕ(X(s−))δX(s)
]

=

=

∫

Rd
∗×]0,t]

[
ϕ(X(s−) + z) − ϕ(X(s−)) −

d∑

i=1

zi∂iϕ(X(s−))
]
ν(dz, ds),

for every t ≥ 0. Moreover, because νp(Rm∗ × {t}) = 0 for any t ≥ 0, we can
substitute X(s−) for X(s) in the above stochastic integral. Thus, combining
the above jump parts we see that the expression (3.70) of Theorem 3.12 re-
mains valid for any quasi-left continuous integer measure ν(dz, ds) with a local-
martingale measure ν̃(dz, ds) and compensator νp(dz, ds), which replaces the
deterministic product measure π(dz) × ds. The case of interest for us is when
the predictable compensator measure νp(dz, ds) has a density with respect to
the Lebesgue measure, i.e.,

νp(B, ]0, t]) =

∫ t

0

M(B, s)ds, ∀B ∈ B(Rd∗), t ≥ 0,

where the intensity kernel M is such that for every fixed B, the function s 7→
M(B, s) defines a predictable process, while B 7→ M(B, s) is a (random) measure
for every fixed s. It is clear that Itô formula is suitable modified.

• Remark 3.14. In particular, Theorem 3.13 can be formulated as follows. Let
X = (X1, . . . , Xd) be a semi-martingale, M be local-martingale and g, a and M

be local integrable predictable processes such that

X(t) −X(0) −M(t) =

∫ t

0

g(s)ds, ∀t ≥ 0,

〈M c
i ,M

c
j 〉(t) =

∫ t

0

aij(s)ds, ∀t ≥ 0,

νpM (B, ]0, t]) =

∫ t

0

M(B, s)ds, ∀B ∈ B(Rd∗), t ≥ 0,

where M c is the continuous part of M and νpM is the compensator of the integer
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measure νM associated with M. Then

ϕ(X(t), t) = ϕ(X(0), 0) +

∫ t

0

[
(∂s +AX)ϕ(X(s−), s)

]
ds+

+

d∑

i=1

∫ t

0

∂iϕ(X(s−), s)dM c(s) +

+

∫

Rd
∗×]0,t]

[
ϕ(X(s−) + z, s) − ϕ(X(s−), s)

]
ν̃M (dz, ds),

where

(∂s +AX)ϕ(·, s) = ∂sϕ(·, s) +

d∑

i=1

gi(s)∂iϕ(·, s) +
1

2

d∑

i,j=1

aij(s)∂
2
ijϕ(·, s) +

+

∫

Rd
∗

[
ϕ(· + z, s) − ϕ(·, s) −

d∑

i=1

zi∂iϕ(·, s)
]
M(dz, s),

for every bounded function ϕ(x, t) in Rd × [0,∞), which is twice continuously
differentiable in x, once continuously differentiable in t with all derivatives
bounded. In general, if the semi-martingale X = V + M, where V is a con-
tinuous process with local bounded variation and M a locally square-integrable
martingale then φ(X(t)) = φ(X(0)) + Vφ(t) +Mφ(t) is a semi-martingale with

Vφ(t) =

∫ t

0

∇φ(X(s−)) · dV (s) +
1

2

∫ t

0

Tr
(
D2φ(X(s−))d〈M c〉(s)] +

+

∫

Rd
∗×]0,t]

[
φ(X(s−) + z) − φ(X(s−)) − z ·∇φ(X(s−))

]
νpM (dz, ds)

and

Mφ(t) =

∫ t

0

∇φ(X(s−)) · dM c(s) +

+

∫

Rd
∗×]0,t]

[
φ(X(s−) + z) − φ(X(s−))

]
ν̃M (dz, ds),

for any bounded twice continuously differentiable φ with all derivative bounded.
This is usually referred to as the Itô formula for semi-martingales, which can
be written as above, by means of the associated integer measure, or as in The-
orem 3.13.

• Remark 3.15. In general, if {x(t) : t ≥ 0} is a real-valued predictable process
with local bounded variation (so x(t+) and x(t−) exist for every t) and {y(t) :
t ≥ 0} is a (cad-lag) semi-martingale then we have

d
(
x(t)y(t)

)
= x(t)dy(t) + y(t−)dx(t),

d[x, y](t) =
(
x(t+) − x(t−)

)
dy(t),

d|y(t)|2 = 2y(t−)dy(t) + d[y, y](t),
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with the above notation. By the way, note that dx(t) = dx(t+) and x(t)dy(t) =
x(t−)dy(t).

Approximations and Comments

A double sequence {τm(n) : n,m ≥ 0} of stopping times is called a Rie-
mann sequence if τm(0, ω) = 0, τm(n, ω) < τm(n + 1, ω) < ∞, for every
n = 0, 1, . . . , Nm(ω) and as m→ 0 we have

sup
n

{τm(n+ 1, ω) ∧ t− τm(n, ω) ∧ t} → 0, ∀ t > 0,

for every ω, i.e., the mesh or norm of the partitions or subdivisions restricted
to each interval [0, t] goes to zero. A typical example is the dyadic partition
τm(n) = n2−m, m = 1, 2, . . . , and n = 0, 1, . . . , 2m, which is deterministic. We
have the following general results:

Theorem 3.16 (Riemann sequence). Let X be a semi-martingale, Y be a cad-
lag adapted process and {τm(n) : n,m ≥ 0} be a Riemann sequence. Then the
sequence of Riemann-Stieltjes sums, m ≥ 0,

∑

n

Y (τm(n)−)
(
X(τm(n+ 1) ∧ t) −X(τm(n) ∧ t)

)

converges in probability, uniformly on each compact interval, to the stochastic
integral

∫

]0,t]

Y (s−)dX(s).

Moreover, if Y is also a semi-martingale then the optional process

t 7→
∑

n

(
X(τm(n+ 1) ∧ t) −X(τm(n) ∧ t)

)
×

×
(
Y (τm(n + 1) ∧ t) − Y (τm(n) ∧ t)

)

converges in probability, uniformly on each compact interval, to the optional
quadratic covariation process [X,Y ].

Proof. For instance to prove the first convergence, it suffices to see that the
above Riemann-Stieltjes sums are equal to the stochastic integral

∫

]0,t]

Ym(s)dX(s),

where Ym(s) = Y (τm(n)) for any s in the stochastic interval ]]τm(n), τm(n+ 1)]],
is clearly a predictable left continuous process for each m ≥ 0.

The proof of the second convergence is essentially based on the integration by
part formula (3.71), which actually can be used to define the optional quadratic
covariation process.

For instance, a full proof can be found in Jacod and Shiryaev [84, Proposition
4.44 and Theorem 4.47, Chapter 1, pp. 51–52].
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The estimate (3.52) of the previous section for for Poisson integral, namely,
for any p in (0, 2] there exists a positive constant C = Cp (actually Cp =
(4−p)/(2−p) if 0 < p < 2 and C2 = 4) such that for any adapted (measurable)
process f(ζ, s) (actually, the predictable version is used) we have

E
{

sup
0≤t≤T

∣∣∣
∫

Rm
∗ ×]0,t]

f(ζ, s)p̃(dζ, ds)
∣∣∣
p}

≤

≤ C E
{[∫ T

0

ds

∫

Rm
∗

|f(ζ, s)|2π(dζ)
]p/2}

, (3.74)

for every stopping time T. The case p > 2 is a little more complicate and involves
Itô formula. Indeed, for the sake of simplicity let us consider the one-dimensional
case, use Itô formula with the function x 7→ |x|p and the process

X(t) =

∫

Rm
∗ ×]0,t]

f(ζ, s)ν̃(dζ, ds), ∀t ≥ 0

to get

E{|X(t)|p} = E
{∫ t

0

ds

∫

Rm
∗

[
|X(s) + f(ζ, s)|p − |X(s)|p −

− p |X(s)|p−2X(s)f(ζ, s)
]
π(dζ)

}
= p(p− 1) ×

× E
{∫ t

0

ds

∫ 1

0

(1 − θ)dθ

∫

Rm
∗

|X(s) + θf(ζ, s)|p−2|f(ζ, s)|2π(dζ)
}
.

The integrand is bounded as follows

|X(s) + θf(ζ, s)|p−2|f(ζ, s)|2 ≤ 2p−2
[
|X(s)|p−2|f(ζ, s)|2 + |f(ζ, s)|p

]
,

and by means of the Doob’s maximal inequality, we deduce

E{ sup
0≤t≤T

|X(t)|p} ≤ C̃p

[
E
{∫ T

0

ds

∫

Rm
∗

|f(ζ, s)|pπ(dζ)
}

+

+ E
{(

sup
0≤t≤T

|X(t)|p−2
)(∫ T

0

ds

∫

Rm
∗

|f(ζ, s)|2π(dζ)
)}]

,

for some constant C̃p depending only on p. Hence, the simple inequality for any
a, b, ε ≥ 0,

ab ≤ p− 2

p
(εa)p/(p−2) +

2

p
(
a

ε
)p/2

and the Hölder inequality yield the following variation of (3.74): for any p > 2
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there exists a constant C = Cp depending only on p such that

E
{

sup
t≤T

∣∣∣
∫

Rm
∗ ×]0,t]

f(ζ, s)p̃(dζ, ds)
∣∣∣
p}

≤ CE
{∫ T

0

ds

∫

Rm
∗

|f(ζ, s)|pπ(dζ)
}

+

+ E
{[∫ T

0

ds

∫

Rm
∗

|f(ζ, s)|2π(dζ)
]p/2}

, (3.75)

for any adapted (measurable) process f(ζ, s) and any stopping time T.

• Remark 3.17. These estimates for the moments of a stochastic integral can
be partially generalized to some other type of integral, e.g., let M be a d-
dimensional continuous square integrable martingale with predictable quadratic
covariation process 〈Mi,Mj〉 = dℓ if i = j and 〈Mi,Mj〉 = 0 if i 6= j, where ℓ is
a continuous nondecreasing adapted process satisfying

E{ℓ(t) − ℓ(s) | F(s)} ≤ h(t− s),

for every t ≥ s ≥ 0 and for some monotone function h form [0,∞) into itself.
Using the integration by part formula

[ℓ(t) − ℓ(s)]k = k

∫ t

s

[ℓ(t) − ℓ(r)]k−1 dℓ(r)

and by induction on k, we can show that

E
{

[ℓ(t) − ℓ(s)]k | F(s)
}
≤ k! [h(t− s)]k,

for every t ≥ s ≥ 0 and any k ≥ 1. Similarly, by means of Itô formula, the sup-
martingale inequality and by induction, we can prove that for every positive
integer k there exists a constant C = C(k, d), depending only on k and the
dimension d, such that

E
{

sup
s≤r≤t

|M(r) −M(s)|k | F(s)
}
≤ C(k, d) [h(t− s)]k/2,

for every t ≥ s ≥ 0 and any k ≥ 1.

It is clear that the above Itô calculus can be extended to non deterministic
smooth functions, i.e., predictable processes ϕ(t, x, ω) which are continuously
differentiable in t and twice-continuously differentiable in x. The rule given
in this section is unchanged. As we may expect, if for each x the process
t 7→ ϕ(t, x, ω) is a local-martingale (which has not bounded variation paths)
then Itô calculus applies and another bracket [·, ·] with respect to this process
should appear.

• Remark 3.18. In a given complete filtered space, an adapted increasing (lo-
cally integrable) cad-lag process A is called natural if for every bounded (not
necessarily continuous) martingale M we have

∫

[0,t]

M(s)dA(s) =

∫

[0,t]

M(s−)dA(s), ∀ t ≥ 0.
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This is equivalent to the concept of predictable process. On the other hand,
a quasi left continuous (increasing or martingale) cad-lag process is also called
regular. It turns out that an adapted increasing cad-lag process is continuous
if and only if it is natural and regular. The reader is referred to the books
Kallenberg [88] and Yeh [181] for a comprehensive treatment.

• Remark 3.19. The operational Itô formula is better understood in its simplest
product form, i.e., let X and Y be two d-dimensional Itô processes with jumps
(see Definition 3.11), namely

dX(t) = aX (t)dt+ bX (t)dw(t) +

∫

Rm
∗

γX (ζ, t)p̃(dζ, dt), ∀t ≥ 0,

dY (t) = aY (t)dt+ bY (t)dw(t) +

∫

Rm
∗

γY (ζ, t)p̃(dζ, dt), ∀t ≥ 0,

then

d
(
Xi(t)Yj(t)

)
= Xi(t−)dYj(t) +

(
dXi(t)

)
Yj(t−) +

+
∑

k

bXik(t)bYjk(t)dt+

∫

Rm
∗

γX

i (ζ, t)γY

j (ζ, t)p(dζ, dt),

for any t ≥ 0. Note the independent role of the diffusion and jumps coefficients.
Moreover, the last (jump) integral is not a pure stochastic integral, it is with
respect to p(dζ, dt) which can be written as p̃(dζ, dt) + π(dζ)dt. We can go
further and make explicit each term, i.e.,

Xi(t)dYj(t) = Xi(t−)dYj(t) = Xi(t)aY

j (t)dt+Xi(t)bYj (t)dw(t) +

+

∫

Rm
∗

Xi(t)γY

j (ζ, t)p̃(dζ, dt),

where Xi(t) goes inside the stochastic integral indistinctly as either Xi(t) or it
predictable projection Xi(t−).

Similarly to above Remark 3.19, a operational (generalized) Itô formula can
be written for processes driven by local-martingales. Let M = M c + Md be
a quasi-left continuous local square-integrable martingale in Rn written as the
sum of a continuous local-martingale {M c

i : i = 1, . . . , n} with predictable
variation process {〈M c

i 〉 : i = 1, . . . , n}, satisfying 〈M c
i ,M

c
j 〉 = 0 if i 6= j,

and a purely discontinuous local-martingale {Md
i : i = 1, . . . , n} which yields

an integer measure ν
M

with compensator νp
M

and (local) martingale measure
ν̃
M

= ν
M

− νp
M
. Note that

∫

]0,t]

α(s)dMd
i (s) =

∫

Rd×]0,t]

α(s)ζiν̃M (dζ, ds).

Also let {V ci : i = 1, . . . , d} be a local bounded variation continuous process,
non-anticipating with respect to M. Now, if X and Y are two d-dimensional
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processes of the form

dX(t) = aX (t)dV c(t) + bX (t)dM c(t) +

∫

Rm
∗

γX (ζ, t)ν̃
M

(dζ, dt), ∀t ≥ 0,

dY (t) = aY (t)dV c(t) + bY (t)dM c(t) +

∫

Rm
∗

γY (ζ, t)ν̃
M

(dζ, dt), ∀t ≥ 0,

then

d
(
Xi(t)Yj(t)

)
= Xi(t−)dYj(t) +

(
dXi(t)

)
Yj(t−) +

+
∑

k

bXik(t)bYjk(t)d〈M c
k〉(t) +

∫

Rm
∗

γX

i (ζ, t)γY

j (ζ, t)ν
M

(dζ, dt),

for any t ≥ 0. In particular, in term of the purely jumps (local) martingale Md
k ,

i.e., γi(ζ, t) =
∑
k cik(t)ζk for both processes, we have

∫

Rm
∗

γX

i (ζ, t)γY

j (ζ, t)ν
M

(dζ, dt) =

=
1

2

∑

k,ℓ

∫

]0,t]

(
cXik(s)cYjℓ(s) + cXiℓ(s)c

Y

jk(s)
)
d[Md

k ,M
d
ℓ ](s),

where [Md
k ,M

d
ℓ ] is the optional quadratic (matrix) variation, i.e.,

[Md
k ,M

d
ℓ ](t) =

∑

s≤t

(
Md
k (s) −Md

k (s−)
)(
Md
ℓ (s) −Md

ℓ (s−)
)
,

Hence, if cXik and cYjℓ are cad-lag then

∫

Rm
∗

γX

i (ζ, t)γY

j (ζ, t)ν
M

(dζ, dt) =
1

2

∑

k,ℓ

∑

0<s≤t

(
cXik(s−)cYjℓ(s−) +

+ cXiℓ(s−)cYjk(s−)
)(
Md
k (s) −Md

k (s−)
)(
Md
ℓ (s) −Md

ℓ (s−)
)
.

Moreover, if each coordinate is orthogonal to each other (i.e., [Md
i ,M

d
j ] = 0, for

i 6= j), equivalent to the condition that there are no simultaneous jumps of Md
i

and Md
j , then only the terms k = ℓ and the 1/2 is simplified. Clearly, there is

only a countable number of jumps and

E
{ ∑

0<s≤t∧τn

[(
cXik(s−)

)2
+
(
cYjk(s−)

)2](
Md
k (s) −Md

k (s−)
)2}

<∞,

for every t > 0, where {τn} is some sequence the stopping times increases to ∞
almost surely, i.e., the above series is absolutely convergence (localized) in the
L2-sense. If cXik or cYjk is not cad-lag, then a predictable version should be used
in the series. Furthermore, if the initial continuous martingale M c do not have
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orthogonal components then we may modify the drift and reduce to the above
case, after using Gram-Schmidt orthogonalization procedure, or alternatively,
we have a double (symmetric) sum,

1

2

∑

k,ℓ

[bXik(t)bYjℓ(t) + bXiℓ(t)b
Y

jk(t)]d〈M c
k ,M

c
ℓ 〉(t)

instead of the single sum in k. On the other hand, to include discontinuous
process V or a non-necessarily quasi-left continuous local-martingale, we need
to carefully consider possible deterministic jumps. Indeed, denoting by δ the
jump operator, i.e., δX(t) =

(
X(t)−X(t−)

)
for a cad-lag process X, the relation

δ
(
Xi(t)Yj(t)

)
=

(
δXi(t)

)
Yj(t−) +Xi(t−)

(
δYj(t)

))
+
(
δXi(t)

)(
δYj(t)

)

shows the general expression

d
(
Xi(t)Yj(t)

)
= Xi(t−)dYj(t) +

(
dXi(t)

)
Yj(t−) +

+
∑

k

bXik(t)bYjk(t)d〈M c
k〉(t) + d

( ∑

s∈]0,t]

(
δXi(s)

)(
δYj(s)

))
,

which makes sense as a stochastic integral after compensating the jumps. Since
the jumps of Xi(t) or Xi(t) are due only to V d(t) =

∑
0<s≤t δV (s) and Md(t),

we have

(
δXi(t)

)(
δYj(t)

)
=

=
∑

k,ℓ

(
aX

ik(s)δVk(s) + cXik(s)δMd
k (s)

)(
aY

jℓ(s)δVℓ(s) + cXjℓ(s)δM
d
ℓ (s)

)
.

Hence, without loss of generality, it seems better to take V = V c continuous
and put all jumps into the integer measure ν, which may not be quasi-left
continuous. This is the case of a special semi-martingale S(t), S(0) = 0, written
in its canonical form as V +M c+Md, where V = V c if S is quasi-left continuous.
Essentially, this discontinuity (of V ) imposes (implicitly) the condition that the
drift must be continuous at each predictable jump (jumps non switchable to Md,
e.g., deterministic jumps), otherwise, the integrability of the drift with respect
to a discontinuous V may be an issue, i.e., in the Stieltjes-Riemann sense may
be not integrable and in the Stieltjes-Lebesgue sense may yield distinct values,
depending on whether a(s), a(s+) or a(s−) is used. This never arrive in the
stochastic integral.

• Remark 3.20. Let X be a 1-dimensional Itô processes with jumps (see Defi-
nition 3.11), namely

dX(t) = a(t)dt+ b(t)dw(t) +

∫

Rm
∗

γ(ζ, t)p̃(dζ, dt), ∀t ≥ 0,

with X(0) = 0, and such that almost surely we have γ(ζ, t) > −1 or equivalently
inf

{
δX(t) : t > 0

}
> −1, where δX(t) = X(t) −X(t−) is the jump at time t.
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Based on the inequalities r− ln(1 + r) ≥ 0 if r > −1 and r− ln(1 + r) ≤ r2/2 if
r ≥ 0, we deduce that the infinite product

∏
0≤s≤t

[
1 + δX(s)

]
e−δX(s) is almost

surely finite and positive. Moreover, for every t ≥ 0, either the exponential
expression

EX(t) = exp
{
X(t) − 1

2

∫ t

0

n∑

k=1

|bk(s)|2ds
} ∏

0≤s≤t

[
1 + δX(s)

]
e−δX(s),

or the log-differential expression

d ln
(
EX(t)

)
=

[
a(t) − 1

2
|b(t)|2

]
dt+

∫

Rm
∗

ln
(
1 + γ(ζ, t)

)
p̃(dζ, dt) +

+

∫

Rm
∗

[
ln
(
1 + γ(ζ, t)

)
− γ(ζ, t)

]
π(dζ)

defines a 1-dimensional Itô processes with jumps satisfying

dEX(t) = EX(t−) dX(t),

which is called exponential martingale. Recall that p̃ = −π so that if γ has a
finite π-integral (i.e., the jumps are of bounded variation) then

∫

Rm
∗

ln
(
1 + γ(ζ, t)

)
p̃(dζ, dt) +

∫

Rm
∗

[
ln
(
1 + γ(ζ, t)

)
− γ(ζ, t)

]
π(dζ) =

=

∫

Rm
∗

ln
(
1 + γ(ζ, t)

)
p(dζ, dt) −

∫

Rm
∗

γ(ζ, t)π(dζ),

as formally expected. For instance, see Applebaum [1, Chapter 5, pp 246-291]
or Jacod and Shiryaev [84, Section III.3, pp. 152–166].

3.3.3 Non-Anticipative Processes

The concept of non-anticipative or non-anticipating is rather delicate, and usu-
ally it means adapted or strictly speaking, if a process is adapted then it should
be non-anticipative. For instance, a random process x is called non-anticipative
with respect to a Markov process y if the past of x is independent of the future
of y given the present of y, this means that given a realization y of a Markov
process in some probability space (Ω,F , P ) with values in a topological space
Y then any process x with values in some topological space X is called non-
anticipative with respect to y if for any bounded Borel measurable functions f,
g and h and times s1 < · · · < sn ≤ t ≤ t1 < t2 < · · · < tn, we have

E
{
f(xs1 , . . . , xsn) g(yt)h(yt1 , . . . , ytn)

}
=

= E
{
E{f(xs1 , . . . , xsn) | yt} g(yt)E{h(yt1 , . . . , ytn) | yt}

}
,

where n is arbitrary. Note that the three functions f, g and h may be taken
only bounded continuous, as long as the Baire σ-algebra (the one generated
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by continuous functions on X and Y ) and the Borel σ-algebra coincide, e.g., if
(X, d) is a metric space then F = {x ∈ X : d(x,X) = infu∈F d(x, u) = 0} for
any closed subset F of X, so x 7→ d(x, F ) is continuous, and so both σ-algebras
coincide. Since Jakubowski topology is weaker that a metrizable topology, the
Baire and the Borel σ-algebras coincide in this case too. Usually, X and Y are
some Rn and the processes x and y are at least stochastically right continuous.
It is convenient to take a cad-lag version of x and y if possible.

On the other hand, if y is a random process with independent increments
and y0 = 0, then a non-anticipative process x is a process such that the past
of x is independent of the increments of y given the present of y, i.e, for any
bounded Borel measurable functions f, g and h and times s1 < · · · < sn ≤ t ≤
t1 < t2 < · · · < tn, we have

E
{
f(xs1 , . . . , xsn) g(yt)h(yt2 − yt1 , . . . , ytn − ytn−1

)
}

=

= E
{
E{f(xs1 , . . . , xsn) | yt} g(yt)E{h(yt2−yt1 , . . . , ytn−ytn−1

) | yt}
}
,

where n is arbitrary. In any case, note that (contrary to the adapted case) if x1
and x2 are non-anticipative then the cartesian product (x1, x2) is not necessarily
non-anticipative. Recall that y is a process of independent increments (i.e.,
y(t1), . . . , y(tn) are independent of y(s2) − y(s1), for any t1 < · · · < tn < s1 <
s2), if and only if y = m + a, where m is a semi-martingale (and a process
of independent increments) and a is a deterministic cad-lag process (e.g., see
Jacod and Shiryaev [84, Theorem II.5.1, p. 114]).

Perhaps a better concept is the following:

Definition 3.21. For a given a process y in a probability space (Ω,F , P ) we
define the non-anticipative filtration A = {A(t) : t ≥ 0}, where A(t) is the
σ-algebra composed by all sets in F which are independent of yt1 −yt0 , . . . ytn −
ytn−1 , for any t ≤ t0 < t1 < · · · < tn, and n ≥ 1. So a measurable process x is
non-anticipative with respect to y if it is adapted to A, i.e., if for any bounded
Borel measurable functions f and g we have

E{f(xs1 , . . . , xsn) g(yt1 − yt0 , . . . , ytn − ytn−1
)} =

= E{f(xs1 , . . . , xsn)}E{g(yt1 − yt0 , . . . , ytn − ytn−1)},

for any times s1 < · · · < sn ≤ t0 < t1 < · · · < tn.

Clearly, once the non-anticipative filtration A has been defined, the concept
of a non-anticipative process reduces to being adapted to the non-anticipative
filtration A. However, a good part for this concept is the fact of being a finite-
dimensional property, i.e., if x′ and y′ two processes in another probability space
(Ω′,F ′, P ′) with the same (joint) finite-dimensional distributions as x and y then
x′ is also non-anticipative with respect to y′.

Alternatively, if y is a random process with orthogonal (or uncorrelated)
increments and y0 = 0, then any random process x which is orthogonal (or
uncorrelated) to the increments of y could be called weakly non-anticipative,
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i.e., if

E
{
xs · (yt2 − yt1)

}
= E{xs} · E{(yt2 − yt1)},

for any 0 ≤ s ≤ t1 < t2, where the · denotes the scalar product. Certainly, an
orthogonal process x is weakly non-anticipative if xt belongs to the closed linear
span of the variables ys1 , . . . , ysn , with 0 ≤ s1 < . . . < sn ≤ t. All this means
that any information on x does not help to gain some extra information on the
characteristics of y. However, the following concept seems better for martingales.

Recall that for a Rd-valued stochastic process y, the martingale property
reads as follows:

E
{(
y(t) − y(s)

)
f
(
y(s1), . . . , y(sn)

)}
= 0,

for any bounded continuous functions f and any times s1 < · · · < sn ≤ s ≤
t. This is a property finite-dimensional (i.e., any other stochastic process y′

satisfies the above martingale properties provided E
{
f
(
y(s1), . . . , y(sn)

)}
=

E′{f
(
y′(s1), . . . , y′(sn)

)}
, for any bounded continuous functions f and any times

s1 < · · · < sn), which makes sense for processes satisfying E{|y(t)|} < ∞ for
every t ≥ 0 (or for a time-localization, as in the case of local martingales).
However, most of the useful results for martingale processes requires a separable
martingale, and separability is not finite-dimensional property.

Thus, of particular interest for us is the case when y is a (local) martingale.

Definition 3.22. Let y be a Rd-valued (separable) martingale (with zero mean)
in some probability space (Ω,F , P ). A process x is called weakly non-anticipative
with respect to y if for any bounded continuous functions f and g and any times
s1 < · · · < sn ≤ s ≤ t and s′1 < · · · < s′n ≤ s, we have

E
{(
y(t) − y(s)

)
f
(
x(s1), . . . , x(sn)

)
g
(
y(s′1), . . . , y(s′n)

)}
= 0.

If y is a martingale relative to a filtration F = (Ft : t ≥ 0) then we say that x is
weakly non-anticipative with respect to y (and F) if for any bounded continuous
functions f and any times s1 < · · · < sn ≤ s ≤ t, we have

E
{(
y(t) − y(s)

)
f
(
x(s1), . . . , x(sn)

)
zs
}

= 0.

where zs is any bounded Fs-measurable function. Clearly, this notion extends to
local-martingales or semi-martingales. This means that the stochastic process
x does not change the martingale property of y.

It is clear that weakly non-anticipative is a finite-dimensional distribution
property when the filtration is not mentioned, i.e., if x′ and y′ two processes in
another probability space (Ω′,F ′, P ′) with the same finite-dimensional distribu-
tions and y′ being integrable, then y is a martingale and x is non-anticipative
with respect to y if and only if then x′ is non-anticipative with respect to y′.
Also, if F(x, t) denotes the σ-algebra generated by the random variables x(s),
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0 ≤ s ≤ t, then x is non-anticipative with respect to y if F(x, t) ∨ F(y, t) is or-
thogonal to the increments y(b)−y(a), for any b > a ≥ t, where F(x, t)∨F(y, t)
is the minimal σ-algebra containing both F(x, t) and F(y, t).

Recall that a general (local) martingale is a (local) integrable process y
satisfying the martingale property, namely,

E{y(t) | F(y, s)} = y(s), ∀t ≥ s ≥ 0,

or equivalently

E
{(
y(t) − y(s)

)
f
(
y(s1), . . . , y(sn)

)}
= 0, ∀0 ≤ s1 < · · · < sn ≤ s < t,

and any arbitrary bounded continuous function f. Note that when the prefix
general (or separable) is used, we mean that no particular version (or that a
separable version) has been chosen.

Thus, if x is an adapted process to a martingale y relative to the filtration
F then Ft contains F(x, t) ∨F(y, t) and x results non-anticipative with respect
to y and F. Note that if x1 and x2 are two weakly non-anticipative processes
then the cartesian product (x1, x2) is not necessarily weakly non-anticipative,
clearly, this is not the case for adapted processes. Conversely, if x is weakly
non-anticipative with respect to a general (local) martingale y we deduce that
x is certainly adapted to F(t) = F(x, t) ∨ F(y, t) and also that y satisfies the
martingale property relative to F(t), instead of just F(y, t). Moreover, if y is
cad-lag then the martingale property holds for F+(t) = ∩ε>0F(t+ ε).

Now, if we assume that y is a general martingale (non necessarily cad-lag)
with t 7→ E{y(t)} cad-lag (which is a finite-dimensional distribution property)
then there is a cad-lag version of y, still denoted by y, where the above argu-
ment applies. Therefore, starting with a process x weakly non-anticipative with
respect to y (satisfying the above conditions) we obtain a filtration {F+(t) :
t ≥ 0} such that x is adapted and y is a (local) martingale. If the function
t 7→ E{y(t)} is continuous then the process y has also a cag-lad version (left
continuous having right-hand limit) which is denoted by y−, with y−(0) = y(0)
and y−(t) = limε→0 y(t−ε), t > 0. In this case, x is also weakly non-anticipative
with respect to y−, since any version of y can be used.

Recall that with the above notation, a process x is progressively measurable
if (t, ω) 7→ x(t, ω), considered as defined on [0, T ]×Ω is measurable with respect
to the product σ-algebra B([0, T ]) × F(x, T ) or B([0, T ]) × F(T ), if the family
of increasing σ-algebra {F(t) : t ≥ 0} is a priori given. Progressively mea-
surability and predictability are not a finite-dimensional distribution property,
but for a given filtration and assuming that x is adapted and stochastically left
continuous, we can obtain a predictable version of x. Similarly, if x is adapted
and stochastically right continuous then there exists a progressively measurable
version.

Suppose that x and y are two weakly non-anticipative processes with respect
to M, which is a cad-lag square-integrable martingale. Let Mc and νM be their
associated continuous part and integer measure, with predictable covariance
ℓM = 〈Mc〉, martingale measure ν̃M and predictable jump compensator νM,p =
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πMd̺M, where πM is a Levy measure and ̺M is a predictable continuous increasing
process. If

P
{∫ t

0

|x(s)|2dℓM(s) <∞
}

= 1

and

P
{∫ t

0

d̺M(s)

∫

Rm
∗

|y(ζ, s)|2πM(dζ) <∞
}

= 1

then the stochastic integrals

∫ t

0

x(s)dMc(s) and

∫

Rm
∗ ×(0,t]

y(ζ, s)ν̃M(dζ, ds)

can be defined. Now, assume that in some other probability space there are pro-
cesses (x′, y′,M ′, ℓ′

M
, ̺′

M
) having the same finite-dimensional distribution, where

M ′ is cad-lag, ℓ′
M

and ̺′
M

continuous (and increasing), and x and y are almost
surely integrable with respect to dℓ′

M
and dπMd̺′

M
, respectively. Thus, M ′ is

a cad-lag martingale and (x, y, ℓ′
M
, ̺′

M
) is weakly non-anticipative with respect

to M ′, hence, for a suitable filtration F the process M ′ remains a martingale
and x and y adapted processes, ℓ′

M
and ̺′

M
are predictable processes. Then the

associate continuous martingale M ′
c and integer measure ν′

M
have predictable

covariance 〈Mc〉 = ℓ′
M

and predictable jump compensator ν′
M’,p = πMd̺′

M
, where

ℓ′
M

and d̺′
M

are continuous. Hence, the stochastic integrals

∫ t

0

x′(s)dM ′
c(s) and

∫

Rm
∗ ×(0,t]

y′(ζ, s)ν̃M
′(dζ, ds)

are defined and have the same finite-dimensional distributions. In this sense,
the stochastic integral are preserved if the characteristics of the integrand and
integrator are preserved.

3.3.4 Functional Representation

First we recall a basic result (due to Doob) about functional representation, e.g.,
see Kallenberg [88, Lemma 1.13, pp. 7-8]. Given a probability space, let b and
m be two random variables with values in B and M, respectively, where (B,B)
is a Borel space (i.e., a measurable space isomorphic to a Borel subset of [0, 1],
e.g., a Polish space) and (M,M) is a measurable space. Then b is m-measurable
(i.e., measurable with respect to the σ-algebra generated by m) if and only if
there exists a measurable function h from M into B such that b = h(m).

In general, a Wiener-Poisson space (Ω,F , P,Ft, w(t), ν̃(dζ, dt) : ζ ∈ Rm∗ , t ≥
0), with Lévy measure π(·) is composed by a complete filtered probability
space (Ω,F , P,Ft : t ≥ 0), the stochastic process (w(t) : t ≥ 0) is a n-
dimensional (standard) Wiener space and (ν(B, ]0, t]) : B ∈ Rm∗ , t ≥ 0) is an
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independent (standard) Poisson measure with (intensity) Lévy measure π(B) =
E{ν(B, ]0, t])}/t, which satisfies

∫

Rm
∗

|ζ|2
1 + |ζ|π(dζ) <∞,

with martingale measure ν̃(B, ]0, t]) = ν(B, ]0, t])−tπ(B). This martingale mea-
sure ν̃ is identified with the Rm-valued (Poisson) compensated-jump process

p̃(t) =

∫

Rm
∗ ×]0,t]

ζν̃(dζ, ds), t ≥ 0,

in the sense that given the Poisson integer measure ν we obtain the Poisson
martingale measure ν̃, which yields the Poisson compensated-jump process p̃,
and conversely, starting from a Poisson compensated-jump process p̃ we may
define a Poisson integer measure

ν(B, ]0, t]) =
∑

0<s≤t
✶{p̃(s)−p̃(s−)∈B},

which yields the Poisson martingale measure ν̃. Thus, only the p and p̃ is used
instead of ν and ν̃, i.e., the Poisson jump-compensated process p̃ and the Poisson
martingale measure p̃ are used indistinctive, and differentiated from the context.

• Remark 3.23. Using p̃ instead of ν̃ in the setting of the stochastic integral
results in an integrand of the form

γi(ζ, t) =
∑

j

γ̃i(t)ζj ,

i.e., particular cases, but sufficiently general for all considerations.

It should be clear that a Wiener-Poisson space could be called a Gauss-
Poisson space or a Lévy space since ℓ = w + p̃ is a (centered) Lévy process,
where w is its continuous or Gaussian part and p̃ is its purely jumps or Poisson
part. We prefer to emphasize the fact that a Wiener process and a Poisson
measure are the driven objects. Recalling that any continuous martingale is
orthogonal to any purely discontinuous martingale (with respect to a common
filtration), we deduce that the processes φ(w) − φ(0) and ψ(p̃) − E{ψ(p̃)} are
orthogonal martingales for any smooth functions φ and ψ, i.e., w and p̃ (or ν)
are independent. Then, as long as the filtration F = (Ft : t ≥ 0) is given and
w, p̃ (or ν) are martingales, the independence of the Wiener process and the
Poisson measure is granted.

As mentioned early, the canonical Wiener-Poisson measure P is defined on
canonical sample space

Cn × Dm = C([0,∞),Rn) ×D([0,∞),Rm)

as having characteristic measure

E
{

exp
[
i ξ · x(t)

]}
= exp

{
− t

[ |ξ1|2
2

+

∫

Rm
∗

(
1 − ei ξ2·ζ + i ξ2 · ζ

)
π(dζ)

]}
,
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for every t ≥ 0 and ξ = (ξ1, ξ2) in Rn × Rm, where x(t) is the projection (or
evaluation) map from Cn × Dm into Rn × Rm.

The canonical sample space Cn × Dm is a Polish space (with the locally
uniform convergence in the first variable and the Skorokhod topology in the
second variable) and a probability measure is then defined on the Borel σ-algebra
B(Cn × Dm) which coincides with the σ-algebra generated by the projections,
i.e., F0

∞ = σ(xt : t ≥ 0). Also, we have the (uncompleted) filtration F0 = {F 0
t :

t ≥ 0} generated by the projection maps x, i.e., F0
t = σ(xs : 0 ≤ s ≤ t). This

filtration induces a predictable σ-algebra P0 on R+ × Cn × Dm, i.e., P0 is the
σ algebra generated by the sets of the form {0} × F0 or (s, t] × Fs, for any
Fs in F0

s , t > s ≥ 0. Because we are working on the sample space of cad-lag
processes, the predictable σ-algebra P0 is not the same as the optional σ-algebra
O0 (also called well-measurable), generated by sets of the form {0} × F0 and
[s, t) × Fs for any Fs in F0

s , any t > s ≥ 0. Similarly, the σ-algebra M0 of
progressively measurable sets is composed by all subsets A of Ω × [0,∞) such
that A ∩ (Ω × [0, t]) belongs to F0(t) × B([0, t]) for every t ≥ 0. Clearly, on
the sample space on Ck we have P0 = O0 = M0, while on Dk we have only
O0 = M0 as expected. Sometimes, this predictable σ-algebra P0 is universally
completed, i.e., one universally complete F0

t to Fu
t and then Pu is constructed.

We proceed similarly with O0 and M0 to get Ou and Mu. The interested reader
is referred to the book Bichteler [11], where various measurability questions are
treated in great details.

• Remark 3.24. Let (Ω,F , P ) be a probability space with F not necessarily
completed with respect to P. If y is a cad-lag process (i.e., a random variable
with values in some Dk) and F0

t (y) denotes the σ-algebra generated by the
random variables {y(s) : 0 ≤ s ≤ t} then the filtration F0(y) = {F0

t (y) : t ≥ 0}
is not necessarily neither right-continuous nor complete. However, if y is a
Lévy process and we add all null sets then we obtain a complete (relative to
F) right-continuous filtration, i.e, if N denotes the σ-algebra of all the P -null
sets in F then Ft(y) = F0

t (y) ∨ N satisfies Ft(y) = ∩s>tFs(y), for any t ≥ 0,
see Proposition 2.3 in Chapter 3. In particular, if y is a Lévy process and z
is a Rk-valued stochastic process which is predictable, optional or progressively
measurable relative to F(y) = {Ft(y) : t ≥ 0} then there exists a version of z
which is predictable, optional or progressively measurable relative to F0(y), and
so P{z(t) = h(t, y|[0,t])} = 1, for every t ≥ 0, for some measurable function h

from R+ ×Dk endowed with the σ-algebra P0, O0 or M0 into Rk, where y|[0,t]
means the random variable ω 7→ y(· ∧ t, ω).

Now we are ready to discuss the following

Definition 3.25. A non-anticipating functional is any Borel measurable func-
tion f from Cn×Dm into Ck×Dℓ such that the mapping x 7→ f(x)(t) with values
in Rk+ℓ is F0

t -measurable, for every t ≥ 0. Similarly, a measurable function from
(R+ × Cn × Dm,P0) into Rk+ℓ is called a predictable functional. Moreover, if
the universally completed σ-algebra Fu

t or Pu is used instead of F0
t or P0, then

the prefix universally is added, e.g., an universally predictable functional.
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Because non-anticipating functionals take values in some Ck×Dℓ, the notions
of optional, progressively measurable and adapted functional coincide. Actually,
another name for non-anticipating functionals could be progressively measurable
or optional functionals. Furthermore, we may consider predictable functionals
defined on E × R × Cn × Dm or R × Cn × Dm × E, for any Polish space E, in
particular E = Rm∗ or E = Rd. Clearly the identity map is a non-anticipating
functional and the following function

(t, x) 7→ x−(t), where x−(0) = 0, x−(t) = lim
s→t−

x(t), t > 0,

is a predictable functional. Perhaps another typical example is the (stochastic)
integral of a simple integrand, i.e., if 0 = t0 < t1 < t2 < · · · < tn are given real
numbers and gi is a (real-valued) measurable function in (Cn × Dm,F0

ti−1
), for

every i = 1, . . . , n, then

x 7→ z, z(t) =

n∑

i=1

gi(x)[x(t ∧ ti) − x(t ∧ ti−1)], t ≥ 0, (3.76)

defines a non-anticipating functional, and z(t) = z(tn) if t ≥ tn. Moreover, if
ti are stopping times relative to the uncompleted filtration F0 then gi should
be (real-valued) F0(ti−1)-measurable functions. Furthermore, if f is a non-
anticipating functional then the mapping (t, x) 7→ f−(t, x) defined as f−(t, x) =
f(x−(t)) is a predictable functional.

• Remark 3.26. Once a probability P is given in Cn × Dm we complete the
predictable σ-algebra, i.e., we may complete first the filtration and then we
generate the predictable σ-algebra. Thus, an integrand of stochastic integrals
is a predictable process y, which is identified with its equivalence class, rela-
tive to the measure dt × P (dω), for the Wiener process, and to the measure
π(dζ) × dt × P (dω), for the Poisson measure. In this case, any adapted (and
measurable) process has a predictable process belonging to the same equivalence
class, moreover, once a predictable (respect to the completed filtration) repre-
sentative of the equivalence class has been chosen, there is a version which is
predictable with respect to uncompleted filtration, i.e., a predictable functional.
Hence, in the case of the canonical Wiener-Poisson integrals, any integrands
may be assumed to be a predictable functionals.

On the canonical Wiener-Poisson space, the filtration F = {Ft : t ≥ 0}
is the minimal completed filtration (and right-continuous) such that canonical
process x is adapted. However, given a Wiener-Poisson space, the filtration is
also assumed given and it may not be the one generated by the Wiener process
w and the Poisson measure ν. Therefore, if in a given Wiener-Poisson space
the filtration results to be the one generated by the Wiener process w and the
Poisson measure ν, then we can consider the image measure and reduce to the
canonical Wiener-Poisson space.

Suppose that on the canonical Wiener-Poisson space with Lévy measure π,
we are given some real-valued adapted processes (ai(t) : t ≥ 0, i = 1, . . . , d),
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(bik(t) : t ≥ 0, i = 1, . . . , d, k = 1, . . . , n) and (γi(ζ, t) : t ≥ 0, ζ ∈ Rm0 ), such
that for every i = 1, . . . , d and any r = 1, 2, . . . , we have

∫ T

0

[
|ai(t)| +

n∑

k=1

|bik(t)|2 +

∫

Rm
∗

|γi(ζ, t)|2π(dζ)
]
dt <∞, (3.77)

P -almost surely for any T > 0. This means that ai, bik and γj are real-valued
predictable functionals ai(t, w, p̃), bik(t, w, p̃) and γi(ζ, t, w, p̃). Hence, an Itô
process with jumps takes the form

Xi(t) =

∫ t

0

ai(s, w, p̃)ds+

n∑

k=1

∫ t

0

bik(s, w, p̃)dwk(s) +

+

∫

Rm
∗ ×]0,t]

γi(ζ, s, w, p̃)p̃(dζ, ds), ∀ t ≥ 0, (3.78)

for any i = 1, . . . , d. We may use the notation X(t) = X(t, ω, w, p̃), with ω in
Ω = Cn×Dm, or just X = X(w, p̃) to emphasize the dependency on the Wiener
process and the Poisson measure p̃.

Proposition 3.27. Any Itô process with jumps of the form (3.78) is a non-
anticipating functional on the canonical Wiener-Poisson space, namely, X =
F (w, p̃), for some non-anticipating functional. Moreover, if (Ω′, P ′,F′, w′, p′) is
another Wiener-Poisson space then

P ′{X ′(w′, p̃′) = F (w′, p̃′)
}

= 1,

i.e., the stochastic integral is a non-anticipating functional on the Wiener-
Poisson space.

Proof. This means that we should prove that any process of the form (3.78) is
indistinguishable from a non-anticipating functional. As usual, by a localization
argument, we may assume that the predictable functional coefficients satisfy

∫ T

0

E
{
|ai(t)| +

n∑

k=1

|bik(t)|2 +

∫

Rm
∗

|γi(ζ, t)|2π(dζ)
}

dt <∞.

Now, if the coefficients are piecewise constant (i.e., simple or elementary func-
tions) then (as noted early) the stochastic integral is a non-anticipating func-
tional.

In general, by a monotone class argument (or merely, by the proper definition
of the stochastic integral) we may find a sequence of elementary predictable
functionals ak, bk and γk such that

E
{∫ T

0

[
|ak(t) − a(t)| + |bk(t) − b(t)|2 +

+

∫

Rm
∗

|γk(ζ, t) − γ(ζ, t)|2π(dζ)
]
dt
}
→ 0,
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for any T > 0. Then, by passing to a subsequence if necessary, we have

sup
0≤t≤T

|Xk(t, w, p̃) −X(t, w, p̃)| → 0,

outside of a set N with P (N) = 0, for any T > 0, where Xk(t, w, p̃) denotes the
stochastic integral with elementary integrands ak, bk and γk.

Hence, if Fk is a non-anticipating functional satisfying Xk(w, p̃) = Fk(w, p̃)
then define

F (w, p̃) =

{
limk Fk(w, p̃) in Ω rN,
0 in N,

where the limit is uniformly on [0, T ], any T > 0. Actually, we can use the
convergence in L2-sup-norm to define the non-anticipating functional F. Thus
X = F (w, p̃).

This procedure gives an approximation independent of the particular Wiener
process and Poisson measure used, so that the same approximation yields the
equality X ′(w′, p̃′) = F (w′, p̃′), P ′-almost surely.

Now, let η and ξ be two cad-lag non-anticipative processes relative to (w, p̃),
see Definition 3.22, and assume that each component ηi of η is non-decreasing.
The non-anticipative property imply that if Fη,ξ = F(w, p̃, η, ξ) is the min-
imum completed filtration such that (w, p̃, η, ξ) is adapted to, then (w, p̃) is
a martingale, i.e., (Ω, P,Fη,ξ, w, p̃) is a Wiener-Poisson space. Moreover, any
Fη,ξ-adapted process y can be represented by a predictable functional, i.e.,
y(t) = y(t, w, p̃, η, ξ), P -almost surely, for almost every t, where (t, w, p̃, η, ξ) 7→ y
is a measurable function from R× Cn × Dm+r+d into Rk+ℓ.

Proposition 3.28. Let us assume that aik, bik and γi are real-valued predictable
functional on Cn × Dm+r+d as above. Then the stochastic integral

Xi(t) = ξi(t) +

r∑

j=1

∫ t

0

aij(s)dηk(s) +

n∑

k=1

∫ t

0

bik(s)dwk(s) +

+

∫

Rm
∗ ×]0,t]

γi(ζ, s)p̃(dζ, ds), ∀ t ≥ 0, (3.79)

defines a non-anticipating functional, i.e., X = F (w, p̃, η, ξ). Moreover, if the
process η is also a non-anticipating functional η(w, p̃, ξ) then X = G(w, p̃, ξ).
Furthermore, if H(w, p̃, ξ) denotes a non-anticipating functional corresponding
to a deterministic process ξ, then for any Wiener-Poisson space (Ω′, P ′,F′, w′, p′)
with a cad-lag process ξ′ independent of (w′, p̃′) the stochastic integral process like
(3.79) is clearly defined and denoted by X ′(t), and we have X ′(t) = H(w′, p̃′, ξ′),
P ′-almost surely.

Proof. The arguments are essentially the same as in previous Proposition 3.27.
Note that the functional G(w′, p̃′, ξ′) depends on the distribution Pξ on Dd.
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Perhaps we should make some comments on the functional H. Indeed, if
the coefficients are simple (or elementary) functions then the stochastic integral
takes the form

X(t) = ξ(t) +

n∑

i=1

ai−1[η(t ∧ ti−) − η(t ∧ ti−1)] +

+

n∑

i=1

bi−1[w(t ∧ ti) − w(t ∧ ti−1)] +

n∑

i=1

m∑

j=1

γi−1,j p̃(Kj×]ti−1, t ∧ ti]),

where ai, bi and γi are themselves predictable functionals depending on some
parameter integer k. This defines a approximating functional Hk(w, p̃, ξ), having
the desired properties, which are preserved (P - or P ′-) almost surely as k goes
to infinite.

Certainly, an important particular case is when the process ξ(·) is actually
equal to a Rd-valued random variable ξ, which is independent of the Wiener
process and the Poisson measure p.
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Chapter 4

Stochastic Calculus II

This is the second chapter dedicated to the stochastic integral. In the first sec-
tion, stochastic integration is reconsidered as an extension of Stieltjes-Riemann
integral, using continuity in probability and with an emphasis on the inte-
grand/integrator processes, like in Protter [149]. This requires a quick refresh
on quasi-martingales and Stieltjes integral, to cover martingale integrals and
then non-martingale integrals, like Stratonovich) stochastic integrals. Section 2
is a systematic discussion on the quadratic variation (or variance) process asso-
ciated with a local-martingale, mainly on estimates for the stochastic integral
processes. Finally, Section 3 is an introduction to random fields and stochastic
flows, focusing on an extension of Itô formula and the homeomorphic property
of stochastic ordinary differential equation, which are only mentioned.

4.1 Other Stochastic Integrals

First we recall some key facts about possibly discontinuous martingales and
then we discuss Stratonovich (and other) stochastic integrals.

4.1.1 Refresh on Quasi-Martingales

Let (Ω,F , P ) be a probability space with a complete (relative to F), right-
continuous (not necessarily quasi-left continuous) filtration F = {F(t) : t ≥
0}. Recall that an adapted cad-lag process X is called a quasi-martingale if
E{|X(t)|} < ∞ and pVar(X)(t) < ∞, for every t ≥ 0, where the conditional
variation is defined by

pvar̟(X)(t, ·) =
∑

i

∣∣E{X(ti+1 ∧ t) −X(ti ∧ t) | F(ti ∧ t)}
∣∣,

pVar(X) = sup
{
pVar̟(X) : ̟

}
, pVar̟(X) = E{pvar̟(X)},

where the supremum is taken over all (deterministic) partitions ̟ = {0 = t0 <
t1 < · · · < tn−1 < tn < · · · } of [0,∞) with norm |̟| = sup{ti − ti−1 : i ≥ 1}.
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222 Chapter 4. Stochastic Calculus II

An adapted processes X is a quasi-martingale if and only it can be decomposed
as the difference X = Y −Z of two positive (cad-lag) super-martingales Y and Z,
or equivalently, it is a special semi-martingale, which yields the decomposition
X = M + A with M a local-martingale and A a predictable local integrable
finite variation process, i.e., A = A+ − A−, both predictable, local integrable
and monotone increasing. In particular if X is an adapted local integrable
monotone increasing (or finite variation) process then X = M +A, where M is
a local-martingale and A is a predictable local integrable monotone increasing
(or finite variation) process. The process A is called the predictable (jumps)
compensator of X. Note that the essential different between quasi-martingales
and semi-martingales is the integrability of the large jumps.

If X is a semimartingale then the optional quadratic variation of X is defined
as

[X](t) = X2(t) −X2(0) − 2

∫

]0,t]

X(s−)dX(s), t ≥ 0,

or equivalently, as

[X]̟(t) =

n∑

i=1

∣∣X(ti+1 ∧ t) −X(ti ∧ t)
∣∣2, [X](t) = lim

|̟|→0
[X]̟(t).

However, the predictable quadratic variation 〈X〉 is the predictable (jumps)
compensator of [X], i.e., 〈X〉 is the unique predictable process with local in-
tegrable finite variation (increasing) vanishing at 0 such that [X] − 〈X〉 is a
local-martingale or equivalently X2 − 〈X〉 is a local-martingale. Because [X] is
an adapted increasing process we may define its continuous part

[X]c(t) = [X](t) −
∑

s≤t
δ[X](s),

where δ is the jump operator, δY (0) = 0,

δY (t) = Y (t+) − Y (t−), t > 0,

defined for any process Y having no discontinuities of second kind.
For any quasi-martingale X we have:

(1) if X is continuous then [X] and 〈X〉 are (the same) continuous processes,

(2) if X has local integrable finite variation then [X]c = 0,

(3) if [X] = 0 then X = X(0),

(4) if X is a local-martingale satisfying 〈X〉 = 0 then X = X(0),

(5) X is quasi-left continuous if and only if 〈X〉 is continuous.

Moreover, any quasi-martingale X has a unique decomposition X(0) + Vp(t) +
Mc(t) + Md(t), where Vp(0) = Mc(0) = Md(0) = 0, Vp is a predictable process
with local integrable finite variation, Mc is a continuous local-martingale and
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Md is a local-martingale satisfying [Md]
c = 0, also (1) [X]c = 〈Mc〉, (2) Vp is

continuous if Md = 0, and (3) if X has also local integrable finite variation then
Mc = 0.

Note that [X](t) =
∑
s≤t(X(t)−X(t−))2 for any process X of local bounded

variation, and we have 〈X〉 = 0 if X2 is a local martingale. In particular if
X = N is a Poisson process then X = Vp + Md, where Vp(t) = E{X(t)} is
continuous, and

∑
s≤tMd(s) = X(t), [X] = [Md] =

∑
s≤t(X(t) −X(t−))2 and

〈X〉 = 〈Md〉 = E{X(t)}. In general, the sum of jumps
∑
s≤tX(s) of a local-

martingale satisfying [X]c = 0 may not be defined (i.e., the series of jumps
may not be pathwise convergent) or it may converge not necessarily to X. The
local-martingale Md contains predictable and unpredictable jumps, and 〈Md〉
contains only the predictable jumps, but if 〈Md〉 = 0 then Md = 0. Note that
the square-bracket [·] is defined for any semi-martingale (and so for any quasi-
martingale), while the angle-bracket 〈·〉 is only define for local-martingale.

4.1.2 Refresh on Stieltjes integrals

Let us consider the pathwise Riemann-Stieltjes integral for bounded variation
integrator and integrand, which is defined as a limit on partitions of a compact
interval [a, b]. Typically, the integral exists for a continuous integrand f and a
bounded variation integrator g (or conversely), but if fails to exists if both f
and g are discontinuous on the same side (either right or left). The integration
by part formula is granted if one of the integral exists, namely,

f(b)g(b) − f(a)g(a) =

∫ b

a

f(t)dg(t) +

∫ b

a

g(t)df(t).

However, we have

f(b)g(b) − f(a)g(a) =

∫

]a,b]

f(t)dg(t) +

∫

]a,b]

g(t−)df(t).

in the Lebesgue-Stieltjes sense, if both f and g are only right-continuous with
finite variation. Indeed, if V is a cad-lag process with locally bounded variation
and X is a cad-lag process then, for any b > a ≥ 0 we have

∫ b

a

X−(t)dV (t) =

∫ b

a

X−(t)dV c(t) +
∑

a≤t<b
X−(t)δV (t),

∫ b

a

X(t)dV−(t) =

∫ b

a

X(t)dV c(t) +
∑

a<t≤b
X(t)δV (t),

where X−(t) = X(t−), V−(t) = V (t−), for every t > 0, and V c is the continuous
part of V, i.e.,

V (t) = V c(t) +
∑

0<s≤t
δV (s).
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Note that X = X−+δX and that we may replace X with X− as the integrand of
dV c. Nevertheless, if X = U is a cad-lag process with locally bounded variation
then we can rewrite the integration by part formula as

U(b)V (b) − U(a)V (a) =

∫

]a,b]

U−(t)dV (t)+

+

∫

]a,b]

V−(t)dU(t) +
∑

a<t≤b
δU(t)δV (t),

(4.1)

where all series are absolutely convergent and all integrals are considered path-
wise, in either Riemann-Stieltjes (without including any possible jump at a, but
including any possible jump at b) or Lebesgue-Stieltjes sense, i.e., if µ

V
denotes

the Lebesgue-Stieltjes measure generated by the cad-lag path function t 7→ V (t)
then

∫

]a,b]

X−(t)dV (t) = lim
α→a+, β→b+

∫ β

α

X−(t)dV (t) =

∫

]a,b]

X−(t)µ
V

(dt),

actually, this is the definition of the integral in Riemann-Stieltjes sense over the
semi-open interval ]a, b] for cag-lad (left continuous with right limits) integrands
and cad-lag integrators.

A cad-lag process is integrable for the (signed) Lebesgue-Stieltjes measure
µ
V

(which can be expressed as the difference of two measures, the positive and
negative variations) and for any b > a ≥ 0, we have

∫

]a,b]

X(t)µ
V

(dt) =

∫

]a,b]

X−(t)µ
V

(t) +

∫

]a,b]

δX(t)µ
V

(dt) =

=

∫

]a,b]

X−(t)dV (t) +
∑

a<t≤b
δX(t)δV (t),

Note that µ
V

= µc
V

+ µd
V
, where µc

V
is the continuous part of µ

V
, i.e., when

all atoms have been removed (or equivalently, the measure associated with the
continuous part V c of V ). Moreover, µc

V
= µa

V
+ µs

V
, where µa

V
is absolutely

continuous with respect to the Lebesgue measure and µs
V

is singular (i.e., there
exists a Borel measurable set S of Lebesgue measure zero such that for any
measurable set N with Lebesgue measure zero we have µc

V
(N r S) = 0, and

then we define µs
V

(A) = µc
V

(A ∩ S), for any measurable set A). Thus, any
set of one point {t} is µc

V
-negligible and so is any countable set, i.e., δX = 0

µc
V

-almost surely and the integral of X and X− relative to µc
V

coincide. It is
cleat that, both X− and X (and any bounded Borel measurable process) are
integrable with respect to µ

V
, but to recall that the integration by part formula

(4.1) should be written with X−, we use the Riemann-Stieltjes sense over the
semi-open interval ]a, b]. Certainly, the notation dV actually means dµ

V
, when

the integrands are not cag-lad processes.
On the other hand, if F : R → R is a locally Lipschitz function and V is a

cad-lag process with locally bounded variation then t 7→ F
(
V (t)

)
is also a cad-

lag process with locally bounded variation. Moreover, if f is also continuously
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differentiable then we have the change of variable formula

F
(
V (b)

)
− F

(
V (a)

)
=

∫

]a,b]

F ′(V−(t)
)
dV (t)+

+
∑

a<t≤b

{
F
(
V (t)

)
− F

(
V (t−)

)
− F ′(V (t−)

)
δV (t)

}
,

(4.2)

where F ′ denotes the derivative of F. Since F ′ is locally bounded and V has
locally bounded variation, the above series can be written as

∑

a<t≤b
δF

(
V (t)

)
+

∑

a<t≤b
F ′(V−(t)

)
δV (t)

and both series are absolutely convergent. Clearly, the change of variable (4.2)
is usually written as

F
(
V (b)

)
− F

(
V (a)

)
=

∫

]a,b]

F ′(V−(t)
)
dV c(t) +

∑

a<t≤b
δF

(
V (t)

)
,

and we note that δF
(
V (t)

)
> 0 if and only if δV (t) > 0.

At this point, it is important to recognize that to capture the jumps of a
Rm-valued cad-lag process X we need to study its associate integer measure ν

X
,

which is defined as the extension of

ν
X

(K×]a, b]) =
∑

a<s≤b
✶δX(s)∈K , (a finite sum),

for any compact set K in Rm∗ = Rm r {0} and any b ≥ a ≥ 0. If X is cad-lag
with bounded variation then X and ν

X
are equivalent in the sense that from

X(t) = X(0) +

∫

Rm
∗

zν
X

(]0, t], dx)

we can reconstruct X from ν
X
. However, if the process X is not necessarily of

bounded variation then we need to make sense to the limits

X(t) = X(0) + lim
ε→0

∫

Rm
∗

z✶{|z|≥ε}νX (]0, t], dz)

to be able to reconstruct X. Clearly, this limit makes sense as a stochastic
integral if X is a local-martingale.

4.1.3 Square-Brackets and Angle-Brackets

If X and Y are two semi-martingales then we define the square-bracket by

[X,Y ] = XY −
∫

]0,·]
X(s−)dY (s) −

∫

]0,·]
Y (s−)dX(s),
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when X(0) = Y (0) = 0, or by polarization as

[X,Y ] =
(
[X + Y ] − [X] − [Y ]

)
/2 =

(
[X + Y ] − [X − Y ]

)
/4.

Similarly with the angle-bracket 〈X,Y 〉, which is defined only for local-mar-
tingales. If X and Y are local square-integrable martingales then [X,Y ] is the
unique cad-lag adapted process with integrable finite variation and vanishing
at 0 such that (1) XY − [X,Y ] is a local-martingale and (2) δ[X,Y ] = δX δY,
while 〈X,Y 〉 is the unique cad-lag predictable process with integrable finite
variation and vanishing at 0 such that XY − 〈X,Y 〉 is a local-martingale. For
any quadratic pure jump semi-martingale X, i.e., satisfying [X]c = 0, and any
semi-martingale Y we have

[X,Y ](t) =
∑

s≤t
δX(s) δY (s), ∀t > 0.

A local-martingale X is called purely discontinuous if X(0) = 0 and 〈X,Y 〉 = 0
for any continuous local-martingale Y. Then (1) a local-martingale X vanish-
ing at 0 is purely discontinuous if and only if [X]c = 0, (2) a local-martingale
with local finite variation and X(0) = 0 is purely discontinuous, (3) a contin-
uous local-martingale which is purely discontinuous is indeed null, and (4) a
predictable local-martingale is a continuous martingale.

Let X be a quasi-martingale and V be an adapted process with local inte-
grable finite variation and V (0) = 0 : we have (a)

[X,V ] =

∫

]0,·]
δX(s)dV (s), XV =

∫

]0,·]
V−(s)dX(s) +

∫

]0,·]
X(s)dV (s),

and (b) if V is predictable then

[X,V ] =

∫

]0,·]
δV (s)dX(s), XV =

∫

]0,·]
V (s)dX(s) +

∫

]0,·]
X−(s)dV (s).

Hence, we also have (c) if X is a local-martingale and V is predictable then the
optional covariance or square-bracket [X,V ] is a local-martingale, and (d) we
have [X,V ](t) =

∑
s≤t δX(t)δV (t) and so [X,V ] = 0, if at least one (either X or

V ) is continuous. There are several useful estimates involving local-martingales,
e.g., Davis-Burkhölder-Gundy inequality for local-martingales vanishing at the
initial time, namely, for any p ≥ 1 there exist constants Cp > cp > 0 (recall that
C1 = 3 and C2 = 4) such that for any stopping time T and any local martingale
M with M(0) = 0, we have

cp E{
(
[M ](T )

)p/2} ≤ E{sup
t≤T

|M(t)|p} ≤ Cp E{
(
[M ](T )

)p/2},

and Lenglart domination estimate, namely, for any cad-lag adapted process X
dominated by an increasing cad-lag process A with A(0) = 0 (i.e., E{|X(τ)|} ≤
E{A(τ)} for any bounded stopping time τ) we have

P
{

sup
t≤T

|X(t)| ≥ ε
}
≤ 1

ε

[
η + E

{
sup
t≤T

|A(t) −A(t−)|
}]

+ P
{
A(T ) ≥ η

}
,
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for any positive constants ε, η and any stopping time T, and if A is predictable,
we may drop the term with the jumps. However, for any p in (0, 2] there exist
a constant Cp > 0 (with C1 = 3 and C2 = 4) such that

E{sup
t≤T

|M(t)|p} ≤ Cp E{
(
〈M〉(T )

)p/2},

for any stopping time T and any local-martingale M with M(0) = 0.
Let X and Y be two semi-martingales, and a and b be two adapted cag-lad

(left continuous with right limits) then
[ ∫

]0,·]
a(s)dX(s),

∫

]0,·]
b(s)dY (s)

]
=

∫

]0,·]
a(s)b(s)d[X,Y ](s),

and similarly with the angle-bracket 〈·, ·〉, where the last integral is in either the
Riemann-Stieltjes or Lebesgue-Stieltjes sense. Suppose that Xi, i = 1, . . . , n
and Yj , j = 1, . . . ,m are semi-martingales, and that ϕ(x) and ψ(y) are smooth
real-valued functions then Itô formula shows that ϕ(X) and ψ(Y ) are also semi-
martingales and

〈ϕ(X), ψ(Y )〉(t) =
∑

ij

∫ t

0

∂iϕ(X(s))∂jψ(Y )(s)d〈Xi, Yj〉(s),

[ϕ(X), ψ(Y )]c(t) =
∑

ij

∫ t

0

∂iϕ(X(s))∂jψ(Y )(s)d[Xi, Yj ]
c(s),

[ϕ(X), ψ(Y )](t) − [ϕ(X), ψ(Y )]c(t) =
∑

s≤t
δϕ(X)(s)δψ(Y )(s),

for any t > 0. Hence, let ν
XY

denote the integer measure associated with the
(joint) jumps of the Rn+m-valued process (X,Y ), namely,

ν
XY

(B, ]a, b]) is the number of jumps
(
δX(s), δY (s)

)
in B within the

interval ]a, b], for any B in B(Rn+m∗ ) with B̄∩{0} = ∅ and 0 ≤ a < b,

with a predictable jumps compensator νp
XY

(dx, dy, dt). Thus, the jumps part of
the optional quadratic covariation, i.e., [X,Y ] − [X,Y ]c, can be expressed as

∑

s≤t
δϕ(X)(s)δψ(Y )(s) =

∫

Rn+m×]0,t]

[
ϕ(X(s−) + x) − ϕ(X(s−))

]
×

×
[
ψ(Y (s−) + y)−ψ(Y (s−)

]
ν
XY

(dx, dy, dt).

The continuous part of a semi-martingale X is defined as the unique continu-
ous semi-martingale Xc satisfying [X − Xc, Z] = 0, for any continuous semi-
martingale Z. Then we have [Xc, Y ] = [X,Y ]c. On the other hand, the processes
X and Y are quasi-left continuous if only if there are no predictable jumps, i.e.,
νp
XY

(Rn+m∗ × {t}) = 0, for any t ≥ 0, or equivalently the predictable covariation
〈X,Y 〉 is continuous. Note that if the jumps of X and Y have the form

X(t) = Xc(t) +

∫

Z×]0,t]

γX (z, s)ν̃(dz, ds), ∀t ≥ 0,
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and similarly for Y, with the same martingale measure ν̃ and continuous pro-
cesses Xc and Y c, then

∫

R
n+m
∗ ×]0,t]

h(x, y, s)ν
XY

(dx, dy, ds) =

=

∫

Z×]0,t]

h(γX (z, s), γY (z, s), s)ν(dz, ds),

for any positive Borel measurable function h, and similarly for the predictable
jump compensator measure.

In particular, let M = Mc + Md be a quasi-left continuous local square-
integrable martingale in Rn written as the sum of a continuous local-martingale
{Mc,i : i = 1, . . . , n} with predictable variation process {〈Mc,i〉 : i = 1, . . . , n},
and a purely discontinuous local-martingale {Md,i : i = 1, . . . , n} which yields an
integer measure ν

M
with compensator νp

M
and martingale measure ν̃

M
= ν

M
−νp

M
.

Note that
∫

]0,t]

α(s)dMd,i(s) =

∫

Rd×]0,t]

α(s)ζiν̃M (dζ, ds), i = 1, . . . , d,

and

∑

s≤t
h
(
s, δMd(s)

)
=

∫

Rd×]0,t]

h(s, ζ)ν
M

(dζ, ds),

for any predictable integrable processes α and h. Thus, if X is a d-dimensional
processes of the form

dX(t) = aX (t)dV c(t) + bX (t)dMc(t) +

∫

Rm
∗

γX (ζ, t)ν̃
M

(dζ, dt), ∀t ≥ 0,

where V c is an adapted continuous process with local integrable finite varia-
tion, and ϕ is real-valued smooth functions then Itó formula shows that the
semi-martingales ϕ(t) = ϕ(t,X(t)) can be expressed in term of continuous part
Mc, the compensated integer (or martingale) measure ν̃

M
and some continuous

locally bounded variation processes Vϕ, i.e.,

dϕ(t) = dVϕ(t) + bϕ(t)dMc(t) +

∫

Rm
∗

γϕ(ζ, t)ν̃
M

(dζ, dt), ∀t ≥ 0,

where

dVϕ(t) = ∂tϕ(t, ·)dt+ ∂xϕ(t, ·)dV c(t) +

+
∑

i,j,k

bXik(t)bXjk(t)∂ijϕ(t, ·)d〈Mc,k〉(t) +

+

∫

Rm
∗ ×]0,t]

[
ϕ(t, · + γX (ζ, t)) − ϕ(t, ·) − γX (ζ, t)∂xϕ(t, ·)

]
νp
M

(dζ, dt),
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and

bϕk (t) =
∑

i

∂iϕ(t, ·)bXik(t), γϕ(ζ, t) = ϕ(t, · + γX (ζ, t)) − ϕ(t, ·),

the dot · is replaced by M(t−). Thus

〈ϕc,Mc,k〉 =
∑

i,j

∫ ·

0

∂iϕ(t,M(t−))bXij(t)d〈Mc,j ,Mc,k〉(t),

δϕ(t) =

∫

Rm
∗

(
ϕ(t,M(t−) + γX (ζ, t)) − ϕ(t,M(t−))

)
ν
M

(dζ, {t}),

[ϕ,Md,k] =

∫

Rm
∗ ×]0,·]

(
ϕ(t,M(t−) + γX (ζ, t)) − ϕ(t,M(t−))

)
ζkνM

(dζ, dt),

which give full information on the covariance of ϕ and M. These calculations
are neat for the particular case where M c is a standard Wiener process and
ν̃
M

is a compensated Poisson integer measure with predictable compensator
νp
M

(dζ, dt) = π(dζ)dt.
For instance, the reader is referred to Dellacherie and Meyer [32, Sections

VI.37–42, pp. 105–112], He et al. [68, Chapter VIII, pp. 209–223], Jacod and
Shiryaev [84, Chapter 1, pp. 1–63], Kallenberg [88, Chapter 26, pp. 515–536],
Protter [149, Chapter III, pp. 43–86] for more detail on the above statements.

4.1.4 Martingales Integrals

After refreshing the above martingales concepts, we may reframe the stochastic
integral defined previously for a quasi-martingale X. Recall that a sequence
of general processes {uk} is said to converge to u uniformly on compacts in
probability abbreviated “ucp”, if for any ε > 0 there exists K > 0 such that
P{sup0≤t≤1/ε |uk(t) − u(t)| ≥ ε} ≤ ε for any k ≥ K. Given a filtration F =
{F(t) : t ≥ 0}, denote by S = S(F), L = L(F) and D = D(F) the vector space of
simple predictable processes (i.e., H(t) = hi−1 for t on the stochastic interval
Kτi−1, τiK, for i = 1, 2, . . . , n, where τ0 = 0, τi−1 ≤ τi are finite stopping times
and hi is a Rd-valued F(τi)-measurable random variable), adapted cag-lad (left
continuous with right limits) processes, and cad-lag (right continuous with left
limits). If we add the ucp-convergence and version of processes are considered
equals, then we use Sucp, Lucp and Ducp. Actually, any process X in L (or in S) are
technically defined on (0,∞), but we assume X(0) = X(0+) and so X is defined
on [0,∞); otherwise, we may decide to work on the whole space (−∞,+∞) or to
explicitly introduce a value at time t = 0. Moreover a better notation would be
Sucp(F), Lucp(F) and Ducp(F) to recall the dependency on the filtration F, however
this is implicitly assumed.

Remark that a modification (also called a version) of an element in S, L or D
does not necessarily belongs to S, L or D, it belongs to Sucp, Lucp or Ducp. We may
have an element u in Lucp and an element v in Ducp such that u is a version of
v, i.e., not any version of a given element in Lucp (or Ducp) can be considered an
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element in L (or D). On the other hand, we are allowed to modified an element
(in any of the three topological vector spaces S, L or D) on a evanescent set and
still remain in the same space.

Note that Lucp and Ducp are complete metric spaces, and let us prove that Sucp

is dense in Lucp. Indeed, given a positive number η and a u in Lucp we define an
increasing sequence of stopping times 0 = T η0 < T η1 < T η2 < · · · by recurrence

T ηk+1 = inf{s > T ηk : |u(s+) − u(T ηk+)| > η},

where T ηk+1 = ∞ if |u(s+)− u(T ηk+)| ≤ η, for every s ≥ T ηk . Because t 7→ u(t+)
is cad-lag, the sequence T ηk is almost surely increasing to infinite, i.e., P{T ηk ≤
r} → 0 as k → ∞, for every positive constants r. Clearly, |u(s+)−u(T ηk+)| ≤ η,
for any s such that T ηk ≤ s < T ηk+1, and by continuity, we have |u(s)−u(T ηk+)| ≤
η, if T ηk < s ≤ T ηk+1. Hence, define uηk(t) = u(n ∧ T ηi +) if k ∧ T ηi < t ≤ k ∧ T ηi+1

with i = 0, 1, . . . , k to have

P
{

sup
0≤t≤r

|uηk(t) − u(t)| > η
}
≤ P

{
k ∧ T ηk ≤ r

}
.

Therefore, uηk belongs to Sucp, and for suitable η and k we construct a sequence
convergent to u.

For any H in Sucp and X in Ducp we define the simple integral

Σ(H, dX)(t) =

∫

]0,t]

H(s)dX(s) =

n∑

i=1

hiX(τi ∧ t) −X(τi−1 ∧ t),

if H =
∑n
i=1 hi−1✶Kτi−1,τiK. Now if X is a quasi-martingale then this linear oper-

ator Σ(·, dX) is continuous from Sucp into Ducp and therefore it can be uniquely
extended to Lucp, i.e., for any H in Lucp there exists a sequence Hk in Sucp such
that Hk → H in Lucp and Σ(Hk, dX) → Σ(H, dX) in Ducp. Actually, the continu-
ity property can be proved directly or by means of Lenglart dominate estimate,
namely, for any positive constants ε, η, any stopping time T, and any H in Lucp,
we have (recall δ is the jump operator)

P
{

sup
t≤T

∣∣Σ(H, dA)(t)
∣∣ ≥ ε

}
≤ P

{
A(T ) ≥ η

}
+

+
1

ε

[
η + E

{
sup
t≤T

|H(t)| |δA(t)|
}]
,

if A is an adapted increasing integrable process, and

P
{

sup
t≤T

∣∣Σ(H, dM)(t)
∣∣2 ≥ ε

}
≤ η

ε
+ P

{
Σ(|H|2, d〈M〉)(T ) ≥ η

}
,

if M is a local-martingale with predictable variance 〈M〉.
Moreover, if ̟ = {ti} is a partition of [0,∞), t0 = 0, ti−1 < ti, ti → ∞,

and |̟| = supi(ti − ti−1) (possible of stopping times) and H is an element of
Lucp, then we may define H̟,n(t) = H(ti−1) for t in (ti−1, ti], i = 1, . . . , n. It is
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clear that H̟,n belongs to Sucp, and sup0≤t≤T |H̟,n(t)| ≤ C(T ), almost surely
for a constant C(T ) independent of ̟,n, and H̟,n(t) → H(t), almost surely,
for every t > 0. Hence, after using Lenglart dominate estimate, we deduce that
Σ(H̟,n, dM) → Σ(H, dM) in Lucp, as n→ ∞ and |̟| → 0.

Note that if X is a process with locally bounded variation belonging to
Ducp and H is any process in Lucp then Σ(H, dM) coincides with the (pathwise)
Riemann-Stieltjes (or Lebesgue-Stieltjes) integral.

Clearly, this technique can be extended simple integral relative to martingale
measures ν̃, e.g.,

Σ(H, dν̃)(t) =

∫

Rm
∗ ×]0,t]

H(ζ, s)ν̃(dζ, ds) =

=

n∑

i=1

k∑

j=1

Hij ν̃(Bj×]τi−1 ∧ t, τi ∧ t]),

where H =
∑n
i=1

∑k
j=1Hij✶Kτi−1,τiK✶Bj

, and Bj is a Borel set separated from

the origin, i.e., the closure B̄j ∩ {0} = ∅. As discussed early in this chapter, the
cad-lag processes Σ(H, dX) and Σ(H, dν̃) are local-martingales with

[Σ(H, dX)](t) =

∫

]0,t]

|H(s)|2d[X](s),

[Σ(H, dν̃)](t) =

∫

Rm
∗ ×]0,t]

|H(ζ, s)|2ν(dζ, ds),

and

〈Σ(H, dX)〉(t) =

∫

]0,t]

|H(s)|2d〈X〉(s),

〈Σ(H, dν̃)〉(t) =

∫

Rm
∗ ×]0,t]

|H(ζ, s)|2νp(dζ, ds),

where νp is the predictable compensator of martingale measure ν̃, i.e., for any
fixed Borel set B separated from the origin, the process t 7→ νp(B, ]0, t]) is the
compensator of the local-martingale t 7→ ν̃(B, ]0, t]), or ν̃ is the martingale mea-
sure corresponding to an integer measure ν with predictable jumps compensator
νp. Note that

∫

Rm
∗

|H(ζ, t)|ν(dζ, {t}) replaces |H(t)| |δA(t)| and

∫

Rm
∗ ×]0,T ]

|H(ζ, t)|2νp(dζ, dt) replaces Σ(|H|2, d〈M〉)(T )

in Lenglart dominate estimate.
It should be clear that besides the probability measure P, the initial filtration

F = {F(t) : t ≥ 0} plays a fundamental role in the above construction. Perhaps,
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a full notation for spaces Sucp, Lucp and Ducp should includes the filtration and
the probability, e.g., Ducp(P,F). However, if another filtration G = {G(t) : t ≥ 0}
is given and

H ∈ Lucp(P,F) ∩ Lucp(P,G), X ∈ Ducp(P,F) ∩ Ducp(P,G)

then H can be approximate in Sucp with respect to both filtrations, which im-
plies that the limit Σ(H, dX) is independent of the particular filtration used.
Certainly, if the limit exists for a probability P then also it exits for any other
probability Q which is absolutely continuous with respect to P.

4.1.5 Non-Martingales Integrals

Consider a partition ̟ of [0,∞) and for any two cad-lag processes X and Y
define the symmetric square-bracket along ̟,

[X,Y ]̟(t) =
∑

i

(
X(ti ∧ t) −X(ti−1 ∧ t)

)(
Y (ti ∧ t) − Y (ti−1 ∧ t)

)
,

as well as the bilinear expressions (integrals along ̟)

Σ−
̟(X, dY )(t) =

∑

i

X(ti−1 ∧ t)
(
Y (ti ∧ t) − Y (ti−1 ∧ t)

)
,

Σ+
̟(X, dY )(t) =

∑

i

X(ti ∧ t)
(
Y (ti ∧ t) − Y (ti−1 ∧ t)

)
,

Σ◦
̟(X, dY )(t) =

∑

i

(
X(ti ∧ t) +X(ti−1 ∧ t)

)(
Y (ti ∧ t) − Y (ti−1 ∧ t)

)
/2,

which are finite sums of non-zero terms. Note the relations

Σ◦
̟(X, dY )(t) = 1

2

(
Σ−
̟(X, dY )(t) + Σ+

̟(X, dY )(t)
)
,

Σ+
̟(X, dY )(t) − Σ−

̟(X, dY )(t) = [X,Y ]̟(t) = [Y,X]̟(t),

and

Σ+
̟(X, dY )(t) + Σ−

̟(Y, dX)(t) = Y (t)X(t) −X(0)Y (0),

Σ∓
̟(X, dY )(t) + Σ∓

̟(Y, dX)(t) ± [X,Y ]̟(t) = Y (t)X(t) −X(0)Y (0),

where we use the telescopy sum

n∑

i=1

ai(bi − bi−1) +

n∑

i=1

bi−1(ai − ai−1) = anbn − a0b0,

valid for any numbers ai and bi.
For any cad-lag process X, we can consider the cag-lad process X− defined

as the left-hand limits, i.e., X−(t) = X(t−). If δ is the jump operator then
we have δX = δX−, X− = X − δX, and X = X− + δX. Hence we have
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Σ−
̟(X−, dY ) → Σ(X−, dY ) in Ducp as |̟| → 0, for any X in Ducp and for any

quasi-martingale Y.

If X and Y are quasi-left continuous then for any t there exist a null set Nt
such that δX(t, ω) = 0 and δY (t, ω) = 0, for any ω in Ω rNt. Thus,

[X,Y ]̟(t) + Σ−
̟(X−, dY )(t) + Σ−

̟(Y−, dX)(t) =

= Y (t)X(t) −X(0)Y (0), (4.3)

almost surely, for each t. In particular, this proves that [X,Y ]̟ → [X,Y ] in Ducp

and that Σ±
̟(X−, dY ) and Σ±

̟(X, dY ) have a common limit Ducp, as |̟| → 0,
for any quasi-left continuous quasi-martingales X and Y.

Our interest is on processes where the jumps are only due to a local martin-
gale, i.e., the finite variation part of X can be chosen continuous. Now, let π
be a Lévy measure in Rd∗, γ(z) be a (deterministic) function in L2(Rm∗ , π) and
X be a real-valued Itô process with jumps,

X(t) =

∫ t

0

aX (s)dv(s) +

∫ t

0

bX (s)dw(s) +

∫

Rm
∗ ×]0,t]

cX (ζ, s)p̃(dζ, ds), (4.4)

for any t ≥ 0, where v is a d-dimensional adapted continuous process with local
integral finite variation, w is a d-dimensional standard Wiener process indepen-
dent of the compensated Poisson point process p̃ with Levy measure π in Rm∗ ,
and the coefficients suitable predictable processes, i.e., aX is locally integrable
with respect to the variation process |dv|, bX is locally square integrable, and
cX is jointly locally square integrable relative to π(dζ) × dt. Choose Y = wk or
Y = p̃γ , where

p̃γ(b) − p̃γ(a) = p̃(γ, ]a, b]) =

∫

Rm
∗ ×]a,b]

γ(z)p̃(dz, dt), ∀b > a ≥ 0. (4.5)

Thus, the expressions [X,wk]̟, [X, p̃γ ]̟, Σ
±
̟(X, dwk), Σ◦

̟(X, dwk), Σ±
̟(X, dp̃γ)

and Σ◦
̟(X, dp̃γ) are adapted quasi-left continuous and cad-lag processes, and

we may replace X by X− without any modifications. By means of Itô formula
we can calculate the predictable and optional covariances

[X, vk](t) = 〈X, vk〉(t) = 0, [X,wk](t) = 〈X,wk〉(t) =

∫ t

0

bXk (t)dt,

〈X, p̃γ〉(t) =

∫ t

0

ds

∫

Rd
∗

cX (z, s)γ(z)π(dz),

[X, p̃γ ](t) =

∫

Rd
∗×]0,t]

cX (z, s)γ(z)p(dz, ds),
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and, for instance, Theorem 3.16 shows that

lim
|̟|→0

[X,wk]̟ = [X,wk], lim
|̟|→0

[X, p̃γ ]̟ = [X, p̃γ ],

lim
|̟|→0

Σ−
̟(X, dwk) =

∫ ·

0

X(t)dwk(t),

lim
|̟|→0

Σ−
̟(X−, dp̃γ) =

∫

Rd
∗×]0,·]

X(t−)γ(z)p̃(dz, dt),

where the limits are uniformly on compacts in probability (i.e., in the ucp sense).
Moreover, because the limits of the two last term of the left-hand side of the
equality (4.3) converges to the stochastic integrals, we re-establish the conver-
gence of the square-bracket to the optional covariation. Clearly, for the adapted
continuous process having local bounded variation v we have

lim
|̟|→0

[X, vk]̟ = 0,

lim
|̟|→0

Σ−
̟(X, dvk) =

∫ ·

0

X(t−)dvk(t),

where the integral is pathwise, in either Riemann-Stieltjes or Lebesgue-Stieltjes
sense.

If {γj : j ≥ 1} is an orthonormal basis in L2(Rm∗ , π) then the jumps of X
given by (4.4) can be expressed as

∫

Rm
∗ ×]0,t]

cX (ζ, s)p̃(dζ, ds) =
∑

j

∫

]0,t]

cXj (s)dp̃j(s),

where

cXj (s) =

∫

Rm
∗

cX (ζ, s)γj(ζ)π(dζ), p̃j(t) =

∫

Rm
∗ ×]0,t]

γj(ζ)p̃(dζ, ds),

cXj (s) are predictable processes and p̃i(s) are purely discontinuous martingales,
and

d〈p̃i, p̃j〉(t) =
(∫

Rm
∗

γi(ζ)γj(ζ)π(dζ)
)

dt,

i.e., 〈p̃i, p̃j〉(t) = t if i = j and 〈p̃i, p̃j〉 = 0 otherwise. Thus, we may rewrite X
as

X(t) =

∫ t

0

aX (s)dv(s) +

∫ t

0

bX (s)dw(s) +
∑

j

∫

]0,t]

cXj (s)dp̃j(s),

for any t ≥ 0. Formally, we have p̃ =
∑
j γj p̃j , but

E
{
|
∑

j

γj p̃j(t)|2π
}

= E
{∑

j

|p̃j(t)|2
}

= E
{
t
∑

j

|γj |2π
}

= ∞, ∀t > 0,

[Preliminary] Menaldi December 12, 2017



4.1. Other Stochastic Integrals 235

i.e., the series cannot be considered as L2(Rm∗ , π)-valued martingale. However,
for as given convergent sequence of strictly positive numbers {κi} we may con-
sider the Hilbert subspace

H = Hκ,γ,π =
{
h ∈ L2(Rm∗ , π) :

∑

i

κi

∣∣∣
∫

Rm
∗

h(ζ)γi(ζ)π(dζ)
∣∣∣
2

<∞
}
.

Hence, we may regard the series p̃(s) =
∑
j γj p̃j(s) and cX (s) =

∑
j γjc

X

j (s) as
processes with values in H,

‖p̃(s)‖2H =
∑

j

κj |p̃j(s)|2 ≤
(∑

j

κj

)
s,

‖cX (s)‖2H =
∑

j

κj |cXj (s)|2 ≤
(∑

j

κj

)∫

Rm
∗

|cX (ζ, s)|2π(dζ),

and p̃ is a local-martingale, while cX (s) is predictable with values in the dual
space H ′, via the functional Riesz representation, and the duality inclusion H ⊂
L2(Rm∗ , π) ⊂ H ′. Therefore, the stochastic integral with respect to the (local)
martingale measure p̃ can be regarded as an stochastic integral with respect to a
(local) martingale with values in the Hilbert space H and a predictable process
with values in its dual space H ′. Nevertheless, we may define

〈〈X, p̃〉〉 =
∑

j

〈X, p̃j〉 =
∑

j

∫ ·

0

cXj (s)ds =

=
∑

j

∫ ·

0

ds

∫

Rm
∗

cX (ζ, s)γj(ζ)π(dζ),

[[X, p̃]] =
∑

j

[X, p̃j ] =
∑

j

∑

s≤·
δX(s)δp̃j(s) =

=
∑

j

∫

Rm
∗ ×]0,·]

cX (ζ, t)γj(ζ)p(dz, dt),

if the coefficients are sufficiently smooth (in time) to make the above series
convergent. Since the integrand is predictable,

E
{∫

Rm
∗ ×]0,T ]

cX (ζ, t)γj(ζ)p(dζ, dt)
}

=

= E
{∫ T

0

dt

∫

Rm
∗

cX (ζ, t)γj(ζ)π(dz)
}

= E
{∫ T

0

cXj (t)dt
}
,

for any T > 0.
Now, recall that a Poisson measure p is a sum of (random) Dirac measures,

i.e., p(K, ]a, b]) =
∑
a<s≤t ✶δp(s)∈K where δp(s) denotes the jumps at time s

(i.e., the Poisson point process originating the Poisson measure p), and assume
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that γj is π-integrable so that

∫

Rm
∗ ×]0,T ]

γj(ζ)p(dζ, dt) =

=

∫

Rm
∗ ×]0,T ]

γj(ζ)p̃(dζ, dt) + TE
{∫

Rd
∗

γj(ζ)π(dζ)
}

can be defined. Therefore, the integer measure νj induced by the pathwise
integral of γj over p, i.e.,

p(γj , t) =

∫

Rd
∗×]0,t]

γj(ζ)p(dζ, ds), νj(K, ]a, b]) =
∑

a<s≤b
✶{δp(γj ,t)∈K}

are defined, and the jump satisfy δνj(t) = δp(γj , t) = γj(δp(t)). Hence the
integer measure νj is indeed a Poisson measure with Lévy measure πj(dζ) =
γj(ζ)π(dζ). Moreover, t 7→ νj(R

d
∗, ]0, t]) is a composed (real valued) Poisson

process with the finite measure πj on Rd∗ as parameter.
Thus, the stochastic integral with respect to either the initial Poisson mea-

sure {p(K, ]a, b])} or its associate Poisson point process {δp(t)} can be written
as an orthogonal series either {νj} or {δp(γj , t)}, i.e., with ν̃j = νj − πj(dζ)dt,

∫

Rm
∗ ×]0,t]

cX (ζ, s)p̃(dζ, ds) =
∑

j

∫

Rd
∗×]0,t]

cX (ζ, s)ν̃j(dζ, ds).

and
∫

Rd
∗×]0,t]

cX (ζ, s)νj(dζ, ds) =

∫

Rd
∗×]0,t]

cX (ζ, s)γj(ζ)p̃(dζ, ds).

Note that we may write p̃j(t) = p̃(γj , ]0, t]) and in the proper meaning for the
jumps operator δ we have δp̃j(t) = δp(γj , t).

Sometimes, it is convenient to use the following

Definition 4.1. Let X be Itô processes with jumps as above, satisfying (4.4).
We define the backward, forward and symmetric (or Stratonovich) stochastic
integrals in term of the Itô stochastic integral as follows

∫

]0,T ]

X(t−)d−wk(t) =

∫

]0,T ]

X(t−)dwk(t),

∫

]0,T ]

X(t−)d+wk(t) =

∫

]0,T ]

X(t−)dwk(t) +

∫ T

0

bk(t)dt,

∫

]0,T ]

X(t−)d◦wk(t) =

∫

]0,T ]

X(t−)dwk(t) +
1

2

∫ T

0

bk(t)dt

and in general, for any two given semimartingales M and N we define the
backward, forward and symmetric (or Stratonovich) stochastic integrals in term
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of the Itô stochastic integral as follows
∫

]0,T ]

M(t−)d−N(t) =

∫

]0,T ]

M(t−)dN(t),

∫

]0,T ]

M(t−)d+N(t) =

∫

]0,T ]

M(t−)dN(t) +
[
M,N

]
(T ),

∫

]0,T ]

M(t−)d◦N(t) =

∫

]0,T ]

M(t−)dN(t) +
1

2

[
M,N

]
(T ).

Clearly, this take place in a probability space (Ω,F , P ), with a completed (rel-
ative to F), right-continuous and quasi-left continuous filtration F.

Remark that because the martingales are quasi-continuous and the local
finite variation part is continuous, we are allow to use the square bracket [·, ·]
instead of the angular bracket 〈·, ·〉 as usually, without to much complication in
the calculations, since jumps are deduced from the martingale measure ν̃.

Thus, if M and N are two local-martingales with values in Rd and R (not
necessarily continuous, but quasi-continuous and relative to the same filtered
space) and associated martingale measures ν̃

M
(dz, dt) = cM (z, t)ν̃(dz, dt) and

ν̃
N

(dz, dt) = cN (z, t)ν̃(dz, dt), for some integer measure ν in Rm∗ , then
∫

]0,T ]

ϕ
(
M(t−)

)
d◦N(t) =

∫

]0,T ]

ϕ
(
M(t−)

)
dN(t) +

1

2

[
ϕ(M), N

]
(T ),

for any smooth function ϕ(x), and

[
ϕ(M), N

]
(T ) =

d∑

i=1

∫ T

0

∂iϕ
(
M(t−)

)
d
[
Mi, N

]c
(t) +

+

∫

Rm
∗ ×]0,T ]

[
ϕ
(
M(t−) + cM (z, t)

)
− ϕ

(
M(t−)

)]
cN (z, t)ν(dz, dt),

where ∂iϕ denotes the derivative in x, and ν is the common integer measure.
Clearly, the predictable covariance 〈ϕ(M), N〉 has an expression similar to the
above with νp replacing the ν. In general, we may use the integer measure
ν
XY

in Rd+1
∗ associated with the (purely discontinuous part of the) Rd+1-valued

local-martingale (M,N), where we replace the integer measure ν(dz, dt) with
ν
XY

(dx, dy, dt) and the coefficients cM (z, t) and cN (z, t) with the variables x and
y. In this case, the variable (x, y) belongs to Rd+1

∗ and the integral should be in
Rd+1

∗ . However, because ν
XY

is an integer measure and the integrand function
[ϕ(· + x) − ϕ(x)]y vanishes if x = 0 or y = 0, the integral is only on the region
{(x, y) ∈ Rm+1

∗ : x 6= 0, y 6= 0}×]0, T ] as expected, i.e., when both martingales
have jumps simultaneously.

It is clear that the vector-form is deduced from the above definition and the
operational Itô rule becomes

X(b)Y (b) −X(a)Y (a) =

∫

]a,b]

X(t−)d◦Y (t) +

∫

]a,b]

Y (t−)d◦X(t),
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i.e., as the deterministic case, with all the jumps incorporated into the integral.
Note that the processes X and Y are cad-lag and quasi-left continuous, and
that the bounded variation part v is a continuous process. In general,

ϕ(X(T )) − ϕ(X(0))=

∫

]0,T ]

∂xϕ(X(t−))dX(t)+

∫

]0,T ]

∂xϕ(X(t−))d[X]c(t)+

+
∑

0<t≤T

(
ϕ(X(t)) − ϕ(X(t−)) −∇ϕ(X(t−)) · δX(t)

)
,

for any a smooth function ϕ. Clearly, we have

∑

0<t≤T

(
ϕ(X(t)) − ϕ(X(t−)) − ∂xϕ(X(t−))δX(t)

)
=

=

∫

Rd
∗×]0,T ]

[
ϕ(X(t−) + z)−ϕ(X(t−))− z · ∇ϕ(X(t−))

]
ν
X

(dz, dt),

where ν
X

is the integer measure associated with X in Rd∗. Clearly, ν
X

= ν̃
X

+νp
X
,

where ν̃
X

is the martingale measure (yielding the martingale stochastic integral)
and νp

X
is its predictable jump compensator.

The square-bracket [·, ·] and the integer measures can be defined for any cad-
lag processes, non necessarily semimartingales. The previous relations between
the backward, forward and symmetric integrals with the quadratic variation are
essential for this analysis. The interested reader may consult for instance, Chao
and Chou [21], Errami et al. [44], Fisk [49], Föllmer [53], Meyer [130], among
others.

4.2 Quadratic Variation Arguments

One way of establishing Itô formula requires a more detailed discussion on the
predictable quadratic variation defined via Doob-Meyer Decomposition (The-
orem 2.7) for any local square integrable local-martingale (this includes any
local-martingale with continuous paths) and the optional quadratic variation
defined via the orthogonal decomposition into a continuous and a purely dis-
continuous martingale, applicable to any local-martingale.

4.2.1 Recall on Martingales Estimates

For future reference, recall that if M is a real valued martingale the Jensen’s
inequality implies that the absolute value X = |M | is a sub-martingale. Thus,
let us summarize the key estimates for a nonnegative cad-lag sub-martingale
X = {X(t) : t ≥ 0}:

(a) Doob’s sup-estimate (or maximal inequality)

E
{(

sup
t≤T

X(t)
)p} ≤

( p

p− 1

)p
E
{(
X(T )

)p}
, (4.6)
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for any bounded stopping time, and

E
{(

sup
t≥0

X(t)
)p} ≤

( p

p− 1

)p
sup
t≥0

E
{(
X(t)

)p}
, (4.7)

which requires M bounded in Lp with p > 1. However, the estimates

εP
{

sup
t≤T

X(t) ≥ ε
}
≤ E

{
X(T )✶supt≤T X(t)≥ε

}
≤ E

{
X(T )

}
, (4.8)

for any ε and T positive numbers, and

E
{
X(τ)

}
≤ 3 sup

t≥0
E
{
X(t)

}
(4.9)

for any finite stopping time τ , hold true.

(b) Davis-Burkhölder-Gundy inequality for (cad-lag) local martingales vanish-
ing at the initial time, namely

cp E{
(
[M ](T )

)p/2} ≤ E{sup
t≤T

|M(t)|p} ≤ Cp E{
(
[M ](T )

)p/2}, (4.10)

valid for any T ≥ 0 and p ≥ 1 and some universal constants Cp > cp > 0
independent of the filtered space, T and the local martingale M. In particular,
we can take C1 = C2 = 4 and c1 = 1/6. Moreover, a stopping time τ can be
used in lieu of the time T and the above inequality holds true. It is clear that
Davis-Burkhölder-Gundy inequality requires to calculate a priori the optional
quadratic variation. However, if M is a square integrable local-martingale and
〈M〉 is its predictable quadratic variation (given via Doob-Meyer Decomposi-
tion) then

E{sup
t≤T

|M(t)|p} ≤
(4 − p

2 − p

)
E{

(
〈M〉(T )

)p/2}, (4.11)

valid for any T ≥ 0 and 0 < p < 2. Furthermore, this bound holds for any
p ≥ 1 and some suitable constant Cp > 0, provided the (square integrable)
local-martingale M is continuous. Recall that a continuous local-martingale M
is always a square integrable local-martingale and in this case [M ] = 〈M〉, and
Davis-Burkhölder-Gundy inequality (4.10) holds for any p > 0. Also note that
if 1 < p ≤ 2 then Doob’s maximal inequality (4.8) with p yields

cpE{sup
t≤T

|M(t)|p} ≤ E{|M(T )|p} ≤
(
E{|M(T )|2}

)p/2
= E{

(
〈M〉(T )

)
},

because M2−〈M〉 is a martingale, i.e., the constant (4.11) becomes 4 for p = 2,

(c) Lenglart’s inequality for dominate processes, i.e., if X and A are two cad-lag
adapted processes such that A is monotone increasing and E{|Xτ |} ≤ E{Aτ},
for every bounded stopping time τ, then for every stopping time τ and constants
ε, η > 0 we have

P
{

sup
t≤τ

|Xt| ≥ ε
}
≤ 1

ε

[
η + E

{
sup
t≤τ

(At −At−)
}]

+ P
{
Aτ ≥ η

}
, (4.12)
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and if A is also predictable then the term with the jump (At−At−) is removed
from the above estimate. This becomes

P
{

sup
t≤τ

|Mt| ≥ ε
}
≤ η

ε2
+ P

{
〈M〉τ ≥ η

}
, ∀ε, η > 0, (4.13)

for any stopping time τ, where X = M2 and M is a (cad-lag) local integrable
martingale having a continuous predictable quadratic variation 〈M〉.

(d) If M is a square integrable local-martingale with E{M(0)} = 0, then for
any t > s ≥ 0

E
{(
M(t) −M(s)

)2∣∣F(s)
}

=

= E
{
M2(t)

∣∣F(s)
}
− 2M(s)E

{
M(t)

∣∣F(s)
}

+M2(s) =

= E
{
M2(t)

∣∣F(s)
}
−M2(s) = E

{
M2(t) −M2(s)

∣∣F(s)
}
,

which is usually called the orthogonal increment property. Moreover, if M has
continuous paths with bounded variation then for a partition ̟ = {t0 < t1 <
· · · < tn = t} write

E{M2(t)} = E
{ n∑

i=1

[M2(ti) −M2(ti−1)]
}

=

= E
{ n∑

i=1

(
M(ti) −M(ti−1)

)2} ≤

= E
{(

sup
i

|M(ti) −M(ti−1)|
) n∑

i=1

|M(ti) −M(ti−1)|
}
,

to deduce M(t) = 0 for every t > 0, as the mesh of the partition |̟| → 0. Also
the following limit

sup
0<t≤T

∣∣∣
n∑

i=1

[M(t ∧ ti) −M(t ∧ ti−1)]p
}
− [M ](t)

∣∣∣ → 0

holds in probability, for every T > 0, as the mesh |̟| → 0, with a partition
̟ = {t0 < t1 < · · · < tn = T}. At least this convergence is clear for local-
martingales with continuous paths.

• Remark 4.2. It is perhaps interesting to note that the Doob’s maximal in-
equality is a direct consequence of (4.8) by using the following claim: If a and
p be strict positive constants and β be a function from R+ into itself such that

b−p

a−p − β(b)
= C > 0, for some b > 0.

Then for any pair of nonnegative random variables X, Y satisfying

P{X > at, Y < bt} ≤ β(b)P{X ≥ r}, ∀t, b > 0,

[Preliminary] Menaldi December 12, 2017



4.2. Quadratic Variation Arguments 241

the inequality E{Xp} ≤ CE{Y p} also holds true. To validate this claim, first
use the elementary inequality P{X > at} − P{Y ≥ bt} ≤ P{X > at, Y < bt}
to obtain P{X > at} − P{Y ≥ bt} ≤ β(b)P{X ≥ t}, for every t, b > 0. Since

∫ ∞

0

tp−1
✶{Z≥t}dt = p−1E{Zp}, p > 0

for any nonnegative random variable Z, integrating the previous inequality (af-
ter multiplying by tp−1) yields E{(X/a)p}−E{(Y/b)p} ≤ E{Xp} or equivalently
(a−p − β(b))E{Xp} ≤ b−pE{Y p}, which rearranged is the desired inequality.
Moreover, estimate (4.8) follows form the key upcrossing estimate, which yields
also the following fact: For any super-martingale real-valued martingale X and
any t < T we have

εP{ sup
t≤s≤T

Xs ≥ ε} ≤ E{X(t)} + E{X−(T )},

εP{ inf
t≤s≤T

Xs ≤ −ε} ≤ E{X−(T )},

for every ε > 0, where X− = −min{X, 0} is the negative part. Certainly,
this may be applied to a sub-martingale Y by saying that X = −Y is then a
super-martingale. Combining all, we have

εP{ sup
t≤s≤T

Xs ≥ 3ε} ≤ 4E{X(0)} + 3E{X(T )},

when X is a sub- or super-martingale.

4.2.2 Estimates for Stochastic Integrals

Recall the stochastic integral relative to a Wiener process (or a continuous
local-martingale) or relative to a Poisson measure (or a square local-martingale
quasi-continuous)

I(t, f, dw) =

∫ t

0

f(s)dw(s) or I(t, g, dν̃) =

∫

Rm
∗ ×]0,t]

g(s, ζ)ν̃(dζ, ds),

where the predictable/optimal quadratic variations are known, namely,

〈I(·, f, dw)〉 =

∫ ·

0

|f(s)|2ds or 〈I(·, g, dν̃)〉 =

∫ ·

0

ds

∫

Rm
∗

|g(s, ζ)|2π(dζ),

[I(·, f, dw)] = 〈I(·, f, dw)〉, and

[I(·, g, dν̃)] = 〈I(·, g, dν̃)〉 +

∫

Rm
∗ ×]0,·]

|g(s, ζ)|2ν(dζ, ds).

The Doob’s maximal inequality (isometric equality without the sup for p = 2)
with p > 1 and Cp = [p(p− 1)]p

E
{

sup
0≤t≤T

|I(t, f, dw)|p
}
≤ CpE

{
|I(T, f, dw)|p

}
, p > 1

E
{

sup
0≤t≤T

|I(t, g, dν̃)|p
}
≤ CpE

{
|I(T, g, dν̃)|p

}
, p > 1
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which yield, only for 1 < p ≤ 2

E
{

sup
0≤t≤T

|I(t, f, dw)|p
}
≤ Cp

(
E
{∫ T

0

|f(s)|2ds
})p/2

,

E
{

sup
0≤t≤T

|I(t, g, dν̃)|p
}
≤ Cp

(
E
{∫ T

0

ds

∫

Rm
∗

|g(s, ζ)|2π(dζ)
})p/2

,

are sufficient (actually, p = 2 suffices) to develop the stochastic integral theory.
A posteriori, the upper bound of Davis-Burkhölder-Gundy inequality (4.10) and
(4.11) yield

E
{

sup
0≤t≤T

|I(t, f, dw)|p
}
≤ CpE

{(∫ T

0

|f(s)|2ds
)p/2}

, (4.14)

for any p > 0, and

E
{

sup
0≤t≤T

|I(t, g, dν̃)|p
}
≤ CpE

{(∫ T

0

ds

∫

Rm
∗

|g(s, ζ)|2π(dζ)
)p/2}

, (4.15)

only for 0 < p ≤ 2. However, p > 2 this last estimate becomes

E
{

sup
0≤t≤T

|I(t, g, dν̃)|p
}
≤ Cp

(
E
{[∫ T

0

ds

∫

Rm
∗

|g(s, ζ)|2π(dζ)
]p/2}

+

+ E
{∫ T

0

ds

∫

Rm
∗

|g(s, ζ)|pπ(dζ)
})

, p > 2. (4.16)

Indeed, to check this bound, use Itö formula with the function x 7→ |x|p and the
process X(t) = I(t, g, dν̃) to obtain

cpE{|X(t)|p} ≤
∫ t

0

ds

∫

Rm
∗

[
|X(s−)|p−2|g(s, ζ)|2 + |g(s, ζ)|p

]
π(dζ),

for some constant cp > 0 depending only on p, and satisfying

2
[
|a+ b|p − |a|p − p|a|p−2ab

]
= p(p− 1)|a+ θb|p−2|b|2 ≤

≤ 2

cp

[
|a|p−2|b|2 + |b|p

]
, ∀a, b ≥ 0,

for some θ in [0, 1]. Next, Hölder inequality with q such that q(1 − 2/p) = 1,
q′ = p/2, yields

∫ t

0

ds

∫

Rm
∗

|X(t−)|p−2|g(s, ζ)|2π(dζ) ≤
(
E
{

sup
0<s≤t

|X(s−)|p
})1−p/2

×

×
(
E
{[∫ t

0

ds

∫

Rm
∗

|g(s, ζ)|2π(dζ)
]p/2})2/p

,
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and the elementary inequality ab ≤ aq
′

/q′ + bq/q, a, b ≥ 0, implies

∫ t

0

ds

∫

Rm
∗

|X(t−)|p−2|g(s, ζ)|2π(dζ) ≤ cp
2
E
{

sup
0<s≤t

|X(s−)|p
}

+

+ C ′
pE

{[∫ t

0

ds

∫

Rm
∗

|g(s, ζ)|2π(dζ)
]p/2}

,

with cp the same constant as above and some suitable constant C ′
p. Collection

all pieces and combining with Doob’s maximal inequality, estimate (4.16) follows
with Cp = max{2C ′

p/cp, 2/cp}.
Since both stochastic integrals I(·, f, dw) and I(·, g, dν̃) are locally square

integrable, the predictable quadratic variations are defined and Lenglart’s in-
equality (4.13) holds true, i.e.,

P
{

sup
0≤t≤T

|I(t, f, dw)| ≥ ε
}
≤ η

ε2
+ P

{∫ T

0

|f(s)|2ds ≥ η
}
, (4.17)

P
{

sup
0≤t≤T

|I(t, g, dν̃)| ≥ ε
}
≤ η

ε2
+ P

{∫ T

0

ds

∫

Rm
∗

|g(s, ζ)|2π(dζ) ≥ η
}
,

for every ε, η > 0.
It is also clear that these estimates for stochastic integrals with respect to a

Wiener process and a Poisson measure extent to more general situations, e.g.,
with respect to a local-martingale and with respect to a point process (or an
integer random measure).

4.2.3 Quadratic Variations for Continuous SIs

Denote by ̟ ∧ t the partition determined by the points t ∧ ti, i = 0, 1, . . .,
where ̟ = {0 = t0 < t1 < · · · < tn < tn+1 < · · · } is a partition of the whole
semi-line [0,∞), with tn → ∞ and mesh |̟| = supi(ti − ti−1). Actually, a
sequence {̟n, n = 1, 2, . . .} of partitions with mesh |̟n| → 0 is used, which is
referred to as |̟| → 0. In a filtered probability space (Ω,F, P ), suppose given a
predictable cag-lad (continuous from the left and having limits from the right)
piecewise constant real-valued process h̟, h̟(s) = h̟(ti) for ti−1 < s ≤ ti,
h̟(ti) is a F(ti−1)-measurable random variable, i = 1, 2, . . ., and consider the
‘Riemann’ sum

K̟(t, h̟, d
2w) =

∞∑

i=1

h̟(ti−1)[w(t ∧ ti) − w(t ∧ ti−1)]2, (4.18)

where {w(t) : t ≥ 0} is a standard real-valued Wiener process. The above series
is a finite sum for each t, and that only the restriction of h̟ to the partition
̟ ∧ t actually intervenes in the expression of K(t, h̟, d

2w). The typical case
is when h is a predictable process continuous from the left and h̟(s) = h̟(ti)
for ti−1 < s ≤ ti, so that if h also belongs to L1 then h̟ → h in L1 as |̟| → 0.
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Note that as in standard Riemann sums, if ̟′ is a refinement of ̟, i.e.,
̟′ ⊂ ̟, then (a) the process hϕ can be considered as a particular process
h̟′ = h̟, and (b) K(t,̟, h̟, d

2w) = K(t,̟′, h̟′ , d2w), and as a consequence,
if ̟′ and ̟′′ are two partitions, then the partition ̟ = ̟′∪̟′′ is a refinement
of both of them and

K̟′(t, h̟′ , d2w) +K̟′′(t, h̟′′ , d2w) = K̟(t, h̟, d
2w),

where h̟ = h̟′ + h̟′′ . Also note that

E
{
K̟(t, h̟, d

2w)
}

= E
{∫ t

0

h̟(s), ds
}
, ∀t ≥ 0,

because h̟ is predictable and the increments of w are independent.
Comparing with the stochastic integral

I̟(t, h̟, dw) =

∞∑

i=1

h̟(ti−1)[w(t ∧ ti) − w(t ∧ ti−1)],

note that

|I̟(t, h̟, dw)|2 6= K̟(t, h2̟, d
2w), but

E{|I̟(t, h̟, dw)|2} = E{K̟(t, h2̟, d
2w)},

and that the mapping (h̟, w) 7→ K̟(t, h̟, d
2w) is linear in h̟ and quadratic

in w, and that h̟ ≥ 0 implies K̟(t, h̟, d
2w) ≥ 0. Contrary to the stochastic

integral, there is not a visible cancellation of the mixed terms when calculating
E{|K̟(t, h̟, d

2w)|2}.
Nevertheless, our interest is the limit of the ‘Riemman like sum’ process

t 7→ K̟(t, h̟, d
2w), as the mesh of the partition |̟| vanishes. Because 0 ≤

t ≤ T for a fixed real number T , the partition ̟ = ̟ ∧ T , and without loss of
generality, we refer to a partition on the bounded interval [0, T ].

QV Definition of Wiener Integrals

The following result could be used to show the existence of the optional/pre-
dictable quadratic variation of a stochastic integral with respect to a Wiener
process without invoking Doob-Meyer Decomposition (Theorem 2.7).

Theorem 4.3. On a given filtered probability space (Ω,F, P ), let {w(t) : t ≥ 0}
be a standard real-valued Wiener process and {h(t) : t ≥ 0} be a predictable
locally integrable process on [0, T ], for a fixed real number T > 0. With the
previous notation, if ̟ = {0 = t0 < t1 < · · · < tn = T} is a deterministic
partition with mesh |̟| → 0 and {h̟(t) : t ≥ 0} is a sequence of predictable
processes, with h̟(t) equal to a F(ti−1) random variable on the interval ]ti−1, ti],
such that

P
{∫ T

0

|h̟(t) − h(t)|dt ≥ ε
}
→ 0 as |̟| → 0,
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for every ε > 0, then

sup
0≤t≤T

∣∣∣
n∑

i=1

h̟(ti−1)[w(t ∧ ti) − w(t ∧ ti−1)]2 −
∫ t

0

h(s)ds
∣∣∣ → 0,

and for any nonnegative numbers α and β,

n∑

i=1

|h̟(ti−1)| |w(ti) − w(ti−1)|2α|ti − ti−1|β → 0, α+ β > 1,

both in probability.

Proof. First by using the positive and negative parts of h̟ and h, we may
assume h̟ and h nonnegative, without any lost of generality.

Next, by localization, define hr̟(t) = h̟(t∧ τr) and hr(t) = h(t∧ τr), where
the stopping times

τr = inf
{
t ∈ [0, T ] :

∫ t

0

|h(s)|ds ≥ r
}
,

τ̟ = inf
{
t ∈ [0, T ] :

∫ t

0

|h(s) − h̟(s)|ds ≥ 1
}
,

satisfy P{τr < T} → 0 as r → ∞ and P{τ̟ < T} → 0 as |̟| → ∞, because h is
a locally integrable process and h̟ → h in probability. Moreover, the sequence
h̟ converges to h and so, there exists a δ > 0 such that if |̟| < δ then

∫ t

0

[
|h̟(s)| + |h(s)|

]
ds ≤

∫ t

0

[
|h̟(s) − h(s)| + 2|h(s)|

]
ds ≤

≤ 1 + 2

∫ t

0

|h(s)|ds,

and

n∑

i=1

|hr̟(ti−1)|(ti − ti−1) ≤ (1 + 2r), as long as |̟| < δ,

for every 0 ≤ t < τr ∧ τ̟.

Therefore, assuming the results valid for ‘bounded’ data, the inequalities

P
{

sup
0≤t≤T

∣∣∣K̟(t, h̟, d
2w) −

∫ t

0

h(s)ds
∣∣∣ ≥ ε

}
≤ P{τr ∧ τ̟ < T}

+ P
{

sup
0≤t≤T

∣∣∣K̟(t, hr̟, d
2w) −

∫ t

0

hr(s)ds
∣∣∣ ≥ ε

}
,
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and

P
{∣∣∣

n∑

i=1

h̟(ti−1)|w(ti)−w(ti−1)|2α|ti− ti−1|β
∣∣∣ ≥ ε

}
≤ P{τr ∧ τ̟ < T}+

+ P
{∣∣∣

n∑

i=1

hr̟(ti−1)|w(ti) − w(ti−1)|2α|ti − ti−1|β
∣∣∣ ≥ ε

}

imply the desired converges, after taking first limit as the mesh of the partition
|̟| → 0 and then as r → ∞.

After all this simplification, we are reduced to the case where the processes
h and h̟ are also nonnegative and satisfy the bound

∫ T

0

[
h(s) + h̟(s)

]
ds ≤ C <∞, a.s.,

for some constant C > 0.

Now, because w(t) − w(s) is a normal distributed random variable with
E{w(t)−w(s)} = 0 and E{|w(t)−w(s)|2} = (t−s), for any positive real number
p > 0 there exists a constant depending Cp such that E{|w(t) − w(s)|2p} ≤
Cp|t − s|p, for Wiener process and any times t ≥ s ≥ 0. Thus, based on this
estimate and the independence of h̟(ti−1) and |w(ti) − w(ti−1)| we have

E
{ n∑

i=1

h̟(ti−1)|w(ti) − w(ti−1)|2α|ti − ti−1|β
}
≤

≤ Cα

n∑

i=1

E
{
h̟(ti−1)

}
(ti − ti−1)α+β ≤

≤ Cα

(∫ T

0

E
{
h̟(t)

}
dt
)

max
i

{(ti − ti−1)α+β−1},

which shows the convergence to zero, since the mesh |̟| = maxi{(ti − ti−1)}
vanishes.

Consider the process

t 7→M̟(t) =
{ n∑

i=1

h̟(ti−1)[w(t ∧ ti) − w(t ∧ ti−1)]2 −
∫ t

0

h̟(s)ds
}
,

and let us check that M̟(t) is a martingale. Suppose 0 ≤ s < t ≤ T and note
that

M̟(t) = M̟(s) +

+
{ n∑

i=1

h̟(ti−1)[w(t ∧ ti ∨ s) − w(t ∧ ti−1 ∨ s)]2 −
∫ t

s

h̟(s)ds
}
,
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M̟(s) is F(s)-measurable, and

E
{
ϕ

n∑

i=1

h̟(ti−1)[w(t ∧ ti ∨ s) − w(t ∧ ti−1 ∨ s)]2
}

= E
{
ϕ

∫ t

s

h̟(s)ds
}
,

for any F(s)-measurable random variable ϕ. This shows that E{M̟(t)|F(s)} =
M̟(s), i.e., M̟ is a martingale. Therefore, the equality

E
{ n∑

i=1

h̟(ti−1)[w(t ∧ ti) − w(t ∧ ti−1)]2
}

= E
{∫ t

0

h̟(s)ds
}
, ∀t

yields the estimate

P
{

sup
0≤t≤T

∣∣∣
n∑

i=1

h̟(ti−1)[w(t ∧ ti) − w(t ∧ ti−1)]2 −
∫ t

0

h̟(s)ds
∣∣∣ ≥ ε

}
≤

≤ 2

ε
E
{∫ T

0

h̟(s)ds
}
, (4.19)

after using Doob’s sup-estimate (4.8). Note that Lenglart’s inequality (4.12)
could also be used.

Now, if ̟′ and ̟′′ are two partitions with h̟′ and h̟′′ being their corre-
sponding predictable piecewise constant processes, then construct a predictable
piecewise constant process h̟(t) = h̟′(t)− h̟′′(t) corresponding to the union
of those partitions ̟ = ̟′ ∪̟′′ to check that

n′∑

i=1

h̟′(t′i−1)[w(t′i) − w(t′i−1)]2 −
n′′∑

i=1

h̟′′(t′′i−1)[w(t′′i ) − w(t′′i−1)]2 =

=

n∑

i=1

h̟(ti−1)[w(ti) − w(ti−1)]2,

which yields

E
{∣∣∣

n′∑

i=1

h̟′(t′i−1)[w(t′i)−w(t′i−1)]2−
n′′∑

i=1

h̟′′(t′′i−1)[w(t′′i )−w(t′′i−1)]2
∣∣∣
}
≤

≤ E
{∫ T

0

|h̟′(t) − h̟′′(t)|dt
}
.

Moreover, as in the case of the Riemann sums and integral, the study of the
limit as the mesh of the partition goes to zero is reduced to increasing sequences
{̟k} of partitions with the mesh |̟k| → 0, where increasing means ̟k ⊂ ̟k+1,
for any k.

Recall the notation

K̟(t, h̟, d
2w) =

n∑

i=1

h̟(ti−1)[w(t ∧ ti) − w(t ∧ ti−1)]2,
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for any generic partition ̟ = {t0 < t1 < · · · < tn = T} and any time t in [0, T ].
It is then clear that the union

⋃
k̟k is dense in [0, T ] and K̟k

(t, h̟k
, d2w) ≥

K̟k
(s, h̟k

, d2w), for any s < t in ̟k. These properties combined with sup-
martingale estimate (4.19) and the fact that h̟′ → h and h̟′′ → h, prove that
the process t 7→ K̟(t, h̟, d

2w) converges, as the mesh ̟ → 0, to some process
denoted by K(t, h, d2w), i.e.,

εP
{

sup
0≤t≤T

|K̟(t, h̟, d
2w) −K(t, h, d2w)| ≥ ε

}
≤

≤ E
{
|K̟(T, h̟, d

2w) −K(T, h, d2w)|
}
→ 0, ∀ε > 0,

as the mesh |̟| → 0. Moreover, the limiting process t 7→ K(t, h, d2w) is con-
tinuous, integrable and monotone increasing.

On the other hand, since the process

t 7→M̟(t) = K̟(t, h̟, d
2w) −

∫ t

0

h̟(s)ds, 0 ≤ t ≤ T

is a continuous martingale, the limiting process

t 7→M(t) = K(t, h, d2w) −
∫ t

0

h(s)ds, 0 ≤ t ≤ T,

is a continuous martingale, with M(0) = 0 and paths with bounded variation.
Hence M(t) = 0, for every t, which means that K(t, h, d2w) is the desired
limit.

• Remark 4.4. From the above proof, it should be clear that because the Wiener
process has continuous paths, the limiting process K(t, h, d2w) can be identified
with the integral of the process h, after using the fact that a continuous mar-
tingale having paths with bounded variation is necessarily constant. However,
if a Lévy process is used instead of the Wiener process w, then the paths of
K(t, h, d2w) could only be cad-lag. In this case, if it is known that K(t, h, d2w)
is predictable then the process

t 7→M(t) = K(t, h, d2w) −
∫ t

0

h(s)ds

is a (cad-lag) predictable martingale having paths with bounded variation, and
thus, it is necessarily constant, e.g., see Rogers and Williams [153, Theorem
VI.19.4, pp. 347–348]. Also, note there is not problem in allowing an stochastic
partition, as long as the times ti are stopping times, i.e., the partition ̟ could
be taken not deterministic, but assuming that the ti are stopping times. In this
case, the convergence remains true, and the construction of a ̟ = ̟′ ∪̟′′ is
complicate.

• Remark 4.5. Typically, given and adapted (locally) integrable process h and
a partition ̟ = {t0 < t1 < · · · < tn = T} the predictable process h̟ defined
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by h̟(t) = 0 for any t in [t0, t1] and

h̟(t) =
1

ti − ti−1

∫ ti

ti−1

h(s)ds, ∀t ∈]ti, ti+1],

for i = 1, 2, . . . , n − 1. Note that t 7→ h̟(t+) is a cad-lag version of h̟, while
h̟ is a cag-lad (continuous from the left with limit from the right) process,
which converges to h in the L1(Ω×]0, T [) norm. If a bounded approximation is
required then the truncation, i.e., h̟ ∧ (1/|̟|) is useful. Clearly, the expression
K̟(t, h̟, d

2w) is quadratic in d2w and linear in h̟, and continuous in the
L1(Ω×]0, T [) norm for h̟, which means that by truncating h̟, it can also be
assumed bounded by a deterministic constant, if necessary.

Connection with Two independent Wiener Processes

This generalize the previous arguments.

Corollary 4.6. As in Theorem 4.3, but suppose given three optional processes f ,
g and h such that f and g are locally square integrable, h is locally integrable and
the products hf2 and hg2 are locally integrable, and the sequence {h̟(t) : t ≥ 0}
converges only in probability in the sense that

P
{∫ T

0

|h̟(t) − h(t)|
[
1 + |f(t)|2 + |g(s)|2

]
dt ≥ ε

}
→ 0, as |̟| → 0,

for every ε > 0, then

sup
0≤t≤T

∣∣∣
n∑

i=1

h̟(ti−1)
(∫ t∧ti

t∧ti−1

f(s)dw(s)
)(∫ t∧ti

t∧ti−1

g(s)dw(s)
)
−

−
∫ t

0

f(s)g(s)h(s)ds
∣∣∣ → 0,

and for any nonnegative numbers α and β with α+ β > 1,

n∑

i=1

|h̟(ti−1)|
∣∣∣
∫ ti

ti−1

f(s)dw(s)
∣∣∣
2α(∫ ti

ti−1

|g(s)|2ds
)β

→ 0,

both in probability. Moreover, if w1 is a real-valued standard Wiener process
independent of w then

sup
0≤t≤T

∣∣∣
n∑

i=1

h̟(ti−1)
(∫ t∧ti

t∧ti−1

f(s)dw(s)
)(∫ t∧ti

t∧ti−1

g(s)dw1(s)
)∣∣∣ → 0,

in probability, as |̟| → 0.

Proof. First, use the stopping time

τr = inf
{
t ≥ 0 :

∫ t

0

[
1 + |h(s)|

][
1 + |f(s)|2 + |g(s)|2

]
ds ≥ r

}
,
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and proceed by localization as in Theorem 4.3 to be able to assume without any
loss of generality that the processes h and h̟ are also nonnegative and together
with f and g satisfy the bound

∫ T

0

[
1 + h(s) + h̟(s)

][
1 + |f(s)|2 + |g(s)|2

]
ds ≤ C <∞, a.s.,

for some deterministic constant C = CT > 0, as |̟| → 0.
Second, consider the expression

B̟(t, h̟, fdw, gdw) =

=

n∑

i=1

h̟(ti−1)
(∫ t∧ti

t∧ti−1

f(s)dw(s)
)(∫ t∧ti

t∧ti−1

g(s)dw(s)
)
,

to check that it is linear in each of the last three arguments h̟, fdw and gdw.
Hence, the parallelogram equality yields

4B̟(t, h̟, fdw, gdw) = B̟(t, h̟, (f + g)dw, (f + g)dw) −
− B̟(t, h̟, (f − g)dw, (f − g)dw),

this means that only when f = g can be discussed, without any loss of generality.
Moreover, with the notation as in Theorem 4.3, this is B̟(t, h̟, fdw, fdw) =
K̟(t, h̟, fd2w).

At this point, note that h̟(ti−1) is not longer independent of the stochastic
integral on [ti−1, ti], but

E
{
h̟(ti−1)

(∫ ti

ti−1

f(s)dw(s)
)2}

=

= E
{
h̟(s)E

[( ∫ ti

ti−1

f(s)dw(s)
)2 ∣∣∣F(ti−1)

]}
=

= E
{
h̟(s)E

[( ∫ ti

ti−1

|f(s)|2ds
) ∣∣∣F(ti−1)

]}
,

which shows the equality

E
{ n∑

i=1

h̟(ti−1)
(∫ ti

ti−1

f(s)dw(s)
)2}

= E
{∫ t

0

h̟(s)|f(s)|2ds
}
,

and the bound

E
{

sup
0≤t≤T

∣∣K̟(t, h̟, fd2w)
∣∣} ≤ 4E

{∫ T

0

h̟(s)|f(s)|2ds
}
,

if need it. Therefore, as |̟| → 0, choose a sequence of predictable processes f̟
constant on each time-subinterval ]ti−1, ti], such that f̟ → f in L2(P × ds),
and replace f with f̟ to check that

P
{

sup
0≤t≤T

∣∣K̟(t, h̟, f̟d2w) −K̟(t, h̟, fd2w)
∣∣ ≥ ε

}
→ 0, ∀ε > 0,
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and K̟(t, h̟, f̟d2w) = K̟(t, h̟f
2
̟, d

2w). Hence, invoke Theorem 4.3 to
conclude the first part.

Regarding the last convergence to zero, note that by means of the elementary
inequality

∣∣∣
∫ ti

ti−1

f(s)dw(s)
∣∣∣
2α(∫ ti

ti−1

|g(s)|2ds
)β

≤

≤
(∣∣∣

∫ ti

ti−1

f(s)dw(s)
∣∣∣
2

+
∣∣∣
∫ ti

ti−1

|g(s)|2ds
∣∣∣
)α+β

≤

≤ Cα,β

[(∣∣∣
∫ ti

ti−1

f(s)dw(s)
∣∣∣
2)α+β

+
∣∣∣
∫ ti

ti−1

|g(s)|2ds
∣∣∣
α+β]

,

for some constant Cα,β > 0, and the martingale estimate

E
{(∫ ti

ti−1

f(s)dw(s)
)2(α+β) ∣∣∣F(ti−1)

}
≤

≤ CαE
{(∫ ti

ti−1

|f(s)|2ds
)α+β ∣∣∣F(ti−1)

}
,

for some constant Cα > 0, we are reduced to prove that

E
{ n∑

i=1

|h̟(ti−1)|
(∫ ti

ti−1

[
|f(s)|2 + |g(s)|2

]
ds

)α+β}
→ 0,

as the mesh |̟| → 0.
To this purpose, fix a path and in view of the absolute continuity (in t), for

every ε > 0 there exists a δ > 0 such that

sup
i

{∫ ti

ti−1

[
|f(s)|2 + |g(s)|2

]
ds

}
< ε,

for any partition with mesh |̟| < δ. Therefore,

n∑

i=1

|h̟(ti−1)|
(∫ ti

ti−1

[
|f(s)|2 + |g(s)|2

]
ds

)α+β
≤

≤ εα+β−1
{ n∑

i=1

|h̟(ti−1)|
∫ ti

ti−1

[
|f(s)|2 + |g(s)|2

]
ds

}
,

which shows the convergence to zero, for each fixed ω, almost surely. Since the
integrand

n∑

i=1

|h̟(ti−1)|
(∫ ti

ti−1

[
|f(s)|2 + |g(s)|2

]
ds

)α+β
≤
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can be bounded by

(∫ T

0

[
|f(s)|2 + |g(s)|2

]
ds

)α+β−1(∫ T

0

|h̟(s)|
[
|f(s)|2 + |g(s)|2

]
ds

)
,

which in dominated by the deterministic constant Cα+βT , we can take the limit
as |̟ → 0 inside the expectation E{·} and the second part is proved.

Now, go back two independent Wiener processes w and w1, where we have
to verify that

P
{

sup
0≤t≤T

|B̟(t, h̟, fdw, gdw1)| ≥ ε
}
→ 0, ∀ε > 0,

with the previous notation. Again, note that the expression B(t, ·, ·, ·) is linear
in each variable and as seen early, the bound

E

{ n∑

i=1

|h̟(ti−1)|
∣∣∣
∫ ti

ti−1

f(s)dw(s)
∣∣∣
∣∣∣
∫ ti

ti−1

g(s)dw1(s)
∣∣∣
}

≤

≤ E

{∫ T

0

|h̟(s)|
[
|f(s)|2 + |g(s)|2

]
ds

}
.

allow the approximation of f and g with predictable processes f̟ and g̟ con-
stant on ]ti−1, ti], and the problem is reduced to prove that

n∑

i=1

h̟(ti−1)f̟(ti−1)g̟(ti−1)
(
wk(ti) − wk(ti−1)

)
×

×
(
wl(ti) − wl(ti−1)

)
→ 0.

Moreover, the processes satisfy

∫ T

0

[
1 + h̟(s)

][
1 + |f̟(s)|2 + |g̟(s)|2

]
ds ≤ C <∞, a.s.,

for some deterministic constant C = CT > 0, as |̟| → 0.
To show this convergence, remark that because the two Wiener processes

are independent, the factor

σ̟(ti−1) = h̟(ti−1)f̟(ti−1)
(
w(ti) − w(ti−1)

)
g̟(ti−1),

for any s in ]tti−1,ti ], is independent of the increment w1(ti) − w1(ti−1), and as
in the stochastic integral, this yields the equality

E
{∣∣∣

n∑

i=1

σ̟(ti−1)
(
w1(ti) − w1(ti−1)

)∣∣∣
2}

= E
{ n∑

i=1

|σ̟(ti−1)|2(ti − ti−1)
}
,

|σ̟(ti−1)|2 = |h̟(ti−1)|2 |f̟(ti−1)|2
(
w(ti) − w(ti−1)

)2|g̟(ti−1)|2.
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and rearranging the factors,

E
{∣∣∣

n∑

i=1

σ̟(ti−1)
(
w1(ti) − w1(ti−1)

)∣∣∣
2}

=

= E
{ n∑

i=1

|h̟(ti−1)|2|f̟(ti−1)|2|g̟(ti−1)|2(ti − ti−1)2
}
.

The sum inside the expectation is bounded by

(
sup
i

∫ ti

ti−1

|h̟(s)||f̟(s)|2ds
)(∫ T

0

|h̟(s)||g̟(s)|2ds
)
≤ C2

T ,

and vanishes as the mesh |̟| → 0, which complete the proof.

• Remark 4.7. Instead of the interval [0, T ] we could consider a stochastic in-
terval [τ1 ∧ T, τ2 ∧ T [ with two stopping times τ1 ≤ τ2 and both convergences
remain valid within this interval. Also, for the convergence to zero, instead of
the stochastic integral in dw on the interval [ti−1, ti], we could use an expression
of the form

(∫ ti

ti−1

f1(s)dw1(s)
)2α1

(∫ ti

ti−1

f2(s)dw2(s)
)2α2

· · ·

· · ·
(∫ ti

ti−1

fm(s)dwm(s)
)2αm

with d independent real-valued Wiener processes w1, . . . , wd, and d locally square
integrable processes f1, . . . , fd, provided that 2α1 + · · · + 2αd + β > 1. Equiv-
alently, suppose w is a d-dimensional Wiener process, f is a matrix of suit-
able size, and replace the absolute value | · | with a Euclidean norm. Note
that in Corollary 4.6, the process h̟ can be considered part of f or g, and
B̟(t, h̟, fdw, gdw) is bilinear in (fdw, gdw) and linear in h̟.

• Remark 4.8. Therefore, Theorem 4.3 and Corollary 4.6 yield the following:
For real-valued Itô differentials of the form dM = gMdt+

∑
k σ

M

k dwk and dN =
gNdt +

∑
k σ

M

k dwk, where (wk) is a finite number of independent real-valued
standard Wiener processes, we have for any real-valued predictable bounded
process h

n∑

i=1

h(ti−1)
(
M(ti) −M(ti−1)

)(
N(ti) −N(ti−1)

)
→

→
∑

k

∫ T

0

h(t)σM

k (t)σN

k (t)dt,

while for any nonnegative numbers α and β such that α+ β > 1,

n∑

i=1

|h(ti−1)|
∣∣M(ti) −M(ti−1)

∣∣2α∣∣N(ti) −N(ti−1)
∣∣2β → 0,
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as the mesh of the partition 0 = t0 < t1 < · · · < tn = T vanishes. Both
convergences are in probability, and actually, if T is replaced by any time t in
[0, T ], then the convergence is uniform in t. All processes gM , σM

k , gN , σN

k , and
h are assumed to be predictable, gM and gN are locally integrable, σM

k and σN

k

are locally square-integrable, h, (σM

k )2h and (σN

k )2h are locally integrable and
if h(0) = 0 and h̟(s) = h(ti−1) for ti−1 < s ≤ ti then

∫ T

0

|h(s) − h̟(s)|
[
1 + |σM

k (s)|2 + |σN

k (s)|2
]
ds→ 0 as |̟| → 0,

in probability, for every k.

Deterministic QV

As a transition to the quadratic variation for discontinuous processes, and before
going further, let us recall some properties of cad-lag / cag-lad functions:

(1) If the oscillation of a function f on an interval I is given by osc(f, I) =
sup{|f(s) − f(t)| : s, t ∈ I} or equivalently as osc(f, I) = supI f − infI f , then
essentially by the definition of right- and left-hand limits follows that for any
real-valued cad-lag (or cag-lad) function f on [0, T ] and for every ε > 0 there
exists a partition ̟ of the form 0 = t0 < t1 < · · · < tn−1 < tn = T with
mesh |̟| < ε such that osc(f, [ti−1, ti[) < ε (or osc(f, ]ti−1, ti]) < ε), for every
i = 1, . . . , n. In other words, the cad-lag piecewise constant function

f̟(0) = f(0), and f̟(t) = f(ti−1), ∀t ∈ [ti−1, ti[

satisfies |f(t) − f̟(t)| < ε (or |f(t) − f̟(t−)| < ε), for every t in [0, T ]. Hence,
if a finite number of jumps are removed, namely,

g̟(0) = f(0), and g̟(t) =

n∑

i=1

(
f(ti) − f(ti−)

)
✶ti≤t, ∀t > 0,

then the function t 7→ f(t) − g̟(t) (or t 7→ f(t) − g̟(t−)) is certainly cad-
lag (or cag-lad) in [0, T ] and not necessarily continuous on (ti−1, ti), but it is
continuous at each ti, so that the oscillation within any closed interval [ti−1, ti]
is smaller than the given ε, i.e., osc(f − g̟, [ti−1, ti]) < ε. Moreover, if ̟′ ⊃ ̟
is a subordinate partition then the above hold true with ̟ replaced by ̟′.

(2) Any real-valued function with a bounded variation has a countable number
of discontinuities and it can be written as the different of a cad-lag increasing
and a cag-lad increasing functions, both cad-lag if f is itself cad-lag. A real-
valued cad-lag function f is called a purely jump function if it is the sum of its
jumps, i.e., if f(t) = f(0) +

∑
0<s≤t δf(s), where δf(s) = f(s)− f(s−). Since f

is a cad-lag function, the piecewise constant function defined as the finite sum

fn(t) = f(0) +
∑

0<s≤t
δf(s)✶{n|δf(s)|≥1}, 0 ≤ t ≤ T,
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converges to f , provided the series of jumps is absolutely convergent, i.e., if f
has a bounded variation on [0, t], for every t > 0. The jumps δf 6= 0 of a cad-lag
function f are countable, and the sequence of jumps {δf(t) 6= 0 : t > 0} (called
a point function) defines a counting measure

f(B×]0, t]) =
∑

0<s≤t
✶{δf(s)∈B}, 0 ≤ t ≤ T

on R∗ × [0, T ], with R∗ = R r {0}. Thus, the concept of a purely jumps
function makes a neat sense only when the function has bounded variation,
but for a generic cad-lag function, the function fn may converge to f after
being compensated on [0, T ], i.e., for every ε > 0 there exists η sufficiently
large such that the conditions n ≥ η and 0 ≤ a < b ≤ a + 1/η ≤ T imply
osc(fn − f, [a, b]) < ε. Nevertheless, instead of adding all jumps, the point
function or the counting measure could be analyzed, even if not every point
function (or counting measure) corresponds to some cad-lag function.

(3) A cad-lag function f has finite quadratic variation if for any sequence of
partitions ̟, 0 = t0 < t1 < · · · < tn = T , with mesh |̟| → 0 the ̟-quadratic
variation

[f ]̟(t) =

n∑

i=1

|f(t ∧ ti) − f(t ∧ ti−1)|2, 0 ≤ t ≤ T, (4.20)

(or equivalently, just for t = T ) is bounded. Note that if f is a continuous
function with bounded variation on [0, T ] then the estimate

n∑

i=1

|f(t ∧ ti) − f(t ∧ ti−1)|2 ≤

≤ max
i

{
osc(f, [ti−1, ti])

} n∑

i=1

|f(t ∧ ti) − f(t ∧ ti−1)|

shows that 〈f〉̟(t) = [f ]̟ → 0 as |̟| → 0, for every 0 ≤ t ≤ T . More general,
if f is a continuous function and g is a function with bounded variation, the
same type of estimate, namely,

n∑

i=1

|f(t ∧ ti) − f(t ∧ ti−1)| |g(t ∧ ti) − g(t ∧ ti−1)| ≤

≤ max
i

{
osc(f, [ti−1, ti])

} n∑

i=1

|g(t ∧ ti) − g(t ∧ ti−1)| (4.21)

show that the quadratic co-variation vanishes, i.e.,

n∑

i=1

[
f(t ∧ ti) − f(t ∧ ti−1)

][
g(t ∧ ti) − g(t ∧ ti−1)

]
= 〈f, g〉̟(t) → 0,
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as |̟| → 0, for any t in [0, T ]. However, if f is only a cad-lag function with
bounded variation on [0, T ] then separate the jumps f = fc + fd with fd(t) =∑

0<s≤t δf(s) so that fc is continuous,
∑

0<s≤T |δf(s)| <∞ and use the equality

∣∣f(ti) − f(ti−1)
∣∣2 =

∣∣fc(ti) − fc(ti−1)
∣∣2 +

∣∣fd(ti) − fd(ti−1)
∣∣2 +

+ 2
[
fc(ti) − fc(ti−1)

][
fd(ti) − fd(ti−1)

]

to deduce that

[f ]̟(t) →
∑

0<s≤t
|δf(s)|2 as |̟| → 0,

uniformly in 0 ≤ t ≤ T .

(4) If f is only cag-lad in (4.21) and g is also cad-lag then quadratic co-variation
satisfies

lim
|̟′|→0, ̟′⊃̟

n′∑

i=1

∣∣f(t ∧ t′i) − f(t ∧ t′i−1)
∣∣∣∣g(t ∧ t′i) − g(t ∧ t′i−1)

∣∣ ≤

≤ |̟| sup
̟′⊃̟

n′∑

i=1

∣∣g(t′i) − g(t′i−1)
∣∣, (4.22)

i.e., it vanishes as |̟| → 0. Indeed, given a partition ̟ there exists another
partition ̟′′ ⊃ ̟ such that osc(f − f̟′′ , [t′′i−1, t

′′
i ]) < |̟|, where f̟′′ is the

cag-lad function

f̟′′(t) =
n′′∑

i=1

δf(t′′i )✶t′′i <t, δf(t) = (f(t) − f(t−), ∀t > 0,

with t0 = t′′0 = 0 and tn = t′′n′′ = T . Remark that [f − f̟′′ , g] = [f, g]− [f̟′′ , g],
f̟′′(t) − f̟′′(t′′i−1) = δf(t′′i−1) for any t′′i−1 < t ≤ t′′i , so that for any other
partition ̟′ ⊃ ̟′′, t′i−1 is not in ̟′′ implies f̟′′(t′i)− f̟′′(t′i−1) = 0, to deduce

n′∑

i=1

∣∣f̟′′(t ∧ t′i) − f̟′′(t ∧ t′i−1)
∣∣∣∣g(t ∧ t′i) − g(t ∧ t′i−1)

∣∣ ≤

≤ sup
1≤i≤n′′−1, t′′i ≤s<t′′i +|̟′|

{
|g(s) − g(t′′i )|

} n′′∑

i=1

∣∣δf̟′′(t′′i )
∣∣

for any partition ̟′ ⊃ ̟′′, and any t in [0, T ]. Hence, the right-hand side
vanishes as |̟′| → 0, and (4.22) follows after invoking (4.21).

(5) As mentioned early, a point function (or a counting measure) is a sequence
of times and jumps given in the form {δf(s) : s ≥ 0} such that the jumps
δf(s) 6= 0 for only a countable number of times s. A particular (and key
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example) is the point function associated with jumps of a cad-lag function f ,
i.e., δf(s) = f(s) − f(s−). It is clear that the set ℓp(]0, T ]), 1 ≤ p ≤ ∞ of all
point functions satisfying

‖δf‖pp =
∑

0<s≤T
|δf(s)|p <∞

is a Banach space. In term of a counting measure νf and a Borel set B ⊂ R∗,
R∗ = Rr{0}, the notation νf(B×]0, t]) means the value (a non-negative integer
or the symbol ∞) of series

∑
0<s≤t ✶{δf(s)∈B}. Thus

‖νf‖pp =

∫

R∗×]0,T ]

|ζ|pνf(dζ, ds).

and νf is an integer-valued measure on R∗×]0, T ]. Note that in this context,
δf (or νf) denotes a point function (or a counting measure), but if a cad-
lag function f is given then δf (or νf) denotes its associated point function
(or counting measure) as defined by the previous expressions, and clearly, a
multidimensional case with Rm∗ instead of R∗ can be studied with almost no
changes. For p = 2,

[δf, δg] =
∑

0<s≤T

(
δf(s)

)(
δg(s)

)

is a scalar product in ℓ2(]0, T ]), which becomes a Hilbert space. Also, adding
the convention f(0−) = 0, the jump at s = 0 becomes f(0) and the space
ℓp([0, T ]) makes sense with obvious changes. For an element δf (or νf) in
either ℓp(]0, T ]) or ℓp([0, T ]), the typical approximation by a finite number of
bounded jumps, namely, {δfn : s ≥ 0} including only jumps with size |δf(s)|
in the interval [1/n, n], yields a convergence in norm, i.e., if ‖δf‖p < ∞ then
‖δf − δfn‖p → 0 as n → ∞. If δf point function then the countable set of
jump-times is Sf = {s : δf(s) 6= 0}, and thus, the scalar product [δf, δg] = 0
whenever Sf and Sg are disjoint. This implies that there exists an uncountable
set of orthogonal point functions in ℓ2(]0, T ]) or ℓ2([0, T ]), so that these spaces
are non separable, and similarly for ℓp. It should be clear that the finite sum

fη(t) =
∑

0<s≤t
δf(s)✶{1/η≤|δf(s)|≤η}, ∀t > 0, ∀η ≥ 1, (4.23)

is defined for any given point function (or counting measure) δf in ℓp([0, T ]),
1 ≤ p < ∞, but, as η → 0 the limit may exist (or even can be compensated)
even if the corresponding series does not converges absolutely.

(6) If f is a continuous function then its jumps δf vanish, i.e., the previous
analysis on the space ℓp(]0, T ]) is meaningful only for the jumps. However, as
mentioned early, a cad-lag function f is said to have finite quadratic variation
if for any sequence of partitions ̟ = {0 = t0 < t1 < · · · < tn = T} with
mesh |̟| → 0 the quadratic variation relative to ̟ on [0, t] is given by (4.20)
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is bounded, and if the limit exists [f ](t) then it is called the quadratic variation
of f . Certainly, the p-variation is defined by exchanging the power 2 with
p, 1 ≤ p < ∞. Alternatively, if a cad-lag function is approximate by cad-lag
piecewise constant functions f̟ for a sequence of partitions, (e.g., f̟(s) = fti−1

for any ti−1 ≤ s < ti), then the numerical sequence ‖δf̟‖p is not necessarily
convergent (or bounded) as the mesh |̟| → 0. Moreover, if f is continuous
and this series converges as |̟| → 0 then f has finite p-variation. A typical
candidate for a continuous function with finite p-variation is a Hölder continuous
function of exponent α = 1/p. Also, the quadratic co-variance of two cad-lag
functions f and g is the limit (it exits and it is finite) of

[f, g]̟ =

n∑

i=1

(
f(ti) − f(ti−1)

)(
g(ti) − g(ti−1)

)
, ∀t ∈]0, T ].

as the mesh |̟| → 0. As mentioned early, if f is a continuous function with
bounded variation on [0, T ] then the quadratic variation 〈f〉 = 0, and if f
is continuous and g has bounded variation then [f, g] = 0. Even if a purely
jump cad-lag function g make proper sense only when g has bounded variation.
However, if a point function δg is initially given then the approximation gη as
in (4.23) capture the meaning of a purely jump cad-lag function, and if ̟ is a
sequence of partitions with |̟| → 0 and η is another sequence of number with
η → ∞ (i.e, jumps of vanishing size) then there exits a subsequence ̟′ and η′

such that

lim
|̟′|→0, η′→∞

n′∑

i=1

∣∣f(t′i) − f(t′i−1)
∣∣∣∣gη′(t′i) − gη′(t

′
i−1)

∣∣ = 0, (4.24)

if the point function δg and the continuous function f have finite quadratic
variations. Indeed, fix k large and use Hölder inequality to deduce

n∑

i=1

∣∣f(ti) − f(ti−1)
∣∣∣∣gη(ti) − gη(ti−1)

∣∣ ≤

≤
n∑

i=1

∣∣f(ti) − f(ti−1)
∣∣∣∣gk(ti) − gk(ti−1)

∣∣ +

+
( n∑

i=1

∣∣f(ti) − f(ti−1)
∣∣2
)1/2( n∑

i=1

∣∣ḡη,k(ti) − ḡη,k(ti−1)
∣∣2
)1/2

,

where ḡη,k = gη − gk, with η > k, i.e., ḡη,k contains only jump of size δg with
1/η ≤ |δg(s)| < 1/k or η ≥ |δg(s)| > k. Since the function ḡη,k has only a finite
number of jumps, they are separated by some positive number ϑ = ϑ(η), so that
for a subsequence of partitions ̟′ with mesh |̟′| < ϑ the sub-interval [t′i−1.t

′
i]

can capture only one jump δg(s), i.e.,

n∑

i=1

∣∣gη,k(t′i) − gη,k(t′i−1)
∣∣2
)
≤

∑

0<s≤T
|δg(s)|2✶{|δg(s)|<1/k or |δg(s)|>k}.
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Hence, given ε > 0 there exists k = k(ε, g, f) sufficiently large so that

( n∑

i=1

∣∣f(ti) − f(ti−1)
∣∣2
)1/2( n∑

i=1

∣∣ḡη,k(ti) − ḡη,k(ti−1)
∣∣2
)1/2

≤ ε,

for every partition ̟ with mesh |̟| < ϑ(η) and for every η > k. Note that
if τ(i, η) is the i jump of size either |δg(s)| ≥ η or |δg(s)| ≤ 1/η then ϑ(η) =
mini{(τi − τi−1)}. This proves that for any subsequence ̟′ and η′ satisfying
|̟′| < ϑ(η′) we have

n′∑

i=1

∣∣f(t′i) − f(t′i−1)
∣∣∣∣gη(t′i) − gη(t′i−1)

∣∣ ≤

≤ ε +

n′∑

i=1

∣∣f(t′i) − f(t′i−1)
∣∣∣∣gk(t′i) − gk(t′i−1)

∣∣,

Hence, in view of (4.21), the sum on the right-hand-term vanishes as |̟| → 0
and (4.24) follows. Remark that if gη has not a bounded variation as η → ∞
then for any partition ̟

lim
η→∞

n∑

i=1

∣∣f(ti) − f(ti−1)
∣∣∣∣gη(ti) − gη(ti−1)

∣∣ = ∞,

which implies that if ̟ is a sequence of partitions with |̟| → 0 and η is another
sequence of number with η → ∞ then there exits a subsequence ̟′ and η′ such
that [f, gη′ ]

̟′ → ∞.

4.2.4 Quadratic Variations for Discontinuous SIs

Let p be a Poisson measure with Lévy measure π on Rm∗ defined on the same
filtered Probability space (Ω,F, P ) where the Wiener process w was given, for
instance, if Lévy measure is finite (i.e., π(Rm∗ ) < ∞) then p is a compound
Poisson process (with values in Rm), i.e., for two sequences {ζk} and {τk} of
independent random variables, all ζk with distribution π/π(Rm∗ ) and all τk with
π(Rm∗ )-exponential distribution, we have the expression

p(t) =

∞∑

k=1

ζk✶t≥θk =
∑

0<s≤t
δp(s), ∀t ≥ 0,

where θk = τ1 + · · · + τk, and δp(s) = p(s) − p(s−) is the jump at time s. Its
counting random measure is denoted by p and given by

p(K, ]a, b]) =

∞∑

k=1

✶{ζk∈K}✶a<θk≤b =
∑

a<s≤b
✶{δp(s)∈K},

for any compact subset K of Rm∗ , and any numbers b > a ≥ 0.
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The martingale measure p̃(K, ]a, b]) = p(K, ]a, b]) − (b − a)π(K) is use to
define the compensated Poisson process (with values in Rm)

p̃(t) =

∫

Rm
∗ ×]0,t]

ζp̃(dζ, ds), ∀t ≥ 0,

via the stochastic integral. In general, if γ is a function in L2(Rm∗ , π) then the
real-valued compensated Poisson process p̃(γ) is defined as

p̃(γ, t) =

∫

Rm
∗ ×]0,t]

γ(ζ)p̃(dζ, ds),

which corresponds to the Lévy measure πγ in R∗, which is the image measure
of π under γ. In any way, the jump δp at time t can always be defined in term
of the Poisson measure p and form the so-called Poisson point process, i.e., the
Poisson point process δp is equivalent to the Poisson measure p, and moreover,
as seen below, they are equivalent to the compensated Poisson process p̃.

Alternatively, begin with a compensated Poisson process with Lévy measure
π, i.e., an optional cad-lag process {p̃(t), t ≥ 0} with characteristic function

E{ei z·p̃(t)} = exp
(
t

∫

Rm
∗

[
e−z·ζ − 1 − z · ζ

]
dπ(dζ)

)
, ∀z ∈ Rm, t ≥ 0,

to define its associated counting measure (or Poisson measure) using the fact
that the compensated Poisson process p̃ and the compound Poisson process p
(when it is defined) have the jumps, i.e., δp̃(s) = δp(s) for every s > 0, and

p(B, ]a, b]) =
∑

a<s≤b
✶{δp̃(s)∈B} or p(γ,B, ]a, b]) =

∑

a<s≤b
✶{γ(δp̃(s))∈B},

which is a (random) finite sum for each Borel set B separated from the origin
(i.e., with a positive distance to the origin) in Rm∗ or R∗, and any numbers
b > a ≥ 0. However, if the function γ belongs to L1(Rm∗ ) then the pathwise
integral

p(γ, t) =
∑

0<s≤t
γ
(
δp̃(s)

)
=

∫

Rm
∗ ×]0,t]

γ(ζ)p(dζ, ds),

is defined as an absolutely convergence (random) series (with the convention
that γ(0) = 0, and only non-zero term count), which is a compound Poisson
process with the Lévy finite measure

πγ(B) =

∫

Rm
∗

✶{γ(ζ)∈B}π(dζ),

for any Borel set B in R∗. Note that the function γ for the counting measure
p(γ, dζ, ds), is initially regarded as mapping Rm∗ into Rm or R, but only {ζ ∈
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Rm∗ : γ(ζ) 6= 0} is the effective domain, i.e, the process t 7→ p(γ, t) has an actual
jumps only if δp(t) 6= 0 and γ(δp(t)) 6= 0.

In general, recall that for any predictable square integrable process h with
values in L2(Rm∗ , π) the stochastic integral

I(t, h, dp̃) =

∫

Rm
∗ ×]0,t]

h(ζ, s)p̃(dζ, ds), ∀t ≥ 0,

is defined, and if h is integrable with values in L1(Rm∗ , π) then the pathwise
integral, which is an absolutely convergence (random) series,

I(t, h, dp) =

∫

Rm
∗ ×]0,t]

h(ζ, s)p(dζ, ds) =
∑

0<s≤t
h
(
δp(s), s

)
, (4.25)

for every t ≥ 0, is also defined. It should be clear that the pathwise inte-
gral (4.25) with respect to the Poisson measure p (or Poisson point process
δp) makes sense only for a predictable (or optional) processes h with values
locally in L1(π, ds) and the resulting integral t 7→ I(t, h, dp) defines an optional
process having paths with locally integrable bounded variation. Moreover, in
this case, the stochastic integral (4.25) with respect to the Poisson martingale
measure p̃ (or the compensated Poisson process p̃) is defined only when h is pre-
dictable locally square-integral process, and because h also takes values locally
in L1(π, ds), the stochastic integral t 7→ I(t, h, dp̃) can be separated into two
pathwise integrals,

I(t, h, dp̃) = I(t, h, dp) −
∫ t

0

ds

∫

Rm
∗

h(ζ, s)π(dζ), ∀t ≥ 0,

and in this case, the stochastic integral is an optional locally square martingale
having paths with locally integrable bounded variation. Also recall the conven-
tion γ(0) = 0 in the series notation

∑
0<s≤t and that only non-zero term count

in the series.
Another key point is the fact that any purely discontinuous square-integrable

martingale it L2-orthogonal to any continuous square-integrable martingale,
which means that

E
{

[I(t, h, dp̃) − I(s, h, dp̃)][I(t, f, dw) − I(s, f, dw)]
}

= 0, ∀t > s ≥ 0,

provided that h and g are predictable square-integrable processes. Moreover, the
stochastic integrals are defined for non-anticipative processes, even if they are
not predictable with respect to the filtration where the integrator is considered,
i.e., the integrand should be taken adapted to the filtration generated by the
integrator, and this include integrands that are independent of the integrator.

QV Definition for Poisson Integrals (part 1)

Even if the optional quadratic variation of a purely jump local-square integrable
martingale M is easily defined as [M ](t) =

∑
0<s≤t(M(s) −M(s−))2, the fol-

lowing calculation help to understand better the situation. As mentioned early,
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genuine stochastic integrals correspond to (local-) martingale which are quasi-
left continuous, and in general, this is imposed directly into the filtration F.
Recall that quasi-left continuous (for a right-continuous martingale or process)
means that there is not predictable jumps. In other words, either F(τ−) = F(τ)
for every predictable times (i.e., τ is a limit of a strictly increasing sequence of
stopping times) or the predictable compensator νpX of the jumps of the process
X satisfies νpX(Rm∗ ×{t}) = 0 almost surely, for every deterministic time t. The
expression

〈I(·, h, dp̃)〉 =

∫ ·

0

ds

∫

Rm
∗

|h(ζ, s)|2π(dζ)

is the continuous process referred to as the predictable quadratic variation, while
[I(·, h, dp̃)] = I(·, h2, dp) is referred to as the optional quadratic variation, for
a stochastic integral with respect to a Poisson martingale measure. Certainly,
〈I(·, h, dp̃)〉 is the predictable compensator of the local-martingale I(·, h2, dp).
Theorem 4.9. In a given filtered probability space (Ω,F, P ), let w be a real-
valued standard Wiener process and p be a Poisson measure p with Lévy measure
π in Rm∗ , with compensated Poisson process p̃, counting Poisson measure or
Poisson point process δp. Suppose that for a partition ̟, a predictable piecewise
constant process h̟ is given as in Theorem 4.3, with h̟ → h. Suppose h, σ
and γ are predictable processes such that h is locally integrable with values in
R, σ and γ are locally square-integrable with values in R and in L2(Rm∗ , π), and
hσ2 and hγ2 are also locally integrable. If h̟ is a predictable piecewise constant
process as in Theorem 4.3 associated with a partition ̟ such that

P
{∫ T

0

|h̟(t) − h(t)|
[
1 + |σ(t)|2

]
dt+

+

∫ T

0

|h̟(t) − h(t)|dt
∫

Rm
∗

|γ(ζ, t)|2π(dζ) ≥ ε
}
→ 0,

as the mesh of the partition |̟| → 0, for every ε > 0, then

sup
0≤t≤T

∣∣∣
∞∑

i=1

h̟(ti−1)
[ ∫ t∧ti

t∧ti−1

σ(s)dw(s)
]
×

×
[ ∫

Rm
∗ ×]t∧ti−1,t∧ti]

γ(ζ, s)p̃(dζ, ds)
]∣∣∣ → 0, (4.26)

in probability, as |̟| → 0.

Proof. First, use the stopping time

τr = inf
{
t ≥ 0 :

∫ t

0

[
|h(s)| + 1

][
1 + |σ(s)|2

]
ds+

+

∫ t

0

[
|h(s)| + 1

]
ds

∫

Rm
∗

|γ(ζ, s)|2π(dζ) ≥ r
}
,
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to reduce to the case where the processes h, σ and γ are bounded with values
in R and L2(Rm∗ , π), as in proof of Theorem 4.3.

Second, let us denote by B̟(t, h̟, σdw, γdp̃) the bilinear expression in
(4.26), and note that if γ belongs to L1(Rm∗ , π)∩L2(Rm∗ , π) then the stochastic
integral in dp̃ becomes a pathwise integral and yields an optional process having
path with bounded variation on any time-interval [0, T ], thus with tn = T ,

sup
0≤t≤T

|B̟(t, h̟, σdw, γdp̃)| ≤ sup
i≤n

sup
ti−1<t≤ti

∣∣∣
∫ t

ti−1

σ(s)dw(s)
∣∣∣×

×
n∑

i=1

|h̟(ti−1)|
∣∣∣
∫

Rm
∗ ×]ti−1,ti]

γ(ζ, s)p̃(dζ, ds)
∣∣∣,

where the
∑
i is bounded almost surely and the continuity of the stochastic inte-

gral in dw for almost every paths ensures that the supi supti−1<t≤T∧ti vanishes
as the mesh of the partition |̟| → 0. This prove the almost surely convergence
of (4.26), which implies the convergence in probability, for the particular case
when γ belongs to L1(Rm∗ , π) ∩ L2(Rm∗ , π).

Next, note that working with the positive and negative parts of h there
is not loss of generality when assuming that h ≥ 0. Hence, if h ≥ 0 and
γk = γ✶{kγ≥1} with k → ∞, then the process t 7→ γk(s, ·) belongs to has values
in L1(Rm∗ , π) ∩ L2(Rm∗ , π),

B̟(t, h̟, σdw, γdp̃) = B̟(t, h̟, σdw, γkdp̃) +

+ B̟
(
t, h̟, σdw, (γ − γk)dp̃

)
.

and each term in the expression of B̟(t, h, σdw, (γ − γk)dp̃) can be bounded
by the product

(A) = sup
ti−1<t≤ti

∣∣∣
∫ t

ti−1

√
h̟(s)σ(s)dw(s)

∣∣∣×

× sup
ti−1<t≤ti

∣∣∣
∫

Rm
∗ ×]ti−1,t]

√
h̟(s)[γ(ζ, s) − γk(ζ, s)]p̃(dζ, ds)

∣∣∣.

Therefore, apply Hölder inequality and the L2 − sup inequality for stochastic
integral to bound the expectation of above product by

E{(A)} =

(
E
{∫ ti

ti−1

|h̟(s)| |σ(s)|2ds

)1/2

×

×
(
E
{∫ ti

ti−1

|h̟(s)|ds
∫

{k|γ|<1}
|γ(ζ, s)|2π(dζ)

})1/2

,
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and use the elementary inequality 2ab ≤ εa2 + b2/ε to check that

E{(A)} = εE
{∫ ti

ti−1

|h̟(s)| |σ(s)|2ds+

+
1

ε
E
{∫ ti

ti−1

|h̟(s)|ds
∫

{k|γ|<1}
|γ(ζ, s)|2π(dζ)

}
,

for every ε > 0.

Take this back to the expression of B(t, h, σdw, (γ − γk)dp̃) to deduce

E
{

sup
0≤t≤T

∣∣B̟
(
t, h̟, σdw, (γ − γk)dp̃

)∣∣} ≤ εE
{∫ T

0

|h̟(s)| |σ(s)|2ds+

+
1

ε
E
{∫ T

0

|h̟(s)|ds
∫

{k|γ|<1}
|γ(ζ, s)|2π(dζ)

}
.

Because h̟σ
2 and h̟γ

2 are uniformly (in ̟) integrable, we can take limit first
as k → ∞ and second as ε→ 0 to establish that

E
{

sup
0≤t≤T

∣∣B̟
(
t, h̟, σdw, (γ − γk)dp̃

)∣∣} → 0,

as k → ∞, uniformly with respect to the partition ̟. Hence, invoke the second
step, i.e., the case with bounded variation, to deduce

sup
0≤t≤T

∣∣B̟(t, h̟, σdw, γdp̃)
∣∣∣ → 0, as |̟| → 0,

in probability.

Finally, make use of localization as in Theorem 4.3 to limit the analysis only
up to the stopping time τr and then to conclude the argument, after remarking
that P{τr < T} → 0 as r → ∞.

• Remark 4.10. Note that with the notation of Theorem 4.9, the process t 7→
B̟(t, h̟, σdw, γdp̃) is a martingale, this expression is linear in h̟ and

E
{

sup
0≤t≤T

∣∣B̟(t, h̟, σdw, γdp̃)
∣∣} ≤ E

{∫ T

0

|h̟(s)| |σ(s)|2ds
}

+

+ E
{∫ T

0

|h̟(s)|ds
∫

Rm
∗

|γ(ζ, s)|2π(dζ)
}
.

Among other things, this allows to truncate h̟ and so to suppose that |h̟| ≤
C̟, for deterministic constant. Another possibility is to consider h̟ part of
σ and γ, i.e., to reduce to the case h̟ = 1 and to use σ̟ and γ̟ such that
h̟σγ = σ̟γ̟, and in view of the continuity, to truncate σ̟ and γ̟ so that
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|σ̟|+|γ̟| ≤ C̟, for some deterministic constant, without any loss of generality.
Similarly, if h has left-continuous paths and h̟(ti) = h(ti) then the term

sup
̟

n∑

i=1

|h(ti−1)|
∣∣∣
∫

Rm
∗ ×]ti−1,ti]

γ(ζ, s)p̃(dζ, ds)
∣∣∣ ≤

can be bounded by

≤ sup
̟

n∑

i=1

|h(ti−1)|
(∫

Rm
∗ ×]ti−1,ti]

|γ(ζ, s)|p(dζ, ds) +

+

∫ ti

ti−1

ds

∫

Rm
∗

|γ(ζ, s)|π(dζ)
)
,

i.e., bounded by

≤
(∫

Rm
∗ ×]0,T ]

|h(s)||γ(ζ, s)|p̃(dζ, ds) +

+ 2

∫ T

0

ds

∫

Rm
∗

|h(s)| |γ(ζ, s)|π(dζ)
)
,

which yields

E
{

sup
̟

n∑

i=1

|h(ti−1)|
∣∣∣
∫

Rm
∗ ×]ti−1,ti]

γ(ζ, s)p̃(dζ, ds)
∣∣∣
}
≤

≤ 2E
{∫ T

0

ds

∫

Rm
∗

|h(s)| |γ(ζ, s)|π(dζ)
}
,

and

E
{[

sup
̟

n∑

i=1

|h(ti−1)|
∣∣∣
∫

Rm
∗ ×]ti−1,ti]

γ(ζ, s)p̃(dζ, ds)
∣∣∣
]2}

≤

≤ 2E
{∫ T

0

ds

∫

Rm
∗

|h(s)|2|γ(ζ, s)|2π(dζ)
}

+

+ 4E
{(∫ T

0

ds

∫

Rm
∗

|h(s)| |γ(ζ, s)|π(dζ)
)2}

.

Hence, estimating the L2-modulus of continuity for the stochastic integral with
respect to the Wiener process, we could deduce that the convergence (4.26) take
place in L1, under the above assumptions.

Corollary 4.11. As in the Theorem 4.9 if two independent Poisson measure
p1 and p2 with Lévy measures π1 and π2 on Rm∗ are given, as well as predictable
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processes h, γ1, γ2 and h̟ satisfying

P
{∫ T

0

|h̟(t) − h(t)|
[
1 +

+

∫

Rm
∗

|γ1(ζ, t)|2π1(dζ) +

∫

Rm
∗

|γ2(ζ, t)|2π2(dζ)
]
≥ ε

}
→ 0,

as the mesh of the partition |̟| → 0, for every ε > 0, then

sup
0≤t≤T

∣∣∣
∞∑

i=1

h̟(ti−1)
[ ∫

Rm
∗ ×]t∧ti−1,t∧ti]

γ1(ζ, s)p̃1(dζ, ds)
]
×

×
[ ∫

Rm
∗ ×]t∧ti−1,t∧ti]

γ2(ζ, s)p̃2(dζ, ds)
]∣∣∣ → 0,

in probability, as |̟| → 0.

Proof. Indeed, the argument is the same as in the proof of Corollary 4.6 with
two independent Wiener processes, first by localization, we may assume that

∫ T

0

[
1 + |h(s)| + |h̟(s)|

][
1 +

∫

Rm
∗

|γ1(ζ, s)|2π1(dζ) +

+

∫

Rm
∗

|γ2(ζ, s)|2π2(dζ)
]
≤ CT ,

for a deterministic constant CT , as |̟| → 0. Next, by continuity, it suffices
to consider processes γ1,̟ and γ2,̟ that are piecewise constant relative to the
partition ̟, and in this case, each of the stochastic integrals can be considered
‘inside’ the other to have

B̟(t, h̟, γ1,̟dp̃1, γ2,̟dp̃2) =

∫

Rm
∗ ×]0,t]

γ̟(ζ, s)p̃2(ζ, ds),

γ̟(ζ, s) = h̟(s)γ2,̟(ζ, s)

∫

Rm
∗ ×]ti−1,ti]

γ1,̟(ζ, s)p̃1(ζ, ds), ti−1 < s ≤ ti.

Hence,

E
{∣∣∣ sup

0≤t≤T
B̟(t, h̟, γ1,̟dp̃1, γ2,̟dp̃2)

∣∣∣
2}

≤

≤ 4E
{∫ T

0

ds

∫

Rm
∗

|γ̟(ζ, s)|2π2(ζ)
}
, (4.27)

and

E
{∣∣γ̟(ζ, s)

∣∣} = E
{
|h̟(s)|2|γ2,̟(ζ, s)|2(ti − ti−1)

∫

Rm
∗

|γ1,̟(ζ, s)|2π1(ζ)
}
,
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for any ti−1 < s ≤ ti. The term in the right of (4.27) can be written as

4
n∑

i=1

E
{
|h̟(ti−1)|2|(ti − ti−1)2

∫

Rm
∗

|γ1,̟(ζ, ti−1)|2π1(dζ) ×

×
∫

Rm
∗

γ2,̟(ζ, ti−1)|2π2(dζ)
}
,

and its integrand is bounded by

4
(

sup
i

∫ ti

ti−1

|h̟(s)|2|ds
∫

Rm
∗

|γ1,̟(ζ, s)|2π1(dζ)
)
×

×
(∫ T

0

|h̟(s)|2|ds
∫

Rm
∗

γ2,̟(ζ, s)|2π2(dζ)
)
≤ CT ,

which vanishes as |̟| → 0.

QV Definition for Poisson Integrals (part 2)

Now, if γ is a function in L2(Rm∗ , π) and h̟ is a cag-lad predictable real-valued
process associated with a partition ̟ then define the ‘Riemann-Stieltjes’ sums

K̟(t, h̟, d
2p̃(γ)) =

∞∑

i=1

h̟(ti−1)
[
p̃(γ, t ∧ ti) − p̃(γ, t ∧ ti−1)

]2
,

I̟(t, h̟, dp(γ
2)) =

∞∑

i=1

h̟(ti−1)
[
p(γ2, t ∧ ti) − p(γ2, t ∧ ti−1)

]
,

(4.28)

as a real-valued (random) finite sum. Note that since h̟ is piecewise constant,

∫ t

0

h̟(s)p(γ, ds) = I̟(t, h̟, dp(γ
2)) = I(t, h̟γ

2, dp),

as defined early. Also remark that the property

E
{[
p̃(γ, t ∧ ti) − p̃(γ, t ∧ ti−1)]2

∣∣F(ti−1)
}

= [ti − ti−1]

∫

Rm
∗

[γ(ζ)]2π(dζ),

yields the isometric equality

E
{
K̟(t, h̟, d

2p̃(γ))
}

= E
{
I̟(t, h̟, dp(γ

2))
}

=

= E
{∫ t

0

h̟(ti−1)dt
}(∫

Rm
∗

[γ(ζ)]2π(dζ)
)
,

valid for every t ≥ 0.
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Theorem 4.12. Under the same assumptions of Theorem 4.3 and the above
notation with a function γ in L2(Rm∗ , π) we have

sup
0≤t≤T

∣∣K̟(t, h̟, d
2p̃(γ)) − I(t, hγ2, dp)

∣∣ → 0, (4.29)

in probability. Moreover, if f and g are two predictable processes as in Corol-
lary 4.6 then for any nonnegative numbers a, b and c, with a + b + c > 1,
a+ b > 0, tn = T ,

n∑

i=1

|h̟(ti−1)|
∣∣∣
∫ ti

ti−1

f(s)dw(s)
∣∣∣
2a(∫ ti

ti−1

|g(s)|2ds
)b

×

× |p̃(γ, ti) − p̃(γ, ti−1)|2c → 0, (4.30)

in probability.

Proof. First, note that

I(t, hγ2, dp) =
∑

0<s≤t
h(s)γ

(
δp(s)

)

as defined by (4.25), is a pathwise integral with respect to the counting measure
p, and thus

sup
0≤t≤T

∣∣I̟(t, h̟, dp(γ
2)) − I(t, hγ2, dp)

∣∣ ≤ I(T, |h̟ − h|γ2, dp) → 0,

as the mesh |̟| → 0. Moreover, by localization, as in the proof of Theorem 4.3,
we can assume that the processes are also bounded, i.e.,

∫ T

0

[
|h(s)| + |h̟(s)|

]
ds ≤ C <∞, a.s.,

for some constant C > 0.
Now to establish the convergence (4.30), we proceed as in the proof of Corol-

lary 4.6, but for the Poisson integral, the estimate

E
{
|p̃(γ, ti) − p̃(γ, ti−1)|2c

}
≤Mc

[(
(ti − ti−1)

∫

Rm
∗

[γ(ζ)]2π(dζ)
)c

+

+ ✶c>1

(
(ti − ti−1)

∫

Rm
∗

[γ(ζ)]2cπ(dζ)
)]
,

for a constant Mc > 0, imposes a + b > 0, i.e., the contribution of the Poisson
integral has order c ∧ 1 by itself.

To check (4.29), first assume that the function γ in L2(Rm∗ , π) satisfies
π({|γ| 6= 0}) < ∞, which implies that γ also belongs L1(Rm∗ , π). Hence the
Poisson measure p becomes a compound Poisson process (with finite second
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moment) when regarded on {ζ ∈ Rm∗ : γ(ζ) 6= 0} instead of the whole space Rm∗ ,
and

[
p̃(γ, t) − p̃(γ, s)

]2
=

( ∑

s<r≤t
γ
(
δp(r)

)
− (t− s)

∫

Rm

γ(ζ)π(dζ)
)2

,

and developing the square, this is equal to

( ∑

s<r≤t
γ
(
δp(r)

))2

− 2(t− s)
∑

s<r≤t
γ
(
δp(r)

) ∫

Rm

γ(ζ)π(dζ) +

+
(

(t − s)

∫

Rm

γ(ζ)π(dζ)
)2

,

and the argument in (4.30) shows that the expectation of last two term vanish
as the mesh |̟| → 0, i.e., for the case of a compound Poisson process p(γ, t)

E
{∣∣K̟(T, h̟, d

2p̃(γ)) −K̟(T, h̟, d
2p(γ))

∣∣} → 0, as |̟| → 0,

where K̟ without d2p(γ) instead of d2p̃(γ) is given by

K̟(t, h̟, d
2p(γ)) =

∞∑

i=1

h̟(ti−1)
[
p(γ, t ∧ ti) − p(γ, t ∧ ti−1)

]2
,

and the expression

[
p(γ, t ∧ ti) − p(γ, t ∧ ti−1)

]2
=

( ∑

t∧ti−1<r≤t∧ti
γ
(
δp(r)

))2

,

is only meaningful when π({γ 6= 0}) < ∞. Moreover, because the process
K̟(T, h̟, d

2p̃(γ)) − K̟(T, h̟, d
2p(γ)) is a martingale, Doob’s maximal in-

equality yields

P
{

sup
0≤t≤T

|K̟(T, h̟, d
2p̃(γ)) −K̟(T, h̟, d

2p(γ))| ≥ ε
}
→ 0,

as |̟| → 0, for every ε > 0.
Now, since the jumps (i.e., when γ(δp(r)) 6= 0) can be ordered as θ1 < θ2 <

· · · < θn < · · · with θi random variables, for every fixed ω and as |̟| → 0,
the interval ]t ∧ ti−1, t ∧ ti] contains at most one jumps, which means that
K̟(t, h̟, d

2p(γ)) = I̟(t, h̟γ
2, dp), for |̟| ≤ infi≤n{θi−θi−1}, θn < t ≤ θn+1.

This proves

P
{

sup
0≤t≤T

|K̟(t, h̟, d
2p(γ)) − I̟(t, h̟, dp(γ

2))| ≥ ε
}
→ 0 (4.31)

as |̟| → 0. Recall that I̟(t, h̟, dp(γ
2)) = I(t, h̟γ

2, dp). Therefore, the
convergence (4.29) has been established for a compound Poisson process with
finite second moment, i.e., under the extra assumption that π({|γ| 6= 0}) <∞.
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Next, consider γn = γ✶{1≤n|γ|}, with n→ ∞, which satisfies

π({|γn| 6= 0}) ≤ 1

n2

∫

Rm
∗

γ2(ζ)π(dζ) <∞.

The equality a2 − b2 = (a− b)(a+ b) implies

[p̃(γ, t) − p̃(γ, s)]2 − [p̃(γn, t) − p̃(γn, s)]
2 =

= [p̃(γ − γn, t) − p̃(γ − γn, s)][p̃(γ + γn, t) − p̃(γ + γn, s)],

which yields

E
{∣∣[p̃(γ, t) − p̃(γ, s)]2 − [p̃(γn, t) − p̃(γn, s)]

2
∣∣} ≤

≤
(
E
{∣∣p̃(γ−γn, t)−p̃(γ−γn, s)

∣∣2}
) 1

2
(
E
{∣∣p̃(γ+γn, t)−p̃(γ+γn, s)

∣∣2}
) 1

2

and

E
{∣∣p̃(γ − γn, t) − p̃(γ − γn, s)

∣∣2} = (t− s)

∫

Rm
∗

γ2(ζ)✶{n|γ(ζ)<1}π(dζ),

E
{∣∣p̃(γ + γn, t) − p̃(γ + γn, s)

∣∣2} ≤ 4(t− s)

∫

Rm
∗

γ2(ζ)π(dζ).

Hence

E
{∣∣K̟(t, h̟, d

2p̃(γ)) −K̟(t, h̟, d
2p̃(γn))

∣∣} ≤

≤ 2
(∫ t

0

E{|h̟(s)|}ds
)(∫

Rm
∗

γ2(ζ)π(dζ)
) 1

2
(∫

{n|γ(ζ)<1}
γ2(ζ)π(dζ)

) 1
2

.

Also

E
{∣∣I(t, h̟γ

2, dp) − I(t, h̟γ
2
n, dp)

∣∣} ≤ E
{
I(t, |h̟γ2 − h̟γ

2
n|, dp)

∣∣} =

=
(∫ t

0

E{|h̟(s)|}ds
)(∫

{n|γ(ζ)<1}
γ2(ζ)π(dζ)

)
,

after using linearity and the isometric L2-equality.
Since the processes

K̟(t, h̟, d
2p̃(γ)) −

∫ t

0

h̟(s)ds

∫

Rm
∗

[γ(ζ)]2π(dζ)),

I(t, h̟γ
2, dp) −

∫ t

0

h̟(s)ds

∫

Rm
∗

[γ(ζ)]2π(dζ),

are martingales, and similarly for γn instead of γ, the difference is also a mar-
tingale and Doob’s maximal inequality implies

εP
{

sup
0≤t≤T

∣∣K̟(t, h̟, d
2p̃(γ)) −K̟(t, h̟, d

2p̃(γn))
∣∣} ≤

≤ 2
(∫ T

0

|h̟(s)|ds
)(∫

Rm
∗

γ2(ζ)π(dζ)
) 1

2
(∫

{n|γ(ζ)<1}
γ2(ζ)π(dζ)

) 1
2
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and

εP
{

sup
0≤t≤T

∣∣I(t, h̟γ
2, dp) − I(t, h̟γ

2
n, dp)

∣∣} ≤

≤
(∫ T

0

|h̟(s)|ds
)(∫

{n|γ(ζ)<1}
γ2(ζ)π(dζ)

)
.

for any ε > 0.
Finally, combine convergence (4.31), (4.29) valid for any fixed γn with the

last two estimates to show that indeed, (4.29) holds true for any function γ in
L2(Rm∗ , π).

• Remark 4.13. The argument is Theorem 4.12 can be adapted to include the
case of a general compound Poisson process pγ , with second moment non neces-
sarily finite provided in the definition (4.28) of K̟, the stochastic integral (i.e.,
its compensated Lévy process may not defined) p̃(γ, ·) is replaced by pγ(·) and
only the argument to deduce (4.31) is used. Therefore, if ℓ is a Lévy process
with only jumps (i.e., no continuous part, for simplicity) then

∞∑

i=1

h̟(ti−1)
[
ℓ(t ∧ ti) − ℓ(t ∧ ti−1)

]2 →
∑

0<s≤t
h(s)

[
δℓ(s)

]2
,

in probability, uniformly for t within any bounded time interval [0, T ]. If the
Lévy measure π satisfies

∫

Rm
∗

|ζ|2π(dζ) <∞,

then Theorem 4.12 can applied with the function γ(ζ) = ζiζj , i.e., this is the
case of a Lévy process with finite second moment.

QV Definition for Poisson Integrals (part 3)

A function in L2(Rm∗ × [0, T ], π × ds) or a predictable locally square-integrable
process γ with values in L2(Rm∗ , π) could be used instead of a function γ in
L2(Rm∗ , π) to define the optional (purely jump) process t 7→ I(t, γ2, dp) given
by (4.25), which could be denoted by t 7→ p(γ2, t), but we prefer to keep the
notation p(γ2, t) for a time-independent γ, so that p(γ2, t) is itself a Poisson
measure when γ is deterministic. Recall that contrary to the stochastic inte-
gral I(t, γ, dp̃), the expression is the fact that I(t, γ2, dp) is always (or is only
defined as) a pathwise integral. The expression K̟ and I̟ of (4.28) should be
reconsidered for two predictable processes γ and γ1 as a bilinear form, i.e.,

K̟(t, h̟, γdp̃, γ1dp̃) =

∞∑

i=1

h̟(ti−1)
[ ∫

Rm
∗ ×]t∧ti−1,t∧ti]

γ(ζ, s)p̃(dζ, ds)
]
×

×
[ ∫

Rm
∗ ×]t∧ti−1,t∧ti]

γ1(ζ, s)p̃(dζ, ds)
]
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and

I̟(t, h̟, γγ1dp) =

∞∑

i=1

h̟(ti−1)
[
I(t ∧ ti, γγ1, dp) − I(t ∧ ti−1, γγ1, dp)

]
,

I(t, h, dp) =

∫

Rm
∗ ×]0,t]

h(ζ, s)p(dζ, ds) =
∑

0<s≤t
h(δp(s), s)

In particular, if γ and γ1 are piecewise constant on each sub-interval ]ti−1, ti]
then

I(ti, γγ1, dp) − I(ti−1, γγ1, dp) =

= p(γ(ti−1)γ1(ti−1), ti) − p(γ(ti−1)γ1(ti−1), ti−1),

with the previous notation, i.e., all the jumps within the sub-interval ]ti−1, ti]
are counted with the same weight γ(δp(s), ti−1)γ1(δp(s), ti−1).

Corollary 4.14. Let h be a predictable locally integrable real-valued process,
and let γ and γ1 be predictable locally square integrable processes with values
in L2(Rm∗ , π). With the above notation and as in Theorem 4.3, suppose h̟
as piece-constant predictable process corresponding to a sequence of partition ̟
with mesh |̟| → 0. If

P
{∫ T

0

|h̟(s) − h(s)|
[
1 +

∫

Rm
∗

(
|γ(ζ, s)|2 + |γ1(ζ, s)|2

)
π(ζ)ds

]
≥ ε

}
→ 0

for every ε > 0, then

sup
0≤t≤T

∣∣K̟(t, h̟, γdp̃, γ1dp̃) − I(t, hγγ1, dp)
∣∣ → 0, (4.32)

in probability. Moreover, if f and g are two predictable processes as in Corol-
lary 4.6 then for any nonnegative numbers a, b and c, with a + b + c > 1,
a+ b > 0, tn = T ,

n∑

i=1

|h̟(ti−1)|
∣∣∣
∫ ti

ti−1

f(s)dw(s)
∣∣∣
2a(∫ ti

ti−1

|g(s)|2ds
)b

×

×
∣∣∣
∫

Rm
∗ ×]t∧ti−1,t∧ti]

γ(ζ, s)p̃(dζ, ds)
∣∣∣
2c

→ 0, (4.33)

in probability.

Proof. Proceed as in Theorem 4.12, first by localization, we may assume that

∫ T

0

[
|h̟(s)| + |h(s)|

][
1 +

∫

Rm
∗

(
|γ(ζ, s)|2 + |γ1(ζ, s)|2

)
π(ζ)ds

]
≤ C

for a deterministic constant C = CT , as |̟| → 0.
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Second, the parallelogram inequality

4K̟(t, h̟, γdp̃, γ1dp̃) = K̟(t, h̟, (γ + γ1)dp̃, (γ + γ1)dp̃) −
−K̟(t, h̟, (γ − γ1)dp̃, (γ − γ1)dp̃)

and similarly for I(t, hγγ1, dp), allows us to consider only the case where γ = γ1,
without any loss of generality, and in this case we use the notation

K̟(t, h̟, γdp̃, γdp̃) = K̟(t, h̟, γd2p̃)

to simplify.
At this point, as in the calculation in the proof of Theorem 4.12 with γ and

γn = γ✶{1≤nγ}, write

K̟(t, h̟, γd2p̃) −K̟(t, h̟, γnd2p̃) =

= K̟(t, h̟, (γ − γn)dp̃, (γ + γn)dp̃),

to deduce

E
{
K̟(t, h̟, γd2p̃) −K̟(t, h̟, γnd2p̃)

}
≤

≤
(
E{K̟(t, h̟, (γ − γn)d2p̃

})1/2(
E
{
K̟(t, h̟, (γ + γn)d2p̃

})1/2
,

after using Hölder inequality. Therefore, we are reduced to study the limit as
the mesh ̟| → 0, for each γn, which is the case of a process having paths with
bounded variation.

To prove (4.33), proceed as in Corollary 4.6, first by localization, we may
assume that

∫ T

0

[
|h(s)| + |h̟(s)|

][
1 + |f(s)|2 + |g(s)|2 +

+

∫

Rm
∗

|γ(ζ, s)|2π(dζ)
]
ds ≤ C < ∞,

for some constant C = CT > 0, as |̟| → 0. Next, the arguments are the same,
except that the inequality

E

{∣∣∣
∫

Rm
∗ ×]ti−1,ti]

γ(ζ, s)p̃(dζ, ds)
∣∣∣
2c∣∣∣F(ti−1)

}
≤

≤ McE

{(∫ ti

ti−1

ds

∫

Rm
∗

|γ(ζ, s)|2π(dζ)
)c

+

+ ✶c>1

∫ ti

ti−1

ds

∫

Rm
∗

|γ(ζ, s)|2cπ(dζ)
∣∣∣F(ti−1)

}
,

for some constant Mc > 0, forces the condition a+ b > 0.
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• Remark 4.15. If two independent Poisson measures p1 and p2 with Lévy
measure π1 and π2 on Rm∗ are given then p = p1 + p2 is a Poisson measure with
Lévy measure π on Rm∗ , where π is the restriction to R2m

∗ (i.e., integrands are
extended by zero to R2m before integration) of the sum of the product measures
(π1 × δ0) + (δ0 × π2) on R2m, with δ0 being the Dirac measure in Rm. This
means that

γ(ζ1, ζ2)π(dζ1, dζ2) = γ(ζ1, 0)π1(dζ1) + γ(0, ζ2)π2(dζ2).

In other words, for two independent Poisson measures p1 and p2, the stochastic
integrals becomes

∫

Rm
∗ ×]0,t]

γ1(ζ1, s)p̃1(dζ1, ds) =

∫

Rm
∗ ×]0,t]

γ1(ζ1, s)✶{ζ2=0}p̃(dζ, ds)

and there is no simultaneous jumps, i.e., if δp1(s1) 6= 0 and δp2(s2) 6= 0 then
s1 6= s2. Therefore, in term of a unique Poisson measure p, the Poisson measures
obtained from the stochastic integrals I(t, γ1, dp̃) and I(t, γ2, dp̃) are indepen-
dent iff γ1γ2 = 0 on R2m

∗ , and applying Corollary 4.14, we deduce that

K̟(t, h̟, γ1dp̃1, γ2dp̃2) → I(t, hγ1γ2, dp) = 0,

when p1 and p2 are independent of each other, see also Corollary4.11.

• Remark 4.16. An integer random measure ν with a predictable compensator
νp(dζ, dt) which is absolutely continuous with respect to the Lebesgue measure
dt could be used instead of the Poisson measure p, and both convergences remain
valid.

QV for Local-Martingales

Going back to a general case where M is a martingale and without applying
Doob-Meyer Decomposition (Theorem 2.7) the quadratic variation can be ob-
tained but contrary to the stochastic integrals, a priori, some more work is
necessary. For instance, in the construction of the stochastic integral with re-
spect to a Wiener process w or a Poisson martingale measure p̃, the fact that
the expressions

t 7→
(∫ t

0

f(s)dw(s)
)2

−
∫ t

0

|f(s)|2ds and

t 7→
(∫

Rm
∗ ×]0,t]

h(ζ, s)p̃(dζ, ds)
)2

−
∫ t

0

ds

∫

Rm
∗

|h(ζ, s)|2π(dζ)

are local-martingales is directly deduced from properties of the Wiener and
Poisson processes when the integrand f and h are approximated by piecewise
constant processes. However, this same assertion for a martingale M requires
the predictable quadratic variation 〈M〉 (and optional quadratic variation [M ]
when M is discontinuous).
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For a sequence of partitions ̟ with mesh |̟| → 0 and real-valued processes
X and Y define

[X,Y ]̟t =

n∑

i=1

(
Xt∧ti −Xt∧ti−1

)(
Yt∧ti − Yt∧ti−1

)
, 0 < t ≤ T ≤ tn,

with [X,Y ]̟0 = 0. Clearly, the sum stops after i = k with tk ≤ t < tk+1.
As mentioned early, for two optional processes this is refer to as the (optimal)
quadratic co-variation of X and Y relative to the partition ̟. If X = Y then
[X,X]̟ is called (optimal) quadratic variation of X and it is written as [X]̟.
The limit as the mesh |̟| → 0 is denoted by [X,Y ] or [X], which is referred to
as the (optional) quadratic co-variation (or variation) process.

If the processes X and Y are continuous then the notation 〈X,Y 〉̟ =
[X,Y ]̟, 〈X〉̟ = [X]̟, 〈X,Y 〉 = [X,Y ], and 〈X〉̟ = [X] could be used,
referring to the predictable (co-)quadratic variation.

Several steps are necessary to show that the limit 〈X,Y 〉̟t as |̟| → 0 exists
when X and Y are continuous local-martingales, e.g., see Kunita [104, Section
2.2, pp. 46–56]. These is a follows:

(1) If a processX has continuous paths and a process Y has paths with bounded
variation are on a given time interval [0, T ], then the estimate (4.21) shows that
for any sequence of partition ̟ with mesh |̟| → 0 we have 〈X,Y 〉̟t → 0
for every t in [0, T ], almost surely. Therefore, if X has continuous paths with
bounded variation then 〈X〉̟ = [X]̟ → 0 as |̟| → 0.

(2) If the (optimal) quadratic variation process 〈X〉 exists for a vector space of
processes (e.g., continuous local-martingales) then bi-linearity yields the paral-
lelogram equality

4[X,Y ] = [X + Y,X + Y ] + [X − Y,X − Y ],

can be used to obtain the co-variation process. Moreover, if

Y ̟t =

n∑

i=1

Xt∧ti−1
(Xt∧ti −Xt∧ti−1

) then X2
t −X2

0 = [X]̟t + 2Y ̟t ,

i.e., the convergence of [X]̟ is reduced to the convergence of the process Y ̟.
Furthermore, if stochastic integrals are used then

Y ̟t →
∫

]0,t]

Xs−dXs in L2, uniformly in t, as |̟| → 0,

which shows the existence of the (optional) quadratic variation process, and its
connection with stochastic integrals.

(3) If X is a bounded martingale then Y ̟ is a martingale with zero mean and

sup
0≤t≤T

E
{

(Y ̟t )2
}
≤ 2C2, where sup

0≤t≤T
|Xt| ≤ C.
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Indeed, first for any s < t choose j such that tj−1 ≤ s < tj to obtain

Y ̟t − Y ̟s = Xtj−1(Xt∧tj −Xs) +
∑

i≥j
Xt∧ti−1(Xt∧ti −Xt∧ti−1),

which implies that Y ̟ is a martingale satisfying E{Y ̟t } = 0, for every t in
[0, T ]. Moreover, note that

Y ̟ti − Y ̟ti−1
= Xti−1

(Xti −Xti−1
)

to calculate the quadratic variation

[Y ̟]̟t =

n∑

i=1

X2
t∧ti−1

(Xt∧ti −Xt∧ti−1
)2 ≤ C2[X]̟t

and to deduce that

E
{

(Y ̟t )2
}

= E
{

[Y ̟]̟t
}
≤ C2E

{
[X]̟t

}
= C2E

{
X2
t −X2

0

}
,

as desired.

(4) If X is a cad-lag bounded martingale and ̟ is a sequence of partition with
mesh |̟| → 0 then Y ̟ converges uniformly in L2, i.e., for every ε > 0 there
exists a δ > 0 such that

|̟′|, |̟′′| < δ implies E
{

sup
0≤t≤T

(Y ̟
′

t − Y ̟
′′

t )2
}
< ε.

Indeed, any two partitions ̟′ and ̟′′ can be combined into one partition ̟ =
̟′ ∪̟′′ so that

Y ̟
′

t − Y ̟
′′

t =
n∑

i=1

(X̟′

ti−1
−X̟′′

ti−1
)(Xt∧ti −Xt∧ti−1

),

where the cad-lag piecewise constant processes X̟′

and X̟′′

are given by
X̟′

t = Xt′i−1
for any t′i−1 ≤ t < t′i and similarly X̟′′

. This implies

[Y ̟
′ − Y ̟

′′

]̟t =

n∑

i=1

(X̟′

ti−1
−X̟′′

ti−1
)2(Xt∧ti −Xt∧ti−1)2 ≤

≤
(

sup
0≤s≤t

(X̟′

s −X̟′′

s )2
)
〈X〉̟t ,

and Doob’s maximal inequality yields

E
{

sup
0≤t≤T

|Y ̟′

t − Y ̟
′′

t |2
}
≤ 4E

{
|Y ̟′

T − Y ̟
′′

T |2
}

= 4E
{

[Y ̟
′ − Y ̟

′′

]̟T
}

which is bounded by

(
E
{(

sup
0≤t≤T

|X̟′

t −X̟′′

t |2
)2})1/2(

E
{(

[X]̟T
)2})1/2

,
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after using Schwarz’s inequality. Moreover

E
{(

[X]̟T
)2} ≤ 2E

{(
X2
T −X2

0

)2}
+ 4E

{(
Y ̟T

)2} ≤ 16C2.

If X is continuous then the sup vanishes (almost surely) as mesh |̟| → 0
otherwise, if X is only cad-lag, again by means of Doob’s maximal inequality,

E
{(

sup
0≤t≤T

|X̟′

t −X̟′′

t |2
)2}

≤ 4E
{∣∣X̟′

T −X̟′′

T

∣∣4}

and the limit vanishes too.

(5) If X is a cad-lag bounded martingale and ̟ is a sequence of partition with
mesh |̟| → 0 then [X]̟t converges to [X]t in L2, uniformly in 0 ≤ t ≤ T.
The optional process [X] is cad-lag and non-negative increasing. Moreover, the
process X2 − [X] is a square-integrable martingale. Indeed, the fact that the
limit is cad-lag follows form (4) above, and to check that [X] is non-decreasing,
note that any sequence of partitions ̟ with mesh |̟| → 0 can be reorganized
as an increasing sequence of partitions ̟ and the set D of all points belonging
to some partition in the sequence is dense in [0, T ]. Since the limit is cad-lag, it
suffices to show that [X] is non-decreasing only for points in D. Thus, for every
s < t in D, there exists δ > 0 such that s, t belongs to ̟ whenever |̟| < δ, so
that from the definition [X]̟t ≥ [X]̟s , and as |̟| → 0 this becomes [X]t ≥ [X]s
as desired. Finally, remark that Y ̟ is a square-integrable martingale which
converges to t 7→ X2

t −X2
0 − [X]t, to deduce that X2− [X] is a square-integrable

martingale.

(6) If X is a cad-lag local-martingale with bounded jumps (i.e., |Xt −Xt−| ≤
K, for some deterministic constant K) then there exists an optional cad-lag
increasing process [X] such that [X]̟t converges to [X]t in probability, uniformly
in 0 ≤ t ≤ T as the mesh |̟| → 0. Indeed, consider the sequence of stopping
times τn = inf{t ∈ [0, T ] : |Xt| > n}, which has the properties (a) |Xt| ≤ n+K,
for every 0 < t ≤ τn, (b) the process t 7→ Xτn

t = Xt∧τn is a bounded martingale,
(c) P{τn < T} → 0 as n→ ∞. Now, apply (5) above to the Xτn

t to obtain the
optional cad-lag increasing process [Xτn ] as the limit of [Xτn ]̟ as |̟| → 0. As
n→ ∞, this defines a process [X], because [Xτn ]t = [Xτk ]t, for any 0 ≤ t ≤ τn
and k ≥ n. Moreover, the inequality

P
{

sup
0≤t≤T

∣∣[X]t − [X]̟t
∣∣} ≤ P

{
sup

0≤t≤T

∣∣[Xτn ]t − [Xτn ]̟t
∣∣} + P{τn < T},

shows the desired convergence, by letting first |̟| → 0 and later n → ∞.
Remark that if the jumps of X are unbounded then the stopped local-martingale
Xτn may not be necessarily a bounded martingale, where all previous argument
can be applied.

(7) Let X be a cad-lag local-martingale with bounded jumps. Then X is con-
tinuous if and only if its (optional) quadratic variation process [X] is continuous.
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It is clear that if X is continuous then [X] is also continuous; to check the con-
verse, let us show that [X]t − [X]t− → (Xt −Xt−)2. Indeed, take a sequence
of time sk ↑ t and choose n such that tn < sk < t ≤ tn+1 to obtain

[X]̟t − [X]̟sk = (Xt −Xtn)2 − (Xsk −Xtn)2.

As the mesh |̟| → 0 and k → ∞, this implies [X]̟t − [X]̟sk → (Xt −Xt−)2.
Due to the uniform convergence, [X]̟sk → [X]̟t−, and the jump-relation follows.

(8) If X is a cad-lag local-martingale with bounded jumps and A is optional
cad-lag increasing locally-integrable process vanishing at the origin (i.e, A0 =
0) such that the process X2 − A is a local-martingale and the square-jumps
(Xt − Xt−)2 = At − At− then A = [X]. Indeed, combining (5), (6) and (7)
above, it is clear that the process t 7→ X2

t − [X]t satisfies the same conditions
as the process A. Now, to check the uniqueness, note the process A − [X] is
a difference of two cad-lag local-martingales with no jumps, i.e., a continuous
local-martingale, and therefore, a constant process, namely A = [X].

(9) To include a Lévy process X in the previous analysis we need to consider the
part with large-jumps. The arguments for large-jumps is practically a determin-
istic analysis, and it suffices to remark that on any bounded time interval there
is necessarily a finite number of jumps larger than a positive constant ε > 0.
Alternatively, we may apply the previous points (1),. . . ,(8) to any continuous
local-martingale, in particular to the continuous part of a cad-lag locally square-
integrable local-martingale (i.e., the orthogonal decomposition X = Xc + Xd

with Xc being a continuous local-martingale), and define [X] = [Xc] + [Xd],
where the process of the square-jumps

[Xd]t =
∑

0<s≤t

(
Xs −Xs−

)2
, ∀t ≥ 0

is, by definition, the quadratic variation of the discontinuous martingale Xd.
Note that Xd is a purely jump martingale (but strictly speaking, it may contain
something more than jumps, it could be a compensated purely jump martingale)
and that the (optional) quadratic variation process [Xd] may be continuous in
probability. Even another way, as mentioned early, the stochastic integral can
be used to define the (optional) quadratic variation process

[X,Y ]t = XtYt −X0Y0 −
∫

]0,t]

Xs−dY (s) −
∫

]0,t]

Ys−dX(s), ∀t ≥ 0,

for two cad-lag local-martingales X and Y , and a posteriori show the conver-
gences for partitions with mesh vanishing, e.g., Jacob and Shiryaev [84, Section
4c, pp. 51–58].

As mentioned early, for a continuous local-martingale M the (optional)
quadratic variation process [M ] is continuous and therefore, denoted by 〈M〉
and referred to as the predictable quadratic variation. Thus, for a cad-lag
locally square-integrable local-martingale M (which includes local-martingales
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with bounded jumps) the predictable quadratic variation process 〈M〉 is defined
as the predictable dual-projection (also called the predictable compensator) of
the (optional) quadratic variation process [M ].

A simplify argument begins with a filtration F satisfying the usual condi-
tions, and the predictable and optional σ-algebras P and O) defined. Any
cad-lag adapted process is optional and any cag-lad adapted process is pre-
dictable. Stopping (also called optional) times are defined using the filtration
F, and strictly increasing sequences of stopping times yield the so-called pre-
dictable times as their limits. For a predictable (optional) time τ , the expression
t 7→ ✶t≤τ , is a predictable (optional) process. Given an optional integrable and
increasing process A, its compensator Ap is a predictable integrable and increas-
ing process satisfying

E
{∫

✶t≤τdA(t)
}

= E
{∫

✶t≤τdAp(t)
}
,

for every almost surely bounded predictable time τ . Certainly, this equality
remains valid for any predictable nonnegative process f replacing ✶t≤τ . This
compensator is unique except for an evanescent set, and as seen early, in the
case of a Poisson measure p with Lévy measure π, the predictable quadratic
variation of the stochastic integral

∫

Rm
∗ ×]0,t]

γ(ζ, s)p̃(dζ, ds) is Apt =

∫ t

0

ds

∫

Rm
∗

|γ(ζ, s)|2π(dζ),

while that the optional quadratic variation is

At =

∫

Rm
∗ ×]0,t]

|γ(ζ, s)|2p(ζ, ds),

and Ap is the compensator of A. Remark that the stochastic integral is defined
for L2-type classes of equivalence, so that the difference between A and its com-
pensator Ap is very subtle. For instance, the predictable quadratic variation
process 〈M〉 of a cad-lag locally square-integrable local-martingale M is iden-
tified as the unique predictable locally integrable increasing process vanishing
at the origin such that M2 − 〈M〉 is a cad-lag martingale. However, 〈M〉 is a
continuous process if and only if M is quasi-continuous, i.e., E{Mτn} → E{Mτ},
for any increasing sequence {τn} of stopping times converging to a bounded pre-
dictable time τ . Actually, by requiring

∨
n F(τn) = F(τ), the quasi-continuity

property can be attached directly to the filtration F. For instance, the interested
reader may consult the books by He et al. [68, Chapters V and VI, pp. 135–190]
or Liptser and Shiryayev [111, Chapter 1, pp. 1–84].

4.3 Random Fields of Martingales

As mentioned early, sometimes the interest is on random fields with parameter
in Rd × [0,∞), with values in Rn or Rd × L2(π), where π is a Lévy measure
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in Rm∗ . For instance, a Rd-valued (vector) predictable locally square-integrable
process σk = {σk(x, s) : x ∈ Rd, s ≥ 0} (for any k = 1, . . . , n and any x
in Rd), and the jump γ = {γ(x, ζ, s) : x ∈ Rd, ζ ∈ Rm∗ , s ≥ 0} is a Rd-valued
(vector) predictable locally square-integrable process (for every x in Rd) relative
to π(dζ)ds.

Therefore, when a smooth function from Rd× [0, T ] into Rn is allowed to be
random (i.e., a smooth random field with parameter in Rd × [0,∞) and values
in Rn), the degree of smoothness refer to continuity differentiability of a certain
order for each fixed ω (almost surely) may not completely adequate for further
analysis, and another type of differentiability could be necessary. Of particular
important is the smoothness in the time variable, since our interest is on Rd-
valued square-integrable (local-) martingales processes that also depend on an
spacial parameter, i.e., M = {M(x, t) : x ∈ Rd, t ≥ 0} such that for every x in
Rd the stochastic process t 7→M(x, t) is a (local-) martingale in a given filtered
space (Ω,F, P ) satisfying the usual conditions. The so-called quasi-continuous
special square-integrable (local-)martingales M(x, t) of the form

M(x, t) =
∑

k

∫ t

0

σk(x, s)dwk(s) +

∫

Rm
∗ ×[0,t]

γ(x, ζ, s)p̃(dζ, ds),

where w = {w(s) : s ≥ 0} is a standard Wiener process in Rn, p(dζ, ds) is a
Poisson measure on Rm∗ with Levy measure π, p̃(dζ, ds) = p(dζ, ds) − π(dζ)ds,
and for each x in Rd, the diffusion term σk = {σk(x, s) : x ∈ Rd, s ≥ 0},
k = 1, . . . , n, and the jump term γ = {γ(x, ζ, t) : x ∈ Rd, ζ ∈ Rm∗ , s ≥ 0}
as above, and using components, σk = (σik), γ = (γi), w = (w1, . . . , wn),
ζ = (ζ1, . . . , ζm), x = (x1, . . . , xd), and clearly, σ = (σik) may be regarded as a
d× n-matrix.

4.3.1 Preliminary Analysis

We try to avoid the treatment of general random fields, and only a quick and
superficial discussion is reported below. Indeed, it takes several sections in book
Kunita [104] to carefully treat continuous martingales, and even more delicate
arguments in Kunita [105] to include the jumps.

Orthogonal Decomposition

The (local) square-integrable (local-) martingale M can be expressed as M =
M c + Md, where M c is a continuous (local) square-integrable (local-) martin-
gale, indeed, M c and Md are orthogonal in the sense that the angle-bracket
〈M c,Md〉 = 0. Therefore, the d-square matrices

a(x, s) = σ(x, s)σ∗(x, s) =
( n∑

k=1

σik(x, s)σjk(x, s)
)

and

M(x, dζ, s) =
(∫

Rm
∗

γi(x, ζ, s)γj(x, ζ, s)π(dζ)
)
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yield the predictable quadratic variation density of M c(x, t) and Md(x, t), i.e.,
the real valued processes

t 7→M c
i (x, t)M c

j (x, t) −
∫ t

0

aij(x, s)ds, t ≥ 0, and

t 7→Md
i (x, t)Md

j (x, t) −
∫ t

0

ds

∫

Rm
∗

γi(x, ζ, s)γj(x, ζ, s)π(ζ), t ≥ 0,

are local-martingales, for any i, j = 1, . . . , d. A drift can be added to the (local)
square-integrable (local-) martingales (field) M(x, t) to get the semi-martingale

X(x, t) =

∫ t

0

g(x, s)ds+
∑

k

∫ t

0

σk(x, s)dwk(s) +

+

∫

Rm
∗ ×[0,t]

γ(x, ζ, s)p̃(dζ, ds),

for every x in Rd and t ≥ 0. The expression M(x, dζ, s) can be reconsidered as a
random kernel on Rd∗ (instead of Rm∗ ) defined by

M(x,B, s) = π
(
{ζ : γ(x, ζ, s) ∈ B}

)
,

for every Borel set B in Rd∗, x in Rd and s ≥ 0, and sometimes, the notation

M(x, h, t) =

∫

Rd
∗

h(z)M(x, dz, t)

for any Borel function h is used, in particular if h(z) = zizj then

M(x, zizj , s) =

∫

Rd
∗

zizjM(x, dz, t).

Hence, the real valued process

t 7→Md
i (x, t)Md

j (x, t) −
∫ t

0

M(x, zizj , s)ds, t ≥ 0,

is a local-martingale for any i, j = 1, . . . , d, and x in Rd.
Thus the predictable random fields {g(x, t), a(x, t), M(x, dz, t)} are called the

characteristic densities of the semi-martingale field {X(x, t) : x ∈ Rd, t ≥ 0}.
Actually, even the reference to the Lebesgue measure ds can be omitted by
taking a predictable locally integrable, continuous and increasing process α(x, t)
depending on the parameter x ans setting the tern

g(x, t)dα(x, t), a(x, t)dα(x, t), M(x, dz, t)dα(x, t)

as the characteristic of the random field X(x, t) of semi-martingales.
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Smoothness of the RF

It is clear that some smoothness on the characteristic should yield smooth-
ness on the random field of semi-martingales, but some difficulties appear. For
instance, the d-square matrix-valued process random field a(x, t) could be Lip-
schitz continuous but the square-root matrix σ(x, t) may not be so; and even
more complicate is the relation between the random kernel M(x, dz, t) and the
random field γ(x, ζ, t) and the Lévy measure π.

Conversely, if a random field M of Rn-valued square-integrable local-mar-
tingales is given then the predictable field of characteristic {a, M} is also defined,
but the dependency on the parameter x is not easy to track.

Suppose that on a filtered space (Ω,F, P ), there given a standard Wiener
process w = {w(s) : s ≥ 0} in Rn, and a Poisson measure p(dζ, ds) on Rm∗ with
Levy measure π and martingale measure on p̃(dζ, ds) = p(dζ, ds)−π(dζ)ds and
for each x in Rd. Moreover, if predictable fields are given, the drift g(x, t) =
(gi : i = 1, . . . , d), the diffusion σ(x, t) = (σik : i = 1, . . . , d, k = 1, . . . , n), and
the jump γ(x, ζ, t) = (γi : i = 1, . . . , d), then the semi-martingale field

X(x, t) =

∫ t

0

g(x, s)ds+
∑

k

∫ t

0

σk(x, s)dwk(s) +

+

∫

Rm
∗ ×[0,t]

γ(x, ζ, s)p̃(dζ, ds), (4.34)

or equivalently,

X(x, t) =

∫ t

0

g(x, s−)ds+
∑

k

∫ t

0

σk(x, s−)dwk(s) +

+

∫

Rm
∗ ×[0,t]

γ(x, ζ, s−)p̃(dζ, ds),

is defined under some typical conditions on g, σ and γ. The characteris-
tic of X(x, t) is the Rd-valued field g(x, t), the R2d-valued field a(x, y, t) =
σ(x, t)σ∗(y, t) and the Lévy kernel M(x, dz, s) = π

(
{ζ : γ(x, ζ, s) ∈ dz}

)
in Rd∗.

These random fields are regarded as stochastic processes with values in some
space of functions defined on Rd × [0,∞) which are continuous (or of class
Cm,α, i.e., continuously differentiable of order m with α-Hölder continuous m-
derivative) in x and cad-lag in t, but some suitable bounds are also necessary
to make sense, e.g.,

sup
x,y∈K

∫ T

0

[
|g(x, t)| + |a(x, y, t)| + M(x, |z|2, t)

]
dt <∞,

almost surely, for every compact subset K of Rd and any real number T > 0.
Note that regularity the predictable joint quadratic variation (of the continuous
part) a(x, y, t) is needed to ensure regularity of its square-root σ(x, t) and a
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specific expression of the kernel M(x, dz, t) is actually required to obtain regu-
larity of the jump term γ(x, ζ, s). For instance, a semi-martingale random field
of class C2(Rd) is a Rd-valued semi-martingale X(x, t) expressed by (4.34) with
coefficients g, σ and γ satisfying

sup
x∈K

∫ T

0

[
|∂αx g(x, t)| +

∑

k

|∂αx σk(x, t)|2
]
dt+

+

∫ T

0

dt

∫

Rm
∗

|∂αx γ(x, ζ, t)|2π(dζ) < ∞, (4.35)

almost surely, for every compact subset K of Rd, any real number T > 0 and
any multi-index α = (α1, . . . , αd) of order |α| = α1 + · · · + αd ≤ 2.

Composition and Stochastic Integral wrt RF

Therefore, if y = y(t) is a predictable Rd-valued piecewise constant process, i.e.,
y(t) =

∑n
i=1 ci✶ti−1<t≤ti for some number ci and 0 = t0 < t1 < · · · < tn then the

stochastic integral with respect to a random fields X(x, t) of semi-martingales
is defined by

∑n
i=1[X(ci, ti) − X(ci, ti−1)]. Assuming continuity of X and its

characteristic in the parameter x, this stochastic integral goes to the limit to be
defined for every predictable Rd-valued process. Certainly this agrees with the
expression

∫ t

0

X(y(s), ds) =

∫ t

0

g(y(s), s)ds+
∑

k

∫ t

0

σk(y(s), s)dwk(s) +

+

∫

Rm
∗ ×[0,t]

γ(y(s), ζ, s)p̃(dζ, ds),

the stochastic integral defined previously, i.e., same technique with a different
viewpoint. If y = y(t) is a cad-lag process then its predictable version t 7→ y(t−)
can be used to obtain the semi-martingale

t 7→
∫ t

0

X(y(s−), ds).

Hence, the stochastic integral with respect to a random field of semi-martingales
can be decomposed into a composition (with a predictable process, the inte-
grand) and then the integration (with the integrator), but the resulting stochas-
tic integral is linear with respect to the integrand only for linear coefficients (i.e.,
when g(z, t), σ(x, t) and γ(x, ζ, t) are linear in x).

In contract, even if the representation (4.34) holds, the composition process
t 7→ Y (t) = X(y(t), t) is certainly not represented in term of

∑

k

∫ t

0

σk(y(t), s)dwk(s) and

∫

Rm
∗ ×[0,t]

γ(y(t), ζ, s)p̃(dζ, ds),
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since the integrands are not predictable and therefore the stochastic integrals
are really defined for a fixed x and then substitution with y(t) takes place. This
procedure is of particular interest when the process y is itself a semi-martingale,
for instance, if

y(t) =

∫ t

0

f(s)ds+
∑

k

∫ t

0

ςk(s)dwk(s) +

+

∫

Rm
∗ ×[0,t]

ϑ(ζ, s)p̃(dζ, ds), (4.36)

where the predictable processes f , ς and ϑ satisfy
∫ T

0

[
|f(t)| +

∑

k

|ςk(t)|2
]
dt+

∫ T

0

dt

∫

Rm
∗

|ϑ(ζ, t)|2π(dζ) <∞, (4.37)

almost surely, for every real number T > 0, then we may expect an stochastic
differential for the composition of semi-martingales, i.e., a stochastic differential
rule the semi-martingale Y = {X(y(s), s) : s ≥ 0}.

It is interesting to remark that if the random field X is time-independent
(i.e., has parameter in Rd) then the Itô rule we have proved for (deterministic)
smooth functions ϕ(x, t) could be used with ϕ = X(x), for a fixed ω, but,
as soon as X dependent also on the time (which is the case of interest for
us!), the function ϕ(x, s) = X(x, s) could never be smooth in time, indeed,
even continuity is not granted when a Poisson integral term is present. Several
questions are of interest, e.g., study how the composition of two smooth random
fields of suitable dimensions preserve the form (4.34). Nevertheless, our interest
is how the semi-martingale y changes when composed with a smooth random
field, instead of a smooth (deterministic) function.

4.3.2 Itô Formula for RF

As mentioned early, firstly consider a (local square-integrable) semi-martingale
(field) given by (4.34), i.e.,

X(x, t) =

∫ t

0

g(x, s)ds+
∑

k

∫ t

0

σk(x, s)dwk(s) +

+

∫

Rm
∗ ×[0,t]

γ(x, ζ, s)p̃(dζ, ds),

for every x in Rd and t ≥ 0, where g(x, s), σk(x, s) and γ(x, ζ, s) are themselves
smooth predictable random fields satisfying (4.35), i.e.,

sup
x∈K

∫ T

0

(
|∂αx g(x, t)| +

∑

k

|∂αx σk(x, t)|2
)
dt+

+

∫ T

0

dt

∫

Rm
∗

|∂αx γ(x, ζ, t)|2π(dζ) < ∞,
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almost surely, for every compact subset K of Rd, any real number T > 0 and
any multi-index α = (α1, . . . , αd) of order |α| = α1 + · · · + αd ≤ 2. Secondly,
consider another (local square-integrable) semi-martingale given by (4.36), i.e.,

y(t) =

∫ t

0

f(s)ds+
∑

k

∫ t

0

ςk(s)dwk(s) +

∫

Rm
∗ ×[0,t]

ϑ(ζ, s)p̃(dζ, ds),

where the predictable processes f , ς and ϑ satisfy

∫ T

0

(
|f(t)| +

∑

k

|ςk(t)|2
)
dt+

∫ T

0

dt

∫

Rm
∗

|ϑ(ζ, t)|2π(dζ) <∞,

almost surely, for every real number T > 0. Remark that by enlarging the
dimensions of driving processes (i.e., of the standard Wiener process w and the
standard Poisson measure p), this setting includes the case when the field of
semi-martingales X and the semi-martingale y use independent driving pro-
cesses. The dimension of the random field X is usually d, the same are the
parameter x, however, this is not necessary.

Continuous Case IF

First take a look at the case without jumps, i.e., γ = 0 and ϑ = 0, namely,

Y (t) = X(y(t), t) =

∫ t

0

g(y(t), s)ds+
∑

k

∫ t

0

σk(y(t), s)dwk(s),

where the stochastic integral is necessarily calculated with a fix value x and
then x becomes y(t),

y(t) =

∫ t

0

f(s)ds+
∑

k

∫ t

0

ςk(s)dwk(s),

and the (predictable) quadratic co-variation processes are given by

d〈Xi(x, ·), Xj(x, ·)〉(t) =
∑

k

σik(x, t)σjk(x, t)dt,

d〈yi(·), yj(·)〉(t) =
∑

k

ςik(t)ςjk(t)dt.

In contract, our interest is to express dY (t) = a(t)dt+
∑
k bk(t)dwk(t).

Theorem 4.17. With the previous setting, including assumptions (4.35) and
(4.37), if there is not jumps, i.e., γ = 0 and ϑ = 0, then the composition
process t 7→ Y (t) = X(y(t), t) is a semi-martingale with Itô differential dY (t) =
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a(t)dt+
∑
k bk(t)dwk(t), where the predictable processes a and bk are given by

a(t) = g(y(t), t) +
∑

i

∂iX(y(t), t)fi(t) +
1

2

∑

ijk

∂2ijX(y(t), t)ςik(t)ςjk(t) +

+
∑

jk

∂jσk(y(t), t)ςjk(t),

bk(t) = σk(y(t), t) +
∑

i

∂iX(y(t), t)ςik(t),

with

∂2ijX(x, t) =

∫ t

0

∂2ijg(x, s)ds+
∑

k

∫ t

0

∂2ijσk(x, s)dwk(s),

and similarly for the random field ∂iX.

Proof. Without any loss of generality (i.e., use a localization argument) assume
that the coefficients f and g are integrable, while σk and ςk are L2-integrable,
and begin with a partition ̟ = {0 = t0 < t1 < · · · < tn = t}, to write

Y (t) =

n∑

h=1

[X(y(th), th) −X(y(th−1), th)] +

+

n∑

h=1

[X(y(th−1), th) −X(y(th−1), th−1)].

Note that the second sum approximate a stochastic integral, and on the first
sum, use Taylor second-order approximation to write

X(y(th), th) −X(y(th−1), th) ≈
∑

i

∂iX(y(th−1), th)[yi(th) − yi(th−1)] +

+
1

2

∑

ij

∂2ijX(y(th−1), th)[yi(th) − yi(th−1)][yj(th) − yj(th−1)].

Next,

∂iX(y(th−1), th) ≈ ∂iX(y(th−1), th−1) + ∂ig(y(th−1), th−1)[th − th−1] +

+
∑

k

∂iσk(y(th−1), th−1)[wk(th) − wk(th−1)].

and similarly with the second derivative ∂2ijX(y(th−1), th), where the approxi-
mation means that the sum (in h) of differences of both terms (i.e., on the right
and on the left of sign ≈) vanishes as the mesh |̟| → 0.

Substitute ∂iX(y(th−1), th) and ∂2ijX(y(th−1), th) into the first equality, and
note that some combinations contain factors that make the variation vanishes
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as the mesh |̟| → 0 (i.e., apply Theorem 4.3 and Corollary 4.6) to deduce

X(y(th), th)−X(y(th−1), tk) ≈
∑

i

∂iX(y(th−1), th−1)[yi(th)−yi(th−1)]+

+
∑

ik

∂iσk(y(th−1), th−1)[yi(th) − yi(th−1)][wk(th) − wk(th−1)] +

+
1

2

∑

ij

∂2ijX(y(th−1), th−1)[yi(th) − yi(th−1)][yj(th) − yj(th−1)].

Collect all pieces and let the mesh of the partition vanishes to obtain

dX(y(t), t) = ∂iX(y(t), t)dyi(t) +
(∑

ik

∂iσk(y(t), t)ςik(t)
)

dt+

+
(1

2

∑

ijk

∂2ijX(y(t), t)ςik(t)ςjk(t)
)

dt + X(y(t), dt),

where the relations with the differentials

∂iX(y(t), t)dyi(t) = ∂iX(y(t), t)fi(t)dt+
∑

k

∂iX(y(t), t)ςk(t)dwk(t),

1

2

∑

ij

∂2ijX(y(t), t)d〈yi, yj〉(t) =
1

2

∑

ijk

∂2ijX(y(t), t)ςik(t)ςjk(t)dt,

d〈X(y(·), ·), yj〉(t) =
∑

ik

∂iσk(y(t), t)ςik(t)dt,

X(y(t), dt) = g(y(t), t)dt+
∑

k

σk(y(t), t)dwk(t),

and the (derivative) random fields

∂iX(x, t) =

∫ t

0

∂ig(x, s)ds+
∑

k

∫ t

0

∂iσk(x, s)dwk(s),

∂2ijX(x, t) =

∫ t

0

∂2ijg(x, s)ds+
∑

k

∫ t

0

∂2ijσk(x, s)dwk(s),

are clearly valid. Remark the extra term involving the product of ∂iσk and ςik,
which does not appear for smooth deterministic fields.

Discrete Jumps Case IF

Only simple jumps are added, i.e., γ and ϑ vanish in a small neighborhood
of the origin in Rm∗ , and the paths are piecewise continuous. Particularly, the
jumps can be ordered, i.e., at a time τi > 0 there is a jump of size ζi, and
the next jump occurs at τi+1 > τi and there is no jump if τi = ∞, where {τi}
is a strictly (while finite) increasing sequence of stopping times and {ζi} is a
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sequence of adapted random variables, i.e., ζi is F(τi)-measurable. If p(dζ, dt)
denotes corresponding the Poisson measure then

∞∑

i=1

c(ζi, τi)✶τi≤t =

∫

Rm
∗ ×]0,t]

c(ζ, s)p(dζ, ds),

for every measurable function c.

Let us begin with y(t) driven by a Wiener process, i.e.,

y(t) =

∫ t

0

f(s)ds+
∑

k

∫ t

0

ςk(s)dwk(s), 0 ≤ t < τ1,

the first jump occurs at time t = τ1,

y(τ1) = y(τ1−) + ϑ(ζ1, τ1),

and

y(t) = y(τ1) +

∫ t

τ1

f(s)ds+
∑

k

∫ t

τ1

ςk(s)dwk(s), τ1 ≤ t < τ2,

the second jump occurs at time t = τ2,

y(τ2) = y(τ2−) + ϑ(ζ2, τ2),

and so on, alternating continuous evolution and jumps. Similarly, define the
smooth random field X(x, t) driven by a Wiener process and jumps, i.e.,

X(x, t) =

∫ t

0

g(x, s)ds+
∑

k

∫ t

0

σk(x, s)dwk(s), 0 ≤ t < τ1,

the first jump occurs at time t = τ1,

X(x, τ1) = X(x, τ1−) + γ(x, ζ1, τ1),

and

X(x, t) = X(x, τ1) +

∫ t

τ1

g(x, s)ds+
∑

k

∫ t

τ1

σk(x, s)dwk(s), τ1 ≤ t < τ2,

the second jump occurs at time t = τ2,

X(x, τ2) = X(x, τ2−) + γ(x, ζ2, τ2),

and so on, alternating continuous evolution and jumps, and certainly, keeping
x fixed.
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Therefore, the stochastic definition for X(y(t), t) is

X(y(t), t) =

∫ t

0

g(y(t), s)ds+
∑

k

∫ t

0

σk(y(t), s)dwk(s) +

+

∫

Rm
∗ ×]0,t]

γ(y(t), ζ, s)p(dζ, ds),

and

y(t) =

∫ t

0

f(s)ds+
∑

k

∫ t

0

ςk(s)dwk(s) +

∫

Rm
∗ ×]0,t]

ϑ(ζ, s)p(dζ, ds),

both equations are valid for t ≥ 0.

Theorem 4.18. With the previous setting, including assumptions (4.35) and
(4.37), if the jumps are described above then the composition process t 7→ Y (t) =
X(y(t), t) is a semi-martingale with Itô differential with jumps

dY (t) = a(t)dt+
∑

k

bk(t)dwk(t) +

∫

Rm
∗

c(ζ, t)p(dζ, dt),

where the optional processes a and bk, and predictable process c are given by

a(t) = g(y(t), t) +
∑

i

∂iX(y(t), t)fi(t) +
1

2

∑

ijk

∂2ijX(y(t), t)ςik(t)ςjk(t) +

+
∑

jk

∂jσk(y(t), t)ςjk(t),

bk(t) = σk(y(t), t) +
∑

i

∂iX(y(t), t)ςik(t),

c(ζ, t) =
(
X(y(t−) + ϑ(ζ, t), t−) −X(y(t−), t−)

)
+

+ γ(y(t−) + ϑ(ζ, t), ζ, t),

with

∂2ijX(x, t) =

∫ t

0

∂2ijg(x, s)ds+
∑

k

∫ t

0

∂2ijσk(x, s)dwk(s) +

+

∫

Rm
∗ ×]0,t]

∂2ijγ(x, ζ, s)p(dζ, ds),

and similarly for the random field ∂iX.

Proof. Since the expression X(y(t), t) has two steps, (a) get y(t) and X(x, t)
separately and (b) compose them to obtain X(y(t), t). It is clear that vector
(X(x, t), y(t)) makes a jump at time τi of size (γ(x, ζi, τi), ϑ(ζi, τi)), so if t = τi
then the jump at X(y(t), t), i.e.,

δX(y(t), t) = X(y(t), t) −X(y(t−), t−),
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can be calculated at t = τi as

X(y(t), t) −X(y(t−), t−) =
(
X(y(t−) + ϑ(ζi, t), t−) +

+ γ(y(t + ϑ(ζi, t)), ζi, t)
)
−

(
X(y(t−), t−)

)
.

Therefore, there is an alternative stochastic expression for X(y(t), t), namely,

X(y(t), t) =

∫ t

0

g(y(t), s)ds+
∑

k

∫ t

0

σk(y(t), s)dwk(s) +

+

∫

Rm
∗ ×]0,t]

[
X(y(s−) + ϑ(ζ, s), s−) −X(y(s−), s−)

]
p(dζ, ds) +

+

∫

Rm
∗ ×]0,t]

γ(y(s−) + ϑ(ζ, s), ζ, s)p(dζ, ds),

which provides the definition of the predictable process c(ζ, t).
Now, remark that between two consecutive jumps, the pathwise integral with

respect to the Poisson measure p behaves like a constant (in t) drift (i.e., added
to g) and use the arguments of Theorem 4.17 to deduce the expressions of the
processes a and bk and to complete the proof.

• Remark 4.19. The formula obtained in Theorem 4.18 remains valid when the
Poisson measure p is not necessarily a compound Poisson process, but a process
with bounded variation, i.e., as long as the coefficients γ and ϑ are integrable
with respect to p almost surely, i.e.,

sup
x∈K

∫ T

0

dt

∫

Rm
∗

(
|γ(x, ζ, t)| + |ϑ(ζ, t)|

)
π(dt) <∞

where π is the corresponding Lévy measure, compare with assumptions (4.35)
and (4.37).

Corollary 4.20. Under the same assumptions of Theorem 4.18, if the Pois-
son measure p is replaced by the compensated Poisson measure p̃(dζ, dt) =
p(dζ, dt)− π(dζ)dt in the expressions of the random field X(x, t) and the semi-
martingale y(t), then the Itô differential with jumps is

dY (t) = a(t)dt+
∑

k

bk(t)dwk(t) +

∫

Rm
∗

c(ζ, t)p̃(dζ, dt),

where the optional processes a and bk, and predictable process c are given by

a(t) = g(y(t), t) +
∑

jk

∂jσk(y(t), t)ςjk(t) +A(t)X(y(t−), t) +

+ I(t)γ(y(t−), t),

bk(t) = σk(y(t), t) +
∑

i

∂iX(y(t), t)ςik(t),

c(ζ, t) =
[
X(y(t−) + ϑ(ζ, t), t−) −X(y(t−), t−)

]
+

+ γ(y(t−) + ϑ(ζ, t), ζ, t),
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where the integro-differential operators

I(t)γ(x, t) =

∫

Rm
∗

[
γ(x+ϑ(ζ, t), ζ, t)−γ(x, ζ, t)−ϑ(ζ, t) ·∇γ(x, ζ, t)

]
π(dζ),

A(t)X(x, t) =
1

2

∑

ijk

∂2ijX(x, t)ςik(t)ςjk(t) +
∑

i

∂iX(x, t)fi(t) +

+

∫

Rm
∗

[
X(x+ ϑ(ζ, t), t) −X(x, t) − ϑ(ζ, t) · ∇X(x, t)

]
π(dζ),

and the random fields

∂2ijX(x, t) =

∫ t

0

∂2ijg(x, s)ds+
∑

k

∫ t

0

∂2ijσk(x, s)dwk(s) +

+

∫

Rm
∗ ×]0,t]

∂2ijγ(x, ζ, s)p̃(dζ, ds),

and similarly for the random field ∂iX.

Proof. It suffices to note that under these assumptions, the stochastic integral
with respect to the compensated Poisson measure p̃ can be separated and ex-
pressed as two pieces, so that

f(t) becomes f(t) −
∫

Rm
∗

ϑ(ζ, t)π(dζ), and

g(x, t) becomes g(x, t) −
∫

Rm
∗

γ(x, ζ, t)π(dζ).

At this point, the Itô formula with jumps in Theorem 4.18 can be used to deduce
the desired result.

It should be clear that the integro-differential operators A and I act on the
variable x and depend (beside the Lévy measure π) on the coefficients ϑ(ζ, t),
ς(t) and f(t) which are attached only to the semi-martingale y. In particular,
the notations I(t) and A(t) make evident the (possible) dependency on the
variable t fo the coefficients.

Also remark that the integrand c in the (compensated) Poisson integral is a
predictable process, while the integrands a and bk in the pathwise integral (in
dt) and the stochastic integral (in dwk) are optional processes. However, the
predictable process

a−(t) = g(y(t−), t) +
∑

jk

∂jσk(y(t−), t)ςjk(t) +

+ A(t)X(y(t−), t−) + I(t)γ(y(t−), t)

yields the same the pathwise integral, and the predictable process

bk(t) = σk(y(t−), t) +
∑

i

∂iX(y(t−), t)ςik(t)
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is actually used (by definition) for the stochastic integral relative to the Wiener
process. This actually can be applied to the stochastic Poisson integral, and re-
place the predictable coefficient c with its optional version, but this may cause
confusion, since in this case, the pathwise integral (if defined) does not neces-
sarily agree with the stochastic integral.

Note that the definition of the integro-differential operator I (as well as the
purely integro-differential part of A) requires y(t−), due to the Poisson integral
(in dζ). Clearly, this is not necessary in Theorem 4.18, where only the pathwise
jump-integral (in p(dζ, dt)) requires y(t−) and X(x, t−).

General Jumps Case IF

Now, going back to the general type of jumps, i.e., as in the beginning of this
subsection with the definitions (4.34) and (4.36), and the assumptions (4.35)
and (4.37). Note that if the Poisson measure p with Lévy measure π in Rm∗ is
approximated by the Poisson measure pε corresponding to the Lévy measure
πε(dζ) = ✶ε<|ζ|<1/επ(dζ), then the previous construction applies to pε.

Theorem 4.21. Under the previous general setting (4.34) and (4.36) on ran-
dom field X(x, t) and the semi-martingale y(t), and under the assumptions
(4.35) and (4.37), the Itô differential with jumps is

dY (t) = a(t)dt+
∑

k

bk(t)dwk(t) +

∫

Rm
∗

c(ζ, t)p̃(dζ, dt),

where the predictable processes a, bk and c are given by

a(t) = g(y(t−), t) +
∑

jk

∂jσk(y(t−), t)ςjk(t) +A(t)X(y(t−), t) +

+ I(t)γ(y(t−), t),

bk(t) = σk(y(t−), t) +
∑

i

∂iX(y(t−), t)ςik(t),

c(ζ, t) =
[
X(y(t−) + ϑ(ζ, t), t−) −X(y(t−), t−)

]
+

+ γ(y(t−) + ϑ(ζ, t), ζ, t),

where the integro-differential operators

I(t)γ(x, t) =

∫

Rm
∗

[
γ(x+ϑ(ζ, t), ζ, t)−γ(x, ζ, t)−ϑ(ζ, t) ·∇γ(x, ζ, t)

]
π(dζ),

A(t)X(x, t) =
1

2

∑

ijk

∂2ijX(x, t)ςik(t)ςjk(t) +
∑

i

∂iX(x, t)fi(t) +

+

∫

Rm
∗

[
X(x+ ϑ(ζ, t), t) −X(x, t) − ϑ(ζ, t) · ∇X(x, t)

]
π(dζ),
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and the random fields

∂2ijX(x, t) =

∫ t

0

∂2ijg(x, s)ds+
∑

k

∫ t

0

∂2ijσk(x, s)dwk(s) +

+

∫

Rm
∗ ×]0,t]

∂2ijγ(x, ζ, s)p̃(dζ, ds),

and similarly for the random field ∂iX.

Proof. Indeed, all what it takes now is to justify the limit of the Poisson measure
pε as ε → 0. To simplify the arguments, we may think that the jumps in the
random field (i.e., γ) and in the semi-martingale (i.e., ϑ). In any way, by
localization, the coefficient become square-integrable so that the L2-arguments
can be applied. The details are reasonable simple (but perhaps tedious) and so,
not included here.

It interesting to remark the two new terms

∑

jk

∂jσk(y(t−), t)ςjk(t) and

∫

Rm
∗

[
γ(y(t−) + ϑ(ζ, t), ζ, t) − γ(y(t−), ζ, t) −

− ϑ(ζ, t) · ∇γ(y(t−), ζ, t)
]
π(dζ)

that appear due to the present of a smooth random field, instead of a simple
smooth (deterministic) function. These are the quadratic co-variation of the
continuous parts in the random field X and the semi-martingale y. As expected,
these two terms vanish when the driving processes of X are independent of
the driving processes of y, and clearly, there is not interaction between the
continuous part and the discontinuous (or jump) part. Actually, the second
term (i.e., Iγ) does not vanish when the jumps of t 7→ X(x, t) and t 7→ y(t)
are independent, i.e., they do not occur simultaneously (i.e., γϑ = 0 π-almost
everywhere), the expression under the integral over Rm∗ vanishes except when
ϑ 6= 0, i.e., it is just the contribution of the jumps relative to X.

As mentioned early, if two Wiener processes and two Poisson measures are
used, one for the expression of the smooth random field {X(x, t) : x ∈ Rd, t ≥ 0}
and one for the semi-martingale {y(t) : t ≥ 0} then a description on the
quadratic co-variation is necessary. All this is simplify by assuming only one
source of Wiener process and Poisson measure of a suitable dimension to ac-
commodate the former setting, as a particular case.

4.3.3 Stochastic Flows

Stochastic differential equations is the key tool needed to study stochastic flows,
which are an improvement (in the pathwise view) over Markov processes. There-
fore, this section is necessarily only a brief introduction, as mentioned early, the
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interested reader may check, for instance, the book Kunita [104] for a carefully
treatment beginning with Brownian flows, and later, even more delicate argu-
ments can be found in Kunita [105] to include the jumps, as well as several
references there.

Recall that a function f from the Euclidean space Rd into itself is called a
homeomorphism (or bicontinuous) if (a) f is one-to-one and onto (i.e., bijection),
(b) f is continuous, and (c) its inverse f−1 is continuous (f is open, maps open
sets into open sets). A homeomorphism f is called a diffeomorphism of class
Ck if f and its inverse f−1 are continuously differentiable up to the order k.
The topology associated with homeomorphisms (diffeomorphisms of class Ck)
is the local (over compact sets of Rd) uniform convergence of itself and its
inverse (including derivatives up to the order k). Certainly, this topological
space of homeomorphisms or diffeomorphisms of class Ck is a Polish space (i.e.,
a separable complete metrizable space) denoted by Hk = Hk(Rd), with H = H0

corresponding to diffeomorphisms of class C0, i.e., homeomorphisms.

Definition 4.22. A continuous (or cad-lag) random field {ϕs,t(x) : s, t ∈
[0, T ], x ∈ Rd} on a probability space (Ω,F , P ) is called a stochastic flow of
homeomorphism (or stochastic flow of diffeomorphisms of class Ck, k ≥ 0) if
{ϕs,t} is a two-parameter continuous (cad-lag) process in (s, t) taking values
into the Polish space of homeomorphisms of diffeomorphisms of class Ck) from
Rd into itself, i.e. Hk(Rd), such that there exists a null set N such that for
every ω in Ω r N we have: (a) the function (s, t, x) 7→ ϕs,t(x, ω) is continu-
ous (or cad-lag in (s, t) and continuous in x), (b) for every (s, t) the function
x 7→ ϕs,t(x, ω) is a homeomorphism (or a diffeomorphism of class Ck), (c) for
every s, t and x the equality ϕs,t(x, ω) = x holds, (d) if ◦ denotes the composi-
tion of maps then ϕs,r ◦ ϕr,t = ϕs,t, for every s, t, r in [0, T ]. The forward flow
is {ϕs,t(x) : 0 ≤ s ≤ t ≤ T, x ∈ Rd}, while the backward flow is its inverse
{ϕt,s(x) = ϕ−1

s,t (x) : 0 ≤ s ≤ t ≤ T, x ∈ Rd}.

In general, if {ϕt : t ≥ 0} is a cad-lag process with values in Hk, k ≥ 0,
such that its inverse ϕ−1

t is a cad-lag process (with values in Hk) and ϕ0 is the
identity (in Rd) then ϕs,t = ϕt ◦ ϕ−1

s is a stochastic flow of diffeomorphisms of
class Ck. It is clear that the analysis of stochastic flows is reduced to random
fields with values in Hk, for the forward flow. Indeed, given a stochastic forward
flow {ϕs,t(x) : 0 ≤ s ≤ t ≤ T, x ∈ Rd}, the expression ϕt,s(x) = ϕ−1

s,t (x) shows

that there exists a unique stochastic flow {ϕ̄s,t(x) : s, t ∈ [0, T ], x ∈ Rd} such
that its restriction to the forward time parameters 0 ≤ s ≤ t ≤ T coincides with
ϕs,t(x).

Typical Examples

Two typical examples could be used as prototypes. First, if w is a Wiener
process in Rd with zero mean then

ϕs,t = x+ wt−s if t ≥ s and ϕs,t = x− ws−t if s ≥ t.

[Preliminary] Menaldi December 12, 2017



4.3. Random Fields of Martingales 295

Since the inverse flow is ϕ−1
s,t = x − wt−s when t ≥ s ≥ 0, the flow condition

(d) needs to be verified only for the forward flow, namely, ϕs,r ◦ ϕr,t = ϕs,t,
for every s ≤ r ≤ t, i.e., the equality wr−s + wt−r = wt−s, which is satisfied
from the construction. Indeed, with the notation of Chapter 2, if {ei,n : i =
1, 2, . . . , 4n, n ≥ 1} is a sequence of independent standard normally distributed
random variables, then

ϕs,t = x+
∑

n

2−n
4n∑

i=1

ei,n✶i2−n≤t −
∑

n

2−n
4n∑

i=1

ei,n✶i2−n≤s, t, s ≥ 0,

is a realization of the stochastic flow for a standard Wiener process, which
accepts a continuous version in s and t. In particular,

ϕs,t = x+
∑

n

2−n
4n∑

i=1

ei,n✶s<i2−n≤t, t ≥ s ≥ 0,

becomes the forward flow.
The second example is a compound Poisson process, i.e., begin with a

given (non-zero) finite measure m in (Rd∗,B∗), to construct a sequence q̇ =
{(zn, τn) : n ≥ 1} of independent random variables such that each τn is ex-
ponentially distributed with parameter m(Rd∗) and zn has the distribution law
A 7→ m(A)/m(Rd∗), thus, the random variables θn = τ1+ · · ·+τn have Γ(m(Rd∗), n)
distribution. The series ηt =

∑
n ✶t≥θn is almost surely a finite sum and de-

fines a Poisson process with parameter m(Rd∗), satisfying E{ηt} = tm(Rd∗) and
E{|ηt− tm(Rd∗)|2} = tm(Rd∗). In short, given a Rd-valued compound Poisson pro-
cess {Nt : t ≥ 0} with parameter λ = m(Rd∗) and m/λ, or simply m, i.e., with the
following characteristic function

E{eiζ·Nt} = exp
{
t

∫

Rd
∗

(
eiζ·z − 1

)
m(dz)

}
, ∀ξ ∈ Rd,

as a Lévy process, with Nt =
∑
n zn✶t≥θn . With all this, the expression ϕs,t =

x+Nt −Ns, or equivalently,

ϕs,t = x+
∑

n

zn✶θn≤t −
∑

n

zn✶θn≤s, t, s ≥ 0

is a realization of the stochastic flow for a compound process, corresponding to
Lévy measure m. while

ϕs,t = x+
∑

n

zn✶s<θn≤t, t ≥ s ≥ 0,

provides the forward flow.
The solution to Ordinary Differential Equations provides typical determin-

istic examples, i.e., if g(y, t) is a Lipschitz continuous maps from Rd into itself
(of class Ck) then the unique solution ϕs,t(x) of the initial valued problem
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ẏ(t) = g(y(t), t), for t > s, with y(s) = x, is a deterministic homeomorphism
(diffeomorphism of class Ck). Indeed, this is easily checked by noting that the
ODE can be solved forward and backward in time, i.e., ϕ−1

s,t (x) is the unique
solution of the IVP ẏ(t) = g(y(t), t), for t < s, with y(s) = ϕs,t(x).

Going back to the second example of a compound Poisson process with Lévy
measure m on Rd∗, we may consider a sequence {γ(x, z, t)} of jumps rules to be
superimposed x 7→ x+γ(x, z, t) by induction as follows: x0 = x, z0 = 0, θ0 = 0,
γ(x, 0, t) = 0, and

xn+1 = xn + γ(xn, zn, θn) and ϕs,t(x) = xn if θn−1 ≤ t < θn,

for any n = 0, 1, 2, . . . This generalizes the compound Poisson process example,
but for this jump-mechanism to be a homeomorphism we need to require that
the mapping x 7→ x + γ(x, z, t) be a homeomorphism in Rd, for each fixed z, t,
plus Borel measurable in z and cad-lag in t. Indeed, if y = hz,t(x) = x+γ(x, z, t)
and x = h−1

z,t (y) its inverse then define γ−1(y, z, t) = h−1
z,t (y) − y, i.e.,

γ−1(x, z, t) = y − x iff y + γ(y, z, t) = x, (4.38)

which satisfies γ−1(x, z, t) = −γ(y, z, t) when y + γ(y, z, t) = x. The inverse
stochastic flow ϕ−1

s,t (x) is obtained by (reverse) induction as follows: for t find

k such that θk ≤ t < θk+1 to define xk = ϕs,t(x), θ0 = 0, and ϕ−1
s,t (x) = xk if

θk ≤ t < θk+1, and then

xn−1 = xn + γ−1(xn, zn, θn) and ϕ−1
s,t (x) = xn−1 if θn−1 ≤ t < θn,

for any n = k, k − 1, . . . , 1. It should be also clear that the sequence {(zn, θn) :
n ≥} are the jumps of the piecewise constant process ϕs,t(x). Also note that
for “small jumps”, e.g., |γ(x, z, t)| ≤ γ0 < 1, the mapping x 7→ x + γ(x, z, t) is
necessarily one-to-one.

Moreover, if a sequence {gn(x, t) : n ≥ 1} of Lipschitz continuous drifts
is given then the previous example can be modified to include the so-called
piecewise deterministic process, e.g., see Davis [30, Sections 25 and 26]. Indeed,
replace xn with the unique solution xn(t) of the IVP

ẋn+1(t) = gn(xn+1(t), t), t > θn,

xn+1(θn) = xn(θn) + γ(xn(θn), zn, θn),

and define ϕs,t(x) = xn(t) if θn−1 ≤ t < θn.

Stochastic Differential Equations

It is not the objective of this section to study stochastic ordinary differential
equations (SODE), but merely mention them as motor of stochastic flows.
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Perhaps the simplest SODE is with constant coefficients, i.e.,

ϕs,t(x) = x+

∫ t

s

g(r)dr +
∑

k

∫ t

s

σk(r)dwk(r − s) +

+

∫

Rm
∗ ×]s,t]

γ(ζ, r)p̃(dζ, dr), ∀ t ≥ s, (4.39)

where the standard Wiener process w in Rn and the Poisson measure p and
its corresponding martingale (or compensated) measure p̃ are all given. In
this case, the composition-flow (or co-cycle) property is automatically satisfied,
and inverse flow is defined by subtracting the integrals. However, for variables
coefficients the situation is very different.

Another simple case is for instance the one-dimensional linear SODE, i.e.,
apply Itô formula to the one-dimensional stochastic integral

ϕs,t(x) = x exp
(∫ t

s

(
g(r) − 1

2
σ2(r)

)
dr +

∫ t

s

σ(r)dwr−s
)
, t ≥ s ≥ 0,

to deduce that

dϕs,t(x) = ϕs,t(x)g(t)dt+ ϕs,t(x)σ(t)dwt−s, t ≥ s ≥ 0,

which is a linear stochastic ordinary differential equation for y(t) = ϕs,t(x) with
initial condition y(s) = x. Also note that the forward flow satisfies

ϕs,r(x) ◦ ϕr,t(x) = x exp
(∫ r

s

(
g(τ) − 1

2
σ2(τ)

)
dτ +

∫ t

s

σ(τ)dwτ−s
)
×

× exp
(∫ t

r

(
g(τ) − 1

2
σ2(τ)

)
dτ +

∫ t

r

σ(τ)dwτ−t
)

=

= x exp
(∫ t

s

(
g(τ) − 1

2
σ2(τ)

)
dτ +

∫ t

s

σ(τ)dwτ−s
)
,

for any t ≥ r ≥ s ≥ 0, as expected. The inverse flow ϕt,s(x) = ϕ−1
s,t (x), for

t ≥ s ≥ 0, is given by

ϕt,s(x) = x exp
(
−
∫ t

s

(
g(r) − 1

2
σ2(r)

)
dr −

∫ t

s

σ(r)dwr−s
)
.

Clearly, the multidimensional case is more delicate and requires the use of the
fundamental matrix-solution for a linear (deterministic) ODE.

A way of setting-up stochastic ordinary differential equations (SODE) is
to begin with a probability space (Ω,F , P ) with a standard Wiener process
w = (w1, . . . , wn) in Rn and a Poisson measure p with Lévy measure π on
Rm∗ , independent of each other. This allow us to consider w as a continuous
martingale and the compensated Poisson measure p̃(dζ, dt) = p(dζ, dt)−π(dζ)dt
as a purely discontinuous martingales, both defined on the filtered probability
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space (Ω,F, P ) generated by w and p. Note that once the Lévy measure π has
been chosen, a (canonical) realization of w and p can be constructed to establish
this setting. As seen later, it is convenient to assume that all moment of the
‘large jumps’ are finite, i.e.,

∫

Rm
∗

|ζ|qπ(dζ) <∞, ∀q ≥ 2, (4.40)

so that they are incorporated into the stochastic integral. Recall that the inte-
grals against the ’large jumps’ are actually pathwise integrals.

Thus, beside the Lévy measure π and the time horizon T > 0, the coefficients
of the SODE are part of the data, i.e., the drift g : Rd×[0, T ] → Rd, the diffusion
σ = (σ1, . . . , σn) with σk : Rd×[0, T ] → Rd, and the jumps γ : Rd×Rm∗ ×[0, T ] →
Rd, and all coefficients are at least Borel measurable functions.

Therefore, the stochastic ordinary differential equation takes the form

y(t) = x+

∫ t

s

g(y(r), r)dr +
∑

k

∫ t

s

σk(y(r), r)dwk(r) +

+

∫

Rm
∗ ×]s,t]

γ(y(r), ζ, r)p̃(dζ, dr), ∀ t ≥ s, (4.41)

or in differential form as

dy(t) = g(y(t), t)dt+
∑

k

σk(y(t), t)dwk(t) +

+

∫

Rm
∗

γ(y(t), ζ, t)p̃(dζ, dt), (4.42)

plus the initial condition y(s) = x. Usually y(t) = yxs(t) to emphasize the de-
pendency on the initial condition. A solution to the SODE is an optional process
y such that the equality (4.41) holds true. Because the stochastic integrals are
defined initially as an element in the space L2 with the product measure P ×dt,
a solution is an adapted measurable process of which an optional cad-lag version
is taken, and for the stochastic integrals, a predictable version is obtained by
replacing y(t) with y(t−) inside the integrand. In this sense, the uniqueness is
modulo P×dt for adapted square-integrable processes or modulo an evanescence
set for cad-lag processes.

To develop a neat existence and uniqueness theory, the coefficients have lin-
ear growth and are locally Lipschitz continuous, namely, there exists a constant
C > 0 such that

|g(x, t)|2 +
∑

k

|σk(x, t)|2 +

∫

Rm
∗

|γ(x, ζ, t)|2π(dζ) ≤ C(1 + |x|2), (4.43)

for every (x, t) in Rd × [0, T ], and for any r > 0 there exists a positive constant
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M = M(r) such that

|g(x, t) − g(x′, t)|2 +
∑

k

|σk(x, t) − σk(x′, t)|2 +

+

∫

Rm
∗

|γ(x, ζ, t) − γ(x′, ζ, t)|2π(dζ) ≤ M |x− x′|2, (4.44)

for every (x, t), (x′, t) in Rd × [0, T ] with |x| ≤ r and |x′| ≤ r.

Theorem 4.23 (existence and uniqueness). Under the above setting, including
(4.40), (4.43), (4.44), and for any given s in [0, T ] and x in Rd, there exists one
and only one solution (t, ω) 7→ y(t, ω) of the d-dimensional stochastic ordinary
differential equation (4.41) on the time interval [s, T ].

Proof. On an idea of a proof is given. Indeed, first the coefficients are assume
globally Lipschitz (i.e., the constant M = M(r) in (4.44) can be chosen inde-
pendently of any r > 0), and a fixed point in found in a convenient space as
in the deterministic ODE. For instance, without using martingale inequalities,
a unique fixed point is found in the Hilbert space L2 of all adapted square-
integrable processes. Then Doob’s maximal estimate is used to get a cad-lag
(or continuous, when γ = 0) optional version. Alternatively, martingales esti-
mates can be used to obtain a fixed point directly in the Banach space of cad-lag
square-integrable processes with a sup−L2 type norm.

Next, approximate the coefficients with globally Lipschitz functions, the ex-
istence of a solution is established. Finally, the uniqueness follows from a con-
venient Gronwall-type inequality.

Furthermore, the initial condition could be stochastic, e.g., the initial time
s could be a stopping time and x a F(s)-measurable random variable.

• Remark 4.24. It should be clear that only (4.40) with q = 2 is used in the
above arguments, and even this is not necessary, the L2 integrability of γ with
respect to π in assumptions (4.43) and (4.44) is all what is required of the
Radom measure π on Rm∗ . However, if the coefficients are globally Lipschitz
(i.e., the constant M(r) in (4.44) can be chosen independent of r) and the jump
coefficient γ satisfies for every q ≥ 2 and r > 0 there exists constants C = Cq
and Mq such that

∫

Rm
∗

|γ(x, ζ, t)|qπ(dζ) ≤ Cq(1 + |x|q), ∀x, t,
∫

Rm
∗

|γ(x, ζ, t) − γ(x′, ζ, t)|q)π(dζ) ≤Mq|x− x′|q, ∀x, x′, t,
(4.45)

then the solution y(t) = yxs(t) belongs to Lq and

E
{

sup
s≤t≤T

(1 + |yxs(t)|)q
}
≤ C ′

q(1 + |x|)q, ∀x, s,

E
{

sup
s≤t≤T

|yxs(t) − yx′s(t)|q
}
≤M ′

q|x− x′|q, ∀x, x′, s,
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for some suitable constants C ′
q and M ′

q depending also on T . Moreover, the
derivative with respect to the initial conditions can be calculated if the coefficient
are smooth. Certainly, this requires a carefully treatment which is not described
here.

Homeomorphisms via SODE

Assuming the previous setting, i.e., a filtered probability space (Ω,F, P ) with
a standard Wiener process w = (w1, . . . , wn) on Rn, a Poisson measure p with
intensity π on Rm∗ and compensated martingale measure p̃ = p(dζ, dt)−π(dζ)dt,
and with coefficients g, σ, γ satisfying (4.43) and (4.44), define the random field
ϕs,t(x) = yxs(t), with 0 ≤ s ≤ t ≤ T , x in Rd, where yxs(t) is the unique cad-lad
optional solution of the SODE (4.41).

Assume that x 7→ x+γ(x, ζ, t) is an homeomorphism in Rd and if the inverse
jump γ−1 is given by (4.38) then for every q ≥ 2 there exists constants C = Cq
and Mq such that

∫

Rm
∗

|γ−1(x, ζ, t)|qπ(dζ) ≤ Cq(1 + |x|q), ∀x, t,
∫

Rm
∗

|γ−1(x, ζ, t) − γ−1(x′, ζ, t)|qπ(dζ) ≤Mq|x− x′|q, ∀x, x′, t
(4.46)

Remark that if the jumps are small, i.e., |γ(x, ζ, t)| ≤ c for every x, ζ, t and some
constant 0 < c < 1, then the required condition on the inverse jump γ−1 is a
direct consequence of the that on γ.

Theorem 4.25 (homeomorphism). Under the assumptions of Theorem 4.23
and (4.45), (4.46), and for any given 0 ≤ s ≤ t ≤ T , the mapping x 7→ yxs(t) is
an homeomorphism in Rd, almost surely, i.e., ϕs,t(x) = yxs(t), 0 ≤ s ≤ s ≤ T
is a forward flow of homeomorphism in Rd.

Proof. Actually, this is beyond the scope of these lectures, and only the key ideas
are presented. Essentially, the key arguments is bases on convenient application
of Itô formula.

A first step is to reinforce the assumption on the inverse jumps (4.46) with

|γ−1(x, ζ, t)| ≤ C(1 + |x|), ∀x, a.e. P × π × dt,

|γ−1(x, ζ, t) − γ−1(x′, ζ, t)| ≤M |x− x′|, ∀x, x′, a.e. P × π × dt,
(4.47)

and to obtain the estimates
(
1 + |x+ γ(x, ζ, t)|2

)−1 ≤ C
(
1 + |x|2

)−1
, ∀x, a.e. P × π × dt,∫

Rm
∗

(
1 + |x+ γ(x, ζ, t)|2

)−q
π(dζ) ≤ Cq

(
1 + |x|2

)−q
, ∀x, a.e. P × dt,

and

|I|γ,π(x, t)
(
1 + | · |2

)
≤ C

(
1 + |x|2

)
, ∀x, a.e. P × dt,
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for suitable constants C, Cq, any q ≥ 2, where Iγ,π(x, t) denotes the (purely)
integro-differential operator

Iγ,π(x, t)φ =

∫

Rm
∗

(
φ(x+ γ(x, ζ, t)) − φ(x) − γ(x, ζ, t) · ∇φ(x)

)
π(dζ),

and |I|γ,π(x, t) with the absolute value inside the integral (i.e., the first and the
last parentheses are replaced by | inside the integral).

In a second step, Itô formula is used to deduce the estimate

E
{

sup
s≤t≤T

(1 + |yxs(t)|2)−q
}
≤ Cq(1 + |x|2)−q, ∀x, s,

E
{

sup
s≤t≤T

|yxs(t) − yx′s(t)|−2q
}
≤Mq|x− x′|−2q, ∀x, x′, s,

for some suitable constants Cq and Mq depending also on T .
Now, to show that the mapping x 7→ yxs(t) is one-to-one, consider the ran-

dom field Yst(x, y) = 1/|yxs(t) − yxs(t)|, where s is fixed. Apply previous esti-
mate to deduce

E
{

sup
s≤t≤T

|Yst(x, y) − Yst(x
′, y′)|−2q

}
≤ Cδ−4q

(
|x− x′|−2q + |y − y′|−2q

)
,

holds true, for some constant C > 0 and for any s, x, y, x′, y′ with |x− y| ≥ δ
and |x′ − y′| ≥ δ. Hence, by Kolmogorov’s criterion, the random field Yst(x, y)
is continuous in the domain Dδ = {(x, y) : |x− y| ≥ δ}, for every δ > 0, which
show that x 7→ yxs(t) is one-to-one from Rd into itself.

Next, to check that x 7→ yxs(t) is onto Rd, take x 6= 0 and set x̄ = x|x|−2

to define Ȳst(x̄) = 1/(1 + |yxs(t)|) and Ȳst(0) = 0. Again, combine previous
estimates to obtain the estimate

E
{

sup
s≤t≤T

|Yst(x̄) − Yst(ȳ)|2q
}
≤ Cq|x̄− ȳ|2q,

for some constant C > 0, any q ≥ 1. Hence, by Kolmogorov’s criterion, Ȳst(x̄)
can be extended continuously as x̄ → 0, i.e., Ȳst(x̄) → 0 as x̄ → 0, and this
implies yst(x) → ∞ as |x| → ∞, which establishes the onto property of the
maps.

To check the composition-flow (or co-cycle) property, i.e., ϕs,r ◦ϕr,t = ϕs,t it
suffices to remark that ϕs,t(x) and yrx′(t) with x′ = ϕs,r(x) are both solutions
of the same SODE, and uniqueness of solution yields the desired property.

Certainly, more work is necessary to show that ϕs,t(x) = yxs(t), 0 ≤ s ≤
s ≤ T is a forward flow of diffeomorphism of class Ck or Ck,α. Essentially, if
the coefficients g, σk and γ are of class Ck or Ck,α with suitable estimates then
solution of the SODE yxs(t) is differentiable with respect to the initial data,
which implies the desired property on the stochastic flows.

It perhaps important to mention that to express the backward flow of home-
omorphism the SODE should be considered backward, i.e., first the stochastic
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integral should be defined for (cad-lag) backward adapted processes, which are
the cad-lag version of processes like (4.39) in the variable s. This procedure
take care of the continuous part, but also the inverse jumps γ−1 intervene in
the backward SODE. This was nicely seen in the simple example of discrete
jumps.

For instance, the reader is referred to the book Kunita [104] for a carefully
treatment of continuous stochastic flows of homeomorphism, where a compre-
hensive study can be found. If jumps are added then some extra conditions are
necessary, like (4.45), (4.46) or even (4.47), the arguments are more delicate,
see Kunita [105].

4.4 Convergence of Integral Processes

A crucial point is to find a convergent (in various topologies) subsequence from
a given sequence of stochastic processes, e.g., the reader may take a look at
Ethier and Kurtz [45, Chapter 3, pp. 95–154]. In the following we collect
various sufficient (and necessary in some cases) conditions to this end.

4.4.1 Standard Convergences

An important result related with stochastically (left or right) continuous pro-
cesses can be found in Skorokhod [161, Section 1.6, pp. 9–14]

Theorem 4.26 (Skorokhod). Let Xn = (Xn(t) : t ≥ 0), n = 1, 2, . . . be a se-
quence of stochastically continuous processes with values in Rd in the probability
spaces (Ωn,Fn, Pn). Assume that for every ε > 0 there is a δ > 0 such that for
every n, t, s satisfying 0 ≤ t ≤ 1/ε, 0 ≤ s ≤ 1/ε, |t− s| < δ we have

Pn{|Xn(t)| ≥ 1/δ} + Pn{|Xn(t) −Xn(s)| ≥ ε} ≤ ε. (4.48)

Then there exist a stochastically continuous process X̃ = (X̃(t) : t ≥ 0) and a
subsequence, indexed by N, of stochastic processes X̃n = (X̃n(t) : t ≥ 0), n in
N, all with values in Rd and defined in another probability space (Ω̃, F̃ , P̃ ), such
that Xn and X̃n have the same finite-dimensional distributions for every n in
N and

lim
n∈N

sup
0≤t≤1/ε

P̃{|X̃n(t) − X̃(t)| ≥ ε} = 0, (4.49)

for every ε > 0.

Certainly, the construction uses the canonical probability space (Ω̃, F̃ , P̃ ),
where Ω̃ = [0, 1] with the Lebesgue measure P̃ on the Borel σ-algebra F̃ =
B([0, 1]). It is clear that each process Xn or X̃n may be only left (or right)
stochastically continuous and the result remain valid. Moreover, if the processes
{Xn : n ∈ N} are continuous or cad-lag then there are continuous or cad-lag
version of the processes {X̃n : n ∈ N}. Indeed, denote by P̃ ∗

n the outer measure
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on the product space (Rd)[0,∞) associated with the process X̃n, or equivalently
to Xn. Since Xn is cad-lag, P̃ ∗

n{D([0,∞),Rd)} = 1, and therefore the set

{ω̃ : X̃n(·, ω̃) 6∈ D([0,∞),Rd)}

has P̃ ∗
n -measure zero. However, the limit process X̃ may not be continuous nor

cad-lag, since in (4.48) the sup is outside of the probability.
The Skorokhod Representation Theorem can be generalized to a metric space

(X, ρ) we have the following result, where on [0, 1] is considered with the usual
Borel σ-algebra and the standard Lebesgue measure (sometimes referred to as
the universal probability space).

Theorem 4.27. Given a weak convergent sequence of probability measures on
metric space X, µn → µ0, assume that either X0 is separable or each µn, n =
0, 1, . . .} is tight. Then there exist a sequence of random variables Xn : [0, 1] →
X0, n = 0, 1, . . .}, such that (1) the image measures of Xn are the µn and (2)
Xn(θ) → X(θ), for any θ in [0, 1].

Lévy processes are characterized by being stochastically continuous processes
with a specific Lévy characteristic function (or Fourier transform), with drift
vector b, covariance matrix a and Lévy measure (or jump intensity) π. Hence,
if Xn are Lévy processes then so are the processes X̃n, X̃, after choosing ap-
propriate versions. In particular this applies to Wiener processes and Poisson
measures.

Another point of view in this direction is to consider a Rd-valued stochastic
process as a probability measure in a canonical space such as C([0,∞),Rd) or
the space D([0,∞),Rd), of continuous or cad-lag functions from [0,∞) into Rd,
which are Polish (i.e., separable, complete and metric) spaces. Thus, a con-
tinuous or cad-lag stochastic process is a random variable with values in either
C([0,∞),Rd) or D([0,∞),Rd). The modulus of continuity and its equivalent for
cad-lag process can be estimated as follows:

(1) if X is a separable process on [0, T ] such that there exist positive constants
p, q, C such that

E
{
|X(t) −X(s)|p

}
≤ C|t− s|1+q, ∀t, s ∈ [0, T ],

then for every 0 < α < q/p we have

lim
ε→0

ε−α ρ
C

(ε,X, T ) = 0,

ρ
C

(ε,X, T ) := sup
0≤t≤s≤t+ε≤T

{
|X(t) −X(s)|

}
,

almost surely.

(2) if X is a separable process on [0, T ] such that there exist positive constants
p, q, C such that

E
{[
|X(t+ δ) −X(s)| ∧ |X(s) −X(t)|

]p} ≤ Cδ1+q, ∀δ > 0,
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for every 0 ≤ t ≤ s ≤ t+ δ ≤ T then for every 0 < α < q/p we have

lim
ε→0

ε−α ρ
D

(ε,X, T ) = 0,

ρ
D

(ε,X, T ) := sup
0≤t≤s≤t+ε≤T

{
|X(t+ ε) −X(s)| ∧ |X(s) −X(t)|

}
,

almost surely.

To check these statements, we consider the diadic numbers D = {k2−n : k =
0, 1, . . . , 2n, n ≥ 0} on the time interval [0, T ] = [0, 1], for simplicity. For each
path, define

Zn :=

2n−1∑

k=0

Zn(k), Zn(k) := |X((k + 1)2−n) −X(k2−n)|,

to get

|X(t) −X(s)| ≤ Zn, ∀t, s ∈ D, |t− s| = 2−n.

Since D is a separant subset of X, this shows that

ρ
C

(2−n, X, T ) ≤ sup
m≥n

Zm ≤
∑

m≥n
Zm.

The assumption on the process X in (1) yields

P
{
|X(t) −X(s)| ≥ |t− s|α

}
≤ C|t− s|1+β ,

for every t, s in [0, 1] and with β := p− qα. Therefore

P
{
Zm ≥ 2−mα

}
≤

2m−1∑

k=0

P
{
Zm(k) ≥ 2−mα

}
≤ 2−mβ ,

and

P
{ ∑

m≥n
Zm ≥

∑

m≥n
2−mα

}
≤

∑

m≥n
2−mβ =

2−nβ

1 − 2−β
.

Hence

P
{

2nα ρ
C

(2−n, X, T ) ≥ 1

1 − 2−α
}
≤ 2−nβ

1 − 2−β
,

and by means of the Borel-Cantelli lemma, we deduce that

lim sup
ε→0

ε−α ρ
C

(ε,X, T ) ≤ 1

1 − 2−α
,
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almost surely, i.e, statement (1) for any 0 < α′ < α. To show assertion (2), we
may redefine

Zn(k, ℓ) := |X((k + 1)2−n) −X(k2−n)|∧
∧ |X(ℓ2−n) −X((ℓ− 1)2−n)|,

Zn :=
∑

0<ℓ≤k<2m

Zn(k, ℓ)

to get

ρ
D

(2−n, X, T ) ≤
∑

m≥n
Zm,

and then to conclude similarly as above.
Going back to previous Theorem 4.26, if the processes Xn are cad-lag and

the condition (4.48) is replaced by the following assumption: for every ε > 0
there is a δ > 0 such that for every n

Pn{w(Xn, δ, 1/δ) ≥ ε} + Pn{ sup
0≤t≤1/ε

|Xn(t)| ≥ 1/δ} ≤ ε,

w(Xn, r, T ) = inf
ti

max
i

sup
ti−1≤s,t<ti

|Xn(t) −Xn(s)|
(4.50)

where 0 = t0 < t1 < · · · < tn−1 < T ≤ tn, ti − ti−1 ≥ r, i = 1, . . . , n, then the
limit X̃ is a cad-lag process and the sequence of laws P̃n (of Xn or equivalently
of X̃n) on the canonical space D([0,∞),Rd) converge weakly to the law of X̃.
Similarly, if the processes Xn are continuous and the condition (4.48) is replaced
by: for every ε > 0 there is a δ > 0 such that for every n

Pn{ sup
0≤t≤1/ε

|Xn(t)| ≥ 1/δ} + Pn{ sup
T (ε,δ)

|Xn(t) −Xn(s)| ≥ ε} ≤ ε, (4.51)

where now T (ε, δ) is the subset of t, s satisfying 0 ≤ t ≤ 1/ε − δ, 0 ≤ s ≤ 1/ε,
|t− s| ≤ δ, then the limit X̃ is a continuous process and the sequence of law P̃n
on the canonical space C([0,∞),Rd) converges weakly to the law of X̃.

Sometime the above criteria (of tightness) of a sequence Xn could be not
usable or hard to meet, specially the condition relative the uniform sup-bound
on the increments in either (4.50) or (4.51). The so-called Aldous’ criterion for
tightness is a suitable tool. This reads as follows

Theorem 4.28. Let Xn = (Xn(t) : t ≥ 0), n = 1, 2, . . . be a sequence of
adapted cad-lag processes with values in Rd in the filtered probability spaces
(Ωn,Fn, Pn,Fn(t) : t ≥ 0). Assume that for every ε > 0 there is a δ > 0 such
that for every n and stopping times τ, θ satisfying θ ≤ τ ≤ 1/ε, τ − θ ≤ δ, we
have

Pn{ sup
0≤t≤1/ε

|Xn(t)| ≥ 1/δ} + Pn{|Xn(τ) −Xn(θ)| ≥ ε} ≤ ε. (4.52)
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Denote by P̃n the probability law of the process Xn in the canonical space
D([0,∞),Rd) of cad-lag functions. Then there exist a probability measure P̃
in D([0,∞),Rd) and a subsequence, indexed by N, of {P̃n : n ≥ 1} such that

lim
n∈N

P̃n(F ) ≤ P̃ (F ), ∀ closed F ∈ D([0,∞),Rd), (4.53)

and we also have P̃n(h) → P̃ (h), for every bounded h which is P̃ -almost surely
continuous, i.e., P̃n converge weakly to P̃ . Moreover, in some probability space
(Ω,F , P ) there are random variables X̃n and X̃ with values in D([0,∞),Rd)
and distributions P̃n and P̃ , respectively, such that X̃n converges in probability
X̃. Furthermore, if we assume that for every ε > 0 there exists an index nε such
that

Pn{ sup
0≤t≤1/ε

|Xn(t) −Xn(t−)| ≥ ε} ≤ ε ∀n ≥ nε (4.54)

then the limiting probability measure P̃ satisfies P̃
(
C([0,∞),Rd)

)
= 1, i.e., P̃

defines a probability measure on the canonical space C([0,∞),Rd) of continuous
functions.

It is clear that the statement regarding the D([0,∞),Rd)-valued random
variables comes from Skorokhod theorem. Recall that, if ρD(·, ·) denotes the
metric in the Polish space D([0,∞),Rd), then X̃n converges in probability X̃ if
and only if for every ε > 0 we have

lim
n∈N

P̃{ρD(X̃n, X̃) ≥ ε} = 0,

in particular

lim
n∈N

P̃{sup
T (ε)

|X̃n(t+ ε) − X̃n(s)| ∧ |X̃n(s) − X̃n(t)| ≥ ε} = 0,

where T (ε) is the subset of t, s satisfying 0 ≤ s, t ≤ 1/ε, 0 ≤ t ≤ s ≤ t+ ε.
Note that the filtration {Fn(t) : t ≥ 0} is always right-continuous (in this

case, not necessarily completed). It is customary to identify a cad-lag process
Xn defined on the probability spaces (Ωn,Fn, Pn) with its probability law P̃n on
D([0,∞),Rd). Elements in the canonical space D([0,∞),Rd) are denoted by ω
and the canonical process ω 7→ ω(t), which is interpreted as the projection from
D([0,∞),Rd) into Rd or as the identity mapping from D([0,∞),Rd) into itself
is denoted by x : (t, ω) 7→ ω(t) or xt = xt(ω) = ω(t) or x(t) = x(t, ω) = ω(t)
as long as no confusion may arrive. Recalling that ωn → ω in the Skorokhod
topology if and only if there exists a sequence λn of continuous and strictly
increasing functions with λn(0) = 0 and λn(∞) = ∞ such that

sup
s

|λn(s) − s| → 0, sup
s≤T

|ωn(λn(s)) − ω(s)| → 0,

for every T > 0, we can prove that, besides the projection function x, the
functions

ω 7→ sup
t≤T

|ω(t)|, ω 7→ sup
t≤T

|ω(t) − ω(t−)|
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are continuous from D([0,∞),Rd) into R for any ω such that ω(T ) = ω(T−).
Moreover,

ω 7→
∑

t≤T
h
(
ω(t) − ω(t−)

)
,

with h a continuous function vanishing near zero, is also continuous. It is clear
that if P̃ is quasi-left continuous then P̃{ω(T ) = ω(T−)} = 0 for every T > 0,
and the above functionals are P̃ -almost surely continuous.

Also on D([0,∞),Rd), there is another canonical (integer random measure)
process ω 7→ ν(dz, dt, ω), defined as

ν(B, ]a, b], ω) :=
∑

a<t≤b
✶{ω(t)−ω(t−)∈B}, ∀B ∈ B(Rd∗), b > a ≥ 0,

which is interpreted as the counting jumps measure. Once a probability P is
given so that the canonical process x is a local martingale, then its continuous
martingale part xc, the predictable jump compensator measure νp and the local
martingale measure ν̃ := ν − νp are defined.

Let h(t, x, v) be a real valued Borel measurable function which is bounded
and locally uniform continuous in x. For every T > 0 consider the expression

ω 7→
∫ T

0

h(t, x(t, ω))dt,

which is a continuous and bounded function from D([0,∞),Rd) into R. Then,
with the notation of the previous Theorem 4.28 we have

En
{∫ T

0

h(t,Xn(t))dt
}

= Ẽn
{∫ T

0

h(t, x(t))dt
}

= E
{∫ T

0

h(t, X̃n(t))dt
}
,

Hence, either if P̃n is weakly convergent to P̃ or if X̃n converge in probability
to X̃ we deduce that the above expression converges to

Ẽ
{∫ T

0

h(t, x(t))dt
}

= E
{∫ T

0

h(t, X̃(t))dt
}
,

where En and E are the mathematical expectation in the probability spaces
(Ωn,Fn, Pn) and (Ω,F , P ), respectively, and Ẽn and Ẽ are the integral with re-
spect to the probability laws P̃n and P̃ , respectively. Moreover, the convergence
holds true if we have a sequence {hn(t, x)} of measurable functions, which are
equi-bounded in (t, x) and equi-locally uniform continuous in x, and pointwise
convergent to some function h(t, x).

There is a key class of discontinuous functions in D([0,∞),Rd), namely, the
so-called counting functions of the form

∑

ti≤t
✶ti≤s, ∀t ≥ 0,
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for some strictly increasing sequence 0 < ti < ti+1, ti → ∞. Recall that a
point process is a cad-lag process with counting functions as sample paths. The
following result is sometime useful

Theorem 4.29. Let Xn = (Xn(t) : t ≥ 0), n = 1, 2, . . . be a sequence of increas-
ing cad-lag processes with values in Rd in the probability spaces (Ωn,Fn, Pn).
Suppose that the distributions of

(
Xn(t1), . . . , Xn(tm)

)
in (Rd)m converges to(

X(t1), . . . , X(tm)
)
for every t1, . . . , tm in some dense set of [0,∞), where X =

(X(t) : t ≥ 0) is an increasing cad-lag process with values in Rd. If either X is
continuous or all Xn and X are point processes then the law of Xn converges
weakly to the probability law of X in the canonical space D([0,∞),Rd).

The reader is referred to Proposition VI.3.26 and Theorems VI.3.37, VI.4.5
in the book Jacod and Shiryaev [84, Chapter VI, pp. 312–322].

Again, with the notation of Theorem 4.28, if the canonical process x is a local
martingale relative to P̃n then its continuous part xcn and its local martingale
measure ν̃n are defined and the expressions

ω 7→
∫ T

0

h(t, x(t))dxcn(t) and ω 7→
∫

]0,T ]×Rd
∗

h̃(t, x(t), z)ν̃n(dz, dt)

are P̃n-almost surely continuous, as long as h̃(t, x, z) is locally uniform contin-
uous in x and uniformly integrable in z with respect to νpn, the compensator
of ν under P̃n. However, to pass to the limit we will need the P̃ -almost surely
continuity. If Xn is a specific Lévy process then its characteristic function (or
Fourier transform) is determined by the drift vector b, the covariance matrix
a and the Lévy measure (or jump intensity) π (all independent of n or conve-
niently convergent as n tends to infinite). Hence, xcn = Xc

n is its continuous
local martingale part with predictable quadratic variation at and ν̃n its local
martingale measure with predictable jump compensator (Lévy measure) π. The
limiting probability law P̃ has the same properties, so that the mathematical
expectations

Ẽn
{∫ T

0

h(t, x(t))dxcn(t)
}

and Ẽn
{∫

]0,T ]×Rd
∗

h̃(t, x(t), z)ν̃n(dz, dt)
}

converge to

Ẽ
{∫ T

0

h(t, x(t))dxc(t)
}

and Ẽ
{∫

]0,T ]×Rd
∗

h̃(t, x(t), z)ν̃(dz, dt)
}
.

Moreover, the processes X̃n and X̃ on the probability space (Ω,F , P ) are Lévy
processes with the same characteristic function. Since the distributions of X̃n

and X̃ coincide with those of the canonical process x under P̃n and P̃ , respec-
tively, and the stochastic integrals are limits (in L2) of finite sums, we deduce
that the previous stochastic integrals can be considered in the probability space
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(Ω,F , P ). Thus

E
{∫ T

0

h(t, X̃n(t))dX̃c
n(t)

}
and E

{∫

]0,T ]×Rd
∗

h̃(t, X̃n(t), z)ν̃X̃n
(dz, dt)

}

converge to

E
{∫ T

0

h(t, X̃(t))dX̃c(t)
}

and E
{∫

]0,T ]×Rd
∗

h̃(t, X̃(t), z)ν̃X̃(dz, dt)
}
,

under the previous conditions, i.e., X̃n is a Lévy process with P̃n (its probability
law) that converges weakly to P̃ , the probability law of X̃. More delicate argu-
ments apply if Xn are local martingale with characteristics determined as con-
tinuous predictable functionals on the paths of Xn, see Jacod and Shiryaev [84,
Chapter VII, pp. 348–387].

However, because the processes X̃n converge in probability to X̃, we can es-
tablish the above convergence independently. We rephrase the result as follows:

Theorem 4.30. Let fn, gn and wn, νn, n = 1, 2, . . . be sequences of real-
valued predictable processes in [0,∞) and [0,∞) × Rm∗ , d-dimensional Wiener
processes and Poisson measures with Lévy measure π on Rm∗ , all defined in a
filtered probability space (Ω,F , P,F(t) : t ≥ 0). Suppose that for some processes
f, g, w and ν we have

∫ T

0

|fn(t) − f(t)|2dt→ 0 and

∫ T

0

dt

∫

Rm
∗

|gn(z, t) − g(z, t)|2π(dz) → 0

and

wn(t) → w(t), νn(K×]0, t]) → ν(K×]0, t]),

in probability, for every t in [0, T ] and any compact subset K of Rm∗ , where it is
implicitly assumed that

∫ T

0

[
|fn(t)|2 + |f(t)|2

]
dt <∞,

∫ T

0

dt

∫

Rm
∗

[
|gn(z, t)|2 + |g(z, t)|2

]
π(dz) <∞,

almost surely. Then the stochastic integrals
∫ T

0

fn(t)dwn(t) →
∫ T

0

f(t)dw(t),

∫

Rm
∗ ×]0,T ]

gn(z, t)ν̃n(dz, dt) →
∫

Rm
∗ ×]0,T ]

g(z, t)ν̃(dz, dt)

in probability, where ν̃n := νn − πdt and ν̃ := ν − πdt are the Poisson (local)
martingale measures associated with Poisson measures νn and ν.
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Proof. We follows the arguments in Skorokhod [161, Section 2.3, pp. 29–34].
First, recall that elementary predictable processes have the form h(t, ω) =
hi−1(ω) if ti−1 < t ≤ ti with some i = 1, . . . , n, where 0 = t0 < t1 < · · · < tn
are real numbers and hi−1 is a F(ti−1) measurable bounded random variable
for any i, and h(t, ω) = 0 otherwise, or h(z, t, ω) = hi−1,j(ω) if ti−1 < t ≤ ti and
z belongs to Kj with some i = 1, . . . , n, and j = 1, . . . ,m, where 0 = t0 < t1 <
· · · < tn are real numbers, Kj are disjoint compact subsets of Rm∗ and hi−1,j

is a F(ti−1) measurable bounded random variable for any i, and h(t, ω) = 0
otherwise. Then, we find sequences of elementary predictable processes fn,k,
gn,k, fk and gk, such that

∫ T

0

|fn,k(t) − fn(t)|2dt→ 0,

∫ T

0

dt

∫

Rm
∗

|gn,k(z, t) − gn(z, t)|2π(dz) → 0

∫ T

0

|fk(t) − f(t)|2dt→ 0 and

∫ T

0

dt

∫

Rm
∗

|gk(z, t) − g(z, t)|2π(dz) → 0

in probability as k → ∞, for every n. It is clear that

∫ T

0

fn,k(t)dwn(t) →
∫ T

0

fk(t)dw(t),

∫

Rm
∗ ×]0,T ]

gn,k(z, t)ν̃n(dz, dt) →
∫

Rm
∗ ×]0,T ]

gk(z, t)ν̃(dz, dt)

in probability for each k. Now, based on the inequalities

P
{

sup
0≤t≤T

∣∣
∫ t

0

h(s)dw(s)
∣∣ ≥ ε

}
≤ δ

ε2
+ P

{∫ T

0

|h(s)|2ds ≥ δ
}
,

and

P
{

sup
0≤t≤T

∣∣
∫

Rm
∗ ×(0,t]

h(z, s) ν̃(dz, ds)
∣∣ ≥ ε

}
≤ δ

ε2
+

+ P
{∫ T

0

ds

∫

Rm
∗

|h(z, s)|2π(dz) ≥ δ
}
,

valid for every positive constant T, δ and ε, we deduce that

∫ T

0

fn,k(t)dwn(t) →
∫ T

0

fn(t)dwn(t),

∫

Rm
∗ ×]0,T ]

gn,k(z, t)ν̃n(dz, dt) →
∫

Rm
∗ ×]0,T ]

gn(z, t)ν̃n(dz, dt)

in probability as k → ∞, uniformly in n, which complete the proof.

Notice that in the context of the previous Theorem 4.30 the conditions νn →
ν and ν̃n → ν̃ are equivalents. On the other hand, if wn(t) and νn(K×]0, t])
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converge in probability uniformly for t in [0, T ] then the same is true for the
stochastic integrals.

Let wn and νn, n = 1, 2, . . . be sequences of d-dimensional (standard) Wiener
processes and Poisson measures with Lévy measure π on Rm∗ , all defined in a
filtered probability space (Ω,F , P,Fn(t) : t ≥ 0), where Fn(t) is the σ-algebra
generated by {xn(s) : s ≤ t}, where xn is a cad-lag process for each n. It is clear
that wn and ν̃n(dz, dt) := ν(dz, dt) − π(dz) dt are martingale and martingale
measures relative to (Fn(t) : t ≥ 0) and (Fn(t+) : t ≥ 0). If wn(t), νn(K, ]0, t])
and xn(t) converge in probability to w(t), ν(K, ]0, t]) and x(t), for every t ≥ 0
and any compact subset K of Rm∗ , then w and ν are too, a d-dimensional
(standard) Wiener process and a Poisson measure with Lévy measure π on Rm∗ ,
but with respect to the limiting filtration either (F(t) : t ≥ 0) or (F(t+) : t ≥ 0),
where F(t) is the σ-algebra generated by {x(s) : s ≤ t}. The above remark
can be generalized with a random change of time, i.e., if ℓ(t) is a continuous
nondecreasing (adapted) process and such that ℓ(0) = 0 and ℓ(t) is a stopping
time relative to each filtration (Fn(t) : t ≥ 0) the we can change t into ℓ(t)
for each process wn, νn and xn. This means that if wn a square integrable
martingale with ℓ as its predictable quadratic covariation (just one dimension
to simplify notation) and νn has a jump compensator νpn given by

νpn(B, ]a, b]) = π(B) [ℓ(b) − ℓ(a)], ∀B ∈ B(Rm∗ ), b > a ≥ 0,

relative to (Fn(t) : t ≥ 0), then the same is valid for the limiting process w,
ν and x. Therefore, the previous Theorem 4.30 can be modified for this case,
replacing dt with ℓ(t). However, if dℓn changes with n then the situation requires
more details.

Recall the locally uniform and the Skorokhod’s topologies given by the family
of functions ρ(ω, δ, ]a, b]) and w(ω, δ, ]a, b]), which are defined for ω in the space
of cad-lag functions D([0,∞),Rd), by the expressions

ρ(ω, δ, ]a, b]) := sup{|ω(t) − ω(s)| : a < s, t ≤ b, |t− s| ≤ δ},
w(ω, δ, ]a, b]) := inf

{ti}
sup
i

sup{|ω(t) − ω(s)| : ti−1 ≤ s < t < ti},

where {ti} ranges over all partitions of the form a = t0 < t1 < · · · < tn−1 <
b ≤ tn, with ti − ti−1 ≥ δ and n ≥ 1. Both family of functions ρ(ω, δ, ]a, b])
and w(ω, δ, ]a, b]), define the same topology on the space of continuous functions
C([0,∞),Rd). It is clear ρ and w is the oscillation (or variation) for continuous
and cad-lag functions.

If ℓ(t) is a nondecreasing element in C([0,∞),Rd) and f(t) is another element
in D([0,∞),Rd), then the Riemann-Stieltjes integral

∫ T

0

f(t)dℓ(t), ∀T ≥ 0,
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is defined as the limit of the Riemann sums

R(f, ℓ, π, [0, T [) :=

n∑

i=1

f(t∗i )[ℓ(ti) − ℓ(ti−1)],

̟ = {ti, t∗i }, 0 = t0 < t1 < · · · < tn = T, ti−1 ≤ t∗i < ti,

when the mesh of the partition |̟| := maxi{ti − ti−1} vanishes. Moreover, if
we define

f̟(t) := f(t∗i ) if ti−1 < t ≤ ti,

then

lim
|̟|→0

∫ T

0

|f(t) − f̟(t)| dℓ(t) = 0,

for every T > 0. Indeed, since f(t)− f̟(t) = f(t)− f(t∗i ) for some t in ]ti−1, ti]
and t∗i in [ti−1, ti[, we see that for every ε > 0, i ≥ 1 and any t in ]ti−1, ti],

|f(t) − f̟(t)| ≤ w(f, |̟|, ]0, T ]) + ε+

+ max
ti+1<s≤ti

✶{|f(s)−f(s−)|>ε} |f(s) − f(s−)|,

i.e., the variation (or oscillation) is bounded by its continuous variation, plus ε,
plus the maximum jumps bigger than ε. Hence

∫ T

0

|f(t) − f̟(t)| dℓ(t) =
n∑

i=1

∫ ti

ti−1

|f(t) − f̟(t)| dℓ(t) ≤

≤
n∑

i=1

(
sup

ti−1<t≤ti
|f(t) − f̟(t)|

)
[ℓ(ti) − ℓ(ti−1)]

which yields

∫ T

0

|f(t) − f̟(t)| dℓ(t) ≤
[
w(f, |̟|, ]0, T ]) + ε

][
ℓ(T ) − ℓ(0)

]
+

+ ρ(ℓ, |̟|, ]0, T ])
∑

0<s≤T
✶{|f(s)−f(s−)|>ε} |f(s) − f(s−)|.

From the definition of the cad-lag modulus of continuity w we have

∑

a<t≤b
✶{|ω(t)−ω(t−)|≥w(ω,δ,]a,b])} ≤ b− a

δ
,

for every ω, δ > 0, and b > a ≥ 0. Therefore, for ε = w(f, δ, ]0, T ]) we obtain

∫ T

0

|f(t) − f̟(t)| dℓ(t) ≤ T

δ
ρ(ℓ, |̟|, ]0, T ])+

+
[
w(f, |̟|, ]0, T ]) + w(f, δ, ]0, T ])

][
ℓ(T ) − ℓ(0)

]
. (4.55)

Actually, this estimate implies the following result.
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Lemma 4.31. Let {fn} be a family of cad-lag processes and {ℓn} be another
family of continuous and nondecreasing processes, defined in a probability space
(Ωn,Fn, Pn). Assume that for every ε > 0 there is a δ > 0 such that for every n

Pn{w(fn, δ, ]0, 1/ε]) ≥ ε} + Pn{ sup
0≤t≤1/ε

|fn(t)| ≥ 1/δ} ≤ ε

and

Pn{|ℓn(1/ε) − ℓn(0)| > 1/δ} + Pn{ρ(ℓn, δ, ]0, 1/ε]) ≥ ε} ≤ ε.

Now, for any partition ̟ = {ti, t∗i }, 0 = t0 < t1 < · · · < tn = T, ti−1 ≤ t∗i < ti,
define f̟n (t) := fn(t∗i ) if ti−1 < t ≤ ti as above. Then for every ε > 0 there is
δ > 0 such that for every n

Pn

{∫ T

0

|fn(t) − f̟n (t)| dℓn(t) ≥ ε
}
≤ ε,

for every ̟ with |̟| ≤ δ.

Proof. Notice that the assumptions means that {fn} is tight (or pre-compact)
in the space D([0,∞),Rd) and {ℓn} is tight in C([0,∞),Rd). The conclusion
is the uniform convergence in probability of the integral processes, which is a
direct consequence of the a priori estimate (4.55).

If we are looking at processes gn(z, t) instead of just fn(t), with t ≥ 0 and z
in Rd∗, we may consider gn as having values in the function space L2

πn
(Rm∗ ), i.e.,

we use the following definition of the cad-lag modulo

wπn(x, δ, ]a, b]) :=

:= inf
{ti}

sup
i

sup
ti−1≤s<t<ti

{(∫

Rm
∗

|x(z, t) − x(z, s)|2πn(dz)
)1/2}

,

where {ti} ranges over all partitions of the form a = t0 < t1 < · · · < tn−1 < b ≤
tn, with ti − ti−1 ≥ δ and n ≥ 1. Estimate (4.55) becomes

∫ T

0

(∫

Rd
∗

|g(z, t) − g̟(z, t)|2 πn(dz)
)1/2

dℓ(t) ≤

≤ T

δ
ρ(ℓ, |̟|, ]0, T ]) +

[
wπn(g, |̟|, ]0, T ]) +

+ wπn(g, δ, ]0, T ])
][
ℓ(T ) − ℓ(0)

]
, (4.56)

and the previous Lemma 4.31 remain valid under the assumption that for every
ε > 0 there is a δ > 0 such that for every n

Pn{wπn(gn, δ, ]0, 1/ε]) ≥ ε} + Pn{ sup
0≤t≤1/ε

|gn(·, t)|πn
≥ 1/δ} ≤ ε,
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where

|gn(·, t)|πn
:=

(∫

Rm
∗

|gn(z, t)|2πn(dz)
)1/2

.

The a priori estimate obtained is written as for every ε > 0 there is δ > 0 such
that for every n

Pn

{∫ T

0

dℓn(t)

∫

Rm
∗

|gn(z, t) − g̟n (z, t)|2 πn(dz) ≥ ε
}
≤ ε, (4.57)

for every ̟ with |̟| ≤ δ.

Now based on above Lemma 4.31 we are able to generalize Theorem 4.30 as
follows

Theorem 4.32. Let ℓn, wn, νn, and xn, n = 1, 2, . . . be sequences of processes
defined in a probability space (Ω,F , P ) and let (Fn(t) : t ≥ 0) be the filtration
generated by xn. Assume that (1) ℓn are continuous nondecreasing adapted pro-
cesses, (2) wn are a d-dimensional square integrable martingales with predictable
quadratic covariation 〈wn,i, wn,j〉 = ℓn if i = j and 〈wn,i, wn,j〉 = 0 if i 6= j.
(3) νn are integer measures with jump compensator νpn(dz, dt) = π(dz) dℓn(t),
where π is a given Lévy measure in Rm∗ . Suppose that ℓn converges to ℓ, i.e., for
every ε > 0 there exists N = N(ε) such that

P{ sup
0≤t≤1/ε

|ℓn(t) − ℓ(t)| ≥ ε} ≤ ε, ∀n ≥ N(ε),

ℓn(0) = 0 and that xn(t) → x(t), wn(t) → w(t) and νn(K×]0, t]) → ν(K×]0, t])
in probability, for every t ≥ 0 and any compact subset K of Rm∗ . Then (a)
w is also a square integrable martingale with predictable quadratic covariation
〈wi, wj〉 = ℓ if i = j and 〈wi, wj〉 = 0 if i 6= j, (b) ν is also an integer measure
with jump compensator νp(dz, dt) = π(dz) dℓ(t), both relative to the limiting
filtration (F(t) : t ≥ 0) generated by x. Furthermore, if fn and gn are cad-lag
adapted processes pointwise (on a dense set of time) convergent to f and g in
probability and for every ε > 0 there exists δ = δ(ε) > 0 satisfying

P{w(fn, δ, ]0, 1/ε]) + wπ(gn, δ, ]0, 1/ε]) ≥ ε} ≤ ε, ∀n ≥ 1,

the limiting processes f and g are certainly cad-lag, and there exist sequences of
partitions {̟k = ̟f

k : k ≥ 1} and {̟k = ̟g
k : k ≥ 1} with mesh |̟f

k | → 0 and
|̟g

k| → 0 such that in probability we have

∫ T

0

f̟k
n (t) dℓn(t) →

∫ T

0

f̟k(t) dℓ(t),

∫ T

0

dℓn(t)

∫

Rd
∗

g̟k
n (z, t)π(dz) →

∫ T

0

dℓ(t)

∫

Rd
∗

g̟k(z, t)π(dz),
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for every k and T, then the Riemann-Stieltjes integrals converge in probability,
i.e.,

lim
n
P
{∣∣∣

∫ t

0

fn(s) dℓn(s) −
∫ t

0

f(s) dℓ(s)
∣∣∣ ≥ ε

}
= 0,

and

lim
n
P
{∣∣∣

∫ t

0

dℓn(s)

∫

Rd
∗

gn(z, s)π(dz) −
∫ t

0

dℓ(s)

∫

Rd
∗

g(z, s)π(dz)
∣∣∣ ≥ ε

}
= 0,

for every t, ε > 0. Also the stochastic integrals

Mn(t) :=

∫

]0,t]

fn(s) dwn(s), Jn(t) :=

∫

Rm
∗ ×]0,t]

gn(z, s) ν̃n(dz, ds),

converge also in probability to

M(t) :=

∫

]0,t]

f(s) dw(s), J(t) :=

∫

Rm
∗ ×]0,t]

g(z, s) ν̃(dz, ds),

for every t > 0, where ν̃n := νn−πdℓn and ν̃ := ν−πdℓ are the (local) martingale
measures associated with integer measures νn and ν.

It is also clear that under the conditions of the above Theorem and the
assumption that fn and gn converge to f and g in probability as random vari-
able with values in the Polish space D([0,∞),Rd) and D([0,∞), L2

π(Rm∗ )), the
stochastic integrals Mn and Jn converge to M and J in probability as random
variable with values in the Polish space D([0,∞),Rd) and D([0,∞),R). More-
over, if Mn are continuous then we can replace the cad-lag space D([0,∞),Rd)
with C([0,∞),Rd). In any case, the Riemann-Stieltjes integral processes con-
verge as random variables with values in the Polish space C([0,∞),R),, i.e., for
every ε > 0 there exists N = N(ε) such that

P
{

sup
0≤t≤1/ε

∣∣∣
∫ t

0

fn(s) dℓn(s) −
∫ t

0

f(s) dℓ(s)
∣∣∣ ≥ ε

}
≤ ε,

for every n ≥ N(ε), see estimate (4.55).

It is possible to consider the Lévy measure π in Theorem 4.32 depending on
n, i.e. πn, provided some uniform integrability at the origin is imposed, e.g.,

lim
ε→0

sup
n

∫

|z|≥ε
|z|2 πn(dz) = 0,

or replacing the function |z|2 with either |z|2 ∧ |z| or |z|2 ∧ 1, depending on the
integrability condition imposed on each πn.
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4.4.2 Other Convergence of Probabilities

Mainly, we discuss here Jakubowski convergence of probability measures. The
canonical spaces C([0,∞),Rd) and D = D([0,∞),Rd), of continuous and cad-
lag functions, are Polish (complete separable metric) spaces, with the local
uniformly convergence and the Skorokhod topology (usually referred to as the
J1-topology. Clearly, the addition and multiplication are continuous operation
on C([0,∞),Rd), but not on D, i.e., C([0,∞),Rd) is a topological vector space
but D is not. Moreover, the topology in D([0,∞),Rd) is strictly stronger that
the product topology in D([0,∞),Rd1) ×D([0,∞),Rd2), d = d1 + d2.

Now, the spaces of probability measures on C([0,∞),Rd) and D, denoted
respectively ℘(C([0,∞),Rd)) and ℘(D), are Polish spaces, with the weak con-
vergence topology, i.e. µn → ν if µn(f) → µ(f) for every bounded continuous
function f from C([0,∞),Rd) (or D) into R; moreover any probability measure
is tight. The reader is referred to the book by Ethier and Kurtz [45, Chap-
ter 3, pp. 95–154] or Jacod and Shiryaev [84, Chapter VI, pp. 288–347] for a
comprehensive discussion.

The operation stochastic integral can be regarded as a functional on either
C([0,∞),Rd) or D, i.e., given a probability measure in D with a certain num-
ber of properties (relative to some integrands and integrators), the law of the
stochastic integral process defines another probability measure. Loosely speak-
ing, if we have a sequence of integrands and integrators then we actually have
a sequence of probability measures on C([0,∞),Rd) or D. Specifically, we are
interested in the functional defined by an stochastic differential equation. When
dealing with cad-lag processes of (local) bounded variation, the Skorokhod topol-
ogy seems too strong for some cases of reflected stochastic differential equation,
and a weak topology is necessary. One of the key difficulties is that we exit the
framework of Polish spaces and we need to recall or review certain points of
general topology.

Sequential Convergence

First, it is a necessary some basic terminology on sequential convergence. In a
given topological space (X, τ) the closure of any subset of X could be defined as
a map A → Ā : 2X → 2X with the following properties: (a) ∅̄ = ∅, (b) A ⊂ Ā,

(c)A ∪B = Ā ∪ B̄ and (d) ¯̄A = Ā. This previous four properties are called the
Kuratowski axioms.

Suppose now to have defined on a set X (without a topology) a map on the
subsets of X, say κ : 2X → 2X, such that: (1) κ(∅) = ∅, (2) A ⊂ κ(A) and (3)
κ(A∪B) = κ(A)∪κ(B). Then, we can endow X with a topology τκ by defining
as “closed sets” those subsets F such that F = κ(F ). We can easily check that
the properties (1), (2) and (3) imply that the family of the complements of
“closed sets”, just defined, is a topology. The closure operator with respect to
this topology has the property A ⊂ κ(A) ⊂ Ā. Thus, if for any subset A we have
that κ(A) = Ā, then we have also the property (4) κ(κ(A)) = κ(A). Hence,
we can shows that if the map κ verifies (1), (2), (3) and (4) as above, then the
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above topology τκ is the unique topology such that Ā = κ(A), for any subset
A ⊂ X.

Convergent Sequences in a Given Topology

Now given a topological space (X, τ), the family of converging sequences xn → x
is determined. We can define the map κ(A) = [A]seq as the set of all limits points
of τ -converging sequences of points of A. It is easy to check that κ satisfies (1)

[∅]seq = ∅, (2) A ⊂ [A]seq ⊂ Ā
τ

and (3) [A∪B]seq = [A]seq∪ [B]seq, but in general
the point (4) is not true, i.e., we may have [A]seq ( [[A]seq]seq.

Thus we can introduce, as before, a topology τseq(= τκ), by defining the
new closed sets as F = [F ]seq and we have that τ ⊂ τseq. Obviously that the
two topologies have the same converging sequences, moreover, there is also the
weakest topology τ ′ with the same converging sequences of τ, and

A ⊂ [A]seq ⊂ Ā
τseq ⊂ Ā

τ ⊂ Ā
τ ′

.

Hence, a topological space (X, τ) is called sequential space if τ = τseq, with
κ(A) = [A]seq. Since it could happen that [[A]seq]seq 6= [A]seq, a topological
space (X, τ) is called Fréchet-Urysohn space if it a sequential space such that

[[A]seq]seq = [A]seq or equivalently Ā
τseq

= Ā
τ
. Note that any metric space X is a

Fréchet-Urysohn space.

Topology After Convergent Sequences

We can define the convergence of a sequence without introducing necessarily
a topology, in other words we can define a convergence of a sequence not in
terms of a given topology, as, for example, in the usual weak convergence of
probability measures on topological spaces. Now, if we assume that a notion of
convergence of sequences on a set (arbitrary) X is given, then to find a topology
τ on the space X such that all the converging sequences converge also in this
topology, we need to impose the the following properties to the family of con-
verging sequences:

(i) The uniqueness of the limit holds.

(ii) For every x ∈ X, the constant sequence {x, x, x, . . .} is convergent to x.

(iii) Given a convergent sequence {x1, x2, x3, . . .} (xn → x), then every subse-
quence is convergent to the same limit x.

These hypotheses imply that the sequential closure map κ(A) = [A]seq (as the
set of all limits points of converging sequences of points of A) verifies the prop-
erties (1), (2) and (3) above. Hence we can introduce the topology τseq, and all
converging sequences are also convergent in this topology. But in general, there
are more τseq-converging sequences than converging sequences (in the initial
sense).

Since a sequence {xn} is τseq-converging to x0 if and only if from any sub-
sequence it is possible to extract a further subsequence convergent to the same
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x0 (in the initial sense). This motivates the following further property, after the
properties (i), (ii) and (iii),

(iv) a sequence {xn} is converge to x0 if from any subsequence of {xn} it is
possible to extract a further subsequence convergent to the same x0.

Therefore, if (iv) holds then all converging sequences in the topology τseq are
just the given converging sequences.

If in a set X we have defined (initially) the meaning of converging sequences
satisfying (i), (ii) and (iii), then we say that we have space of type L or sequential
convergence of type L. Moreover, if also the property (iv) is satisfied then we
called it a space of type L∗ or sequential convergence of type L∗.

Now, starting from a space X with sequential convergence of type L, we can
endow X of the corresponding τseq topology. Next, if we take all the convergent
sequences in this τseq topology, which is called the ∗-convergence (relative to the
initial convergence), then we have a sequential convergence of type L∗. Clearly,
if a sequence converges in the initial convergence then it also converges in the
∗-convergence, but not necessarily the converse. On the other hand, if we start
from a space X of type L∗ and we endow X with the corresponding τseq topology,
then this time all the convergent sequences in this τseq topology are exactly the
same convergent sequences given initially, i.e., the initial convergence and the
∗-convergence are the same.

The simplest example is perhaps the space of real-valued Borel measurable
functions B([0,∞),R) with the pointwise convergence (which yields a sequential
topology), where all four properties are satisfied, i.e., a sequential convergence
of type L∗. However, it is clear that B([0,∞),R) is not a Fréchet-Urysohn
space. Indeed, if continuous functions are called Baire function of class 0 or
of at most class 0, then pointwise limit of Baire functions of at most class n
are called Baire function of at most class (n + 1), and Baire functions of class
(n + 1) those that are of at most class (n + 1) without being of at most class
n. Clearly, all Baire functions are Borel measurable functions. Thus denoting
by [·]seq the sequential closure, the Baire functions of at most class 1 is the
closure [C([0,∞),R)]seq while the Baire functions of at most class 2 is the double
closure [[C([0,∞),R)]seq]seq. Their difference is the Baire functions of class 2,
e.g., the Dirichlet function (= 1 for all rational and = 0 for all irrational)
limn→∞

(
limk→∞(cosn!πx)2k

)
is a Baire function of class 2. It is clear that

similar remarks apply to the pointwise and bounded convergence. Actually, if
T is an interval and X is a L∗ space, so is B(T,X) and C(T,X). Clearly, the
pointwise convergence makes B(T,X) a Hausdorff topological spaces, which is
neither a countable separated space nor a separable space.

Another interesting example is the space L0(Ω,F , P ) of the equivalence
classes of real-valued random variables with the almost surely pointwise conver-
gence. This space is of type L, but is not of type L∗. Moreover, the convergence
(iv), i.e., the τseq convergence or ∗-convergence (due to the topology induced by
the almost surely pointwise convergence) is actually the convergence in proba-
bility, i.e., in this case, L0(Ω,F , P ) with the ∗-convergence becomes a complete
metric space.
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Sequence of Probability Measures

The notions of tightness (or boundedness in probability), regularity, and of weak
convergence (or convergence in law) of measures need that the underlying mea-
sure space be a topological space X with the corresponding Borel σ-algebra
B(X).

Definition 4.33. Given a topological space X and its Borel σ-algebra B(X), a
family of probability measures Pi, i ∈ I is uniformly tight if for any ε > 0 there
exists a compact Kε such that, for every i ∈ I, Pi(Kε) > 1 − ε.

Let us mention two key results on Borel (measures defined on the Borel
σ-algebra) and Radon measures (measures finite on any compact set):

(a) Any probability measure P on a metric space X is regular, i.e., for any Borel
set A and every ε > 0 there exist a closed set F and a open set G such that
F ⊂ A ⊂ G and P (Gr F ) < ε.

(b) Any probability measure P on a Polish space (i.e., complete separable
metric space) X is tight, i.e., for any ε > 0 there exists a compact Kε such that
P (Kε) > 1 − ε.

In particular, any probability measure on a Polish space is regular and tight.

Weak convergence

Given a topological space (X, τ0) and its Borel σ-algebra B(X), we can consider
the space of probability measures on X, which is denoted by ℘(X) and endowed
with the weakest topology such that every linear functional of the form µ →
µ(f) is continuous, when f is any bounded and continuous function on X. This
topological space is denoted by W(℘(X)) or simply W. Note that if X is a
metric (or Polish) space then ℘(X) results also a metric (or Polish) space with
the Prohorov’s distance.

Note that µn
W−→ µ implies that µn(f) → µ(f) for every f bounded and

continuous. But the converse may be false, i.e. we can have that µn(f) → µ(f)
for every f bounded and continuous, but not converging in the W topology.

Recall that usually we have the weak convergence defined by µn(f) → µ(f)
for every f bounded and continuous. This convergent yields a space of type L,
which is not necessarily W. Thus, it makes sense to introduce the sequential
weak topology (the previous τseq topology) Wseq, the weakest topology with
respect to which we have µn(f) → µ(f) for every f bounded and continuous.
Certainly, W ⊂ Wseq. We have

Theorem 4.34. The space of probability measures on a Polish space with the
weak convergence is a space of type L∗ with Wseq = W.

On the other hand, starting with (X, τ0), let us suppose that there is another
(weaker) topology τ1 on X, such that τ1 ⊂ τ0 and that the Borel σ-algebra
generated by τ1 is the same as that generated by τ0. In such a case the space
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℘(X) is uniquely defined, with either τ0 or τ1. We have that W(τ1) ⊂ W(τ0)
and Wseq(τ1) ⊂ Wseq(τ0). If (X, τ0) is a Polish space then

W(τ1) ⊂ Wseq(τ1) ⊂ W(τ0) = Wseq(τ0).

In fact, µn → µ in Wseq(τ0) means that µn(f) → µ(f) for every bounded and
τ0-continuous function. Since a τ1-continuous function is also τ0-continuous, we
deduce also that µn → µ in Wseq(τ1), i.e., Wseq(τ1) ⊂ Wseq(τ0).

Prohorov Theorem

There are two implication, the direct and the converse:

(1) Given a metric space X, a family of probability measures {Pi, i ∈ I} on X,
is uniformly tight if it is relatively compact with respect to weak convergence.

(2) Given a separable, complete metric space X (i.e. a Polish space), a family
of probability measures {Pi, i ∈ I} on X, is relatively compact with respect to
weak convergence if it is uniformly tight.

For instance, see for example Dudley [37, Section 11.5, pp. 402–405].

Non Metric Case

Now, let (X, τ) be a topological space countably separated, i.e., such that the
following hypothesis holds:

there exists a countable family {fi : X → [−1, 1], i = 1, 2, . . .} of τ -
continuous functions which separates the points of X, that is for any
two distinct points x1, x2 ∈ X there exists a function fκ such that
fκ(x1) 6= fκ(x2).

Consider [0, 1] is considered with the usual Borel σ-algebra and the standard
Lebesgue measure (sometimes referred to as the universal probability space), see
Theorem 4.27 to compare assumptions.

Theorem 4.35. Let {µn} be a sequence of tight probability measures on a
topological space X, with also the previous hypothesis. Then there exist a subse-
quence {µnk

} and a sequence of random variables Xk : [0, 1] → X and a further
random variable X : [0, 1] → X, such that (1) the image measures of Xk are the
µnk

and (2) Xn(θ) → X(θ), for any θ in [0, 1].

Note that given any compact K ⊂ X the set

CK = {θ ∈ [0, 1] : Xk(θ) → X(θ)} ∩
∞⋂

k=1

{θ ∈ [0, 1] : Xk(θ) ∈ K}

is Borel measurable in [0, 1]. Moreover, for any ε there exists a compact Kε such
that the Lebesgue measure of CKε

is greater or equal to 1 − ε.
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Star-convergence of Tight Probability on X

Let us continue with

Definition 4.36. Given a sequence of tight probability measures {µn} on X,

we say that µn
∗

=⇒ µ if from every subsequence {µnk
} there exist a further

subsequence {µnki
} and a sequence of “random” variables Xi : [0, 1] → X, whose

image measures are just the µnki
’s and a further “random” variable X : [0, 1] →

X, whose image measure is µ such that, for each θ ∈ [0, 1], Xi(θ) → X(θ) and
for each ε > 0 there exists a compact Kε ⊂ X such that Leb

(⋂∞
i=1{θ : Xi(θ) ∈

Kε}
)
> 1 − ε.

This definition gives to the space of tight probability measures (denoted by
℘o(X) ⊂ ℘(X)) the structure of space of type L∗. Hence we have the corre-
sponding WJak sequential topology. Moreover, referring to ℘o(X) instead of the
whole ℘(X), this topology WJak is stronger than the sequential topology Wseq,
i.e. Wseq ⊂ WJak.

Theorem 4.37. This WJak topology has the property that the family of relatively
compact sets coincides with the family of relatively uniformly tight sets.

If X is a metric space then the weak topology and the WJak topology coincide.

4.4.3 Back to the Canonical Space

Consider the dual space of C([0, T ]), T > 0, which is the space of functions v(·)
with bounded variation with the duality pairing

〈ϕ, v〉T =

∫

[0,T ]

ϕ(t)dv(t).

Since each function v(·) with bounded variation can be modified (without chang-
ing the dual pairing) so that v(·) is also cad-lag, we denote by DBV([0, T ]), the set
of cad-lag functions with bounded variation, which is considered as a subspace
of the canonical space D([0, T ]). Because DBV([0, T ]) is the dual of the Banach
space C([0, T ]), we can use the weak* topology on DBV([0, T ]), where balls are
weakly* compact. Thus, we are interested in a topology on the space D([0, T ])
such that relatively to the subspace DBV([0, T ]) the convergence is similar to the
weak* convergence and any set of equi-bounded variation functions is compact.
The topology introduced by Jakubowski [85] has this property. Clearly, what is
done for D([0, T ]) can be extended to D([0,∞),Rd).

Again, let DBV([0,∞),Rd) denote the space of functions x in D([0,∞),Rd)
that locally are of bounded variation, with the sup-norm

‖x‖T,∞ = sup
{
|x(t)| : 0 ≤ t ≤ T

}

and the variation-norm

‖x‖T,BV = sup
{ n∑

i=0

|x(ti+1) − x(ti)| : ti < ti+1

}
.

[Preliminary] Menaldi December 12, 2017



322 Chapter 4. Stochastic Calculus II

where the supremum is taken with respect to all partitions with t0 = 0, tn = T
and ti belonging only to a dense subset of (0, T ). We consider the following
convergence in D([0,∞),Rd), as introduced by Jakubowski [85].

Definition 4.38. We say that the sequence {xn} in D([0,∞),Rd) is convergent

in the sense of Jakubowski, denoting by xn
Jak−→ x, if and only if, for any ǫ > 0

there exist a sequence {vǫn} and vǫ in DBV([0,∞),Rd) such that

‖vǫn − xn‖1/ε,∞ ≤ ǫ, ∀n ≥ 1, ‖vǫ − x‖1/ε,∞ ≤ ǫ

and
∫ 1/ε

0

ϕ(t) dvǫn →
∫ 1/ε

0

ϕ(t) dvǫ,

for any ϕ ∈ C([0, 1/ε]).

Star-convergence of Probability on DS

Now we look at DS , the canonical space D = D([0,∞),Rd) space of cad-lag
functions with the S-topology defined below (i.e., the ∗-convergence, denoted

by “
Jak

∗

−→”, and derived from Definition 4.38).
It can be proved that the S-topology on D generates the same Borel sets

that we have with the metric (J1) topology, thus the probability measures are
the same. Since the compact sets in the metric topology are also compact in
the S-topology, we have that every probability measure is also tight in the S-
topology. Hence, the sequential convergence is defined on the entire space of
probability measures ℘(DS) = ℘o(DS), because all probability measures are
tight in DS .This new topology WJak(DS) is stronger than the topology of weak
convergence Wseq(DS) (where we consider the S-topology on D), in other words
if we have the WJak convergence then we have also the weak S-convergence.
On the other hand the Wseq(DS)-topology is weaker than the classical (metric)
topology of weak convergence (that is with J1 as topology on D). However, in
general, we cannot say anything (from only this information) on the classical
weak convergence, hence every case needs a specific study: for example, the
 Laukajtys-S lomiński paper [109] shows that we don’t have the classical con-
vergence, nevertheless they prove the weak S-convergence (proving namely the
stronger WJak convergence).

In other words, rephrasing Definition 4.38), xn
Jak−→ x if and only if there

exists a double sequence {vn,k} in DBV([0,∞),Rd) such that (1) for every n,
vn,k → xn locally uniform as k → ∞, (2) for every k and any continuous
function ϕ, 〈ϕ, vn,k〉 → 〈ϕ, vk〉 as n → ∞, and (3) vk → x locally uniform as
k → ∞.

Actually we can endow D([0,∞),Rn) of the topology τJak defined by the
following family of open sets

G is open if and only if for any sequence {xn}, converging to a
element x ∈ G in the previous sense of Jakubowski, a tail of the
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sequence belongs to G, i.e. there exists an integer N such that
xn ∈ G for any n ≥ N.

We now remark that the converging sequences in the sense of Jakubowski are
not the only sequences that converge in the above topology! There are sequences
that are convergent in the sense of τJak topology without being convergent in the
sense of Jakubowski. Thus, we will indicate this weaker convergence in the

topology τJak as xn
Jak

∗

−→ x.
We can also endow D([0,∞),Rn) of the usual Skorokhod topology (the so

called J1 topology), under which D([0,∞),Rn) is a separable, complete metric
space (Polish space).

Actually the topology τJak is weaker of the usual Skorokhod topology, but
the Borel sets with respect to τJak are just the same Borel sets with respect
to Skorokhod topology, both coinciding with the σ-algebra generated by the
cylindrical sets.

Note the contrast, DBV([0,∞),Rd) is dense in DS , but C([0,∞),Rd) is closed
in D([0,∞),Rd), and C([0,∞),Rd) is dense in DS . To check this, first recall that
for any x in D([0,∞),Rd) and any ε > 0 there exist 0 = t0 < t1 < · · · < tr = 1/ε
such that for any i = 1, . . . , r and for any s, t in [ti−1, ti) we have |x(t)−x(s)| < ε.
Indeed, by means of the right continuity property, we can define inductively t0 =
inf{t > 0 : |x(t) − x(0)| ≥ ε/2} and ti = inf{t > ti−1 : |x(t) − x(ti−1)| ≥ ε/2}
for i ≥ 1. This sequence {tk} is divergent, namely if tk → t̃ we would have
also ε/2 ≤ |x(tk) − x(tk−1| → |x(t̃−) − x(t̃−)| = 0, in view of the existence of
left-hand limits, which is a contradiction. Thus we can define

vε(t) = x(ti−1) if t ∈ [ti−1, ti), i = 1, . . . , r,

which is a piecewise constant function (so cad-lag with bounded variation) sat-
isfying ‖vε − x‖1/ε,∞ < ε. Now defined

xn(t) = n

∫ (t+1/n)

t

x(s)ds and vεn(t) = n

∫ (t+1/n)

t

vε(s)ds,

which are absolutely continuous (and so continuous with bounded variation),
‖vεn−xn‖1/ε,∞ < ε, and as n→ ∞, converge pointwise (i.e., for each t fixed) to
x and vε. This proves that the space of absolutely continuous functions is dense
D([0,∞,Rd) with the Jakubowski topology.

4.4.4 Uniform Tightness or UT Condition

The following statements described this topology:

(1) The space D([0,∞),Rn) equipped with the sequential topology τJak is a
Hausdorff topological space which is not a metric space. Recall that with the
Skorokhod topology, it is a complete separable metrizable space.

(2) There exists a countable family of τJak-continuous functions which separate
points in D([0,∞),Rn).
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(3) The addition is sequentially continuous with respect to convergence in the

sense of Jakubowski. In particular, xn
Jak−→ x if and only if xn−x Jak−→ 0. Recall,

this holds with the Skorokhod topology only if x is continuous.

(4) Compact subsets K ⊂ D([0,∞),Rn) are metrizable spaces.

(5) A subset K ⊂ D([0,∞),Rn) is relatively τJak-compact if for any each ε >
0 there exists a constant Cε such that for each x ∈ K there exists vx,ε in
DBV([0,∞),Rn) such that

‖x− vx,ε‖1/ε,∞ ≤ ε and ‖vx,ε‖1/ε,BV ≤ Cε (4.58)

is satisfied.

(6) The evaluation or projection operators x 7→ x(t) from D([0,∞),Rn) into
Rd are nowhere continuous with the τJak topology. However, the functionals

x 7→ 1

ε

∫ t+ε

t

x(s)ds and x 7→ 1

ε

∫ t

t−ε
x(s)ds

are continuous and converges to x(t) and x(t−) as ε → 0. Thus, τJak-Borel
subsets BJak coincide with the standard σ-algebra generated by evaluations (pro-
jections). This fact implies that any probability measure on (D([0,∞),Rn),BJak)
is tight. Recall that with the Skorokhod topology, the evaluation operators are
continuous at any continuity time of the limit point.

(7) τJak is coarser (weaker) than the usual Skorokhod topology. Thus the cad-
lag space D([0,∞),Rn) endowed with the τJak Jakubowski topology is a Lusin
space, i.e., it is a one-to-one continuous image of a Polish space. However, it
is unknown if the space is completely regular (i.e., the topology is given by a
family of pseudo-metric which is Hausdorff separated.)

(8) The subspace DBV([0,∞),Rn) is dense, indeed, if x is any point in in the
space D([0,∞),Rn) the singleton {x} is compact, hence we can find a sequence
of functions in DBV([0,∞),Rd) converging to x in the sense of Jakubowski, in
view of (4.58). Actually, we proved above that the space of absolutely continuous
is dense. We may consider DBV([0,∞),Rn) with the relative τJak topology on
D([0,∞),Rn), but it is weaker than the weak* topology.

(9) Let Na,b
T (x) be the number of up-crossing (of x) of the interval [a, b] in the

time interval [0, T ], i.e., Na,b
T (x) ≥ k if there exist 0 ≤ t1 < t2 < . . . < t2k−1 <

t2k such that x(t2i−1) < a < b < x(t2i) for any i = 1, 2, . . . k. On the other
hand, let NT,η(x) be the number of oscillations (of x) greater than η in the time
interval [0, T ], i.e., NT,η(x) ≥ k if there exist 0 ≤ t1 < t2 < . . . < t2k−1 < t2k
such that |x(t2i) − x(t2i−1)| > η for any i = 1, 2, . . . k. Then, it can be proved
that any uniformly equi-bounded subset K of D([0,∞),Rn) (i.e., for any T > 0
there exists a constant C > 0 such that ‖x‖T,∞ ≤ C for every x in K) is compact
(i.e., condition (4.58) holds) if and only if one of the following two conditions,
for every T > 0,

sup
x∈K

Na,b
T (x) < +∞ or sup

x∈K
NT,η(x) < +∞,
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for each a < b, or for each η > 0, is satisfied.

The following result is useful to check the τJak convergence. Let {xn} is

relatively τJak-compact. Then xn
Jak

∗

−→ x if there exists a (countable) dense set Q
in [0,∞) such that xn(q) → x(q), as n→ +∞, for every q in Q.

On the other hand, if ϕ(t, x) is a locally bounded Charathéodory function
(measurable in t and continuous in x) defined on [0,∞)×Rd, and ℓ is a contin-
uous bounded variation function, then the integral functionals

x 7→
∫

]0,T ]

ϕ(t, x(t−))dℓ(t) and x 7→
∫

]0,T ]

ϕ(t, x(t))dℓ(t)

are continuous the Jakubowski topology.
However, if we consider the sequence kn(t) = ✶[1/2−1/n,1](t), the function

k(t) = 1[1/2,1](t) and the sequence xn(t) = k(t), constant for any n, then kn → k
and xn → k in the Skorokhod space D([0, 1],R) but

k(t) =

∫

]0,t]

kn(s−)dxn(s) 6→
∫

]0,t]

k(s−)dk(s) = 0.

Another way to get a convergence of integrals is to consider convergence in
D([0, 1],R2). There is a general result from Jakubowski-Mémin-Pagès [86]: we
have (note that in the following theorem the topology in D([0, T ],Rn) is the
Skorokhod topology J1)

Now we take a look at

Definition 4.39 (UT Condition). Given a sequence of stochastic processes
(semi-martingales) Xn with respect to the stochastic basis (Ωn,Fn, {Fn

t }, Pn)},
the UT condition means that the family of all random variables of the form

N∑

i=1

Hn
ti−1

(Xn
ti −Xn

ti−1
)

is uniformly tight, where N is any integer, 0 = t0 < t1 < · · · < tN = T and
|Hn

ti | ≤ 1 with Hn
ti is Fn

ti -measurable for any i.

Theorem 4.40. Given a sequence of semi-martingales Mn with respect to the
stochastic basis (Ωn,Fn, {Fn

t }, Pn)} satisfying the UT condition and a sequence
of stochastic processes Kn adapted to {Fn

t }, with trajectories in D([0,∞),Rd),
let us suppose that

(Kn,Mn) → (K,M)

weakly in D([0,∞),R2d). Then M is a semi-martingale with respect to the
natural filtration generated by (K,M) and

∫

]0,·]
Kn(t−)dMn(t) →

∫

]0,·]
K(t−)dM(t)
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weakly in D([0,∞),Rd), and

(
Kn, Xn,

∫

]0,·]
Kn(t−)dMn(t)

)
→

(
K,M,

∫

]0,·]
K(t−)dM(t)

)

weakly in D([0,∞),R3d).

Note that the convergence (Kn,Mn) → (K,M) in D([0,∞),R2d) is strictly
stronger than the convergence (Kn,Mn) → (K,M) in the product topology of
D([0,∞),Rd) ×D([0,∞),Rd). We have from Jakubowski [85]

Theorem 4.41. The UT condition implies the tightness in the space of proba-
bility measures on D([0,∞),Rn) with respect to ∗-convergence.

The above statements are valid sometimes also in some not Polish space. If Ω
is topological space having a countable family of continuous functions separating
points then Skorokhod representation and Prohorov’s theorem hold, i.e., for any
uniformly tight sequence {Pn : n ≥ 1} of probability measures on Ω there exist
a subsequence of indexes {nk} and random variables {Xk : k ∈ N} and X on the
universal (Lebesgue) probability space ([0, 1],B([0, 1]), ℓ) with values in Ω such
that Pnk

is the distribution of Xk for any k ∈ N and Xk(t) converges to X(t)
for every t in [0, 1]. In particular this applies when Ω is the canonical space
D([0,∞),Rd) with the τJak Jakubowski topology (which is then only a Lusin
space).

Because this is based on Prohorov’s theorem, the above result holds for the
D([0,∞),Rd) with τJak Jakubowski topology (see Definition 4.38) if the criterium
of compactness (a’) and (b’) are modified accordingly.

Theorem 4.42 (tight). Let X1, X2, . . . be a sequence of random variables
with values in D([0,∞),Rd), and P1, P2, . . . be its associated probability law
on D([0,∞),Rd) = DS , endowed with the Jakubowski topology. Then the se-
quence P1, P2, . . . is tight (hence relatively compact) in DS if and only if the
following two conditions hold:

(a) almost equi-bounded, i.e., for any ε > 0 there exists C > 0 such that for any
index n we have

Pn{ sup
0≤t≤1/ε

|Xn(t)| ≤ C} ≥ 1 − ε,

(b) equi-UT-condition, i.e., for any ε > 0 and for each T, η > 0, there exists
K > 0 such that for any index n we have

Pn{NT,η(Xn) ≤ K} ≥ 1 − ε.

Moreover, if the sequence is tight, then it is weakly convergent if and only its
finite-dimensional distributions converge.

Certainly we can replace (b) with
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(b’) for any ε > 0 and for each T > 0, b > a, there exists K > 0 such that for
any index n we have

Pn{Na,b
T (Xn) ≤ K} ≥ 1 − ε,

where Na,b
T and NT,η(Xn) are as in (9) above.

For instance, if the processes (Pn, Xn) has local bounded variation, i.e., Xn =
X+
n − X−

n , with X+
n and X−

n being increasing monotone, then the condition:
for any ε > 0 there exists C > 0 such that for any index n we have

sup
0≤t≤1/ε

Pn{|X+
n (t)| + |X−

n (t)| > C} ≤ ε,

implies both (a) and (b) above, since NT,η is controlled by the variation |X+
n |+

|X−
n | process.
Similarly, if the processes (Pn, Xn) is a local continuous martingale with

predictable variation process 〈Xn〉, then the condition: for any ε > 0 there
exists C > 0 such that for any index n we have

sup
0≤t≤1/ε

Pn
{∣∣〈Xn〉(t)

∣∣ > C
}
≤ ε,

implies both (a) and (b), since Na,b
T is controlled by the predictable variation

process. Similarly, if the processes (Pn, Xn) is a local purely discontinuous
(square-integrable) martingale with integer measure νn and predictable jumps
compensator νpn, then the condition: for any ε > 0 there exists C > 0 such that
for any index n we have

sup
0≤t≤1/ε

Pn

{∫

Rd
∗×]0,t]

(
|z|2 ∧ 1

)
νpn(dz, ds) > C

}
≤ ε,

implies both (a) and (b), since Na,b
T is controlled by the predictable jumps

compensator process. Note that
∫

Rd
∗×]0,t]

(
|z|2 ∧ 1

)
νpn(dz, ds) =

=
∑

0<s≤t

[
✶|Xn(s)−Xn(s−)|≥1+|Xn(s)−Xn(s−)|2✶|Xn(s)−Xn(s−)|<1

]
,

i.e., adding the number of jumps greater than 1 and the square of the small
jumps. Actually, these martingale cases can be treated directly with the classic
Skorokhod topology, since

Pn{ sup
a≤t,s≤b

|Xn(t) −Xn(s)| ≥ ε} ≤ δ

ε2
+ Pn{

∣∣〈Xn〉(b) − 〈Xn〉(a)
∣∣ ≥ δ},

Pn{ sup
a≤t,s≤b

|Xn(t) −Xn(s)| ≥ ε} ≤ δ

ε2
+

+ Pn

{∫

Rd
∗×]a,b]

(
|z|2 ∧ 1

)
νpn(dz, ds) ≥ δ

}
,
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for every ε, δ > 0, in view of Lenglart dominate property, e.g., see Jacod and
Shiryaev [84, Section I.3c, pp. 35–36]. Essentially, the local bounded variation
processes are of main interest for the Jakubowski topology.

Another situation is the following, see Section 3.3.3. Let ℓn, υn, wn and νn,
n = 1, 2, . . . be sequences of processes defined in a probability space (Ωn,Fn, Pn).
Assume that:

(1) ℓn and υn are cad-lag processes with values in Rd and non-anticipative
relative to (wn, νn), and ℓn are nondecreasing,

(2) wn are a d-dimensional continuous square integrable martingales with pre-
dictable quadratic covariation 〈wn,i, wn,j〉 = ςn,j if i = j, and 〈wn,i, wn,j〉 = 0 if
i 6= j,

(3) νn are integer measures with jump compensator νpn(dz, dt) = πn(dz) d̺n(t),
where πn is a given Lévy measure in Rm∗ , and qn denotes the corresponding
purely discontinuous square-integrable martingale, i.e.,

qn(t) =

∫

Rm
∗ ×]0,t]

|z|2ν̃n(dz, ds), ∀t ≥ 0,

with ν̃(dz, dt) = ν(dz, dt) − πn(dz)̺n(dt). Suppose that ℓn, υ, ςn and ̺n are
equi-bounded in probability, i.e., for every ε > 0 there exists C = C(ε) such
that

sup
0≤t≤1/ε

Pn
{[
|ℓn(t)| + |υn(t)| + |ςn(t)| + |̺n(t)|

]
≥ C

}
≤ ε, ∀n,

and ℓn, ςn and ̺n vanish at time t = 0.

(4) Also assume that υn satisfies the UT-condition, in term of the number of

up-crossing Na,b
T or the number of oscillations NT,η, e.g., for any ε > 0 and for

each T, η > 0, there exists K > 0 such that for any index n we have

Pn{NT,η(υn) ≥ K} ≤ ε;

also that ςn and ̺n are equi-continuous in probability, i.e., for every ε > 0 there
exists δ > 0 such that

Pn
{

sup
0≤s,t≤1/ε, |t−s|<δ

[
|ςn(t) − ςn(s)| + |̺n(t) − ̺n(s)|

]
≥ ε

}
≤ ε, ∀n;

and that {πn} is a uniformly integrable Lévy sequence, i.e., there is a constant
C > such that

∫

Rm
∗

|z|2πn(dz) ≤ C, ∀n,

and for every ε > 0 there exists δ > 0 such that
∫

{z:|z|<δ}∪{z:|z|>1/δ}
|z|2πn(dz) < ε, ∀n.
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Now, consider (a) the probability law Qn defined by (Pn, ℓn, υn, wn, ςn, qn, ̺n)
in the canonical space D([0,∞),Rd0), with d0 = 4d+m+ 1, (b) the canonical
processes ℓ, υ, w, ς, q, ̺, and (c) endowed with the Jakubowski topology in
the first 2d variables (relative to ℓ and υ) and with the Skorokhod topology in
the remaining variables. Actually, for the variables w, ς and ̺, we could use
the sample space C([0,∞),Rd1), d1 = 2d + 1, with the usual locally uniform
convergence. Then we can extract a subsequence, still denoted by {Qn, πn},
which is weak convergent to Q, π.

Clearly, all limiting processes are cad-lag. Moreover w, ς and ̺ are also
continuous. Then, relative to Q on D([0,∞),Rd0), we have:

(a) ℓ and υ are non-anticipating processes relative to (w, ν), and ℓ is a nonde-
creasing,

(b) w is also a continuous square integrable martingale with predictable quadra-
tic covariation 〈wi, wj〉 = ςi if i = j and 〈wi, wj〉 = 0 if i 6= j,

(c) the integer measure ν associated with q has νp(dz, dt) = π(dz)d̺(t) as it
predictable jump compensator,

(d) on the universal probability space ([0, 1],B([0, 1]), l), where l is the Lebesgue
measure, there exist random variables x, xn with values in the canonical space
D([0,∞),Rd0) such that first (i) x and xn have the same finite distributions as
(ℓ, υ, w, ς, q, ̺) and (ℓn, υn, wn, ςn, qn, ̺n), respectively, and secondly (ii) xn(θ) →
x(θ), for every θ in [0, 1].

At this point, we can take limit on any continuous functional defined on the
space D([0,∞),Rd0), e.g.,

∫

]0,T ]

f(t, xn)dℓn(t),

∫ T

0

f(t, xn)dwn(t), and

∫

Rm
∗ ×(0,T ]

g(z, t, xn)ν̃n(dz, dt),

preserved almost surely through finite-dimensional distributions. It is also clear
that if the processes υn are equi-continuous in probability, we may use the
Skorokhod topology in the variable υ instead of the weaker Jakubowski topology.
Moreover, the cad-lag modulus of continuity can also be used. Note that f(t, x)
and g(z, t, x) are regarded as deterministic (real or vector-valued) random fields
with t ≥ 0 and x in D = D([0,∞),Rd0), i.e., the mappings (t, x) 7→ f(t, x)
and (z, t, x) 7→ g(z, t, x) are measurable with respect to the product Borel σ-
algebras B([0,∞)))×B(D) and B(Rm0 )×B([0,∞)))×B(D), plus some appropriate
regularity conditions, e.g., continuity in x and causality, i.e., if x(s) = y(s) for
any 0 ≤ s < t then f(t, x) = f(t, y). Typical f(t, x) has the form f(t, x(t)) or
f(t, x(t−)). It is perhaps important to recall that under the Skorokhod topology,
the evaluation or projection functional x 7→ x(t) are continuous only at any point
of continuity of x, however, under the Jakubowski topology, they are nowhere
continuous. Thus, when the measures dℓn have atoms (i.e., the processes ℓn are
discontinuous) some extra special care should be taken to ensure the passage
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to the limit in the Lebesgue-Stieltjes integral. Certainly all this applies to our
case of interest, i.e., for a Wiener process or a Poisson measure.

[Preliminary] Menaldi December 12, 2017



Chapter 5

Transition Functions and
PDEs

In this chapter is an introduction to Markov processes as a modelling tool, with
a focus on the analytic aspect (i.e., the transition probability function) and
partial differential equations (PDE). The style is to state the key results, give
some comments on the proofs, but not complete proofs (but the reader can
find them in the references quoted). Certainly, there are many excellent books
on Markov processes with various orientations, e.g., Applebaum [1], Bertoldi
and Lorenzi [8], Blumenthal and Getoor [15], Dellacherie and Meyer [32, 31],
van Casteren [176], Dynkin [42], Ethier and Kurtz [45], Fukushima et al. [57],
Jacob [80], Liggett [110], Rogers and Williams [153], Sharpe [158], Taira [172],
among many others.

The first Section is a simple discussion on one-dimensional Markov pro-
cesses, where most of the key characters are presented. Section 2 takes a more
general view within cad-lag Markov processes. Next, Section 3 presents the
semi-group approach, in a very general way, which covers processes on infi-
nite dimension and semi-group non necessarily continuous (and therefore, main
proofs are given). The remaining sections are mainly PDE stuff. Section 4 stud-
ies integro-differential equation corresponding to Lévy processes or in general,
diffusion processes with jumps in a domain of the Euclidean space, with special
attention to a priori estimates in Hölder and Sobolev spaces. Next, Section 5
is dedicated to the Green and Poisson functions or the transition probability
density functions associated with diffusion process with jumps. Finally, Section
6 gives a list of examples.

5.1 Markov Processes

As a modelling tool, Markov processes have proved to be very efficient, as being
the key element necessary to apply (in a simple way) the so-called dynamic
programming. In its simplest form, this is know as Markov chain in discrete
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time with a finite number of states, as typically used in many applications of
operation research (e.g., see the textbooks by Bellman [4], Bertsekas [9], or
Hillier and Lieberman [73], among many other excellent books). The passage to
continuous time is (as usual) very technical, but again, numerous applications
are found under the many of queue theory, which essentially deals with Markov
chains in continuous time with a finite (sometimes countable) number of states.
This Section begins with a simple introduction to Markov processes (which
deals with one-dimensional Markov processes in continuous time) and ends with
general considerations.

5.1.1 Processes without after-effect

Markov processes, or stochastic processes without after-effect, or non-hereditary
(or memory less) stochastic processes refer always to the same property: any
additional knowledge concerning the states of a process {X(·)} at previous times
s < t0 relative to the present time t0 does not affect the statistics of the process
at future times s > t0. As will be noticed later, this means that a stochastic
processes without after-effect is completed determined by its transition function,
i.e., a function P (s, x, t, dy), which is the condition (transition) probability of
X(t) knowing that X(s) = x. For real valued process, we may use the transition
distribution function F (s, x, t, y), for s < t and x, y in R, associated with {X(·)},
which is the probability that X(t) < y assuming that X(s) = x. Clearly the
function F should satisfies

lim
y→−∞

F (s, x, t, y) = 0, lim
y→∞

F (s, x, t, y) = 1,

and continuity from the left in y

lim
z↑y

F (s, x, t, z) = F (s, x, t, y)

as any distribution function. To be able to use Bayes’ formula for conditional
distribution it is convenient to assume that F is continuous with respect to the
variables s, x and t. This yields the Chapman-Kolmogorov equation (or identity)

F (s, x, t, y) =

∫

R

F (s, x, τ, dζ)F (τ, ζ, t, y),

valid for any s < τ < t and x, y in R. So, we may complete the definition of
F (s, x, t, y) for s = t by a limit continuation as follows

lim
t→s+

F (s, x, t, y) = lim
s→t−

F (s, x, t, y) = F0(x, y), (5.1)

where F0(x, y) = 1 if y > x and F0(x, y) = 0 otherwise. In what follows, this
condition (5.1) is always assumed.

If a density function f(s, x, t, y) = ∂yF (s, x, t, y) exists then

F (s, x, t, y) =

∫ y

−∞
f(s, x, t, ζ)dζ
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and clearly

f(s, x, t, y) =

∫

R

f(s, x, τ, ζ)f(τ, ζ, t, y)dζ,

for any s < τ < t and x, y in R.
For instance, the interested reader should consult the classic books Feller [48,

Vol II, Sections X.3–5, pp. 316–331] and Gnedenko [64, Sections 53–55, pp.
358–376], for a more detailed discussion and proofs of most the results in this
section.

For a continuous stochastic process we assume

lim
t→s+

1

t− s

∫

|y−x|≥δ
F (s, x, t, dy) = 0,

lim
s→t−

1

t− s

∫

|y−x|≥δ
F (s, x, t, dy) = 0,

(5.2)

for every s, x and t, plus the following two conditions: (a) the first and second
partial derivatives ∂xF (s, x, t, y) and ∂2xF (s, x, t, y) exit and are continuous for
any s < t, x and y, and (b) for every δ > 0 the limits

lim
t→s+

1

t− s

∫

|y−x|<δ
(y − x)2F (s, x, t, dy) = 2a(s, x),

lim
s→t−

1

t− s

∫

|y−x|<δ
(y − x)2F (s, x, t, dy) = 2a(t, x),

(5.3)

and

lim
t→s+

1

t− s

∫

|y−x|<δ
(y − x)F (s, x, t, dy) = b(s, x),

lim
s→t−

1

t− s

∫

|y−x|<δ
(y − x)F (s, x, t, dy) = b(t, x),

(5.4)

exit uniformly in x for every s < t fixed. Note that the limiting coefficients
a and b in (5.3) and (5.4) seem to depend on the value δ, but in view of the
continuity condition (5.2) is merely apparent.

Under the above assumptions (5.2), (5.3) and (5.4) we can easily prove the
validity of the backward Kolmogorov equation, namely

∂sF (s, x, t, y) + a(s, x)∂2xF (s, x, t, y) + b(s, x)∂xF (s, x, t, y) = 0, (5.5)

for any s < t, x and y. Actually, only the first part of conditions (5.3) and (5.4)
play any role here.

However, to deduce the forward Kolmogorov (also called Fokker-Planck)
equation satisfied by the (probability) density function, namely

∂tf(s, x, t, y) + ∂y
[
b(t, y)f(s, x, t, y)

]
= ∂2y

[
a(t, y)f(s, x, t, y)

]
, (5.6)
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for any s < t, x and y, we do need the second part of conditions (5.3) and
(5.4), as well as the existence and continuity of the derivatives ∂tf(s, x, t, y),
∂y

[
b(t, y)f(s, x, t, y)

]
and ∂2y

[
a(t, y)f(s, x, t, y)

]
.

If the continuity condition (5.2) is slightly strengthen into

lim
t→s+

1

t− s

∫

|y−x|≥δ
(y − x)2F (s, x, t, dy) = 0,

lim
s→t−

1

t− s

∫

|y−x|≥δ
(y − x)2F (s, x, t, dy) = 0,

then conditions (5.3) and (5.4) are valid also for δ = 0, which mean

E{[X(t) −X(s)] − (t− s)b(s,X(s))} = (t− s)ε1,

E{[X(t) −X(s)]2 − 2(t− s)a(s,X(s))} = (t− s)ε2,

where ε1, ε2 → 0 as t− s → 0+, in term of the first and second moment of the
Markov process x(·). As seem later, the actual construction of the stochastic
process {X(t) : t ≥ 0} is quite delicate, in particular if a > 0 then almost surely
the path t 7→ X(t, ω) are continuous, but with infinite variation.

The transition distribution F of a purely jump Markov process {X(·)} can
be expressed as follows:

F (s, x, t, y) = [1 − (t− s)λ(s, x)]F0(x, y) +

+ (t − s)λ(s, x)ρ(s, x, y) + (t − s)ε, (5.7)

where ε→ 0 as (t− s) → 0+, uniformly in x and y. Thus, on any time interval
(s, t) the value X(·) remains constant and is equal to X(s) = x with probability
1− (t− s)λ(s, x) + (t− s)ε, with ε→ 0 as t− s→ 0+ (so that it may only have
a jump with a probability (t − s)λ(s, x) + (t − s)ε). The coefficient ρ(s, x, y)
denotes the conditional distribution function of X(s) under the condition that
a jump has indeed occurred at time s and that immediately before the jump
X(·) was equal to X(s−) = x.

Certainly, λ(s, x) and ρ(s, x, y) are nonnegative, y 7→ ρ(s, x, y) is a nonde-
creasing function continuous from the left, ρ(s, x,−∞) = 0, ρ(s, x,∞) = 1,
and we assume that ρ(s, x) is bounded, and that both ρ(s, x) and ρ(s, x, y) are
continuous in s and Borel measurable in x. Under these conditions, (5.7) and
the continuity (5.1), the following backward and forward Kolmogorov integro-
differential equations

∂sF (s, x, t, y) = λ(s, x)

∫

R

[
F (s, x, t, y) − F (s, ζ, t, y)

]
ρ(s, x, dζ),

∂tF (s, x, t, y) =

∫

R

[
λ(s, ζ) − λ(t, ζ)ρ(t, ζ, y)

]
F (s, x, t, dζ),

(5.8)

for any s < t, x and y. In the case of purely jump, the construction of the
process {X(t) :≥ 0} is relatively simple and the path t 7→ X(t, ω) are piecewise
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constant (and normalized to be left-hand continuous) almost surely, however,
the average or mean t 7→ E{X(t)} is a continuous function.

Since Gaussian and Poisson processes are the prototypes of continuous and
jump processes, we would like to quote some results related to the convergence
of a sum of independent random variables to the Gaussian and Poisson distri-
butions, e.g., see Gnedenko [64, Sections 49, pp. 336–339].

Let {ξn,1, ξn,2, . . . , ξn,mn
} be a set of mn independent random variables for

n = 1, 2, . . . , and set ζn = ξn,1 + ξn,2 + · · · ξn,mn
and denote by Fn,m(x) the

distribution function of the random variable ξn,m.
Suppose that we normalize the sequence so that

lim
n→∞

mn∑

m=1

E{ξn,m} = 0, lim
n→∞

mn∑

m=1

E
{[
ξn,m − E{ξn,m}

]2}
= a > 0.

Then the sequence of distribution functions Gn(x) of the sum of random vari-
ables ζn converge to the Gaussian (or normal) distribution

N(x) =
1√
2π

∫ x

−∞
exp

(
− y2

2a

)
dy

if and only if

lim
n→∞

mn∑

m=1

∫

|x|>δ
x2Fn,m(dx) = 0,

for every δ > 0.
Alternately, suppose that we normalize the sequence so that

lim
n→∞

mn∑

m=1

E{ξn,m} = λ > 0, lim
n→∞

mn∑

m=1

E
{[
ξn,m − E{ξn,m}

]2}
= λ.

Then the sequence of distribution functions Gn(x) of the sum of random vari-
ables ζn converge to the Poisson distribution

P (x) =





0 for x ≤ 0,

e−λ
∑

0≤k<x

λk

k!
for x > 0

if and only if

lim
n→∞

mn∑

m=1

∫

|x−1|>δ
x2Fn,m(dx+ λn,m) = 0,

for every δ > 0, where λn,m = E{ξn,m}.
Clearly, plenty of general results existent in the current literature regarding

limits of sum of random variables, the point we remark is the fact that a nor-
malization, the sum converges to a Gaussian distribution if the mean and the
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variance have limits of different order, one zero and the other non-zero. How-
ever, if the mean and the variance have limits of the same order (non-zero) the
sum converges to a Poisson distribution. This gives the two flavors, continuous
and discontinuous (jumps) processes.

Now, let us discuss (Markov) jump processes from sample space point of
view as in the classic book Doob [33, Section VI.2, pp. 255–273]. Similarly
to the transition distribution function, an homogeneous transition probability
function P (x, t, A), x in a E (usually an open or closed subset of Rd), t > 0 and
A in B(E), the Borel σ-algebra in E, satisfies: (a) for each t > 0 and x in E
the function A 7→ P (x, t, A) is a probability measure on (E,B(E)), (b) for each
t > 0 and A in B(E) the function x 7→ P (x, t, A) is a (Borel) measurable, (c)
for any x in E and A in B(E) we have

lim
t→0

P (x, t, A) = δx(A),

i.e., the limit is equal to 1 if x belongs to A, and 0 otherwise, (d) for each
t, s > 0, x in E and A in B(E) we have

P (t+ s, x,A) =

∫

E

P (t, x, dy)P (s, y, A)

which is referred to as the Chapman-Kolmogorov identity.
If the continuity condition (c) above is strengthen into (or replace by)

lim
t→0

inf
x∈E

P (x, t, {x}) = 1, ∀x ∈ E, (5.9)

then Doeblin’s result proves that there is a homogeneous piecewise constant
Markov process {X(t) : t ≥ 0} with a cad-lag path and transition probability
function P (x, t, A). By piecewise constant (cad-lag) paths we means that if
X(t, ω) = x then there exists a positive constant δ = δ(t, ω) such that X(s) = x
for every s in the stochastic interval [t, t+ δ).

By means of the Chapman-Kolmogorov identity and under the continuity
assumption (5.9), where the uniform limit in x is essential, we may use the
transition probability function P (x, t, A) to define the pair of functions λ(x)
and Λ(x,A), for x in E and A in B(E) as follows:

lim
t→0+

1 − P (x, t, {x})

t
= λ(x),

lim
t→0+

P (x, t, A)

t
= Λ(x,A),

(5.10)

for any x in E, A in B(E r {x}), where the definition is completed by setting
Λ(x, {x}) = 0. Thus the function x 7→ λ(x) results bounded in E, the function
x 7→ Λ(x,A) is Borel measurable for every fixed A in B(E), the function A 7→
Λ(x,A) is finite Borel measure on E (or in Er {x}) for every fixed x in E, and
λ(x) = Λ(x,E) = Λ(x,Er{x}), so that 0 ≤ Λ(x,A) ≤ λ(x), for every x in E and
B(E). Moreover, both convergence in (5.10) is uniform in x and A in B(Er{x}),
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x in E. Usually, we normalize the coefficients so that Λ̄(x,A) = Λ(x,A)/Λ(x,E)
is a probability measure (with a distribution ρ(x,A) if E = R as in the previous
discussion) and λ̄(x) = λ(x)Λ(x,E).

Note that as in the initial discussion with the transition distribution function,
for every x in E and A in B(E) we do have

P (x, t, A) =
[
1 − tλ(x)

]
δ(x,A) + tΛ(x,A) + tε,

with ε → 0 as t → 0+, uniformly in x and A in B(E). The Backward and
Forward Kolmogorov integro-differential equations have the form

∂tP (x, t, A) = λ(x)

∫

E

[
P (x, t, A) − P (ζ, t, A)

]
Λ(x, dζ),

∂tP (x, t, A) =

∫

E

λ(ζ)
[
Λ(ζ, E) − Λ(ζ, A)

]
P (x, t, dζ),

(5.11)

for any s < t, x in E and A in B(E). The last equation takes also the form

∂tP (x, t, A) =

∫

ErA

Λ(ζ, A)P (x, t, dζ) −
∫

A

Λ(ζ, E rA)P (x, t, dζ).

Moreover, with suitable assumptions all this extends to non-homogeneous tran-
sition probability functions on Polish (separable, complete and metric) spaces.

Density and Intensity

The exponential distribution with intensity λ > 0 of a random variable T is
given by the expression P{T ≥ t} = e−λt for any t ≥ 0, and to accommodate
the case λ, it is customary to allow T = ∞, i.e., if λ = 0 then T (ω) = ∞ for
every ω; while if λ → ∞ then T (ω) → 0 for every ω. Such a random variables
are used to model ‘waiting time’ (of a certain event), i.e., the event arrives at
the random time T < ∞ and it never arrives when T = ∞. A key property
of this random variables T (or this distribution) is the so-called memory-less,
which can be expressed as ‘the conditional distribution P{T |T ≥ t} is the same
as the full distribution P{T ≥ t}’. When the typical Poisson process is viewed
as a jumps process, we recognised jumps arrive at the times T1, T1 +T2, . . . with
{Tn} being an IID sequence having exponential distribution.

Recall that all distribution in [0,∞] (or R+ = [0,∞[∪{∞}) are given by a
cadlag increasing function π : [0,∞[→ [0, 1] such that its corresponding Stieltjes-
Lebesgues measure dπ is a probability measure on [0,∞], i.e., abusing notation,
we can write π({0}) = π(0), π(]a, b]) = π(b) − π(a), with a < b < ∞, and
π({∞}) = 1 − π(∞) := 1 − limt→∞ π(t). This, if T is a random variable
with distribution π on [0,∞] then P{T ≤ t} = π([0, t]) = π(t) and P{T >
t} = π(]t,∞]) = 1 − π(t), for any 0 ≤ t < ∞, i.e., assuming T represents the
arrival time of an ‘event’ then besides the obvious interpretations, π({0}) is the
probability of ‘missing’ the event (waiting since time zero), while π({∞}) is the
probability that the event never arrive at a finite time. Also, a random variable
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T with distribution π on [0,∞], which is absolutely continuous (with respect to
the Lebesgue measure), has a density given by the limit

lim
h→0

P{t ≤ T < t+ h}
h

= π̇(t), a.e. y ≥ 0

or equivalently, there exists an integrable non-negative function π̇ satisfying

π(]a, b[) =

∫ b

a

π̇(t)dt ≤ 1, ∀b > a ≥ 0, and

π({∞}) + π({0}) = 1 −
∫ ∞

0

π̇(t)dt,

(5.12)

usually π({0}) = 0, and most of the time π({∞}) = 0, which is the correct or
strict meaning of ‘density’. Its corresponding ‘intensity’ is defined by the limit

λ(t) = lim
h→0

P{t < T < t+ h |T > t, }
h

=
π̇(t)

π(]t,∞])

or equivalently

λ(t) =
[
− ln

(
π(∞) +

∫ ∞

t

π̇(s)ds
)]′

=
[
− ln

(
1 − π(t)

)]′
=

=
π̇(t)

1 − π(t)
=

[1 − π(t)]′

1 − π(t)

provided π(t) < 1. Since

∫ t

0

λ(s)ds =

∫ t

0

[
− ln

(
1 − π(s)

)]′
ds = ln

(
1 − π(0)

)
− ln

(
1 − π(t)

)

yields

exp
(
−
∫ t

0

λ(s)ds
)

=
1 − π(t)

1 − π(0)

and so

−
[

exp
(
−
∫ t

0

λ(s)ds
)]′

= λ(t) exp
(
−
∫ t

0

λ(s)ds
)

=
π̇(t)

1 − π(0)

which is valid as long as π(0) < 1, any of these relations can be used to define
the intensity when the density is known, and conversely, to obtain the density
when the intensity is known. However if an intensity with a compact support
(not simply such that

∫∞
0
λ(t)dt <∞) is to be allowed, then we should rethink

the previous definition of density, since π(t) < 1 may not be satisfied for every
t ≥ 0. Therefore, if an intensity vanishes after some value t⋆ <∞ then the same
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happen with its density and really, we are dealing with a density in [0, t⋆] and
the role of ∞ is played by t⋆, i.e., instead of (5.12) we could require

π(]a, b[) =

∫ b

a

π̇(t)dt ≤ 1, ∀0 ≤ a < b < t⋆,

π(]t⋆,∞]) = 0 and π({t⋆}) + π({0}) = 1 −
∫ t⋆

0

π̇(t)dt,

(5.13)

which means that [t⋆,∞] has been collapsed into the point {t⋆}, and thus, the
point t⋆ could be considered as a ‘coffin’ state. Similarly, if the intensity vanishes
prior to t⋆ > 0, we could require

π([0, t⋆[) = π(]t⋆,∞]) = 0 and π({t⋆}) + π({t⋆}) = 1 −
∫ t⋆

t⋆

π̇(t)dt,

indeed, as mentioned below,

∫ t⋆

t

π̇(r)dr > 0, ∀t ∈]t⋆, t
⋆[,

is a convenient condition on the density π̇ to assume.
There several points to remark:

• the values of a distribution π on [0,∞] at {0} and {∞} are adjusted after
the desired density/intensity has been chosen, i.e., if [0, t⋆] (with t⋆ <∞) is the
support of the intensity λ then (if necessary) the distribution π should have a
mass at t⋆ instead of ∞, and still π can be considered as a distribution on [0,∞]
with density π̇ satisfying condition (5.13);

• if T is a random variable with distribution π on [0,∞], density/intensity in
π̇/λ, and such that π({0}) = 0 (for simplicity), and

π({∞}) = P{T = ∞} = 1 −
∫ t⋆

0

π̇(t)dt = exp
(
−
∫ t⋆

0

λ(s)ds
)
> 0,

then E{T} = ∞ and our interest turns on the moment, for any n > 0,

E
{
Tn✶{T<∞}

}
=

∫ t⋆

0

tnπ̇(t)dt =

∫ t⋆

0

tnλ(t) exp
(
−
∫ t

0

λ(s)ds
)

dt,

which is finite under some (reasonable) conditions on the density/intensity, e.g.,
integrability of

t 7→ tnπ̇(t) = tnλ(t) exp
(
−
∫ t

0

λ(s)ds
)

on the interval [0, t⋆[ suffices, and in particular, when t⋆ < ∞ this is automati-
cally satisfied (or implicitly assumed);
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• the intensity is very useful to calculate conditional probabilities for a random
variable T with distribution π on [0,∞], i.e.,

P{a < T < b | T > s} = π(s, ]a, b]) =
π(]a, b[∩]s,∞])

π(]s,∞])
=

=
π(b) − π(a)

1 − π(s)
=

∫ b

a

λ(t) exp
(
−
∫ t

0

λ(r)dr
)
dt

(
1 − π(0)

)
exp

(
−

∫ s

0

λ(r)dr
) =

=
1

1 − π(0)

∫ b

a

λ(s + t) exp
(
−

∫ t

0

λ(s + r)dr
)
dt

for any real numbers b > a ≥ s ≥ 0, and the last expression make sense as long
as π({0}) < 1, without requiring 1 − π(t) = P{T > s} > 0 for every s ≥ 0,
actually, if t⋆ < ∞ then the condition 1 − π(s) = P{T > s} > 0 for every
0 < s < t⋆ makes sense for an intensity with a compact support;

• a distribution π, with π({0}) = π(0) = 0 and having a given intensity λ(t)
are used to model the ‘waiting time’ for the next jump of a semi-Markov jump
process {zt : t ≥ 0}, i.e., all jumps occur at times T1, T1 + T2, . . . with {Tn} a
IID sequence with intensity λ(z) (i.e.,

P{Tn < t} = π(t) = 1 − exp
(
−
∫ t

0

λ(s)ds
)
, ∀t ≥ 0

and usually, t 7→ λ(t) is a non-negative Borel bounded (a minimum requirement
would be locally integrable) function defined on [0,∞[), and λ(t) is interpreted
as the jump-rate (i.e., the jumps take longer time to arrive as λ(t) becomes close
to zero, and also the jumps take shorter time to arrive as λ(t) becomes large),

and the value exp
(
−

∫∞
0
λ(t)dt

)
represents the probability that jumps never

arrive (meaning no an actual jump);

• if T is a random variable representing the arrival time of an event (say, a
jump) with distribution π on [0,∞] and intensity λ as above, then the survivor
function is defined as Ψ(t) = P{T > t}, i.e., whenever Ψ(t) > 0 an event may
arrive and if Ψ(t) = 0 the event already occurred, and an expression of the form
(with an intensity λ not identically zero)

P{T > t} = Ψ(t) = ✶t<t⋆ exp
(
−

∫ t

0

λ(r)dr
)
, ∀t ≥ 0,

with P{T = t⋆} = π({t⋆}) = lim
t→t⋆

Ψ(t) < 1,

makes sense for any positive t⋆ (finite or infinite), with P{T = 0} = π({0}) = 0,
and the conditional probability density limh→0 P{T ∈]s+ t, s+ t+h[ |T > s}/h,
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with t, s ≥ 0, s+ t < t⋆, can be calculated as

lim
h→0

Ψ(s+ t) − Ψ(s+ t+ h)

hΨ(s)
= −Ψ′(s+ t)

Ψ(s)
=

= λ(s + t) exp
(
−

∫ t

0

λ(s + r)dr
)
,

provided Ψ(s) > 0, moreover the case λ = 0 corresponds to Ψ(t) = 1 for every
t > 0 (i.e., π({t⋆}) = 1), while t⋆ = 0 (or λ ≥ 0 only Borel measurable but non
integrable close to 0) is also an extreme situation with Ψ(t) = 0 for every t > 0
(i.e., P{T = 0} = 1);

• the special case where the intensity λ(t) has support [0, t⋆], with t⋆ < ∞,
means that a ‘maximum waiting time’ equal to t⋆ is in effect, i.e., the time
elapse between two consecutive jumps cannot exceed the quantity t⋆, i.e., the
cadlag semi-Markov process {zt : t ≥ 0} should such that zt = zt− for every
τ ≤ t ≤ τ + t⋆ has probability zero, for any stopping time τ , or in other words,
a jumps must arrive in at most t⋆ unit of time;

• if the waiting time s is added to the state z of a cadlag semi-Markov process
{zt : t ≥ 0} on E then the couple {(zt, st) : t ≥ 0} becomes a cadlag Markov
process in E × [0, s⋆[, s⋆ = t⋆, with infinitesimal generator

Av(z, s) = ∂sv(z, s) + λ(z, s)
[ ∫

E×[0,s⋆[

(
v(ζ, 0) − v(z, s)

)
Q(z, s, dζ)

]
,

where Q(z, s, dζ) is the conditional distribution of jumps given the state (z, s),
which is constructed on the basis of a given kernel/distribution Q(z, dζ) of jumps
occurring at times with jump-rate λ(z, s) (λ(z, s) = 0 for any s > s⋆), usually
s⋆ = ∞ and λ(z, s) is a given non-negative bounded and continuous function, for
instance, see Davis [30, Appendix, pp. 256–279], Gikhman and Skorokhod [63,
Section III.3, pp. 226–249], Jacod [82], and Robin [152], among others.

Let us consider a particular case of piecewise deterministic processes (PDP)
as a (time-homogeneous) Markov process with an infinitesimal generator of the
form

Ayv(y) = g(y)∂y + λ(y)

∫

I⋆

(
v(z) − v(y)

)
Q(y, dz), y ∈ I⋆,

where either I⋆ = [0,∞[ or I⋆ = [0, y⋆] with 0 < y⋆ <∞, and

(a) y 7→ λ(y) is a non-negative Borel function defined on [0,∞[ with support
(as a distribution) on [0, y⋆] when y⋆ <∞, see also (d);

(b) g : [0,∞[ 7→ [0,∞[ a Lipschitz continuous function satisfying g(0) ≥ 0 and
also g(y⋆) > 0 if y⋆ <∞, so that Y(y, t) is a forward/backward flow on I⋆ (i.e.,
it solves ẏ(t) = g(y(t)), y(0) = y) and if y⋆ < ∞ then the first exit time from
I⋆,

T(y) = inf
{
t > 0 : Y(y, t) 6∈ I⋆

}
,
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is defined for every y in I⋆, with the convention that T(y) = ∞ if Y(y, t) belongs
to I⋆ for every t > 0 (so that, there is no need to define T(y) = ∞ for every
y, when y⋆ = ∞), and moreover, the map y 7→ T(y) is continuous on the set
{y ∈ I⋆ : T(y) <∞};

(c) Q(y, dz) a stochastic kernel on I⋆ (i.e., Q(y, ·) is a probability measure on
I⋆ for each fixed y in I⋆, and Q(·, B) is Borel measurable for any fixed B in
B(I⋆), Borel σ-algebra of subsets of I⋆) such that Q(y, {y}) = 0;

(d) t 7→ λ
(
Y(y, t)

)
≥ 0 is an integrable function (intensity) on [0, ε], for some

0 < ε < T(y);

(e) to prevent accumulation of small jumps, e.g., assume that λ(y) is bounded
by a constant c in I⋆ and either Y(y, t) belongs to I⋆ for every t > 0 or there
exists ε > 0 such that Q(y, {y ∈ I⋆ : T(y⋆) ≥ ε}) = 1.

Consider the survivor function of jumps times

Ψ(y, r) = ✶r<T(y) exp
(
−
∫ r

0

λ(Y(y, s))ds
)
, ∀y, r ∈ I⋆

and its (generalized) inverse

Ψ−1(y, u) = inf
{
r ≥ 0 : Ψ(y, r) ≤ u

}

with the convention that Ψ−1(y, u) = ∞ if Ψ(y, r) > u for every r ≥ 0.
This means that if U is a uniformly distributed random variable on [0, 1] then
P{Ψ−1(y, U) > r} = Ψ(y, r), i.e., the random variable T = Ψ−1(y, U) ≤ T(y)
has intensity λ(Y(y, s)) on [0, T(y)], with

P{T = T(y)} = lim
r↑T(y)

Ψ(y, r) = exp
(
−
∫ T(y)

0

λ(Y(y, s))ds
)
,

and T represents the waiting time for the next jump, while in the path t 7→
Y(y, t). Also, assumptions (c) and (e) imply that there exists a Borel function
on the canonical space ([0, 1], ℓ) satisfying Υ : I⋆ × [0, 1] → {y ∈ I⋆ : T(y) ≥ ε},
and ℓ({u : Υ(y, u) ∈ B}) = Q(y,B), for every B in B(I⋆).

Now a realization of the Markov jump (or piecewise deterministic) process
(with the characteristics (g,Q, λ) on I⋆ and the above infinitesimal genera-
tor Ay) can be construct by means of a IID sequence {Uk : k ≥ 1} of uni-
formly distributed random variable on [0, 1] as follows, with the jump-times
Ti = Ψ−1(y, U2i) and the jumps Yi = Υ(y, U2i+1), i = 1, 2, . . ., and initialize the
procedure by setting i = 1 to begin, for each given ω and initial value Y0 = y in
I⋆, with:

1.- if Ti = Ti(y) = Ψ−1(y, U2i) = ∞ then yt = Y(y, t), t ≥ 0, and stop;

2.- if Ti = Ti(y) = Ψ−1(y, U2i) < ∞ then yt = Y(y, t), 0 ≤ t < Ti and
yTi

= Yi = Υ(yTi
, U2i+1);

3.- reset y = yTi
and increase i to i + 1 to restart with 1 and 2 (the same

recipe), repeating all over again.
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Note that in each step if T(Yi−1) < ∞ then Ti ≤ T(Yi−1), so that yt belongs
always to I⋆ (i.e., yt cannot leave the compact region I⋆ = [0, y⋆] when y⋆ <∞,
in other words, if yt = y⋆ then an immediate jump occurs, and the process is
sent back to the [0, y⋆[). Therefore the process yt constructed above should be
considered as defined on I⋆, i.e., either [0,∞[ or [0, y⋆] when y⋆ < ∞. This
algorithm effectively define the Markov piecewise deterministic process yt and
the Markov jump process zt =

∑
i ✶t≥Ti

, for any time t ≥ 0. Making a good use
of the ‘Martingale Theory’, it can be proved (see Davis [30, (24.6) Proposition,
pp. 60–61]) that under assumption (d), E{Nt} ≤ (c + 1/ε)t + 1 for any t ≥ 0,
so that there is not accumulation of small jumps anywhere.

If y⋆ < ∞ then this (time-homogeneous) Markov piecewise deterministic
process would have the desired infinitesimal generator Ay with some ‘boundary’
conditions at y = 0 and y = y⋆. Indeed, there is no boundary conditions
at y = 0, because the drift points to the right and therefore, the process yt
cannot exit at y = 0 (i.e., T(0) > 0), and in view of (d), we have P{T =
0} = limr↓0 Ψ(y, r) = 0, i.e., there is no an immediate jump at y = 0. On
the contrary, the boundary condition at y = y⋆ is more delicate, as mentioned
early, it could be an immediate jump at y⋆ = 0 sending the process back to
[0, y⋆[. Actually, depending on the forward/backward flow Y(y⋆, t) (or drift g
at y⋆) at the boundary y⋆ it could be only two possibilities, either (a) y⋆ is,
with probability 1, not hit by the process yt from any (other) starting point,
or else (b) P{T = Ψ−1(y, U) = t} → 1, for some y in [0, y⋆[ (see Davis [30,
pp. 60–61], after (24.6) Proposition, definition of Γ). In case (a), the stochastic
kernel Q(y, ·) need not to be specify (i.e., no boundary condition is necessary),
and in case (b), the extended generator requires the boundary condition

v(y⋆) =

∫

I⋆
v(z)Q(y⋆, dz),

and some integrability conditions on the predictable jumps, indeed, case (b) is
equivalent to the condition: P{T = Ψ−1(y, U) = t} > 0 for some t > 0 with
y = Y(−t, y⋆), with U an uniformly distributed random variable, see Davis [30,
Section 26, pp. 66–74]. This difficulty at y⋆ can be avoided if the process yt is
stopped at the first hitting time of y⋆, which produces the boundary condition
v(y⋆) = 0, and the process ‘live’ in [0, y⋆[. Certainly, this procedure works
fine with an extra single variable following the equation ṫ = 1, or even in a
region of Rd (instead of I⋆ = [0, y⋆]), provided the boundary points are property
discussed.

Actually, our interest is in even a particular case, with g(y) = 1 andQ(y, dz) =
δ (i.e., all jumps are concentrated at y = 0), which yields

Ayv(y) = ∂yv(y) + λ(y)
(
v(0) − v(y)

)
, y ∈ I⋆,

as the infinitesimal generator. This (time-homogeneous) Markov process {yt :
t ≥ 0} represents the ‘time elapsed since the last signal’ (or the ‘waiting time’
for a signal), where ‘signal’ means a jump or in general, the event under con-
sideration. To decide on the two cases (a) and (b) for this special situation, we
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remark that y = Y(−t, y⋆) = y⋆ − t, and T(Y(−t, y⋆)) = t > 0, for any t > 0
sufficiently small, to deduce

P{T = Ψ−1(y, U) = t} =

= lim
ε↓0

[
P{Ψ−1(y⋆ − t, U) > t− ε} − P{Ψ−1(y⋆ − t, U) > t}] =

= lim
ε↓0

[
Ψ(y⋆ − t, t− ε) − Ψ(y⋆ − t, t)

]
=

= lim
ε↓0

Ψ(y⋆ − t, t− ε) = exp
(
−

∫ t

0

λ(y⋆ + s− t)ds
)
,

and because λ is bounded (it suffices assumption (d), i.e., that λ is integrable
close to 0), we obtain P{T = Ψ−1(y, U) = t} → 1, i.e., we are in the case (b),
namely, the boundary condition

v(y⋆) =

∫

I⋆
v(z)Q(y⋆, dz) = v(0),

should be used, namely, for the signal process yt representing the ‘time elapsed
since last signal’ a periodic boundary condition should be used.

Given a bounded intensity 0 ≤ λ(y) ≤ c on [0,∞[ and a stochastic kernel
Q(y, dz) on Rd satisfying Q(y, {y}) = 0 and represented by Υ(y, u) as ℓ({u :
Υ(y, u) ∈ B}) = Q(y,B), for every B in B(Rd), where ℓ is the Lebesgue measure
on [0, 1]. To represent/combine λ(y) and Q(y, dz) into a Lévy measure M(y, dz),
we can use the Lebesgue measure ℓ′ on [0, 1] to define γ(y, u, u′) = [Υ(y, u) −
y]✶{cu′≤λ(y)}, π(du, du′) = ℓ(du) c ℓ′(du′) and to deduce

∫

[0,1]

[ϕ(y + γ(y, u, u′)) − ϕ(y)] c ℓ′(du′) =

= c

∫ λ(y)/c

0

[ϕ(Υ(y, u)) − ϕ(y)]du′ = λ(y)[ϕ(Υ(y, u)) − ϕ(y)],

which implies

∫

[0,1]×[0,1]

[ϕ(y + γ(y, u, u′)) − ϕ(y)]π(du, du′) =

= λ(y)

∫ 1

0

[ϕ(Υ(y, s, u)) − ϕ(y)]ℓ(du) =

= λ(y)

∫

Rd
∗

[ϕ(z) − ϕ(y)]Q(y, dz),

so that

M(y, dy′) = π
{

(u, u′) ∈ [0, 1] × [0, 1] : y + γ(y, u, u′) ∈ dy′
}

is a (uniformly in y) bounded Lévy measure on Rd∗. Certainly, if λ(y) is finite
but not necessarily bounded by the constant c then the above relation would be
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valid for c ∧ λ(y) instead of λ(y), and final key relations hold true as c → ∞,
but now, the Lévy measure M(y, dy′) is not necessarily uniformly bounded in y;
however, in this case it is better to use an unbounded measure on [0, 1], e.g.,
du′/u′ instead of ℓ′, with γ(y, u, u′) = [Υ(y, u) − y]✶{e−λ(y)≤u′<1}.

Another key estimate is

∫

[0,1]

∣∣γ(y, u, u′) − γ(ȳ, u, u′)
∣∣ c ℓ′(du′) =

= c
∣∣∣
∫ λ(y)/c

0

Υ(y, u)du′ −
∫ λ(ȳ)/c

0

Υ(ȳ, u)du′
∣∣∣ =

=
∣∣λ(y)Υ(y, u) − λ(ȳ)Υ(ȳ, u)

∣∣,
which implies

∫

[0,1]×[0,1]

∣∣γ(y, u, u′) − γ(ȳ, u, u′)
∣∣π(du, du′) =

=

∫

[0,1]

∣∣λ(y)Υ(y, u) − λ(ȳ)Υ(ȳ, u)
∣∣du

and some conditions on the intensity λ(y) and the jumps-size Υ(y, u) can be
imposed to obtain regularity (e.g., locally Lipschitz in y, linear growth in y) so
that the stochastic ordinary differential equations (SODEs) with jumps (Lévy
measure) in Rd as above.

For instance, Q(y, dz) = δ(z − y)dz, γ(y, u) = −y✶{cu≤λ(y)}, and π̃(du, dt)
the martingale measure corresponding with π(du) = c du. Actually, all this can
be reviewed and the following assertions are true:

(a) Given a non-negative locally Lipschitz function λ(y), bounded (by c > 0)
and supported in [0, b] (this implies λ(y) = 0 for any y ≥ b) we can consider
the intensity measure πc(dζ) = c✶{0<ζ≤1}dζ and the jump-coefficient γ(y, ζ) =
−y✶{cζ≤λ(y)} which satisfies

∫

]0,1[

[ϕ(y + γ(y, ζ)) − ϕ(y)]πc(dζ) = λ(y)[ϕ(0) − ϕ(y)],

∫

]0,1[

|γ(y, ζ))|πc(dζ) = y λ(y),

∫

]0,1[

|γ(y, ζ) − γ(y′, ζ)|πc(dζ) ≤ |y − y′|λ(y) + y′|λ(y′) − λ(y)|,

for every y, y′ in [0,∞[ (in particular [0, b]). Hence, the SDE

y(t) = y(0) + t+

∫

]0,t]×[0,1]

γ(y(r), ζ)π̃c(dr, dζ), t ≥ 0

(where π̃c(dζ) is the martingale measure corresponding to the Lévy/intensity
measure πc) defines a Markov-Feller process on either [0,∞[ or [0, b[ with

Ayv(y) = ∂yv(y) + λ(y)[v(0) − v(y)]
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as its infinitesimal generator. If b = ∞ then the process is considered in [0,∞[
and the boundary condition on y = b seems ‘non-existent’ or ‘natural’ (i.e., it
never reaches y = ∞). However, if the process is considered in [0, b] (compact)
and y = b < ∞ then there is a jump (to zero) immediately, and therefore,
this is a jump-discontinuity with full probability, i.e., it could not be a Feller
process, unless the jump at y = b is not seen, by assuming periodic conditions
v(0) = v(b). Alternatively, we may decide to stop (immediately) the process
at y = b, and it becomes a Markov-Feller process on the compact [0, b], which
yields the boundary condition v(b) = 0 for the infinitesimal generator.

(b) The above Lévy measure πc(dζ) [which yields the martingale measure
π̃c(dζ)] defines a compound Poisson process which can be construct as fol-
lows: begin with a Poisson process Nt (which, itself, can be construct from
a sequence of IID random variables with exponential distribution) with rate c
(constant), i.e., P{Nt = n} = e−ct(ct)n/n!, with mean E{Nt} = ct and variance
E{(Nt − ct)2} = ct, and if s1 < s2 < · · · are the time of jumps (all jumps have
size 1) then P{sk+1 − sk ≥ t} = e−ct; and then find an another sequence {zk}
of IID (and independent of Nt) with values in ]0, b] and distribution πc(dζ)/c
(remark that we assume that the distribution does not charge zero, i.e., zk > 0);
thus the [0,∞[-valued process

t 7→ Zt =

Nt∑

k=1

zk =
∑

k

zk✶sk≤t

is the desired compound Poisson process, and the stochastic integral can be
(also) written as

∫

]0,t]×]0,1[

γ(y(r), ζ)π̃c(dr, dζ) =

=

∞∑

k=1

γ(y(sk−), zk)✶sk≤t −
∫ t

0

dr

∫

]0,1[

γ(y(r−), ζ)πc(dζ) =

= −
∞∑

k=1

y(sk−)✶zk≤λ(y(sk−))✶sk≤t −
∫ t

0

λ(y(r−)) y(r−)dr, t ≥ 0.

which is a finite stochastic sum and a regular integral.

(c) Moreover, as deduced in (b), the SDE can (also) be written

y(t) = y(0) +

∫ t

0

(
1 − y(r)λ(y(r−))

)
dr −

−
∞∑

k=1

y(sk−)✶zk≤λ(y(sk−))✶sk≤t, t ≥ 0,

and it is clear that the process y(t) remains in [0, b], i.e., it cannot exit at y = 0
and it has an immediate jump (back to 0) at y = b.
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5.1.2 General Discussion

There is an important class of processes known as Markov processes which are
used to model dynamical systems under disturbances. They are based on the
principle that the future is independent of the past when we know the present.
Similar to the state variable model for deterministic dynamical systems. Essen-
tially, it is a matter of what is called state so that any dynamical process can
be view a Markov process with a larger state. However, the price of the Markov
character is the lack of differentiability in time of the process as we will see later.
It is convenient to assume that state-space is a complete metric space (i.e. a
Polish space) and that the index set T has a natural order e.g., T is a subset of
R. In most of our cases T = [0,∞) and E is a either closed or open subset of
Rd, but more general situations are also very interesting.

From the analysis viewpoint, ‘Markov processes’ are particular (or spe-
cial) cases of the semigroups theory on Banach or Hilbert spaces, in particular
(positive and contraction semigroups in B(E), the Banach space of Borel and
bounded real-valued functions on E. Several aspects of the theory of Markov
process are necessary to discuss, and their connections are complicate, essen-
tially, a key element of a Markov process is its transition probability function
P (s, x, t, A), which also define a semigroup (in one or two parameters) Φ(s, t)
acting on some B(O) under the relation Φ(s, t)f(x) = P (s, x, t, f), with the
common notation the P (s, x, t, f) means the integral of f(ξ) with respect to
P (s, x, t, dξ). All this will be make clear later, after some discussion and defini-
tions, but it suffices to mention that only ‘normal’ Markov processes are usable,
and normal means that Φ(s, t) maps B(E) into itself.

A stochastic process X on a (complete) probability space (Ω,F , P ) and
values in a Polish space E satisfies the Markov property if for any n = 1, 2 . . . ,
any bounded measurable (actually continuous suffices, because E is a complete
metric space) functions f1, . . . , fn, g1, . . . , gn, h, and times s1 ≤ · · · ≤ sn ≤ t ≤
t1 ≤ · · · ≤ tn we have

E
{
h(Xt)

( n∏

i=1

f(Xsi)
)( n∏

i=1

g(Xti)
)}

=

= E
{
h(Xt)E{

n∏

i=1

f(Xsi) |Xt)}
n∏

i=1

g(Xti)
}
, (5.14)

where E{∏n
i=1 f(Xsi) |Xt} is Xt-measurable functions satisfying

E
{
h(Xt)

n∏

i=1

f(Xsi)
}

= E
{
h(Xt)E{

n∏

i=1

f(Xsi) |Xt)}
}
,

i.e., it is the conditional expectations with respect to the σ-algebra generated
by the random variable Xt. This is briefly expressed by saying that the future is
independent of the past given the present. Clearly, this condition involves only
the finite-dimensional distributions of the process, and (5.14) is equivalent to
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(e.g., see Blumenthal and Getoor [15, Thm 1.3, pp. 12-14]) either

P (Xt ∈ B |Xs1 , . . . , Xsn , Xs) = P (Xt ∈ B |Xs), a.s.

for every t > s ≥ sn > · · · > s1, B in B(E), or

E{f(Xt) |Xs1 , . . . , Xsn , Xs} = E{f(Xt) |Xs}, a.s.,

for every t > s ≥ sn > · · · > s1, and for any arbitrary bounded and continuous
(actually, with compact support when E is locally compact) function f from E
into R.

Definition 5.1 (history). Given a stochastic process X on a (complete) prob-
ability space (Ω,F , P ) we can define the history (or internal history or strict
history) of the process as the increasing family of σ-algebras {H(t) : t ∈ T},
where each H(t) is generated by the random variables {X(s) : s ≤ t} and the
null sets. Similarly, the innovation {H⊥(t) : t ∈ T} is the decreasing family of
σ-algebras, where each H⊥(t) is generated by all sets in some H(s) for s > t
which are independent of H(t).

The internal history {H(t) : t ∈ T} of a process X is also denoted by
{FX(t) : t ∈ T} (or {FX(t) : t ∈ T} or with H replacing F) and contains
(or records) all events linked to the process X, up to (and including) the time
t, i.e., past and present. From the system-science point of view, the history
{FX(t) : t ∈ T} is best thought as an increasing information pattern. On the
other hand the innovation {H⊥(t) : t ∈ T} records all events linked to the
process X, after time t and is unrelated to (independent of) the past.

Based on the observation of a stochastic process up to the present time
we can know whether a causal phenomenon has (or has not) already taken
place. If causally is understood in this way, a random variable τ with values in
[0,∞] can be interpreted as a random time of occurrence of some phenomenon
depending causally upon the process X when the event {ω : τ(ω) ≤ t} is
FX(t)-measurable, which correspond to the notion of optional or stopping times
previously mentioned.

Most of the processes that we are going to discuss will be cad-lag, and the
history {H(t) : t ∈ T} will be right-continuous and therefore be equal to the
canonical filtration (associated with the given process), after being augmented
with all zero-measure sets. By construction H(t) is independent of H⊥(t) for
any t ∈ T, H(t) represents the past and present information at time t and H⊥(t)
is the future new information to come.

Thus, another process Y is said to be adapted to X if Y (t) is measurable
with respect to H(t) for any t ∈ T. Similarly, the process Y is non-anticipative
with respect to X if the random variable Y (t) is independent of H⊥(t) for any
t ∈ T. It is clear that if Y is adapted to X then Y is non-anticipative with
respect to X, but the converse does not hold in general.

Actually, we do not need a process X to define the innovation, if we start
from a filtration {F(t) : t ∈ T} we can define its innovation or independent
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complement {F⊥(t) : t ∈ T}, and then we can say that a process X is either
adapted or non-anticipative with respect to the filtration {F(t) : t ∈ T}.

At this point, the Markov property (5.14) can be re-phrased as

P (Xt ∈ B | Hs) = P (Xt ∈ B |Xs), a.s. ∀t > s, B ∈ B(E),

where Ht = H(t) = HX(t). The Markov property identifies only how the finite-
dimensional distributions of the process interact themselves or evolve in time.

Definition 5.2 (Markov). A Markov process with states in E ⊂ Rd is a (com-
plete) probability measure P on (Ω,F), together with a measurable mapping X
(P -equivalence class) from (Ω,F) into (ET ,BT (E)) and an increasing family of
completed σ-algebras (Ft : t ∈ T ) on (Ω,F) satisfying the Markov property

P (Xt ∈ B | Fs) = P (Xt ∈ B |Xs), a.s. ∀t > s, B ∈ B(E).

If the family of σ-algebras (Ft : t ∈ T ) is not mentioned, then it is assumed that
(Ft : t ∈ T ) is the history (H(t) : t ∈ T ) of the process X. Moreover, if (Ft : t ∈
T ) is a filtration satisfying the usual conditions and the paths of (Xt : t ∈ T )
are cad-lag, except in a set of P -probability zero, then (P,Xt : t ∈ T ) is called
a cad-lag Markov process.

As mentioned early, we are concerned with E-valued Markov processes where
E ⊂ Rd, and because cad-lag is usually assumed, the sample space Ω will be a
Polish (separable, complete and metric) space as discussed later. However, the
above definition is meaningful when E is a Polish, and even when E is only a
Lusin space (homeomorphic to a Borel subset of a compact metric space).

In the above Markov property, assuming we have taken a regular conditional
probability, the equality is true except on a set of probability zero which may
depend on t, s. Thus some regularity is necessary on path of the process to
completely identify the process in term of its finite-dimensional distributions.
In order to avoid extra difficulties, we consider only cad-lag Markov processes,
where the Markov property is satisfied with a complete and right-continuous
increasing family of σ-algebras and the path of the process may have only dis-
continuities of first kind, which are normalized to be cad-lag. The larger the
σ-algebras of the filtration (Ft : t ∈ T ) are, the more significant is the assertion
that (P,Xt,Ft : t ∈ T ) has the Markov property. Thus, the process (Xt : t ∈ T )
is adapted to (Ft : t ∈ T ) and the filtration (Ft : t ∈ T ) is non-anticipative
i.e., Ft is independent of H⊥(t) for any t in T. Note that the Markov property
can be re-phased as follows: for every time t the σ-algebra Ft is independent of
σ(Xs : s ≥ t) given Xt.

In most of the literature, the word standard Markov processes refer to cad-
lag Markov processes which are also quasi-left-continuous and satisfy the strong
Markov property (as discussed later). It will become clear that the strong
Markov property is highly desired, however, some applications involving de-
terministic impulses yield cad-lag Markov processes which are not quasi-left-
continuous.
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Usually, when talking about a Markov process we do not refer to a single
process, we really mean a family of processes satisfying the Markov property
and some given initial distribution. The following concept of transition function
is then relevant if we can explicitly write

P{Xt ∈ A |Xs = x} = P (s, x, t, A), ∀s < t, x ∈ E, A ∈ B(E),

for some function P (s, x, t, A). Note that

P{Xt ∈ A |Xs = x} =
P ({Xt ∈ A, Xs = x})

P ({Xs = x})
=

=
1

P ({Xs = x})

∫

{Xs=x}
P{Xt ∈ A |Xs}(ω)P (dω),

whenever P ({Xs = x}) > 0 and P{Xt ∈ A |Xs = x} = 0 when P ({Xs = x}) =
0, under the condition that a regular conditional probability exists.

Definition 5.3 (transition). A transition probability function on a given mea-
surable space (E,F), is a function P (s, x, t, A) defined for s < t in T (T is equal
to [0,+∞) or (−∞,+∞) in most of our cases), x in E and A in F such that

(a) for each s < t in T and x in E the function A 7→ P (s, x, t, A) is a probability
measure on (E,F),

(b) for each s < t in T and A in F the function x 7→ P (s, x, t, A) is a measurable,

(c) for any s in T , x in E and A in F we have

lim
t→s

P (s, x, t, A) = δx(A),

i.e., the limit is equal to 1 if x belongs to A, and 0 otherwise,

(d) for each s < r < t in T, x in E and A in F we have

P (s, x, t, A) =

∫

E

P (s, x, r, dy)P (r, y, t, A),

which is referred to as the Chapman-Kolmogorov identity. It is called homo-
geneous if P (s, x, t, A) = P (0, x, t − s,A) for any t > s in T = [0,+∞) (or
T = {0, 1, 2, . . . }), x in E and any Borel measurable subset A of E, in this case
we will denote P (0, x, r, A) by P (r, x,A). In most of the cases, the space E is a
Polish space and F = B(E), its Borel σ-algebra. We say that P (s, x, t, A) is a
Feller transition probability function

(e) if the function (s, x) 7→ P (s, x, t, f), with

P (s, x, t, f) =

∫

E

f(y)P (s, x, t, dy),

is continuous from [0, t] × E into R, for any fixed t in (0,∞) and any bounded
continuous function f from E into R.
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Note that conditions (a) and (b) are natural weak regularity assumptions,
the limit in (c) is a more restrictive (but necessary) initial condition, and the
Chapman-Kolmogorov identity follows from the Markov property in Definition
5.2. Usually, when the space E is locally compact Polish space and T = [0,∞),
we replace the condition (c) by a stronger assumption, namely, for any compact
subset K of E, any s in [0,∞) and any ε > 0 we have

(a) lim
t→s

sup
x∈K

[1 − P (s, x, t, B(x, ε))] = 0,

(b) lim
x→∞

sup
0≤s<t≤1/ε

P (s, x, t,K) = 0,
(5.15)

where B(x, ε) is the ball of radius ε and center x, and neighborhood of ∞ are
of the form ErK for some compact K of E. In (5.15), the first condition (a) is
referred to as local uniformly stochastic continuity property, while condition (b)
is only necessary when E is not compact. Note that by adding one dimension
to the space E, e.g., replacing E by E × T, we can always assume that the
transition is homogeneous.

Theorem 5.4 (strong Markov). Let (P,Xt,Ft : t ∈ T ) be a Markov process
on a Polish space E with cad-lag paths and homogeneous transition function
P (t, x, A). If either P (t, x, A) is a Feller transition, i.e., condition (e) holds, or
at least the process s 7→ P (t,Xs, f) is cad-lag for every t > 0 and any bounded
continuous function f, then (1) (P,Xt,F+

t : t ∈ T ) is a Markov process with
transition P (t, x, A), where F+

t = ∩ε>0Ft+ε, and (2) F+
t = Ft, for every t ≥ 0,

when ever Ft is the σ-algebra generated by the null sets and {Xs : s ≤ t}.
Moreover, if the cad-lag Markov process (P,Xt,Ft : t ∈ T ) exists for every
initial condition X0 = x, any x in E, and the transition function is Feller or
at least the process s 7→ P (t,Xs, f) is cad-lag for every t > 0 and any initial
condition X0 = x, then (P,Xt,F+

t : t ∈ T ) is a strong Markov process, i.e., for
any τ optional (or stopping) time, any t > 0, and every Borel measurable set A
in E,

P (X(τ + t) ∈ A | F+
τ ) = P (t,X(τ), A), a.s. on {τ <∞},

where F+
τ is the σ-algebra generated by the optional time τ, relative to {F+

t :
t ≥ 0}.

A proof of the above strong Markov property can be founded in Doob [34,
Theorems 8 and 9, pp. 556-560] or in Blumenthal and Getoor [15, Chapter 1,
Theorem 8.1, pp. 41-42], where almost surely right continuous (instead of cad-
lag) processes is only assumed. Moreover, adding another coordinate to include
time as a new state variable, this result is extended to non-homogenous Markov
processes with almost no changes. Indeed, if P (s, x, t, dξ) is a non-homogeneous
transition probability function then Ṗ (ẋ, t, dξ̇) = P (s, x, τ, dξ)δ(t − τ)dτ is a
homogeneous transition probability function associated to the Markov process
Ẋ(t) = (t−s,X(t−s)) with initial condition Ẋ(s) = (s,X(0)), where δ(t−τ)dτ
is the Dirac measure at {t}, ẋ = (s, x), ξ̇ = (τ, ξ) and Ė = [0,∞) × E, and
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the associated Markov process Ẋ(t) = (t − s,X(t − s)) with initial condition
Ẋ(s) = (s,X(0)).

In most of the cases, the Markov process takes values in a locally compact
metric space E endowed with its Borel σ-algebra. Using the fact that Radon
measures can be regarded as linear continuous functions on the space of con-
tinuous functions with compact support, the properties in the Definition 5.3
of transition function including condition (e) and (5.15) can be rephrased as a
family of linear operators P (t, s) : C0(E) −→ C0(E), where C0(E) is the space
of continuous functions vanishing at infinity (i.e., for any ε > 0 there exists a
compact subset K of E such that |ϕ(x)| ≤ ε for every x in E rK), such that

(a) 0 ≤ P (t, s)ϕ ≤ 1, for every ϕ in C0(E) with 0 ≤ ϕ ≤ 1

(b) limt→s P (t, s)ϕ(x) = ϕ(x), for any x in E and ϕ in C0(E)

(c) P (t, s) = P (t, r)P (r, s), for any s < r < t.

Thus, if the transition function is homogeneous, i.e., P (t, s) = P (t− s), we have
a one-parameter semigroup in C0(E).

Sometimes, it is convenient to consider processes with values in a enlarged
space Ē = E∪{∞}, with an isolated point ∞ (usually, the one-point compactifi-
cation), and even defined in the whole [0,∞]. In this case, the lifetime formalism
is used, i.e., define the lifetime of a process X(·) as ς(ω) = {t ≥ 0 : X(t) = ∞},
and assume that X(t) = ∞ for every t ≥ ς. This allow to relax the condition
(a) of the definition of transition function, only the fact that P (s, x, t, ·) is a
measure with total mass not larger than 1 (instead of a probability measure) is
actually necessary.

Usually, the transition function P (s, x, t, A) associated with a Markov pro-
cess Xt is continuous in time (i.e., in s and t) and a standard realization makes
Xt a cad-lag process. In this case, an extra property is desirable, the process
Xt = X(t) is quasi-left continuous, i.e., X(Tn) converges to X(T ) on the set
where T <∞, for any increasing sequence of stopping time Tn converging to T,
with Tn < T. It is clear that here the key is fact that Tn are stopping times. In
this sense, the process Xt do not have any deterministic jumps.

If a stochastic process represents some kind of phenomenological process
then it should characterized by its finite-dimensional distributions. Then, a
mathematical model is a realization of such a process in a convenient sample
space. However, a Markov process is also characterized by either its transition
function or it infinitesimal generator (see next chapter). It is important to
recognize that when only one stochastic process (or variable) is involved, it
finite-dimensional distributions determine the process in an appropriate sample
space (usually refer to as a realization of the process), however, when two or
more stochastic processes (or variables) are discussed, it is important to know
its joint distribution. Thus the concept of version or modification of a process
is relevant, i.e., at the end we are always working with stochastic processes as
random variables which are almost surely equals. Recall that two stochastic
processes need not to be defined in the same probability space to have the
same finite-dimensional distributions, but they do have the same law, once the
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sample space has been chosen. However, to be a version (or a modification)
one of each other, they do need to be defined in the same probability space.
After a sample space has been chosen, the stochastic process are treated as
random variable, with values in the sample space. The procedure of selecting a
sample space on which a probability is constructed satisfying its characteristic
properties (e.g., the finite-dimensional distributions are given, or in the case of
a Markov process, its transition function or its infinitesimal generator is given)
is called a realization of the stochastic process.

The reader may consult the classic books by Blumenthal and Getoor [15],
Dynkin [41, 42] or more recent books, such as, Applebaum [1], Çınlar [26],
Chung [24], Dellacherie and Meyer [32], Ethier and Kurtz [45], Liggett [110],
Marcus and Rosen [118], Rogers and Williams [153], Taira [172], among many
others.

5.1.3 Strong Markov Processes

Starting from a filtered space (Ω,F , P,F(t) : t ≥ 0), we may consider stochastic
processes X with values in some Polish space E (complete separable metric
space, usually locally compact) as (1) a family of E-valued random variables
{X(t) : t ≥ 0}, (2) a function on a product space X : [0,∞) × Ω → E, (3)
a function space valued random variable, i.e., either a random variable with
values in some sub-space of E[0,∞) or a mapping from [0,∞) into the space of
E-valued random variables. Except when explicitly mentioned, we are looking
at a stochastic process as a random variable with values in some function space,
a Polish space non-locally compact which most of the cases is either D([0,∞), E)
or C([0,∞), E), with E being an Borel (usually open or closed) subset of Rd.

A stochastic process X with values in a Polish space E (even more general,
E could be a Lusin space, i.e., a topological space homeomorphic to a Borel
subset of a complete separable metric space) is called a Markov process in the
filtered space (Ω,F , P,F(t) : t ≥ 0) if the Markov property is satisfied, i.e.,

E{f(X(t) | F(s)} = E{f(X(t) |X(s)}, (5.16)

for every t ≥ s and any bounded Borel real function f on E. This is an almost
surely equality due to the use of conditional probability. It means that the only
information relevant for evaluating the behavior of the process beyond time s is
the value of the current state X(s). This implies in particular that X is adapted.
Points x in E are called states and E is the state space of X.

A Markov process can be identified by its transition function, which is de-
fined by taking a particular class of function f in (5.16), namely characteristic
or indicator functions f = ✶B of Borel subsets B of E, i.e., with B in B(E).
The transition function p(s, x, t, B) is defined with following (minimal) regular-
ity conditions:

(1) for fixed 0 ≤ s ≤ t, x in E, the function B 7→ p(s, x, t, B) is a probability
measure on

(
E,B(E)

)
,

(2) for fixed 0 ≤ s ≤ t, B in B(E) the function x 7→ p(s, x, t, B) is Borel mea-
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surable,

(3) for every 0 ≤ s ≤ t, x in E, B in B(E) we have the identity p(s,X(s), t, B) =
E{✶B(X(t)) | F(s)}, almost surely.

Really, (1) and (2) are necessary conditions to make sense to the key con-
dition (3). However, the Markov property alone is not sufficient to define the
transition function. Condition (3) implies that for every s ≥ 0, x in E, B in
B(E) we have p(s, x, s, B) = ✶B(x) and standard properties of the conditional
probability yield the Chapman-Kolmogorov identity

p(s, x, t, B) =

∫

E

p(r, y, t, B)p(s, x, r, dy), (5.17)

valid for any 0 ≤ s < r < t, x in E and B in B(E).
Markov processes are mathematical model for phenomena which evolve in

time, in a random way and following some dynamic or evolution law. Most
often, statistical experiments or physical considerations give only information
about the so-called finite-dimensional distributions of a process. This means
that for a given initial probability measure µ on

(
E,B(E)

)
and times 0 ≤ t0 <

t1 < · · · < tn the probabilities Pt0,t1,...,tn on En+1 defined by

Pt0,t1,...,tn(B0 ×B1 × · · · ×Bn) =

=

∫

B0

µ(dx0)

∫

B1

p(t0, x0, t1, dx1)

∫

B2

p(t1, x1, t2, dx2) · · ·

· · ·
∫

Bn−1

p(tn−2, xn−2, tn−1, dxn−1) p(tn−1, xn−1, tn, Bn) (5.18)

are the finite-dimensional distributions. Thus, starting from a function p satis-
fying the properties (1) and (2) of a transition function, and if the function p sat-
isfies the Chapman-Kolmogorov identity (5.17), then the above relation (5.18)
defines a consistent family of finite-dimensional distributions on the canonical
product space E[0,∞). Note that the Dirac measure δ(x0), i.e., the unit mass
concentrated at x0, is the typical initial distribution at time t0. For simplicity,
let us discuss homogeneous Markov process, i.e., the case where the transition
function is time invariant, i.e., p(s, x, t, B) = p(0, x, t − s,B) for every t ≥ s, x
in E and B in B(E). Hence, the transition function can be taken as p(x, t, B),
with t ≥ 0. Remark that by adding an extra variable (the time), we can al-
ways reduce to homogeneous case. Thus, Kolmogorov’s existence theorem can
be used to construct a Markov process with the given transition function p, for
each initial probability measure µ at time t0 = 0, and then we have a family of
Markov processes. Therefore, by a realization of Markov process with transi-
tion probability function p we mean a collection (Ω,F ,Ft, Xt, Px, t ≥ 0, x ∈ E)
where Px is the probability measure constructed as above with initial probabil-
ity µ = δx, the Dirac measure at x. In Kolmogorov’s construction, the process
Xt(ω) = X(t, ω) = ω(t) is the coordinate (or identity) mapping and F(t) is
the natural filtration associated with the process X(t), which is not always
right-continuous. Some difficulties appear since F(t) should be completed with
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respect to the probability measure Px, given a completed filtration Fx(t) or
Fµ(t), which depend on initial parameter x or µ.

By means of the transition probability function, we may re-write the Markov
property (5.16) as

P{X(s+ t) ∈ B | F(s)} = p(X(s), t, B), (5.19)

for every t ≥ s ≥ 0 and any Borel subset B of E. Now, a strong Markov process
is one for which the Markov property holds at stopping times of the filtration
{F(t) : t ≥ 0}, i.e.,

P{X(T + t) ∈ B | F(T )}✶T<∞ = p(X(T ), t, B)✶T<∞, (5.20)

for every t ≥ 0, any stopping time T and any Borel subset B of E. This says that
the probabilistic evolution of the process after the stopping time T is just that
of another process restarted at T, i.e., the process restarts at stopping time. The
reader is referred to Doob [34, Theorems 8 and 9, pp. 556-560], see Theorem 5.4
in Chapter 1, for conditions ensuring the right-continuity of the filtration and
the strong Markov property. In the statement (5.20), we remark the interest
in using a filtration satisfying the usual condition, in particular the need of
having a completed σ-algebra F(0). A useful definition in this context is the
so-called universally completed filtration, which is constructed as follows. First,
let {F(t) : t ≥ 0} be the filtration (history) generated by the canonical pro-
cess X(t, ω) = ω(t), not necessarily satisfying the usual conditions. Denote by
{Fµ(t) : t ≥ 0} the filtration which is obtained by completing F(0) with re-
spect to the probability measure Pµ. Now the universally completed filtration
is {F0(t) : t ≥ 0}, where F0(t) = ∩µFµ(t), for every t ≥ 0. Note that the
filtration {F0(t) : t ≥ 0}, does not necessarily satisfies the usual conditions, but
it is right-continuous if the initial filtration {F(t) : t ≥ 0} is so.

As discussed earlier, the product space E[0,∞) does not provide a suitable
mathematical setting, we need to use the Polish sample space D([0,∞), E) or
C([0,∞), E). This imposes more conditions on the transition function p, and
eventually we are lead to the study of Markov-Feller processes and semigroups.

The reader may consult the classic references Blumenthal and Getoor [15],
Dynkin [42] or more recent books, e.g., Davis [30], Rogers and Williams [153].

One of the most simple Markov processes in continuous time is the Poisson
process. If {τn : n, n = 1, 2, . . .} is a sequence of independent exponentially
distributed (with parameter λ) random variables, then the random variable
θn = τ1 + · · · + τn has a Γ-distribution with parameters λ and n − 1, for n =
1, 2, . . . , i.e.,

P{θn ≤ t} =
λn

(n− 1)!

∫ t

0

sn−1e−λxds, ∀ t ≥ 0,

and the counting process defined by

p(t, ω) =

∞∑

n=1

✶θn(ω)≤t, ∀ t ≥ 0 (5.21)
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is a Poisson process, i.e., p(0) = 0, p(t) − p(s) is a Poisson variable with mean
λ(t− s), namely

P{p(t) − p(s) = n} =
[
λ(t− s)

]n
exp

[
− λ(t− s)

]
,

for every n = 0, 1, . . . , and for any 0 ≤ t0 < t1 < · · · < tn the family
{p(t0), p(tk) − p(tk−1) : k = 1, 2, . . . , n} is a set of independent random vari-
ables. The parameter λ is usually called jump rate.

In a compound Poisson process the construction (5.21) is modified as follows

pc(t, ω) =

∞∑

k=1

ηn(ω)✶θn(ω)≤t, ∀ t ≥ 0, (5.22)

where {ηn : n = 1, 2, . . .} is a sequence of independent identically distributed
(with distribution law ν and independent of the {τn}) Rd-valued random vari-
ables. A integer-valued measure process can be associated, namely

ρc(t, B, ω) =

∞∑

k=1

✶θk(ω)≤t✶ηk(ω)∈B , ∀ t ≥ 0, B ∈ B(Rd), (5.23)

which captures all features of the compound process and extends to the so-called
Poisson measures . Note that E{ρc(t, B, ω)} = t λ ν(B). The parameters λ and
ν yield the integral operator

Ih(x) = λ

∫

R

[
h(x+ y) − h(x)

]
ν(dy), ∀x ∈ Rd, (5.24)

which is a characteristic element of the compound Poisson process. This integral
operator is the infinitesimal generator of the Markov process, which in turn is
determined by its kernel, the Lévy measure M(dy) = λ ν(dy). Note that to make
the expression (5.23) interesting, we assume ν({0}) = 0 and then the mass of
the origin M({0}) does not play any role in the definition of I, thus the Lévy
measure is on Rd∗ = Rd r {0}.

All these examples are time and spatially homogeneous Markov processes.
To relax the homogeneity, we must allow the Lévy measure to depend on t
and x. For instance, we take M(x, dy) in the expression (5.24) of the integral
operator. The dependency on x of the kernel could be very general and in some
cases hard to track. A typical assumption is the representation

M(x,B) = λ(x) ℓ({ζ ∈ [0, 1] : x+ j(x, ζ) ∈ B}), (5.25)

for every x in Rd and B in B(Rd∗), where ([0, 1],L, ℓ) is the canonical Lebesgue
probability measure space, λ : Rd → [0,∞) and j : Rd × [0, 1] → Rd∗ are
measurable functions, on which some regularity (such as continuity) in x may
be required.

If {Zn, Un : n = 1, 2, . . . } are double sequence of independent uniformly
distributed random variables in ([0, 1],L, ℓ), then the transformation

Θ(x, u) = inf
{
t ≥ 0 : exp[−t λ(x)] ≤ u

}
, (5.26)
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with Θ(x, 0) = +∞, yields the construction of the following Markov jump pro-
cess by induction. Given θk−1 and xk−1 we define

θk = θk−1 + Θ(xk−1, Uk),

xk = xk−1 + j(xk−1, Zk)
(5.27)

and for any t in the stochastic interval [[θk−1, θk[[ set x(t) = xk. Naturally, we
can start from any initial time θ0 and state x0, but we use θ0 = 0 and any given
x0. Assuming that θn → ∞ (e.g., this hold if λ(·) is bounded) the process x(t)
is defined for every time t ≥ 0. Its associated integer-valued measure process is
given by

ρ(t, B, ω) =

∞∑

k=1

✶θk(ω)≤t✶xk(ω)∈B , ∀ t ≥ 0, B ∈ B(Rd). (5.28)

The integral operator becomes

Ih(x) = λ(x)

∫

[0,1]

[
h(x+ j(x, ζ)) − h(x)

]
ℓ(dζ), ∀x ∈ Rd, (5.29)

which make sense for any bounded Borel measurable function h. The process
{x(t) : t ≥ 0} a cad-lag realization (and piecewise constant) of a strong Markov
process. Several other variations are possible.

As seen early, the waiting times between two consecutive jumps of a (com-
pound) Poisson process is a sequence {τk : k ≥ 1} of independent identically
distributed (IID) with an exponential distribution. Moreover, even in the pre-
vious of a jump Markov process example {x(t) : t ≥ 0} with x(t) = xk for
t in [[θk−1, θk[[ as in (5.27), the waiting times between two consecutive jumps
τk = Θ(xk−1, Uk) follows an exponential distribution, when conditioned to the
past. In general, a ‘pure’ Markov jump process is not suitable to include (or
to describe) consecutive jumps given by a sequence {Ti : i ≥ 1} of IID random
variables, with T1 having a distribution π0 (other than exponential). Instead, an
homogeneous Markov process {yt : t ≥ 0}, representing the time elapsed since
the last jump, could be constructed as follows. First, for the initial condition
y(0) = 0 define θ0 = 0 and then by induction θn = θn−1 + Tn, and

y(t) = t− θn−1 if θn−1 ≤ t < θn and y(θn) = 0, n ≥ 1. (5.30)

However, if y(0) = y > 0 then conditional probability must be used to define
y(t) as beginning at time ‘−y’ conditional to ‘having the first jump at sometime
t ≥ 0’. This means that if the initial IID sequence {T1, T2, . . .} of waiting time
between two consecutive jumps has its common law π0 supported on [0,∞[, with
π0({0}) = 0, and y > 0 is the initial condition at time t = 0, then first consider a
non-negative random variable T y independent of {T1, T2, . . .} with distribution

P{T y ∈]a, b]} = P{T1 ∈]a+ y, b+ y] |T1 ≥ y} =
π0(]a+ y, b+ y])

π0(]y,+∞[)
,
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for any b > a ≥ 0. Now define the sequence of time-jumps

θy0 = 0, θy1 = T y and θyn+1 = θyn + Tn, ∀n ≥ 1,

and the process {y(t) : t ≥ 0} with y(0) = y by the expressions

y(t) = y(θyn−1) + t− θyn−1 if θyn−1 ≤ t < θyn and y(θn) = 0, ∀n ≥ 1,

which agree with (5.30) when y = 0, while the process ξ(t) =
∑∞
i=1 ✶θi≤t counts

the jumps. In this case, either {y(t) : t ≥ 0} or {(y(t), ξ(t)) : t ≥ 0} is a Markov
process.

If the common distribution π0 has a density π̇0, i.e.,

π0([0, y]) =

∫ y

0

π̇0(s)ds, ∀y ≥ 0,

then the intensity (of jumps) is given by

λ(y) =
π̇0(y)

1 − π0([0, y])
= lim
h→0

P{y ≤ T1 ≤ y + h | T1 ≥ y}
h

, ∀y ≥ 0,

or equivalently

λ(y) =
{
− ln

[
1 −

∫ t

0

π̇0(s)ds
]}′

, ∀y ≥ 0,

which yields the conditional distribution

π(y, ]a, b]) =
π0(]a, b]∩]y,∞[)

π0(]y,∞[)
=

∫ b

a

exp{−
∫ t

0

λ(y + s)ds}λ(t+ y)dt,

for any real numbers b > a ≥ y ≥ 0. Note that if the law π0 is an exponential
distribution then T y has also the same exponential distribution π0 (i.e., the
jumps of yt do not depend on the initial value y(0), in other words, T y can be
regarded as one of Ti), and therefore, no need to introduce the Markov process
{y(t) : t ≥ 0} in the model. Moreover, if the law π0 satisfies π0(]ymax,∞[) = 0
(with 0 < ymax <∞) then the initial value y should be taken either 0 < y < ymax

(if π0({ymax}) = 0) or 0 < y ≤ ymax (if π0({ymax}) > 0).
The infinitesimal generator of the process {y(t) : t ≥ 0} is given by

Aϕ(y) = ∂yϕ(y) + λ(y)[ϕ(0) − ϕ(y)], ∀y ≥ 0.

More general, the counting process {ξ(t) : t ≥ 0} may become ξ(t) =
∑
k ζk✶t≥θk ,

with {ζk} (independent of {Ti} and) with distribution π/c, c = π(Rm∗ ). In this
case, {(y(t), ξ(t)) : t ≥ 0} is also a Markov process and

Aϕ(y, ξ) = ∂yϕ(y, ξ) + λ(y, ξ)
[
E{ϕ(0, ξ + ζ1)} − ϕ(y, ξ)

]
, ∀y ≥ 0,

and any ξ ∈ Rm, is its infinitesimal generator.
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5.1.4 Extended Generators

Let E be a Borel subset of Polish space, let B(E) be the Banach space of
bounded Borel measurable functions f from E into R with sup-norm ‖ · ‖,
and let (Ω,F ,Ft, Xt, Px, t ≥ 0, x ∈ E) be a (strong) Markov process. For
t ≥ 0, define an operator P (t) : B(E) → B(E) by P (t)f(x) = Ex{f(X(t)},
where Ex{·} denotes the mathematical expectation relative to Px. It is clear
that P (t) is a contraction, i.e. ‖P (t)f‖ ≤ ‖f‖, for every t ≥ 0, and that the
Chapman-Kolmogorov identity (5.17) are equivalent to the semigroup property
P (t)P (s) = P (s+ t), for every t, s ≥ 0.

Denote by B0 the subset of B(E) consisting of those functions f for which
‖P (t)f −f‖ vanishes as t goes to zero. The contraction property shows that B0

is a closed subspace of B(E) and {P (t) : t ≥ 0} is called strongly continuous on
B0. Moreover, (1) B0 is invariant under P (t), for every t ≥ 0, and (2) for every
f in B0 (which is itself a Banach space), the function t 7→ P (t)f is continuous
from [0,∞) into B0.

Now, let A be the strong infinitesimal generator of {P (t) : t ≥ 0} with
domain D(A) ⊂ B0 ⊂ B(E), i.e, f belong to D(A) and Af = g if and only if

lim
t→0

∥∥∥P (t)f − f

t
− g

∥∥∥ = 0.

Note that the domain D(A) is as important as the expression of A, there are
examples of two different Markov process with the same expression for the in-
finitesimal generator A but with disjoint domains D(A), see Davis [30, Chapter
2].

Based on properties of derivatives and Riemann integrals of continuous func-
tions with values in a Banach space, we can establish:

(1) if f ∈ B0 and t ≥ 0 then

∫ t

0

P (s)fds ∈ D(A) and A

∫ t

0

P (s)fds = P (t)f − f,

(2) if f ∈ D(A) and t ≥ 0 then P (t) ∈ D(A) and

d

dt
P (t)f = AP (t)f = P (t)Af,

P (t)f − f =

∫ t

0

AP (s)fds =

∫ t

0

P (s)Afds.

In probabilistic terms, if u(t) = u(x, t) = Ex{f(X(t))} = P (t)f(x) with f in
D(A) then u satisfies

∂tu(t) = Au(t), u(0) = f, (5.31)

which is an abstract version of the so-called Kolmogorov backward equation. The
semigroup is determined by (5.31) and this determines the transition (probabil-
ity) functions p(x, t, B), which determines the finite-distributions and hence the
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probability measure Px, i.e., the Markov process itself. Certainly, some tech-
nical conditions are required to turn this calculation into reality. For practical
calculations it is more important the second expression in (2) which can be
written as

Ex{f(X(t)} = f(x) + Ex
{∫ t

0

Af(X(s)ds
}
, (5.32)

for every f in D(A), which is known as Dynkin formula.
Let f be in D(A) and define the real-valued process {Mf (t) : t ≥ 0} by

Mf (t) = f(X(t)) − f(X(0)) −
∫ t

0

Af(X(s))ds. (5.33)

By using the semigroup property and conditional expectation arguments, we
can show that for every x in E the process {Mf (t) : t ≥ 0} is a martingale in
(Ω,F , Px,F(t), t ≥ 0), i.e.,

Ex{Mf (t) | F(s)} = Mf (s), ∀t ≥ s ≥ 0.

A natural extension of the domain D(A) of the (strong) infinitesimal gener-
ator is as follows.

Definition 5.5 (extended generator). Let B∗(E) be the space of all Borel
measurable functions, not necessarily bounded, from E into R. We say that
a function f belongs to the domain of the extended (infinitesimal) generator
if there exists another function g in B∗(E) such that t 7→ g(X(t)) is locally
integrable Px-almost surely and the process {Mf (t) : t ≥ 0} defined by

Mf (t) = f(X(t)) − f(X(0)) −
∫ t

0

g(X(s))ds

is a local martingale, i.e., there exists an increasing sequence of stopping times
{τn : n = 1, 2, . . .}, with τn → +∞ such that the stopped process Mn

f (t) =
Mf (t∧ τn) is a uniformly integrable martingale for each n. We use the notation
D(Ā) for the extended domain and Āf = g for the extended generator.

Note that D(A) ⊂ D(Ā) and that Āf is uniquely defined (module subset
of potential zero). Indeed, if f = 0 then the process {Mf (t) : t ≥ 0} is a
continuous martingale with locally bounded variation, therefore Mf (t) = Mf (0)
is the constant process zero. Hence, Af = 0 except possibly on some measurable
set B of E such that

∫ ∞

0

✶B(X(t))dt = 0, Px − a.s.,

for every x in E. Such a set B is said to have potential zero. The process
{X(t) : t ≥ 0} spend no time in B, regardless of the starting point, so the
process {Mf (t) : t ≥ 0} does not depend on the values of Af for x in B, and
Af is unique up to sets of zero potential.
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When {Mf (t) : t ≥ 0} is a martingale, Dynkin formula (5.32) holds. Usually,
it is quite difficult to characterize D(Ā) but in most of the cases, there are easily
checked sufficient conditions for membership in the extended domain D(Ā). For
instance, the reader is refereed to the books by Davis [30, Chapter 1], Ethier
and Kurtz [45, Chapter 4] for more details.

Let us go back to the examples in the previous section. For the particu-
lar case of the Poisson process (p(t) : t ≥ 0) given by (5.21), the extended
infinitesimal generator is

Af(x) = λ[f(x+ 1) − f(x)], ∀x ∈ R

while for the compound Poisson process (pc(t) : t ≥ 0) (5.21), A is the integral
operator I given by (5.24). What is perhaps more relevant is the extended
domain D(Ā), which have not restriction at all (i.e., all real-valued function
defined on R) for the Poisson process, while a condition on local integrability,
i.e., a measurable function f : R → R belongs to D(Ā), for the compound
Poisson process with parameters λ and ν, if and only if

E{
∞∑

i=1

|f(x+ ηi) − f(x)|✶θi<σn
} <∞, ∀x, n,

where σn is a sequence of stopping times with σn → ∞ almost surely.
For the class of Markov jump process constructed by induction, see (5.26)

and (5.28), the full description of the extended domain D(Ā), with A = I as
in (5.29), is as follow. First, we say that a process {h(x, t, ω) : t ≥ 0, x ∈ Rd}
belongs to L1(ρ), (where ρ is the integer-valued measure process) if

E
{ ∞∑

i=1

h(xk, θk, ω)
}
<∞.

Similarly, h belongs to L1
loc(ρ), if there exists a sequence {σk : k ≥ 0} of stopping

times with σn → ∞ almost surely such that

E
{ ∞∑

i=1

h(xk, θk ∧ σn, ω)
}
<∞, ∀n.

Now, a measurable function f belongs to D(Ā) if the process h(x, t, ω) = f(x)−
f(x(t−, ω)) belongs to L1

loc(ρ). This is particular case of Davis [30, Theorem
26.14, pp. 69–74].

5.1.5 Transition Functions

Now we focus on the transition functions of spatially homogeneous Markov pro-
cesses or additive processes. There are several aspects of a Markov Process,
depending on the specific emphasis given to the discussion, one of the following
elements is first studied and then other elements are derived. A Markov process
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with valued in Rd may be presented as

(a) a family of Rd-valued stochastic processes X = Xsx indexed by the initial
distribution X(s) = x, s ≥ 0,

(b) a probability transition function P (s, x, t, A) with t > s ≥ 0, x ∈ Rd and A
a Borel subset of Rd,

(c) a family of linear and bounded evolution operators Φ(t, s) from B(Rd), the
Banach space of bounded Borel real-valued function on Rd into itself, indexed
by t ≥ s ≥ 0,

(d) a family of linear and bounded operators R(λ) from B(Rd) into itself, in-
dexed by λ > 0,

(e) a family of linear possible unbounded (infinitesimal generator) operators
A(t) defined in a subspace D(A(t)) of B(Rd) into B(Rd), indexed by t ≥ 0.

Certainly, each of these (a),. . . ,(e) elements should satisfy some specific condi-
tions to yield a Markov process.

The elements R(λ) in (d) are called resolvent operators and are mainly used
with time-homogeneous Markov processes, i.e., when (a) Xsx = X0x for any
s > 0 or (b) P (s, x, t, A) = P (0, x, t − s,A) for any t > s ≥ 0 or (c) the
evolution operators Φ(t, s) = Φ(t− s) for any t > s ≥ 0 or (e) A(t) = A for any
t ≥ 0. It is clear that by adding a new dimension to Rd we may always assume
we are in the time-homogeneous, however, in most of the cases, we prefer to
live the special time variable t with its preferential role and to work with non-
time-homogeneous Markov processes. It is possible to use a Polish (separable
complete metric space) O instead of the Euclidean space Rd, usually O is locally
compact since the infinite-dimensional case needs some special care.

The principle stating that the future is independent of the past given the
present is called Markov property and formally is written as

P{X(t) ∈ B |X(r), r ≤ s} = P{X(t) ∈ B |X(s)}, (5.34)

for every t > s ≥ 0 and B ∈ B(Rd), which should be satisfied by the family of
processes. This same property viewed by the transition function is called the
Chapman-Kolmogorov identity ,

P (s, x, t, B) =

∫

Rd

P (s, x, r, dy)P (r, y, t, B), (5.35)

for every t > r > s, x in Rd and B in B(Rd). For the evolution operators this is
called the semigroup property are written as

Φ(t, s) = Φ(t, r)Φ(r, s) in B(Rd), ∀t > r > s > 0, (5.36)

and in the case of time-homogeneous Markov processes, the resolvent operators
satisfy the so-called resolvent equation, namely

R(λ) −R(ν) = (ν − λ)R(λ)R(ν) in B(Rd), ∀λ, ν > 0. (5.37)
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The resolvent {R(λ) : λ > 0} is mainly used in potential theory, the semi-group
{Φ(t) : t ≥ 0} and the infinitesimal generator A are well know in analysis, while
the family of stochastic processes X and the transition function P (s, x, t, B)
are more probabilistic tools. At this general level, we ramark that the Markov
property (5.34) is almost surely satisfied, i.e., only version of the stochastic
processes are involved and therefore a property on the sample path should be
added. The evolution and resolvent operators are defined on B(Rd), which is a
non-separable Banach space, so that in general the theory is very delicate.

Out interest is in Markov-Feller or Feller-Dynkin processes, instead of the
large space B(Rd) we use the separable Banach space C0(Rd), of all continuous
functions vanishing at infinity (i.e., for any ε > 0 there exists a compact subset
K of Rd such that |ϕ(x)| ≤ ε for every x in Rd rK). Thus, after a one-point
compactification method, we are reduced to C(R̄d), with R̄d = Rd ∪ {∞} being
a compact Polish space. For the family of stochastic processes Xx, this yields
a cad-lag condition on the sample path. Regarding the Chapman-Kolmogorov
identity (5.35) we have

Definition 5.6 (transition function). A (Markov) transition function on the
Borel space (Rd,B), B = B(Rd), is a function P (s, x, t, B) defined for t > s ≥ 0,
x in Rd and B in B such that

(a) for each t > s ≥ 0 and x in Rd the function B 7→ P (s, x, t, B) is a positive
measure on (Rd,B), with P (s, x, t,Rd) ≤ 1,

(b) for each t > 0 and B in B the function (s, x) 7→ P (s, x, t, B) is a measurable,

(c) for any s ≥ 0, for any compact subset K of Rd and any ε > 0 we have

lim
t→s

sup
x∈K

[
1 − P (s, x, t, {y ∈ Rd : |y − x| ≤ ε})

]
= 0,

so-called uniformly stochastic continuous,

(d) for each t > r > s ≥ 0, x in Rd and B in B we have

P (s, x, t, B) =

∫

Rd

P (s, x, r, dy)P (r, y, t, B),

i.e., Chapman-Kolmogorov identity.

These properties can be rephrased in term of linear non-negative operators from
B(Rd), the space of real-valued bounded and Borel functions on Rd, into itself,
defined by

P (t, s)ϕ(x) =

∫

Rd

ϕ(y)P (s, x, t, dy) = P (s, x, t, ϕ), (5.38)

for every t > s ≥ 0 and x in Rd, which satisfies

(a’) for each t > s ≥ 0 and ϕ in B(Rd) with 0 ≤ ϕ ≤ 1 we have 0 ≤ P (t, s)ϕ ≤ 1,

(b’) for each t > s ≥ 0 and x in Rd the mapping B 7→ P (t, s)✶B(x) is σ-additive
on B(Rd),
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(c’) for any s ≥ 0 and ϕ in C0(Rd), continuous functions on Rd vanishing at
infinity, we have

lim
t→s

P (t, s)ϕ(x) = ϕ(x), ∀x ∈ Rd,

i.e., the stochastic continuity property , a weaker version of (c),

(d’) for each t > r > s ≥ 0, x in Rd and B in B we have

P (t, s) = P (t, r)P (r, s), in B(Rd),

usually referred to as the semigroup property , and the transition function is
called a Feller transition if the following condition (e) , so-called Feller property ,
is satisfied

(e) for each t > s ≥ 0 and ϕ in C0(Rd) we have P (t, s)ϕ in C0(Rd), i.e., P (t, s)
can be considered as acting on C0(Rd).

It is called time-homogeneous if P (s, x, t, B) = P (0, x, t − s,B) and spatially-
homogeneous if P (s, x, t, B) = P (s, 0, t, B − x), for any t > s ≥ 0, x in Rd and
B in B. It is called a transition probability function if P (s, x, t,Rd) = 1, for any
t > s ≥ 0 and x in Rd.

Certainly, to define a transition function we only need a measurable space
(E, E) and t belonging to some set T with a complete order, instead of the Eu-
clidean space Rd and the real semi-line [0,∞). However, for time-homogeneous
transition function, essentially we need the semi-line [0,∞) and for the spatially-
homogeneous transition function E has to be a vector space, e.g., Rd.

Condition (b’) is satisfied when E is locally compact, i.e., Rd, but it is
mentioned above as a difficulty when considering the infinite-dimensional case.
Instead of the transition function in the form P (s, x, t, B) we may look at the
family of linear non-negative operators P (t, s) from C0(Rd) into itself as a two-
parameter C0-semigroup, which satisfies 0 ≤ P (t, s)ϕ ≤ 1 for any 0 ≤ ϕ ≤ 1.

For instance, the reader is referred to Stroock and Varadhan [169, Chapter
9, pp. 208–247] for some useful estimates on the transition probability functions
for diffusion processes in Rd.

In either of these two equivalent forms of transition function we complete the
definition by using the one-point compactification of E, say Ē = E ∪ {∞} with
P (s, x, t, {∞}) = 1 − P (s, x, t,Rd), so that P (s, x, t, B) is a transition function
in compact Polish space Ē. Thus, time-homogeneous means P (t, s) = P (t − s)
while spatially-homogeneous means that P (t, s) commutes with the translations
operators Thϕ(x) = ϕ(x − h), i.e., for any t > s ≥ 0 and h in Rd we have
P (t, s)Th = Th P (t, s) in C0(Rd).

Condition (c) or (c’) means that the Markov process X is stochastically
continuous, i.e., for any ε > 0 and s ≥ 0 there is a δ > 0 such that P{|X(t) −
X(s)| ≥ ε} < ε for any t in ](s − δ) ∧ 0, s + δ[. On a bounded interval, this
is equivalent to a uniformly stochastically continuous property, namely for any
ε > 0 there is a δ > 0 such that P{|X(t)−X(s)| ≥ ε} < ε for any t, s in [0, 1/ε]
satisfying |t − s| ≤ δ. Actually, because the Polish space E is locally compact,
both conditions (c) and (c’) are equivalent under the Feller assumption (d).
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The relation between a transition function and the evolution operators (or
semigroup) is clearly (5.38) with Φ(t, s) = P (t, s). In the time-homogeneous
case, this relates with the resolvent operators by

R(λ)ϕ(x) =

∫ ∞

0

e−t λ Φ(t)ϕ(x)dt =

=

∫ ∞

0

e−t λdt

∫

Rd

ϕ(y)P (t, x, dy), ∀x ∈ Rd, (5.39)

which may be generalized to the non-homogeneous case.
A crucial relation between the transition function P (s, x, t, B) and the family

of stochastic processes X = Xsx is the equality

P{X(t) ∈ B |X(r), r ≤ s} = P (s,X(s), t, B), (5.40)

for every t > s ≥ 0 and B in B(Rd), which is the Markov property itself. This
is the primary building block, in the sense that when the family of stochastic
processes X is given first, some property on their paths is necessary to construct
the transition function, condition (5.34) is not sufficient. The general theory of
Markov processes is rather delicate, so that we prefer to limit ourself to the case
of standard Markov processes, i.e., cad-lag path and stochastically continuous
in a filtered spaces (satisfying the usual conditions).

Generally, a Markov process is used for modeling the dynamic of a motion
(e.g., of a particle). Intuitively, the Markov property expresses a prediction
of subsequent motion (of a particle), knowing its position at time t, does not
depend on what has been observed during the time interval [0, t]. In most of the
cases, the above (simple) Markov property is not sufficient, this starting afresh
property need to be used with stopping times. This is called the strong Markov
property and written as

P{X(t+ τ) ∈ B |X(r + τ), r ≤ 0} = P (τ, t,X(τ), B), (5.41)

for every t ≥ 0, B in B(Rd), and every stopping time. It is clear that any Markov
process with cad-lag paths and a Feller transition satisfies the strong Markov
property (5.41).

Only in very particular cases the transition function is explicitly known, such
as a Wiener or a Poisson process. In most of the cases, the transition function is
constructed from a family of linear possible unbounded (infinitesimal generator)
operators A(t) defined in a domain D(A(t)) and indexed in t ≥ 0. Moreover,
what is actually known is the expression to the operators A(t) for smooth or
test functions, e.g., A(t) is a second order elliptic differential operator with
given coefficients, or more general an integro-differential operator of a particular
form. The semigroup theory or the theory of evolution operators address this
question, i.e., (1) if a semigroup {Φ(t) : t ≥ 0} is given then characteristic
properties on its so-called infinitesimal generator A are listed and (2) if a given
operator A satisfies the characteristic properties of an infinitesimal generator
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then a semigroup {Φ(t) : t ≥ 0} can be constructed. For a linear and bounded
operator A the arguments go back to the exponential function, i.e.,

Aϕ = lim
t→0

Φ(t)ϕ− ϕ

t
and Φ(t) =

∞∑

n=0

(t A)n

n!
= etA.

In general, a much more sophisticated argument is necessary, Conditions (a’) and
(e’) of the Definition 5.6 are characteristic properties of the so-called Markov-
Feller (or Feller-Dynkin) semigroups, which is the main tool we use to model
stochastic dynamics. Clearly, assumption (e’) imposes a certain type of regu-
larity, while (a’) translates into the so-called maximum principle satisfied by its
infinitesimal generator, see Chapter 2 for an overview of the semigroup Φ(t) and
its infinitesimal generator A

For a given transition probability function P (s, x, t, B) as in Definition 5.6,
since P (s, x, t, B) and an initial distribution determine the finite-dimensional of
the Markov process, we may use Kolmogorov’s construction to define a family
of Rd-valued random variables {Xsx(t) : t ≥ 0} for each initial time s ≥ 0 and
initial distribution x in Rd such that the Markov property (5.40) is satisfied,
i.e., for any real numbers s < t1 < · · · < tn and Borel subsets B1, . . . , Bn of Rd

the family of probability measures

Psx,t1,...,tn(B1 × . . .×Bn) =

∫

B1

P (s, x, t1, dx1) ×

×
∫

B2

P (t1, x1, t2, dx2) . . .

∫

Bn

P (tn−1, xn−1, tn, dxn),

for any s < t1 < · · · < tn, has the consistency property. Therefore there exists a
unique probability measure Psx on the space Ω of all functions from [s,∞) into
Rd such that Psx{X(t) ∈ B} = P (s, x, t, B) for any t > 0 and B in B(Rd), where
X is the canonical (coordinate or projection) process, namely X(t, ω) = ω(t) for
any ω in Ω. Besides this, for any bounded and measurable function f(x1, . . . , xn)
we have

Esx{f(X(t1), . . . , X(tn))} =

∫
P (s, x, t1, dx1) ×

×
∫
P (t1, x1, t2, dx2) . . .

∫
f(x1, . . . , xn)P (tn−1, xn−1, tn, dxn).

Thus, the Markov property (5.40) holds true for this construction. Since no
condition on the paths is assumed, this is referred to as a Markov process in
law, where the crucial Markov property may be re-written as

Esx{f(X(s1), . . . , X(sm)) g(X(r + t1), . . . , X(r + tn))} =

= Esx{f(X(s1), . . . , X(sm))h(X(r))},

where h(ξ) = Erξ{g(X(r + t1), . . . , X(r + tn))} and s < s1 < . . . < sm ≤ r ≤
t1 < . . . < tn. Note that only conditions (a), (b) and (d) in Definition 5.6 of
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transition function are used to construct a Markov process in law. As mentioned
previously, if the transition function P (s, x, t, B) is not a full probability, i.e.,
P (s, x, t,Rd) ≤ 1 then we need to use the one-point compactification R̄d of Rd

and define P (s, x, t, {∞}) = 1 − P (s, x, t,Rd) and P (s,∞, t, {∞}) = 1. In this
case, the above random variables {Xsx(t) : t ≥ 0} take values in R̄d.

Given a transition function P (s, x, t, B) we define the modulus of stochastic
continuity by

α(ε, T, δ,K) = sup
{

1 − P
(
s, x, t, {y : |y − x| ≤ ε}

)
:

: ∀x ∈ K, s, t ∈ [0, T ], 0 < t − s ≤ δ
}
, (5.42)

where K ⊂ Rd. Because of assumption (c) or (c’) on a transition function we
know that for any ε, T > 0 and any x in Rd we have α(ε, T, δ, {x}) → 0 as
δ → 0. However, we need to assume that

lim
δ→0

α(ε, T, δ,Rd) = 0, ∀ε, T > 0, (5.43)

This condition (5.43) is satisfied for a Feller transition.
The following result addresses the construction of standard Markov processes

Theorem 5.7. Let P (s, x, t, B) be a transition probability function satisfying
(5.43). Then for any initial condition (s, x) there exists a probability mea-
sure Psx on the canonical space D([0,∞),Rd) such that the canonical process
X(t, ω) = ω(t) is a Markov process with transition function P (s, x, t, B), which
satisfies Psx{X(t) = x, t ≤ s} = 1. Moreover, if the transition function satisfies

lim
δ→0

α(ε, T, δ,Rd)

δ
= 0, ∀ε, T > 0, (5.44)

then the support of the measure Psx is the canonical space C([0,∞),Rd). Fur-
thermore, if P (s, x, t, B) is a Feller transition function then the strong Markov
property relative to the canonical filtration (F(t) : t ≥ 0) (universally completed
with respect to the family {Psx : (s, x)} and right-continuous), i.e.,

Psx{X(θ) ∈ B | F(τ)} = P (τ,X(τ), θ, B), ∀B ∈ B(Rd), (5.45)

for any finite stopping times θ ≥ τ ≥ s, and the filtration (F(t) : t ≥ 0) is
quasi-left continuous.

Proof. Since this is a classic result for the construction of Markov processes,
only the key points will be discussed here, for instance, reader may consult the
book by Dellacherie and Meyer [32, Section XIV.24, pp. 169–172] or Sato [157,
Theorem 11.1, pp. 59–63] for details.

First, we need some notation. Let R be a subset of times in [0,∞) and ε > 0.
We say that a family X = {X(t) : t ≥ 0} of Rd-valued random variables (1)
has ε-oscillations n-times in R for a fixed ω if there exist t0 < t1 < · · · < tn in
R such that |X(ti) −X(ti−1)| > ε for any i = 1, . . . , n, or (2) has ε-oscillations
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infinitely often in R for a fixed ω if for any n the family X has ε-oscillations
n-times in R. Denote by BX(n, ε,R) and BX(∞, ε, R) the set of ω where X has
ε-oscillations n-times and infinitely often in R, respectively.

Most of the arguments is to find a modification of the Markov process in
law constructed above. To that effect, denote by Ω2 the set of ω such that the
one-sided limits

lim
s→t, s<t s∈Q

X(s, ω) and lim
s→t, s>t s∈Q

X(s, ω)

exist in Rd for any t ≥ 0. Note that for any strictly decreasing sequence {tn} to
t, of rational numbers in [0, ℓ], there exists N = N(ε, ℓ) such that |X(tn, ω) −
X(tN , ω)| ≤ ε for any n ≥ N and ω in ΩrBX(∞, ε, [0, ℓ]∩Q). This shows that
Ω2 contains the set

Ω∗
2 = Ω r

∞⋃

ℓ=1

∞⋃

k=1

BX(∞, 4/k, [0, ℓ] ∩Q),

which is measurable since Q is countable.
The following modification, X∗(t, ω) = 0 for every ω ∈ Ω r Ω∗

2, and

X∗(t, ω) = lim
s→t, s<t s∈Q

X(s, ω), ∀ω ∈ Ω∗
2,

has cad-lag paths and because the stochastically continuity we obtain

P{X(t, ω) = X∗(t, ω), ω ∈ Ω∗
2} = 1.

To complete this cad-lag modification we need to show that P (Ω∗
2) = 1.

The following estimate, proved by induction on the integer n, yields the
result as discussed below. If 0 ≤ s1 < · · · < sm ≤ r ≤ t1 < · · · < tk < r+ δ ≤ T
and R = {t1, . . . , tk} then we have

E{Z ✶BX(n,4ε,R)} ≤ E{Z} [2α(ε, T, δ,Rd)]n, (5.46)

for every Z = f(X(s1), . . . , X(sℓ)) with a nonnegative measurable function f,
and where α(ε, T, δ,Rd) is defined by (5.42). A key point is the fact that the
right-hand side does not depend on k.

Thus, to show that P (Ω∗
2) = 1 we will prove that P{BX(∞, 4/k, [0, ℓ]∩Q)} =

0 for any integer k and ℓ. Indeed, by making a subdivision of [0, ℓ] into j equal
intervals, we obtain

P{BX(∞, 4/k, [0, ℓ] ∩Q)} ≤

≤
j∑

i=1

lim
n→∞

P{BX(n, 4/k, [(i − 1)ℓ/j, iℓ/j] ∩ Q),

and from the above estimate (5.46) with {t1, t2, . . .} = [(i − 1)ℓ/j, iℓ/j] ∩ Q
deduce

P{BX(n, 4/k, [(i− 1)ℓ/j, iℓ/j] ∩Q)} ≤ [2α(1/k, ℓ, ℓ/j,Rd)]n,
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for every n = geq1. In view of condition (5.43), for a given ℓ we can select the
integer j sufficiently large so that 2α(1/k, ℓ, ℓ/j,Rd) < 1. Hence, as n → ∞ we
get P{BX(n, 4/k, [(i− 1)ℓ/j, iℓ/j] ∩Q)} = 0, which implies P (Ω∗

2) = 1.
When condition (5.44) is satisfied, we have to find a measurable set Ω∗

1 with
P (Ω∗

1) = 1 and such that X∗(t, ω) = X∗(t−, ω) for any t > 0 and ω in Ω∗
1.

Indeed, for a given ℓ > 0, consider the set R(n, ε, ω), with n = 1, 2, . . . and
ε > 0, defined as the number of i = 1, . . . , n such that |X∗(iℓ/n, ω) −X∗((i −
1)ℓ/n, ω)| > ε. Then, ω 7→ R(n, ε, ω) is measurable and

E{R(n, ε, ·)} ≤ nα(ε, ℓ, ℓ/n).

Hence, condition (5.44) and Fatou’s lemma yield E{lim infn→∞R(n, ε, ·)} = 0
and therefore the set

Ω∗
1(ℓ) =

∞⋂

k=1

{
ω : lim inf

n→∞
R(n, 1/k, ω) = 0

}

is measurable with full measure, i.e., P{Ω∗
1(ℓ)} = 1. Moreover, if ω is in Ω∗

1(ℓ)
then for any t in (0, ℓ] we have |X∗(t, ω)−X∗(t−, ω)| ≤ ε, for every ε > 0. Thus
Ω∗

1 =
⋂
ℓ Ω∗

1(ℓ) has the desired property.
It is clear that once a cad-lag version, namely X∗, has been found, we can

take the image probability measure in the canonical space to produce Psx as
required. On the other hand, the stochastic continuity and the cad-lag regularity
of the paths imply that P{X∗(t) = X∗(t−)} = 1 for any t > s.

The right-continuity of paths ensures that the process X∗ is adapted to
F(t) = Fsx(t+) =

⋂
ε>0 Fsx(t), where Fsx(t) is the σ-algebra generated by

the canonical process and P -null sets. Thus (5.45) is satisfied after using the
continuity of the transition probability function and approximating any finite
stopping time.

Regarding the quasi-left continuity we proceed as follows. Let {τn : n ≥ 1}
be a sequence of stopping times convergence almost surely to τ, with P (τn <
τ <∞, τ > s) = 1. For any two functions f and g in C0(Rd) we have

lim
t→0

lim
n→∞

E{f(X∗(τn)) g(X∗(τn + t))} =

= lim
t→0

E{f(X∗(τ−)) g(X∗(τ + t−))} = E{f(X∗(τ−)) g(X∗(τ))},

because the right-continuity of the paths. On the other hand, the strong Markov
property (5.41) and the Feller property imply

lim
n→∞

E{f(X∗(τn)) g(X∗(τn + t))} = E{f(X∗(τ−))P (τ, τ + t,X∗(τ−), g)}

and

lim
t→0

E{f(X∗(τ−))P (τ, τ + t,X∗(τ−), g)} = E{f(X∗(τ−)) g(X∗(τ−))}.

Hence,

E{f(X∗(τ−)) g(X∗(τ))} = E{f(X∗(τ−)) g(X∗(τ−))},
i.e., P{X∗(τ) = X∗(τ−)} = 1 and X∗ is almost surely continuous at τ.
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Usually, condition (5.43) is replaced by

(a) lim
|x|→∞

sup
0≤s<t≤T

P (s, x, t,K) = 0,

(b) lim
δ→0

α(ε, T, δ,K) = 0, ∀ε, T > 0,
(5.47)

for any compact subset K of Rd, and assumption (5.44) can be substituted by

lim
δ→0

α(ε, T, δ,K)

δ
= 0, ∀ε, T > 0, any compact K ⊂ Rd, (5.48)

and in general this construction ie valid for a transition function, without the
probability condition P (s, x, t,Rd) = 1, see Taira [171, Chapter 9 and 10, pp.
273–424].

To properly handle the strong Markov property, we need to use the univer-
sally complete σ-algebra, i.e., first we remark that the above construction can
be used with any initial law µ at any time 0 and the corresponding filtration is
{F0µ(t) : t ≥ 0}. Thus F0(t) =

⋂
µ F0µ(t), which is not necessarily complete

with respect to P 0µ, but it satisfies F0(t+) = F0(t), i.e., it is right-continuous,
and the so called Blumenthal’s zero-one law, i.e., P (A) = 0 or P (A) = 1 for any
A in

⋂
t>0 F0(t).

Let us look at the particular case of additive processes, see Definition 2.1,
which include the Lévy processes. The transition function of an additive process
is spatially homogeneous, i.e., if P (s, x, t, B) is the transition function of an
additive process X then P (s, x, t, B) = P (s, 0, t, B − x) and we only have to
consider transition functions of the form P (s, t, B). Thus, any additive processX
yields a transition function P (s, t, B) = P{X(t)−X(s) ∈ B}, for any t > s ≥ 0
and B in B(Rd) so that X is a (stochastically continuous) Markov process in
Rd stating at 0. Its associated semigroup is called a convolution semigroup, i.e.,

P (t, s)ϕ(x) =

∫

Rd

ϕ(x+ y)P (s, t, dy)

and Chapman-Kolmogorov identity is re-written as

P (s, t, B) =

∫

Rd

P (s, r, dx)P (r, t, B − x),

for every t > r > s ≥ 0 and B in Rd. It is also clear that the previous The-
orem 5.7 applies to this case, to obtain a cad-lag of additive processes in law.
Because the transition function P (s, t, B) is spatially homogeneous, it satisfies
the Feller conditions and the process is quasi-left continuous, i.e., X(Tn) con-
verges to X(T ) on the set where T <∞, for any increasing sequence of stopping
time Tn converging to T, with Tn < T..

Lévy processes X are also time-homogeneous and its semigroup is a true
convolution and the infinitely divisible distribution µ = X(1) completely deter-
mines the process, see Section 2.2. Thus to each infinitely divisible distribution
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µ there corresponds a Lévy process. For instance, Poisson and compound Pois-
son processes correspond to Poisson and compound Poisson distributions. The
Lévy process on Rd corresponding to a Cauchy distribution with parameters γ
in Rd and c > 0, namely, for any B in B(Rd),

µ(B) = π−(d+1)/2Γ(d+1
2 ) c

∫

B

(
|x− γ|2 + c2

)−(d+1)/2
dx,

and µ̂(y) = e−c|y|+i γ·y, ∀y ∈ Rd,

(5.49)

is called a Cauchy process. However, the Lévy process on R corresponding to
an exponential distribution is called a Γ-process, since it has a Γ distribution at
any t > 0.

If X is an additive process on Rd with a Gaussian distribution at each t,
then X has continuous paths almost surely, see Sato [157, Theorem 11.7, pp.
63-64]. For instance, for dimension d = 1, the characteristic function is

E{ei y·X(t)} = e−t y
2/2, ∀t ≥ 0, y ∈ Rd,

and a simple calculation shows that condition (5.44) of Theorem 5.7 is satisfied.
Actually, the only additive process with continuous paths are Wiener processes.

For a given additive process X we consider the σ-algebra F(t) generated by
all null sets and the family of random variables X(s) with s ≤ t. Because of
the independence of increments, an application of Kolmogorov’s zero-one law
to a tail σ-algebra shows that F(t) is already right-continuous, so that it is the
filtration associated with X.

The reader is referred to the books by Blumenthal and Getoor [15], Del-
lacherie and Meyer [32, Chapters XI–XVI], Ethier and Kurtz [45], Sato [157,
Chapter 1 and 2, pp. 1–68], among others.

5.2 Markov-Feller Semigroups

Let E be a locally compact Polish (i.e., complete separable metric) space and
B(E) be the σ-algebra of Borel subsets of E. Usually, E ⊂ Rd, is an smooth
domain. Moreover, in this section we may even take E to be a locally compact
Hausdorff space with countable basis. As before, B(E) denotes the space of
Borel measurable and bounded functions from E into Rd, endowed with the
supremum norm ‖ · ‖. Recall that a function f vanishes at infinity if for any
ε > 0 there is a compact set K such that |f(x)| < ε for any x ∈ E rK. Also,
Cb(E), respectively C0(E), stands for the space of continuous functions which
are bounded, respectively vanishing at infinity. It is clear that if the whole space
E = K is compact then Cb(K) = C0(K), in this case we use the notation C(K).
The Riesz representation theorem states that any bounded linear functional on
C(K) may be uniquely written in the form

µ(f) =

∫

K

f(x)µ(dx), ∀f ∈ C(K),
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where µ is a regular bounded (signed) measure on E = K (recall that regular
means that for any measurable subset A of E and for every ε > 0 there exits
an open set O and a closed set F, with F ⊂ A ⊂ O and µ(O r F ) < ε),
see Dunford and Schwartz [38, p. 265, Theorem IV.6.3]. Moreover, if E is a
locally compact Polish space, we may construct its one-point compactification
Ē = E ∪{∞} where open sets in Ē are of the open sets in E and the sets of the
form {∞} ∪ (E rK)) for any compact subsets K of E. Any regular bounded
measure µ in Ē satisfying µ({∞} = 0), have the property that for any ε > 0
there exits a compact subset K of E such that µ(E r K) < ε, which usually
refer to as µ being tight in E. The Banach space C0(E) of continuous functions
on E vanishing at infinity can be identified with the Banach space of continuous
function on Ē satisfying the zero boundary condition at infinity f(∞) = 0.
Thus, any bounded linear functional on C0(E) can be uniquely represented by
a regular bounded (signed) measure (tight) in E, e.g., see Folland [52, Chapter
7] or Malliavin [115, Chapter II]. Therefore, we assume that the base space E is
such that bounded linear nonnegative on B(E) are uniquely given by (regular)
bounded measures on E.

Definition 5.8 (Markov). Let E be a locally compact Hausdorff space with
countable basis and denote by B(E) its Borel σ-algebra.

(1) A one-parameter family {S(t) : t ≥ 0} of bounded linear operators from the
Banach space B(E) into itself is called a (sub-)Markov semigroup with (sub-
)Markovian kernels {P (t, x, A) : t ≥ 0, x ∈ E, A ∈ B(E)} given by

S(t)f(x) =

∫

E

f(y)P (t, x, dy), ∀f ∈ B(E),

if it satisfies
(a) S(t+ s) = S(t)S(s), ∀t, s ≥ 0,
(b) S(t)f(x) ≥ 0, ∀t ≥ 0, x ∈ E if f(x) ≥ 0, ∀x ∈ E,
(c) S(t)✶E(x) ≤ 1, ∀t ≥ 0, x ∈ E.

or equivalently
(a)′ for each s, t ≥ 0, x in E and A in B(E) we have

P (s+ t, x, A) =

∫

E

P (s, x, dy)P (t, y, A),

which is referred to as the Chapman-Kolmogorov identity.
(b)′ for each t and x the function A 7→ P (t, x, A) is a (non-negative) measure

on B(E) with P (t, x, E) ≤ 1 and P (0, x, {x}) = 1,
(c)′ for each t and A in B(E) the function x 7→ P (t, x, A) is a Borel measur-

able,

(2) It is called a transition function if for every A in B(E) the mapping (t, x) 7→
P (t, x, A) is jointly Borel measurable in [0,∞) × E.

(3) It is called stochastically continuous if

lim
t→0

P (t, x,O) = 1,
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for every x in E and any open neighborhood O of x.

(4) It satisfies the (pointwise) Feller property (respectively, strong Feller prop-
erty) if for every t > 0 the function x 7→ S(t)f(x) is continuous at each point of
continuity of the function f (respectively, at each point x).

Here, we have denoted by ✶A the characteristic function of the subset A, i.e.,
✶A(x) = 1 if x belongs to A and zero otherwise. It is clear that condition (a)
is the usual semigroup property, condition (b) is the weak maximum principle
and inequality (c) is a normalization condition. Actually, condition (c) can be
replaced by the equality S(t)✶E(x) = 1, for any t ≥ 0, x ∈ E, without any
lost of generality, by using the one-point compactification. This give rise to the
distinction between Markov and sub-Markov semigroups.

If the base space E is not locally compact, then we normally add the condi-
tion

(d) A 7→ S(t)✶A(x) is σ-additive on B(E), ∀t ≥ 0, x ∈ E

to the definition of a Markov semigroup. This condition is automatically sat-
isfied if E is a locally compact Polish space. We refer to a Markov semigroup
S(t) or to a Markov kernels P (t, x, ·) indistinctly.

In general, a Markov semigroup is not strongly continuous in B(E), even if
it satisfies the above Feller property. Moreover, a joint measurability condition
is needed to define the resolvent operators

Rλf(x) =

∫ ∞

0

e−λtS(t)f(x)dt, ∀x ∈ E, λ > 0,

as a mapping from B(E) into itself. This is precisely the condition (2) in
Definition 5.8, i.e., a Markov transition function.

If E is a Polish space, the Markov semigroup {S(t) : t ≥ 0} or its Markov
kernels P (t, x, ·) is stochastically continuous if and only if

lim
t→0

P (t, x,B(x, δ)) = 1, ∀x ∈ E, δ > 0,

where B(x, δ) is the ball of center x and radius δ in E. Notice that the above
Feller property refers to the space variable x, whilst stochastically continuous
involves the time variable t. Even if the base space E is not locally compact,
it is proved in Da Prato and Zabczyk [29, p. 13] that a Markov semigroup
{S(t) : t ≥ 0} is stochastically continuous if and only if S(t)f(x) converges to
f(x) as t → 0, for any x ∈ E and any function f which is either (a) bounded
and continuous or (b) bounded and uniformly continuous or (c) bounded and
Lipschitz continuous.

It is clear that a stochastically continuous Markov semigroup {S(t) : t ≥
0} is (Borel) measurable, i.e, (t, x) 7→ S(t)f(x) is jointly Borel measurable in
[0,∞)×E, i.e, a Markov transition function. Thus we can use the general results
in Dellacherie and Meyer [32, Section XIV.24, pp. 169–172]) to construct a cad-
lag realization of the associated Markov (strong Markov, since it is stochastically
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continuous) Markov process as described in Chapter 1. Note that a systematic
study on analytic methods for Markov diffusion semigroup can be found in
Bertoldi and Lorenzi [8].

5.2.1 Feller Semigroups

A good way is to consider the semigroup restricted to the space Cb(E) or C0(E)
and impose the Feller property.

Definition 5.9 (Feller). Let E be a Polish space. Then a one-parameter family
{S(t) : t ≥ 0} of bounded linear operators from a closed subspace C of the
Banach space Cb(E) (e.g., C0(E) or the whole space Cb(E)) into itself is called
a Feller semigroup if it satisfies

(a) S(t+ s) = S(t)S(s), ∀t, s ≥ 0,

(b) 0 ≤ S(t)f ≤ 1, ∀t ≥ 0 if 0 ≤ f ≤ 1,

(c) lim
t↓0

‖S(t)f − f‖ = 0, ∀f ∈ C.

Actually, a Feller semigroup need not to be strongly continuous as indicated by
condition (d), usually only a weakly continuous condition, namely

(e) lim
t↓0

S(t)f(x) = f(x), ∀x ∈ E, ∀f ∈ C

is required. However, since our base space E is locally compact (see Dellacherie
and Meyer [32, Theorem XIII.19, pp. 98–99]) these two conditions are equiva-
lent.

Roughly speaking, a Markov semigroup is semigroup associated with some
Markov process and a Feller semigroup (or Markov-Feller semigroup or Feller-
Dynkin semigroup) is a Markov semigroup which satisfies the Feller property.
Actually, most of the key results on Markov theory requires a stochastically
continuous Markov semigroup.

The measure theory ensures that any Feller semigroup in either Cb(E) or
C0(E) can be extended to be a Markov semigroup in B(E). It is clear that
for a Feller semigroup, the condition (e) above on weakly continuous is the
equivalent of stochastically continuous for a Markov semigroup. Clearly, in a
locally compact Polish space, a stochastically continuous Markov semigroup is
indeed a Feller semigroup as mentioned in the above definition.

The following result (on locally compact Polish space E) is taken from
Taira [171, Chapter 9, Section 2, pp. 333–340],

Theorem 5.10 (Markov-Feller). Let {S(t) : t ≥ 0} be a Markov semigroup in
B(E), which leaves invariant the subspace C0(E) (i.e., S(t)f ∈ C0(E), ∀t >
0, f ∈ C0(E)) and is uniformly stochastically continuous (i.e., the continuity
condition in t at 0 holds uniformly on compact set in x). Then the restriction
of S(t) to C0(E) is a Feller semigroup if and only if the following property is
satisfied
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(L) For any T, ε > 0 and any compact C ⊂ E there exists another compact set
K = K(T, ε, C) of E such that P (t, x, C) < ε, for any t ∈ [0, T ] and any
x ∈ E rK,

where P (t, x, ·) is the Markov transition function associated with {S(t) : t ≥
0}.

Since a Feller semigroup S(t) on C0(E) is strongly continuous, the general
(contraction) semigroup theory applies to characterize the infinitesimal gener-
ator A of S(t). The extra property involved in term of the resolvent operator
R(λ,A) = (λI −A)−1 can be formulated as

f ∈ C0(E), f ≥ 0 =⇒ R(λ,A)f ≥ 0, (5.50)

which is referred to as the weak Maximum Principle. In connection with this, we
mention the following result, see Taira [171, Chapter 9, Section 3, pp. 340–349],

Theorem 5.11. Let E be a compact Polish space and A be a linear operator
(not necessarily bounded) in C(E) = Cb(E) = C0(E) densely defined on the
domain D(A). Assume that for some λ ≥ 0 the range R(λI − A) of λI − A
is dense in C(E). If the weak Maximum Principle is satisfied in the following
sense

(wMP) If u belongs to D(A) and it takes a positive maximum at the point x0
in E then Au(x0) ≤ 0,

then the closure Ā of the operator A is the infinitesimal generator of a Feller
semigroup in the space C(E).

Since a Feller semigroup {S(t) : t ≥ 0} has the property that (t, x) 7→
S(t)f(x) is Borel measurable, the Laplace transform

R(λ)f =

∫ ∞

0

eλtS(t)dt

defines the resolvent operators {R(λ) : λ > 0} from B(E) into itself. The specific
properties of a Markov semigroup {S(t) : t ≥ 0} (on B(E) Borel bounded
functions on E) as in Definitions 5.8 or 5.9 become

(a) R(λ)f ≥ 0, ∀f ≥ 0, λ > 0, (b) λR(λ)✶E(x) ≤ 1, ∀x ∈ E.

the converse is also valid.
For instance, the reader may consult the books Jacob [80, Vol I, Chapter

4] and Taira [171, Chapters 9 and 10] for a detailed presentation on Feller
semigroups, among other topics.

5.2.2 Markov Process Realization

Until know, we have mentioned several results concerning the construction of
a Markov process starting from a transition probability function. To under-
stand better the relation between Markov processes and Markov semigroups,
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we discuss the main steps and difficulties to construct a realization of a given
Markov semigroup S(t) with transition function P (t, x, dy) on a compact base
space Ē, the one-point compactification of E, assumed locally compact and
P (t, x, {∞}) = 1 − P (t, x, E), so that P (t, x, Ē) = 1. Intuitively, given any
initial position x in Ē at time 0, the probability distribution for a location of
the stochastic process X at a future time t > 0 is P (t, x, dy). Thus to construct
a separable version (see Definition 1.13) of the stochastic process X, we need
to construct a measure on the space of paths ĒI , where I is a countable dense
set in (0,∞), for instance I is the set of positive rational numbers. Since Ē
is compact and I countable, the product topology in ĒI produces a compact
metrizable space. In view of Riesz representation theorem, to construct a prob-
ability measure on ĒI , it suffices to construct a positive linear functional Ex

from the space C(ĒI) of real-valued continuous functions to R. Naturally, first
we define Ex on the subspace Cc(Ē

I) of cylindrical functions, consisting of con-
tinuous functions that depend on only finitely many factors of ĒI , i.e., functions
on C(ĒI) of the form ψ(ω) = F (ω(t1), ω(t2), . . . , ω(tn)), t1 < t2 < · · · < tn, for
some n ≥ 1, where F is a continuous function in Ēn and ti belongs to I for
i = 1, 2, . . . , n. We set

Ex(ψ) =

∫
P (t1, x1 − x, dx1)

∫
P (t2 − t1, x2 − x1, dx2) . . .

. . .

∫
F (x1, x2, . . . , xn)P (tn − tn−1, xn − xn−1, dxn), (5.51)

which is well defined in view of the semigroup or Chapman-Kolmogorov identity.
Hence, Ex : Cc(Ē

I) → R is a positive linear functional satisfying Ex(✶) = 1.
By the Stone-Weierstrass theorem on polynomial approximations, the subspace
Cc(Ē

I) is dense and then Ex has a unique continuous extension to C(ĒI), with
the same properties. Then, we have a unique probability measure Px on C(ĒI)
such that

Ex(ψ) =

∫

Ē

ψ(ω)Px(dω)

and (5.51) holds on Cc(Ē
I). To go further in this construction, we need some

regularity in the variable t, i.e., the function

ρ(ε, δ) = sup
x

∫

|y−x|≥ε
P (δ, x, dy)

as δ goes to zero for any fixed ε. If we want to get a probability measure Px on
the space C([0,∞), Ē) of continuous functions from [0,∞) into Ē, then we need
to show first that the set Clu(I, Ē), of uniformly locally continuous functions
(which are extended uniquely to continuous functions from [0,∞) into Ē) is a
Borel subset of ĒI , which contains the support of Px. Actually, this is the hard
point in the construction of the measure Px. To this purpose, the set Clu(I, Ē)
can be expressed as a countable intersection of a countable union closed sets,
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namely

Clu(I, Ē) =

∞⋂

k,ℓ=1

∞⋃

n=1

F ′(k, 1/ℓ, 1/n),

where F ′(k, ε, δ) is the complement of the set

F (k, ε, δ) =
⋃{

E(a, b, ε) : 0 ≤ a < b ≤ a+ δ ≤ k
}
,

E(a, b, ε) =
{
ω ∈ ĒI : ∃ t, s ∈ I ∩ [a, b], |ω(t) − ω(s)| > 2ε

}
.

Since the complement of E(a, b, ε) is closed in ĒI , the set F (k, ε, δ) is open and
therefore Clu(I, Ē) is a Borel set. Next, assuming

Px{E(a, b, ε)} ≤ 2ρ(ε/2, b− a)), (5.52)

we have

Px{F (k, ε, δ)} ≤ 2
k

δ
ρ(ε, δ))

and if ρ(ε, δ)/δ goes to zero as δ goes to zero, we can deduce the equality
Px{Clu(I, Ē)} = 1. To obtain the estimate (5.52), we may express the set
E(a, b, ε) as an increasing limit of sets of the form A = {ω : ∃ i, j such that
|ω(ti)−ω(tj)| > 2ε, for some ε, δ, n and t1 < t2 < · · · < tn in I, with tn− t1 ≤ δ.
Each set A of the above form is contained in the union B∪(C1∩D1) . . . (Cn∩Dn),
where B = {ω : |ω(tn) − ω(t1)| > ε}, Ci = {ω : |ω(tn) − ω(ti)| > ε} and
Di = {ω : |ω(t1) − ω(ti)| > 2ε and |ω(t1) − ω(tj)| ≤ 2ε, ∀j ≤ i− 1}. It is clear
that Px(B) ≤ ρ(ε, δ) and Px(Ci) ≤ ρ(ε, δ). Since Ci is independent of Di, we
have Px(Ci ∩Di) = Px(Ci)Px(Di), which allow us to conclude, see Taylor [173,
Vol 2, Chapter 11, pp. 303–307].

The point here is that under the assumption ρ(ε, δ)/δ → 0 as δ → 0, we
are able to construct the probability measure in the sample space of continuous
paths C([0,∞), Ē), e.g. the Wiener measure. In some cases, e.g., the (com-
pound) Poisson measure, we have only [ρ(ε, δ)]2/δ → 0 as δ → 0 so that the
construction in the sample space C([0,∞), Ē) fails. Then, the sample space of
right-continuous (with left-hand limits) paths D([0,∞), Ē) is used. In this case,
the set E(a, b, ε) is re-defined as

E(a, b, ε) =
{
ω ∈ ĒI : ∃ t, s, r ∈ I, such that

|ω(t) − ω(s)| ∧ |ω(s) − ω(r)| > 2ε a ≤ r < s < t ≤ b
}
.

Using the fact that the two events {|ω(t)−ω(s)| > 2ε} and {|ω(s)−ω(r)| > 2ε}
are actually of the previous form and independent of each other, we notice that
estimate (5.52) is modified as follows

Px{E(a, b, ε)} ≤ 2[ρ(ε/2, b− a))]2. (5.53)
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Naturally, instead of the subspace Clu(I, Ē) we use the subset Dlu(I, Ē) of
ĒI composed by the restriction to I of functions in D([0,∞), Ē). Some more
detailed analysis is needed to effectively give a realization of the Markov process
in the sample space D([0,∞), Ē). The interested reader may take a look at
Jacob [80, Vol III, Chapter 3] for a more complete overview on Feller semigroups
and processes.

5.2.3 Pointwise Continuous Semigroups

First, note that for a given strongly continuous semigroup in a Banach space,
the weak infinitesimal generator denoted by Ā is not a genuine extension of the
strong infinitesimal generator A, indeed their domain of definition are the same
and they agree on it. Moreover, a weakly continuous semigroup in a Banach
space is actually strongly continuous, see Pazy [142, Chapter 2, Section 2, pp.
42–44].

Thus, one way to proceed is to consider the weak-star topology in B(E), i.e.,
boundedly pointwise convergence. Hence, the notion of pointwise continuous
semigroup (also called weakly continuous) and weak-star infinitesimal generator
(also called weak infinitesimal generator) are necessary, see Dynkin [42]. Given
a stochastically continuous Markov semigroup {S(t) : t ≥ 0}, we restrict our
attention to the subspace B0(E) of real bounded Borel functions f on E such
that the map t 7→ S(t)f(x) is continuous for any x in E. It is clear that B0(E)
contains Cb(E) and it is invariant under S(t) for any t ≥ 0. Thus {S(t) : t ≥ 0}
is a pointwise continuous semigroup on B0(E), i.e., besides (a), (b) and (c)
of Definition 5.8 it also satisfies the condition S(t)f(x) → f(x) for any x in
E and any f in B0(E). Then, the weak-star infinitesimal generator Ā can be
(densely) defined on B0(E) be means of the boundedly pointwise convergence,
i.e., Āf = g if and only if [S(t)f − f ]/t converges (boundedly pointwise) to g,
this means

sup
t>0

|S(t)f(x) − f(x)|
t

≤ C, ∀x ∈ E,

for some constant C = Cf > 0 and

lim
t→0

S(t)f(x) − f(x)

t
= g(x), ∀x ∈ E,

where necessarily g = Āf belongs to B(E).
This approach is more relevant when the base space E is not locally compact

Polish space, i.e., E may be an infinite dimensional Hilbert space endowed
with the weak or strong topology. For instance, as in [121], suppose that a
(strong) homogeneous Markov process y(t, x) is know (e.g., via a stochastic
partial differential equations) and then, a semigroup is define as follow

Φα(t)h(x) = E{e−αth(y(t, x))}, (5.54)

for any α > 0, on the space of Cb(X) of real (uniformly) continuous and bounded
functions, where X is an open subset (or the closure of an open subset) in a
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separable Banach space. Sometimes, we are required to consider the semigroup
{Φα(t) : t ≥ 0} on a space with unbounded functions, e.g., C0

p(X) be the space
of real uniformly continuous functions on any ball and with a growth bounded
by the norm to the p ≥ 0 power, in another words, the space of real functions
h on X such that x 7→ h(x)(1 + |x|2)−p/2 is bounded and locally uniformly
continuous, with the weighted sup-norm

‖h‖ = ‖h‖C0
p

= sup
x∈X

{|h(x)|(λ+ |x|2)−p/2}, (5.55)

with λ > 0. Suppose that the Markov process y(t, x), defined on some probabil-
ity space (Ω,F , P ), satisfies the conditions:

(1) x 7→ y(t, x) is locally uniformly continuous (in x), locally uniformly contin-
uous for t in [0,∞), i.e., for any ε > 0 there is a δ > 0 such that for any x, x̄ in
X satisfying |x− x̄| < δ, |x| ≤ 1/ε and |x̄| ≤ 1/ε we have

P
{

sup
0≤t≤1/ε

|y(t, x) − y(t, x̄)| ≥ ε
}
< ε. (5.56)

(2) t 7→ y(t, x) is locally uniformly continuous (in t), for any x in X, (actually
in a dense subset suffices) i.e., for any x in X and for any ε > 0 there is a δ > 0
such that

P
{

sup
0≤t≤δ

sup
0≤s≤1/ε

|y(t+ s, x) − y(s, x)| ≥ ε
}
< ε. (5.57)

(3) For any p > 0 there are positive constants α0 and λ sufficiently large such
that the following estimate

E{sup
t≥0

e−α0t(λ+ |y(t, x)|2)p/2} ≤ Cp (λ+ |x|2)p/2, ∀x ∈ O (5.58)

holds, with some Cp ≥ 1 and Cp = 1 if the sup is removed in the left-hand side.

Here we are using the notation | · | for either the Euclidean norm or the norm
in the Banach space containing X.

It is clear that (5.58) plays a role only when X is unbounded and that
the closure of an open subset, say X̄ could be used instead of X in all that
follows. The associate semigroup Φα(t) is not necessarily a strongly continuous
semigroup on Cb(X) nor on C0

p(X). Actually, we have in mind X = Rd (i.e.,
an stochastic ODE where the above conditions are easily verified and Φα(t) is
strongly continuous) but these conditions apply also for more general situations
(stochastic PDE), such as the stochastic Navier-Stokes equation, e.g. Menaldi
and Sritharan [124, 125].

It is clear that Cb(X) ⊂ C0
q (X) ⊂ C0

p(X) for any 0 ≤ q < p. Then for any
α ≥ 0, the (linear) semigroup (Φα(t), t ≥ 0) with an α-exponential factor is a
weak-star continuous Markov semigroup in the space Cp(X), i.e.,

Φα(t+ s) = Φα(t)Φα(s), ∀ s, t ≥ 0,

‖Φα(t)h‖ ≤ ‖h‖, ∀ h ∈ C0
p(X),

Φα(t)h(x) → h(x) as t→ 0, ∀ h ∈ C0
p(X),

Φα(t)h(x) ≥ 0, ∀ h ≥ 0, h ∈ C0
p(X).

(5.59)
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This follows immediately from the conditions (5.56), (5.57) and (5.58) imposed
on the Markov process y(t, x).

Since the semigroup is not strongly continuous, we cannot consider the strong
infinitesimal generator as acting on a dense domain in C0

p(X). However, this
Markov semigroup {Φα(t) : t ≥ 0} may be considered as acting on real Borel
functions with p-polynomial growth, which is a Banach space with the norm
(5.55) and is denoted by Bp(X). It is convenient to define the family of semi-
norms on Bp(X)

p0(h, x) = E
{

sup
s≥0

|h(y(s, x))| e−α0s
}
, ∀x ∈ X, (5.60)

where 2α, 2p and λ satisfy the estimate (5.58), and when p = 0 we may take
α0 = 0. If a sequence {hn} of equi-bounded functions in Bp(X) satisfies p0(hn−
h, x) → 0 for any x in X, we say that hn → h boundedly pointwise relative to the
above family of semi-norms. In view of (5.57), it is clear that p0(Φα(t)h−h, x) →
0 as t→ 0, for any function h in C0

p(X) and any x in X.

Let us defined B0
p(X) be the subspace of functions h̄ in Bp(X) such that the

mapping t 7→ h̄[y(t, x)] is almost surely continuous on [0,∞) for any x in X and
satisfies

lim
t→0

p0(Φα(t)h̄− h̄, x) = 0, ∀x ∈ X. (5.61)

where p0(·, ·) is the semi-norm given by (5.60). This is the space of functions
(uniformly) continuous over the random field y(·, x), relative to the family of
semi-norms (5.60), and it is independent of α, as long as (5.58) holds. Hence, we
may consider the semigroup on the Banach spaceB0

p(X), endowed with the norm

(5.55). The weak-star infinitesimal generator Āα with domain Dp(Āα) (as a
subspace of B0

p(X)) is defined by the boundedly pointwise limit [Φα(t)h−h]/t→
Āαh as t→ 0, relative to the family of semi-norms (5.60). Also, it is clear that
p0(Φα(t)h̄, x) ≤ p0(h̄, x) for any t ≥ 0, h̄ in B0

p(X) and x in X. We include the
proof of the following results for the sake of completeness,

Proposition 5.12 (density). If assumptions (5.56), (5.57) and (5.58) hold,
then C0

p(X) ⊂ B0
p(X), the semigroup {Φα(t) : t ≥ 0} leaves invariant the space

B0
p(X), and for any function h̄ in B0

p(X), there is an equi-bounded sequence

{h̄n} of functions in Dp(Āα) satisfying p0(h̄n − h̄, x) → 0 for any x in X.

Proof. Indeed, since any function h in Cp(X) is such that x 7→ h(x) (λ +
|x|2)−q/2, q > p, is uniformly continuous for x in X, we may use the estimate
(5.58) to reduce the proof of the property (5.61) to the following condition

lim
t→0

P
{

sup
0≤s≤T

|y(t+ s, x) − y(s, x)|
}

= 0, ∀x ∈ X, T > 0, (5.62)

which follows from (5.57). This verifies the fact that C0
p(X) ⊂ B0

p(X).
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Next, from the strong Markov property we deduce

p0(Φα(t)h̄, x) = E
{

sup
s≥0

E{|h̄[y(t+ s, x)]|e−α0(t+s) | y(t, x)}e−(α−α0)t
}

≤ E
{

sup
s≥0

|h̄[y(t+ s, x)]|e−α0(t+s)
}

= p0(h̄, x),

for any x in O and t ≥ 0. Therefore,

p0(Φα(r + t)h̄− Φα(t)h̄, x) = p0(Φα(t)[Φα(r)h̄− h̄], x) ≤
≤ p0(Φα(r)h̄− h̄, x),

which proves that the space B0
p(O) is invariant under the semigroup.

Finally, to approximate a function h̄ in B0
p(O) by regular functions, we can

define the sequence {h̄n n = 1, 2, . . . } by

h̄n(x) = n

∫ ∞

0

e−ntΦα(t)h̄(x)dt =

∫ ∞

0

e−tE
{
h̄(y(

t

n
, x))e−α(

t
n
)
}

dt,

and apply the Markov property to get

∣∣E
{

sup
s≥0

[h̄n(y(s, x)) − h̄(y(s, x))]e−α0s
}∣∣ ≤

≤
∫ ∞

0

e−t
[
E
{

sup
s≥0

|h̄(y(s+
t

n
, x))e−α(

t
n
) − h̄(y(s, x))|e−α0s

}]
dt.

Thus, from the estimates (5.57) and (5.58) we deduce

lim
n→∞

∣∣E
{

sup
s≥0

[h̄n(y(s, x)) − h̄(y(s, x))]e−α0s
}∣∣ = 0,

for any fixed x in X.

A clear consequence of the above results is that given α > 0, p ≥ 0, λ
sufficiently large to ensure (5.58), and a function h̄ in B0

p(O), there is another

function ū in Dp(Āα) such that −Āαū = h̄, where the solution admits the
explicit representation

ū =

∫ ∞

0

Φα(t)h̄ dt. (5.63)

The right-hand side is called the weak-star resolvent operator and is denoted by
either Rα = (−Āα)−1 or Rα = (αI − Ā0)−1. For any α > α0 we obtain

‖Φα(t)h̄‖ ≤ e−(α−α0)t ‖h̄‖, p0(Φα(t)h̄, x) ≤ e−(α−α0)tp0(h̄, x), (5.64)

for any t ≥ 0, and

‖Rαh̄‖ ≤ 1

α− α0
‖h̄‖, p0(Rαh̄, x) ≤ 1

α− α0
p0(h̄, x), (5.65)
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for any x in X and where the norm ‖ · ‖ and the semi-norms p0(·, x) are given
by (5.55) and (5.60), respectively. Notice that α0 = 0 for p = 0, and it is clear
that for any h̄ ≤ h (pointwise) we have Rαh̄ ≤ Rαh, which is a weak form of
the maximum principle.

Limiting the operator to the space Cu(X) of bounded uniformly continu-
ous functions, we find the so-called π-semigroups as proposed in Priola [148].
When the Φα(t) is a strongly continuous Markov-Feller semigroup (typically an
stochastic ODE) the weak version of the semigroup is of limited importance,
since the domain of the infinitesimal generator is dense (in norm) in the space
C0
p(O) of locally uniformly continuous functions with a growth bounded by the

p-power of the norm. In general, we only have a weakly continuous Markov-
Feller semigroup (typically stochastic PDE) and this weak version is very useful.

5.2.4 Invariant Distribution

Let E be a (locally compact) Polish space and {S(t) : t ≥ 0} be a stochastically
continuous Markov semigroup on Banach space B(E) of all bounded Borel real-
valued functions on E, with Markov transition function {P (t, x, ·) : t ≥ 0, x ∈
E},

S(t)f(x) =

∫

E

f(y)P (t, x, dy), ∀t ≥ 0, x ∈ E.

We begin with the following

Definition 5.13 (invariant). A probability measure µ on the Borel σ-algebra
B(E) is called an invariant distribution or invariant probability measure of the
Markov semigroup {S(t) : t ≥ 0} if

∫

E

S(t)fdµ =

∫

E

fdµ,

or in term of the kernels
∫

E

µ(dx)

∫

E

f(y)P (t, x, dy) =

∫

E

f(x)µ(dx),

for every f in B(E) and every t > 0.

Notice that if an invariant distribution µ exits then the Markov semigroup
satisfies S(t)✶ = ✶ or equivalently P (t, x, E) = 1, for every t ≥ 0 and x in E,
i.e, the semigroup has to be Markov, not sub-Markov, see Definition 5.8.

If {S(t) : t ≥ 0} is also a Markov-Feller semigroup then, besides S(t) :
B(E) → B(E), we have S(t) : C → C for some closed subspace C of Cb(E),
the space of bounded continuous real-valued functions on E, e.g., C could be
continuous functions vanishing at infinity or uniformly continuous functions or
the whole space Cb(E). Then {S(t) : t ≥ 0} is strongly continuous in C and the
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infinitesimal generator (D(A), A) is densely defined on C and

S(t)f − f =

∫ t

0

AS(s)fds =

∫ t

0

S(s)Afds,

∫

E

[S(t)f − f ]dµ =

∫

E

A
(∫ t

0

S(s)fds
)

dµ,

for any probability measure µ. This proves that µ is an invariant distribution if
and only if

∫

E

Afdµ = 0, ∀f ∈ D(A),

provided {S(t) : t ≥ 0} is a Markov-Feller semigroup.

The following result give a condition for the existence of an invariant prob-
ability measure, see Doob, Khasminskii, Krylov-Bogoliubov theorems in Da
Prato and Zabczyk [29, Chapters 3 and 4],

Theorem 5.14 (existence). Let {P (t, x, ·) : t ≥ 0, x ∈ E} be a stochastically
continuous Markov transition function on a Polish space E. If the family of
time-average probabilities {R(t, x, ·) : t ≥ 0, x ∈ E},

R(t, x, ·) =
1

t

∫ t

0

P (s, x, ·)ds,

is tight for t in [t0,∞), for some x = x0 and t0 > 0, then there exists an
invariant distribution µ.

Recall that a family of probabilities {R(t, x0, ·) : t ≥ t0} is tight when for
every ε > 0 there exits a compact subset K = Kε of E such that R(t, x0,K) ≥
1 − ε, for every t ≥ t0. Thus, any weak limit as t → ∞ of the time-average
probabilities is an invariant probability measure.

As it was defined early, {S(t) : t ≥ 0} is strongly Feller if S(t0) : B(E) → C,
for some t0 > 0. Also, a Markov transition function {P (t, x,B) : t ≥ 0, x ∈
E, B ∈ B(E)} is called irreducible if there exist t0 > 0 such that for every
non-empty open subset O of E and for any x in O we have P (t0, x,O) > 0.
Furthermore, it is called regular if there exists t0 > 0 such that all transition
probabilities {P (t0, x, ·) : x ∈ E} are mutually equivalent.

Theorem 5.15 (uniqueness). Let µ be an invariant distribution of a stochas-
tically continuous Markov transition function {P (t, x, ·) : t ≥ 0, x ∈ E} on a
Polish space E. If it is strongly Feller and irreducible then it is also regular, the
invariant distribution is unique and

(1) for any x in E and B in B(E) we have P (t, x,B) → µ(B) as t→ ∞,

(2) there exists t0 > 0 such that all probabilities measures {P (t, x, ·) : t ≥ t0, x ∈
E} are equivalent to µ.
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A set B in B(E) is called invariant with respect to a stochastically continuous
Markov transition function {P (t, x,B) : t ≥ t0, x ∈ E, B ∈ B(E)} having an
invariant probability measure µ if except in a set of µ-measure zero, P (t, ·, B) =
✶B , for every t > 0. Then an invariant probability measure µ is called ergodic
if the only invariant sets have µ measure 0 or 1, i.e., if P (t, ·, B) = ✶B µ-a.s.
implies µ(B) = 0 or µ(B) = 1. It can be proved that an invariant distribution µ
is ergodic if and only if the time-average commute with the space average, i.e.,

1

T

∫ T

0

dt

∫ T

0

f(y)P (t, ·, dy) →
∫

E

f(y)µ(dy) in L2(E, µ),

as T → ∞, for every f in L2(E, µ).
Sometimes a stronger convergence than (1) in Theorem 5.15 is necessary, e.g.,

exponential convergence. Based on Doob’s ergodicity Theorem on a compact
space E, the so-called Doeblin’s condition, namely, there exist t0 > 0 and δ > 0
such that

P (t0, x, B) − P (t0, y, B) ≤ 1 − δ, ∀x, y ∈ E, B ∈ B(E), (5.66)

imply the existence of a unique invariant probability measure µ and the expo-
nential convergence

∣∣∣
∫

E

f(y)P (t, x, dy) −
∫

E

f(y)µ(dy)
∣∣∣ ≤ Ce−ωt sup

y∈E
|f(y)|,

for some positive constants C and ω, and for every x in E, as long as E is
compact.

Typical conditions to ensure the tightness of the probability measures needed
in Theorem 5.14 are given in term of the existence of Liapunov functions, see
Khasminskii [96]. For instance, if there exists a function ϕ in D(A) such that
ϕ ≥ 0 and satisfying ϕ(x) → −∞ as |x| → ∞ (which means that for every
m > 0 there is a compact set K = Km of E such that ϕ(x) < −m for every
x in E rK) the family {P (t, x0, ·) : t ≥ 0, x ∈ E} is tight for every x0 fixed.
The existence of a Liapunov function satisfying ϕ(x) → +∞ as |x| → ∞ and
Aϕ−αϕ ≤ C for some positive constants α and C, yields the uniqueness of the
invariant probability measure.

If µ is an invariant distribution then Jensen’s inequality yields

∣∣∣
∫

E

f(y)P (t, x, dy)
∣∣∣
p

≤
∫

E

|f(y)|pP (t, x, dy) =

∫

E

|f(y)|pµ(dy),

for every p in [1,∞). The stochastically continuous Markov semigroup {S(t) :
t ≥ 0} can be extended to a strongly continuous semigroup of contractions in the
Lebesgue spaces Lp(E, µ). Moreover, any other probability measure ν which is
equivalent to µ (i.e., ν is absolutely continuous with respect to µ and conversely)
can be used to extend the semigroup to Lp(E, ν).

In a finite-dimensional setting, let D be a domain in Rd (i.e., the closure
of the interior of D is equal to its closure) and let (A,D) be a linear operator
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defined on a linear sub-space D of C∞(D̄) containing C∞
0 (D). Assume that

there exist a probability measure µ on D such that

Av ∈ L1(D,µ) and

∫

D

Av(x) µ(dx) = 0, ∀v ∈ D.

Then, we want to find a unique extension of (A,D) which generates a strongly
continuous Markov semigroup {T (t) : t ≥ 0} in Lp(D,µ), 1 ≤ p < ∞, having µ
as an invariant measure. Several conditions are given in the literature to ensure
this construction, e.g., see Stannat [165] and references there in.

5.3 Integro-differential Operators

We are interested in integro-differential operators associated with diffusion pro-
cesses with jumps, see Gikhman and Skorokhod [62, p. 245] and Bensoussan
and Lions [6, p. 178]. For a comprehensive treatment on (elliptic/parabolic)
integro-differential operators, we refer to the books Garroni and Menaldi [58, 59].
This is very similar to the so-called Waldenfels operators as considered in the
paper Bony et al. [17] and the recent book Taira [172, Chapters 8 and 10, pp.
361–410, 477–546] 1.

A Radon measure M(x, dz) on Rd∗ = Rd r {0}, for any x in Rd, determines
this operator. Depending on the assumptions on the singularity at the origin
of the Lévy kernel M(x, dz) we may classify these integro-differential operators.
The expression

I1ϕ =

∫

|z|<1

[ϕ(· + z) − ϕ]M1(·, dz), (5.67)

with
∫

|z|<1

|z|M1(·, dz) <∞

define an integro-differential operator of order 1, since, in view of the mean value
theorem, the expression (5.67) makes sense for bounded continuously differen-
tiable functions. However, a form

I2ϕ =

∫

|z|<1

[ϕ(· + z) − ϕ− z · ∇ϕ]M2(·, dz), (5.68)

with
∫

|z|<1

|z|2M2(·, dz) <∞

1note that Chapters 8 and 10 are part of the Second Edition!
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gives an integro-differential operator of order 2, since, by Taylor’s formula,
the expression (5.68) makes sense for bounded twice-continuously differentiable
functions. On the other hand,

I0ϕ =

∫

Rd
∗

[ϕ(· + z) − ϕ]M0(·, dz), with

∫

Rd
∗

M0(·, dz) <∞ (5.69)

provides a bounded (or order 0) integral (or non-local) operator, since the ex-
pression (5.69) makes sense for bounded functions.

Note that in the definitions (5.67) and (5.68) of the operators I1 and I2, we
may replace the region of integration {|z| < 1} by one of the form {|z| < r},
for any r > 0. The interesting part is the singularity at the origin, i.e., small
jumps. On the other hand, in the definition (5.69) of the operator I0 we may
use {|z| ≥ r}, for any r > 0, as the region of integration, instead of the whole
space Rd∗. Here the interest is on the integrability at infinity, i.e., large jumps.

Let us present some typical examples. First, an operator of order 0,

I0ϕ = λ[ϕ(· + ζ) − ϕ],

for some constants λ > 0, ζ ∈ Rd∗. Here the Lévy kernel is M0(x, ·) = λδζ , where
δζ denotes the Dirac measure at ζ. Second, two examples of order 1,

I1ϕ =

∫

|z|<1

[ϕ(· + z) − ϕ]|z|−ddz,

where the Lévy kernel M1(x, dz) = ✶|z|<1|z|−ddz, and

I1ϕ =

∞∑

n=1

λn[ϕ(· + ζn) − ϕ],

with

λn ≥ 0,
∞∑

n=1

λn = ∞,
∞∑

n=1

λn|ζn| <∞.

Here ζn → 0 as n→ ∞ and the Lévy kernel M1(x, ·) =
∑∞
n=1 λnδ(·− ζn). Next,

two examples of order 2,

I0ϕ+ I2ϕ =

∫

Rd
∗

[ϕ(· + z) − ϕ− z · ∇ϕ✶|z|<1]|z|−d−1dz,

where the Lévy kernels are M0(x, dz) = ✶|z|>1|z|−d−1dz and M2(x, dz) =

✶|z|<1|z|−d−1dz, and

I2ϕ =

∞∑

n=1

λn[ϕ(· + ζn) − ϕ− ζn · ∇ϕ], with

λn ≥ 0,

∞∑

n=1

λn(1 + |ζn|) = ∞,

∞∑

n=1

λn|ζn|2 < ∞.
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where the Lévy kernel M2(x, ·) =
∑∞
n=1 λnδ(· − ζn). Note that in all examples,

the Lévy kernels M(x, dz) are independent of x.
Working with operators of the type (5.67) or (5.68), we see that the Lévy

kernel M1(·, dz) and M2(·, dz) can be approximated by bounded kernels of the
form

Mi,ε(·, dz) = ✶|z|≥εMi(·, dz), i = 1, 2.

We see that as ε goes to 0, the integro-differential operators (5.67) or (5.68) are
limits of bounded non-local operators of the type (5.69).

Definition 5.16 (order γ). We say that an integro-differential operator I = Iγ
is (a) of order γ = 0 (or bounded) if

Iϕ =

∫

Rd
∗

[ϕ(· + z) − ϕ]M(·, dz), with

∫

Rd
∗

M(·, dz) <∞,

(b) of order γ in (0, 1] if

Iϕ =

∫

Rd
∗

[ϕ(· + z) − ϕ]M(·, dz),

with

∫

|z|<1

|z|γM(·, dz) +

∫

|z|≥1

M(·, dz) < ∞,

(c) of order γ in (1, 2] if

Iϕ =

∫

Rd
∗

[ϕ(· + z) − ϕ− z · ∇ϕ✶|z|<1]M(·, dz),

with

∫

|z|<1

|z|γM(·, dz) +

∫

|z|≥1

M(·, dz) < ∞.

In all cases, γ is also referred to as the order of the Lévy kernel M(·, dz) =
Mγ(·, dz).

Note that the order γ of an integro-differential operator does not (com-
pletely) characterize the behaviour of the singularity of the Lévy kernel M(·, dz).
Actually, the most significant values are γ = 0 (where the operator is bounded),
γ = 1 (where the expression used to define operator changes), and in general
γ = 2. The use of “order” of the operator may be questionable, since an operator
of order γ is also an operator of order γ′, for any γ ≤ γ′ ≤ 2. For the sake of
simplicity we use the expression “of order γ” instead of “of order at most γ”.

It is hard to track the dependency on the variable x of the Lévy kernel
M(x, dz) to ensure that the integro-differential operator I acts on Lebesgue
(Sobolev) and Hölder spaces. We will make precise how the variable x intervenes
on the Lévy kernel M(x, dz), allowing enough flexibility to include modulation
of the amplitude (or intensity) of jumps (well adapted for stochastic differential
equations, see Gikhman and Skorokhod [62, p. 215]) and the density (or size) of
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jumps (better adapted for the martingale problem theory, see Bensoussan and
Lions [6, p. 251]).

A priori the integro-differential operator is defined for functions ϕ(x), with
x in the whole space Rd. However, we want to consider equations on a domain
Ω of Rd, with either Dirichlet or Neumann boundary conditions, and even with
oblique boundary conditions. We then need to localize the operator into Ω, e.g.,
by extending the data ϕ onto RdrΩ. Thus Iϕ becomes Iϕ̃, where ϕ̃ is a suitable
extension of ϕ (defined only on Ω) to the whole space Rd. The extension depends
on the boundary value problem under consideration, which has a probabilistic
interpretation. For instance, it is natural to use the zero-extension to study
homogeneous Dirichlet boundary conditions. This corresponds to stopping the
diffusion process with jumps (in the whole space Rd) at the first exit time of the
domain Ω. It is clear that the zero-extension will present some extra difficulties,
e.g., if ϕ belongs to W 1,p

0 (Ω) ∩W 2,p(Ω) then the zero-extension ϕ̃ belongs to
W 1,p

0 (Rd) but in general, it is not an element of W 2,p(Rd).

As seen later, to treat the homogeneous Neumann (or oblique) boundary
conditions, we will use a condition on the jumps (namely, no jumps outside
of Ω) that will make the extension unnecessary, i.e., any extension ϕ̃ of ϕ will
produce the same value for Iϕ̃.

5.3.1 The Epsilon-estimates

We need to describe the dependency of the variable x in the Lévy kernel
M(x, dz). Suppose that there exist a σ-finite measure space (F,F , π), two Borel
measurable functions j(x, ζ) and m(x, ζ) from Rd × F into Rd∗ and [0,∞), re-
spectively, such that

M(x,A) =

∫

{ζ:j(x,ζ)∈A}
m(x, ζ)π(dζ), (5.70)

for any Borel measurable subset A of Rd∗. The functions j(x, ζ) and m(x, ζ)
are called the jump size (or amplitude) and the jump density (or intensity),
respectively. The conditions (5.67), (5.68) or (5.69) on the singularity at the
origin of the Lévy kernel M(x, dz) will be assumed to hold uniformly in x, so
that for some measurable function ̄(ζ) from F into (0,∞) and some constant
C0 > 0 we have

|j(x, ζ)| ≤ ̄(ζ), 0 ≤ m(x, ζ) ≤ 1,∫

{̄<1}
[̄(ζ)]γπ(dζ) +

∫

{̄≥1}
π(dζ) ≤ C0,

(5.71)

where 0 ≤ γ ≤ 2 is the order of the Lévy kernel. Actually, we may allow
0 ≤ m(x, ζ) ≤ C if we re-define the measure π(dζ).

Thus, for any smooth function ϕ the integro-differential operator has the
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form

Iϕ =

∫

F

[ϕ(· + j(·, ζ)) − ϕ]m(·, ζ)π(dζ) =

=

∫ 1

0

dθ

∫

F

j(·, ζ) · ∇ϕ(· + θj(·, ζ))m(·, ζ)π(dζ), (5.72)

for 0 ≤ γ ≤ 1 and

Iϕ =

∫

{̄<1}
[ϕ(· + j(·, ζ)) − ϕ− j(·, ζ) · ∇ϕ]m(·, ζ)π(dζ)+

+

∫

{̄≥1}
[ϕ(· + j(·, ζ)) − ϕ]m(·, ζ)π(dζ), (5.73)

for 1 < γ ≤ 2, where the first term can be rewritten as

∫ 1

0

(1 − θ)dθ

∫

{̄<1}
j(·, ζ) · ∇2ϕ(· + θj(·, ζ))j(·, ζ)m(·, ζ)π(dζ).

In order to study this integro-differential operator as acting on Lebesgue
(Sobolev) spaces, we will need to perform a change of variables. Assume that
the jump amplitude function j(x, ζ) is continuously differentiable in x for any
fixed ζ, and that there exist a constant c0 > 0 such that for any x, x′ and
0 ≤ θ ≤ 1 we have

c0|x− x′| ≤ |(x− x′) + θ[j(x, ζ) − j(x′, ζ)]| ≤ c−1
0 |x− x′|. (5.74)

This implies that the change of variables X = x+ θj(x, ζ) is a diffeomorphism
of class C1 in Rd, for any θ in [0, 1] and ζ in F. Moreover, the Jacobian of the
transformation satisfies

c−1
1 ≤ det[Id + θ∇j(x, ζ)] ≤ C1, (5.75)

for any x, ζ, θ and some constants C1, c1 ≥ 1. Here Id is the identity matrix in
Rd, ∇j(x, ζ) is the matrix of the first partial derivatives in x, and det[·] denotes
the determinant of a matrix.

In order to study the integro-differential operator in the Hölder space Cα,
we also need Hölder continuity of the amplitude and density of jumps. For some
exponent 0 < α < 1 we assume that there exist a measurable function (again
denoted by) ̄(·) from F into (0,∞) and some constant M0 > 0 such that for
any x, x′ and ζ we have

|j(x, ζ) − j(x′, ζ)| ≤ ̄(ζ)|x− x′|α,
|m(x, ζ) − m(x′, ζ)| ≤M0|x− x′|α,∫

{̄<1}
[̄(ζ)]γπ(dζ) +

∫

{̄≥1}
π(dζ) ≤M0.

(5.76)
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Let O be a bounded subset of Rd and set Oε = {x ∈ Rd : x = y + z, y ∈
O, |z| < ε}. Due to the non-local character of the integro-differential operator
I we need a function ϕ to be defined in a neighborhood of the closure O to
consider Iϕ in O. Thus, we define the support of I as the closed subset OI of
Rd, where

OI =
⋃

{x+ suppM(x, ·) : x ∈ O} (5.77)

and suppM(x, ·) means the support of the Lévy kernel (or measure)

M(x,B) =

∫

j(x,ζ)∈B
m(x, ζ)π(dζ) , B ⊂ Rd∗ measurable Borel .

Proposition 5.17 (ε-estimates). If the integro-differential operator I has the
form (5.72) or (5.73), and conditions (5.71) and (5.74) are satisfied then for ev-
ery ε > 0 there exists constants C and C(ε) depending only on ε, the dimension
d, the bounds C0 and c1 of conditions (5.71) and (5.75) such that

‖Iϕ‖Lp(O) ≤ C‖ϕ‖Lp(OI)
, if γ = 0,

‖Iϕ‖Lp(O) ≤ ε‖∇ϕ‖Lp(Oε) + C(ε)‖ϕ‖Lp(OI)
, if 0 < γ ≤ 1

and, if 1 < γ ≤ 2, then

‖Iϕ‖Lp(O) ≤ ε‖∇2ϕ‖Lp(Oε) + C(ε)

[
‖ϕ‖Lp(OI)

+ ‖∇ϕ‖Lp(O)

]
,

for 1 ≤ p ≤ ∞. Moreover, if we also assume the Hölder condition (5.76) on the
coefficients, then the above estimates are valid with the Cα-norm instead of the
Lp-norm, and in this case the constants C and C(ε) depends also on the bounds
M0 of assumption (5.76).

At this point, it should be clear that the integro-differential operator I is
naturally non-local, i.e., we need to use functions defined on the whole space Rd.
So, a direct approach to consider I as acting on functions ϕ defined only on a
(proper) domain Ω of Rd, is to extend first ϕ to the whole space. Thus, denoting
by ϕ̃ a suitable extension of ϕ, we have Iϕ = Iϕ̃, by definition. However, if we
assume that

m(x, ζ) 6= 0 implies x+ θj(x, ζ) ∈ Ω, ∀θ ∈ [0, 1], (5.78)

valid for any (x, ζ) in Ω×F, then we see that the value Iϕ = Iϕ̃ is independent
of the extension ϕ 7→ ϕ̃ used. Indeed, notice that Iϕ̃ is always defined as the
limit Iεϕ̃, where the Lévy kernel of Iε is Mε(·, dz) = ✶(|z|>ε)M(·, dz). Condition

(5.78) means that all jumps from Ω are within Ω. Hence, under this condition
(5.78), we may consider Iϕ without any reference to the extension used for its
proper definition (included estimates on its norm).

[Preliminary] Menaldi December 12, 2017



5.3. Integro-differential Operators 391

From the stochastic process viewpoint, some action should be taken when the
jumps are outside of the region under consideration, e.g., we may stop or reflect
the jumps, so that condition (5.78) will be eventually satisfied for the actual (or
modified) jumps. So that in general, this will take care of Dirichlet, Neumann
and oblique boundary conditions. However, for homogeneous Dirichlet bound-
ary conditions problems, we have a natural zero-extension which corresponds
to stopping the stochastic process at the first exit time of Ω. The problem with
zero-extension is that a function ϕ in W 2,p(Ω)∩W 1,p

0 (Ω) gives a zero-extension
ϕo in W 1,p(Rd), but the first order derivative may be discontinuous across the
boundary ∂Ω. To overcome this difficulty, we need to impose some integrability
conditions on the functions

mΩ(x, ζ) = ✶(x+j(x,ζ) 6∈Ω)m(x, ζ) and m1Ω(x, ζ) = j(x, ζ)mΩ(x, ζ),

as seen below. Indeed, let denote by IΩ the integro-differential operator corre-
sponding to the density mΩ, i.e. for a smooth function v in the whole space Rd

and for 1 < γ ≤ 2 we have

IΩv(x) = lim
ε→0

∫

̄≥ε
[v(x+ j(x, ζ)) − v(x)]mΩ(x, ζ)π(dζ)

− lim
ε→0

∫

ε≤̄<1

∇v(x + j(x, ζ)) · m1Ω(x, ζ)π(dζ).

Thus, we can write Iv = IΩv+(I− IΩ)v and, for any x in Ω, the first term (i.e.,
IΩv) reduces to only one integral and the second term vanishes if the function
v vanishes in Ω. Hence, if ϕo and ϕ̃ are two extensions to the whole space of
a given function in Ω (e.g., ϕo the zero-extension and ϕ̃ a smooth extension)
then v = ϕo − ϕ̃ vanishes in Ω. Assuming v smooth (which may not be the
case!) we may use the previous argument to see that Iϕo = Iϕ̃ + IΩ(ϕo − ϕ̃).
Thus, we have the following localization of the operator I, by imposing the above
vanishing property for non-smooth functions.

Definition 5.18 (localization). Let Ω be a bounded domain in Rd with smooth
boundary, e.g., C2+α, and let I be the integro-differential operator given by
(5.72) or (5.73) of order γ in [0, 2]. For a smooth function ϕ defined on Ω we
denote by ϕo the zero-extension to whole space Rd and by ϕ̃ a smooth (say
C2+α) extension. Under the conditions (5.71) we define the localization of I (to
the domain Ω) as Iϕo = Iϕ̃+ IΩ(ϕo − ϕ̃), where the operator IΩ is given by

IΩ(ϕo − ϕ̃) = −
∫

{ζ∈F : x+j(x,ζ) 6∈Ω}
ϕ̃(· + j(·, ζ))m(·, ζ)π(dζ),

with the above notation.

If I has the form (5.73) of order γ in (1, 2], then we assume that for some
γ1 in [1, γ] there exist a measurable function λ1(ζ) and a constant K1 > 0 such
that for every x in Ω and ζ with x+ j(x, ζ) belonging to Rd r Ω,

|j(x, ζ)|m(x, ζ) ≤ d1−γ1(x, ∂Ω)λ1(ζ),

∫

̄<1

λ1(ζ)π(dζ) ≤ K1, (5.79)
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where d(x, ∂Ω) denotes the distance from x to the boundary ∂Ω, and ̄(ζ) is the
function in (5.71). Notice that if x is in Ω but x+ j(x, ζ) is not in Ω then

|j(x, ζ)|m(x, ζ) = |j(x, ζ)|γ |j(x, ζ)|1−γm(x, ζ) ≤
≤ |j(x, ζ)|γd1−γ(x, ∂Ω)m(x, ζ).

The function λ(ζ) = supx |j(x, ζ)|γm(x, ζ) is bounded by [̄(ζ)]γ , which is inte-
grable in view of assumption (5.71). This show that condition (5.79) is always
satisfied with γ1 = γ. This γ1 in [1, γ] is called the boundary order of I (and of
the Lévy Kernel) with respect to the bounded domain Ω.

In Hölder spaces, we need to assume that the function mΩ(x, ζ) = m(x, ζ)
only if x+ j(x, ζ) 6∈ Ω and zero otherwise, satisfies the following inequalities for
any x, x′ and ζ

∫

F

(
̄Ω(ζ) ∧ 1

)1−α
mΩ(x, ζ)π(dζ) ≤M1,

∫

F

(
̄Ω(ζ) ∧ 1

)
|mΩ(x, ζ) − mΩ(x′, ζ)|π(dζ) ≤M1|x− x′|α, (5.80)

∣∣∣∣
∫

̄<1

j(x, ζ)mΩ(x, ζ)π(dζ) −
∫

̄<1

j(x′, ζ)mΩ(x′, ζ)π(dζ)

∣∣∣∣ ≤M1|x− x′|α,

where the function ̄(ζ) is as in assumption (5.71), ̄Ω(ζ) = sup{|j(x, ζ)| : x ∈
Ω, x+j(x, ζ) 6∈ Ω}, the constant M1 is positive and the exponent α is the same
as in condition (5.76).

We modified Proposition 5.17 as follows.

Proposition 5.19 (ε-loc-estimates). If the integro-differential operator I has
the form (5.72) or (5.73), and conditions (5.71), (5.74) and (5.79) are satisfied
then for any smooth function ϕ which vanishes on the boundary ∂Ω we have the
following estimates:
(1) if γ = 0 and 1 ≤ p ≤ ∞ then

‖Iϕ‖Lp(Ω) ≤ C‖ϕ‖Lp(Ω),

(2) if 0 < γ ≤ 1 and 1 ≤ p ≤ ∞ then

‖Iϕ‖Lp(Ω) ≤ ε‖∇ϕ‖Lp(Ω) + C(ε)‖ϕ‖Lp(Ω),

(3) if 1 < γ1 ≤ γ ≤ 2 and 1 ≤ p < d/(γ1 − 1) or if γ1 = 1 and 1 ≤ p ≤ ∞ then

‖Iϕ‖Lp(Ω) ≤ ε‖∇2ϕ‖Lp(Ω) + C(ε)

[
‖∇ϕ‖Lp(Ω) + ‖ϕ‖Lp(Ω)

]
,

where ε > 0 is arbitrary and the constant C and the function C(ε) depend
only on d, γ1, Ω and the bounds in conditions (5.71) and (5.74). Moreover, if
γ > 1−α, (5.76) and (5.80) are satisfied, then we have the following estimates:
(1) if γ = 0 then

‖Iϕ‖Cα(Ω) ≤ C‖ϕ‖Cα(Ω),
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(2) if 0 < γ ≤ 1 then

‖Iϕ‖Cα(Ω) ≤ ε‖∇ϕ‖Cα(Ω) + C(ε)‖ϕ‖Cα(Ω),

(3) if 1 < γ ≤ 2 then

‖Iϕ‖Cα(Ω) ≤ ε‖∇2ϕ‖Cα(Ω) + C(ε)

[
‖∇ϕ‖Cα(Ω) + ‖ϕ‖Cα(Ω)

]
,

where ε > 0 is arbitrary and the constant C and the function C(ε) depend only
on d, Ω and the bounds in conditions (5.71), (5.76), (5.79) and (5.80).

5.3.2 A Priori Estimates

The starting point is a second order (uniformly) elliptic differential operator L
of the form

L(x, ∂x)ϕ(x) = −
d∑

i,j=1

aij(x)∂ijϕ(x)+

+
d∑

i=1

ai(x)∂iϕ(x) + a0(x)ϕ(x) , (5.81)

and a boundary first order operator B of the form

B(x, ∂x)ϕ(x) = −
d∑

i=1

bi(x)∂iϕ(x) + b0(x)ϕ(x) , (5.82)

where Ω is a domain with C2 boundary and the coefficients satisfy

d∑

i,j=1

aij(x)ξiξj ≥ µ|ξ|2, ∀ ξ ∈ Rd , x ∈ Ω ,

aij ∈ C0(Ω), ai, a0 ∈ L∞(Ω),

d∑

i,j=1

aijninj =

d∑

i=1

bini in ∂Ω, bi, b0 ∈ C1(Ω),

(5.83)

When Ω = Rd the second-order coefficients are uniformly continuous (and
bounded) and certainly, for Dirichlet boundary conditions, the boundary op-
erator B is not involved.

Consider L as an unbounded operator in Lp(Ω), with either Dirichlet bound-
ary conditions or oblique B-boundary conditions. First, a priori elliptic (Agmon-
Douglis-Nirenberg) estimates are obtained for (uniformly) elliptic differential
operator of the following type: for any 1 < p < ∞ there is a positive constant

[Preliminary] Menaldi December 12, 2017



394 Chapter 5. Transition Functions and PDEs

C = Cp depending only on p, µ, the bounds of the coefficients aij , ai, a0, the
modulus of continuity of aij and the domain Ω such that

‖u‖2,p ≤ C
[
‖Lu‖0,p + ‖u‖p

]
, ∀u ∈W 2,p(Ω),

satisfying either u = 0 on ∂Ω or Bu = 0 on ∂Ω,
(5.84)

where ‖ · ‖p is the norm in Lp(Ω), W 2,p(Ω) is the Banach (Sobolev) space of
functions whose derivatives up to the 2 belong to Lp, with the natural norm
‖ · ‖2,p. When Ω = Rd, the same a priori bounds hold for u in W 2,p(Rd).

Next, based on the above a priori estimate applied to the (complex) elliptic
operator L(x, ∂x) + eiθ∂2t in n+ 1 variables (x, t), with θ in (−π/2, π/2), we can
deduce that for some constants Cp > 0 and ωp > 0 the following estimate holds

‖∂2xu‖p + |λ|1/2‖∂xu‖p + |λ|‖u‖p ≤ Cp‖λu+ Lu‖p, (5.85)

for every u belonging to W 2,p(Ω) satisfying either u = 0 on ∂Ω or Bu = 0 on
∂Ω, and for any λ with ℜ(λ) ≥ ωp. Hence, the operator A = −L with domain
D(A) defined as the Sobolev space W 2,p(Ω) with one of the boundary conditions
either u = 0 on ∂Ω or Bu = 0 on ∂Ω, generates an analytic semigroup in Lp(Ω).

Once the a priori estimates have been obtained, the above argument applies
to Hölder space Cα(Ω), 0 < α < 1 and to some extend to C1(Ω), C0(Ω), L1(Ω)
and L∞(Ω), e.g., Lunardi [112, Chapter 3, pp. 69–119].

Now, consider L− I as an unbounded operator in Lp(Ω), with either Dirich-
let boundary conditions or B-oblique boundary conditions. Mixed boundary
conditions can be used as long as the boundary ∂Ω is composed by two smooth
(closed and disjointed) portions Γ and ∂ΩrΓ on which Dirichlet and B-oblique
boundary conditions are imposed. Unless Ω is the whole space Rd, the integro-
differential operator I need to be localized and assumptions should be such that
the ε-estimates hold. For instance, besides hypotheses (5.71) and (5.74), if (ho-
mogeneous) Dirichlet boundary conditions are used then we need to impose
also (5.79) with boundary order γ1 such that (γ1 − 1)p < d. However, for (ho-
mogeneous) B-oblique boundary conditions we need to impose (5.78), i.e., the
localization is trivial since no jumps outside Ω are allowed.

Set A = I − L, based on the ε-estimates of the Proposition 5.19 and the
Agmon-Douglis-Nirenberg estimates (5.84) for (uniformly) elliptic differential
operator L, we deduce that for any 1 < p < ∞ there is a positive constant
C = Cp depending only on p, µ, the bounds of the coefficients aij , ai, a0, the
modulus of continuity of aij , the domain Ω and the bounds in the assumptions
on I, such that

‖u‖2,p ≤ C
[
‖Au‖0,p + ‖u‖p

]
, ∀u ∈W 2,p(Ω),

satisfying either u = 0 on ∂Ω or Bu = 0 on ∂Ω,
(5.86)

where ‖ · ‖p is the norm in Lp(Ω), W 2,p(Ω) is the Banach (Sobolev) space of
functions whose derivatives up to the 2 belong to Lp, with the natural norm
‖ · ‖2,p. When Ω = Rd, the same a priori bounds hold for u in W 2,p(Rd).
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Therefore, we deduce that for some constants Cp > 0 and ωp > 0 the
following estimate holds

‖∂2xu‖p + |λ|1/2‖∂xu‖p + |λ|‖u‖p ≤ Cp‖Au− λu‖p, (5.87)

for every u in W 2,p(Ω) satisfying either u = 0 on ∂Ω or Bu = 0 on ∂Ω, and for
any λ with ℜ(λ) ≥ ωp. Hence, the (elliptic) integro-differential operator A with
domain D(A) defined as the Sobolev space W 2,p(Ω) with one of the boundary
conditions either u = 0 on ∂Ω or Bu = 0 on ∂Ω, generates an analytic semigroup
in Lp(Ω).

Once a priori estimates have been obtained, the above argument applies to
Hölder space Cα(Ω), 0 < α < 1 and to some extend to C1(Ω), C0(Ω), L1(Ω)
and L∞(Ω).

5.3.3 Maximum Principles

In order to apply the theory of Markov-Feller semigroups we need to establish the
maximum principle for (elliptic) integro-differential operators. There are several
versions (depending on regularity imposed on the solution) of the maximum
principle valid for elliptic second-order differential operators of the form (5.81).
Moreover, the type of maximum principle we need to obtain a Markov-Feller
semigroup is of a global character and related to an equation of the form

Iu− Lu = f in Ω, u = 0 on Rd r Ω, (5.88)

and

Iu− Lu = f in Ω, Bu = 0 on ∂Ω, (5.89)

or even mixed boundary conditions. The maximum principle is formally stated
as follows: Let u be a function satisfying (5.88) or (5.89) with f ≥ 0 then
u ≥ 0. Certainly, the function space where u belongs and the assumptions on
the coefficients of the operators L and I determine the meaning of the above
equations.

The interested reader should consult the books Garroni and Menaldi [58,
59] for a comprehensive study on second-order integro-differential problems,
and Portenko [147] and Skubachevskii [162], among others, for more general
boundary conditions.

For unbounded domains Ω an extra conditions of the type a0(x) ≥ c > 0 for
some positive constant c is necessary to prevent ergodic situations. Really, to
generate a Markov-Feller semigroup S(t) satisfying S(t)✶ = ✶ for every t ≥ 0 we
need a0(x) = 0, for any x, otherwise, we have a sub-Makovian Feller semigroup.

To conclude, let us mention that the analytic semigroup generated under the
conditions of the previous section, is also a Feller-Markov semigroup in C0(Ω).

5.4 Green and Poisson Functions

This is a short comment on (elliptic/parabolic) integro-differential operators
with oblique boundary conditions as discussed in the books by Garroni and
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Menaldi [58, 59]. For instance, for a comprehensive analysis on the oblique
boundary conditions for parabolic second-order differential equations we can
see Tsuchiya [174, 175], and for Wentzell boundary conditions we can check
Menaldi and Tubaro [126], and even more general type of boundary conditions
can be found in the books Portenko [147] and Skubachevskii [162], among others.

The modern (analytic) semigroup theory is a powerful method to treat many
problems. Perhaps a classic application is to study parabolic equations from el-
liptic equations, where starting from a priori (elliptic) estimates the whole theory
of parabolic equations can be developed. For elliptic and parabolic equations
there are (classic) direct arguments based on so called Green and Poisson func-
tions. Essentially, the inverse of an integro-differential problem is a Fredholm
operator of an integral type, and in the case of parabolic equations this is related
with a Markov process. Actually, the density probability transition function of
a Markov process is the Green functions and the so-called local time is related
with the Poisson function.

Let L−I be an elliptic integro-differential operator as in the previous section.
Given three functions f(x, t), ψ(x, t) and ϕ(x) defined for x ∈ Ω and t ∈ [0, T ],
we consider the second order integro-differential parabolic equation

∂tu+ Lu = Iu+ f in Ω × (0, T ] ,

u = ϕ on Ω × {0} ,
Bu = 0 on ∂Ω × [0, T ] ,

(5.90)

with homogeneous oblique boundary conditions, and

∂tv + Lv = Iv in Ω × (0, T ] ,

v = 0 on Ω × {0} ,
Bv = ψ on ∂Ω × [0, T ] ,

(5.91)

with non homogeneous oblique boundary conditions.

Definition 5.20 (Green/Poisson function). A measurable function G(x, t, ξ)
defined in Ω×(0, T ]×Ω and locally integrable in (t, ξ) is called a Green function
for the parabolic second order integro-differential operator L − I in Ω, with
oblique boundary conditions given by first order differential operator B on ∂Ω
if for any smooth functions f(ξ, τ) and ϕ(ξ) with compact supports in Ω×(0, T ]
and Ω, respectively, the potential function

u(x, t) =

∫ t

0

dτ

∫

Ω

G(x, t− τ, ξ)f(ξ, τ)dξ +

∫

Ω

G(x, t, ξ)ϕ(ξ)dξ

is either a classic solution, i.e., in the space C2,1(Ω×(0, T ])∩C1,0(∂Ω×(0, T ]) or
a strong solution, i.e., in the space W 2,1

p (Ω × (0, T )) of the problem (5.90) with
homogeneous oblique boundary conditions. Similarly, the Poisson function is a
measurable function P (x, t, ξ) defined in Ω × (0, T ] × ∂Ω and locally integrable
in (t, ξ) such that the potential function

v(x, t) =

∫ t

0

dτ

∫

∂Ω

P (x, t− τ, ξ)ψ(ξ, τ)dξ
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is either a classic solution, i.e., in the space C2,1(Ω × (0, T ]) ∩C1,0(∂Ω × [0, T ])
or a strong solution, i.e., in the space W 2,1

p (Ω × (0, T )) of the problem (5.91)
with non homogeneous oblique boundary conditions, for any smooth function
ψ(ξ, τ) with a compact support in ∂Ω × (0, T ].

The differential part of the Green function GL is the piece of the Green
function due to the differential operator L, i.e., the solution u of the equation

∂tu+ Lu = f in Ω × (0, T ] ,

u = ϕ on Ω × {0} ,
Bu = 0 on ∂Ω × [0, T ] ,

with homogeneous oblique boundary conditions, is given by the expression

u(x, t) =

∫ t

0

dτ

∫

Ω

GL(x, t− τ, ξ)f(ξ, τ)dξ +

∫

Ω

GL(x, t, ξ)ϕ(ξ)dξ ,

for any smooth functions f(ξ, τ) and ϕ(ξ) with compact supports in Ω × (0, T ]
and Ω. Actually, in view of the estimates on GL, the above representation for-
mula remains valid for a more general class of functions, either in the Hölder
space C2+α,1+α/2(Ω×(0, T ]), 0 < α < 1 or in the Sobolev space W 2,1

p (Ω×(0, T )),
1 < p <∞.

The following results are found in Solonnikov [163, 164] and Ivasǐsen [79]

Theorem 5.21. Let Ω be a bounded domain in Rd with its boundary ∂Ω of
class C1,α, with 0 < α < 1, and L and B be the operators as above, satisfying
(5.83). Then the strong Green function for the parabolic second order differential
operator ∂t+L in Ω×(0, T ], with oblique boundary conditions given by first order
differential operator B on ∂Ω × [0, T ] exists and satisfies the following estimate

|∇ℓGL(x, t, ξ)| ≤ Ct−(d+ℓ)/2 exp(−c|x− ξ|2/t) ,

for every (x, t, ξ) in Ω×(0, T ]×Ω, for any ℓ = 0, 1, 2 and some positive constants
C and c. Moreover, if the boundary ∂Ω is of class C2,α and the lower order
coefficients ai are in Cα(Ω) and the boundary coefficients bi are in C1+α(∂Ω),
then GL is the classic Green function and enjoys the estimates

|∇ℓGL(x, t, ξ) −∇ℓGL(y, t, ξ)| ≤M |x− y|αt−(d+ℓ+α)/2 ×
× [exp(−m|x− ξ|2/t) + exp(−m|y − ξ|2/t)] ,

|∇ℓGL(x, t, ξ) −∇ℓGL(x, s, ξ)| ≤M |t− s|α/2 ×
× [t−(d+ℓ+α)/2 exp(−m|x− ξ|2/t) + s−(d+ℓ)+α/2 exp(−m|x− ξ|2/s)] ,

for every x, y in Ω, s, t in (0, T ] and ξ in Ω, and

|∇ℓGL(x, t, ξ) −∇ℓGL(x, t, η)| ≤M |ξ − η|αt−(d+ℓ+α)/2 ×
× [exp(−m|x − ξ|2/t) + exp(−m|x − η|2/t)]| ,
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for every x in Ω, t in (0, T ] and ξ, η in Ω, for any ℓ = 0, 1, 2 and some positive
constants C, c, M and m. In all estimates, the constants C, c, M and m depend
only on the bounds imposed on the coefficients (of the differential operators L
and B) throughout the various assumptions and, on the domain Ω × (0, T ].
Estimates similar to the above hold for the Poisson function.

Let GL be the Green function associated with the differential operator L. To
construct the Green function G associated with the integro-differential operator
∂t + L− I, we solve a Volterra equation

either find QI such that QI = QL +QL ⋆ QI ,

or find G such that G = GL +GL ⋆ IG ,
(5.92)

with the relations QL = IGL and G = GL +GL ⋆ QI . Recall that the bullet ⋆
means the kernel-convolution, i.e., for any ϕ(x, t, y, s) and ψ(x, t, y, s)

(ϕ ⋆ ψ)(x, t, y, s) =

∫ T

0

dτ

∫

Rd

ϕ(x, t, z, τ)ψ(z, τ, y, s)dz,

and, in particular for any ϕ(x, t, y) and ψ(x, t, y),

(ϕ ⋆ ψ)(x, t, y) =

∫ t

0

dτ

∫

Rd

ϕ(x, τ, z)ψ(z, t− τ, y)dz,

for every t > 0, x and y in Rd. Actually, we express QI as the following series

QI =

∞∑

n=1

Qn , Q0 = QL, Qn = QL ⋆ Qn−1 , n ≥ 1, (5.93)

where the convergence is in the sense of following Green spaces.
To estimate the Green function of the integro-differential operator ∂t+L−I

we consider a number of semi-norms used to define the Green function spaces in
the domain Ω × (0, T ]. For any kernel ϕ(x, t, ξ), with x, ξ ∈ Ω, t ∈ (0, T ], k ≥ 0
and 0 < α < 1, we define

C(ϕ, k) = inf{C ≥ 0 : |ϕ(x, t, ξ)| ≤ Ct−1+(k−d)/2, ∀x, t, ξ}, (5.94)

K(ϕ, k) = K1(ϕ, k) +K2(ϕ, k), (5.95)

K1(ϕ, k) = inf{K1 ≥ 0 :

∫

Ω

|ϕ(x, t, ξ)|dξ ≤ K1t
−1+k/2, ∀x, t}, (5.96)

K2(ϕ, k) = inf{K2 ≥ 0 :

∫

Ω

|ϕ(x, t, ξ)|dx ≤ K2t
−1+k/2, ∀t, ξ}, (5.97)

M(ϕ, k, α) = M1(ϕ, k, α) +M2(ϕ, k, α) +M3(ϕ, k, α), (5.98)
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M1(ϕ, k, α) = inf{M1 ≥ 0 : |ϕ(x, t, ξ) − ϕ(x′, t, ξ)| ≤
≤ M1|x − x′|αt−1+(k−d−α)/2, ∀x, x′, t}, (5.99)

M2(ϕ, k, α) = inf{M2 ≥ 0 : |ϕ(x, t, ξ) − ϕ(x, t′, ξ)| ≤
≤M2|t− t′|α/2[t−1+(k−d−α)/2 ∨ t′−1+(k−d−α)/2

], ∀x, t, t′, ξ}, (5.100)

M3(ϕ, k, α) = inf{M3 ≥ 0 : |ϕ(x, t, ξ) − ϕ(x, t, ξ′)| ≤
≤ M3|ξ − ξ′|αt−1+(k−d−α)/2, ∀x, t, ξ, ξ′}, (5.101)

N(ϕ, k, α) = N1(ϕ, k, α) +N2(ϕ, k, α) +N3(ϕ, k, α) +N4(ϕ, k, α),
(5.102)

N1(ϕ, k, α) = inf{N1 ≥ 0 :

∫

Ω

|ϕ(x, t, ξ) − ϕ(x′, t, ξ)|dξ ≤

≤ N1|x − x′|αt−1+(k−α)/2, ∀x, x′, t, s}, (5.103)

N2(ϕ, k, α) = inf{N2 ≥ 0 :

∫

Ω

|ϕ(x, t, ξ) − ϕ(x, t′, ξ)|dξ ≤

≤ N2|t− t′|α/2[t−1+(k−α)/2 ∨ t′−1+(k−α)/2
], ∀x, t, t′}, (5.104)

N3(ϕ, k, α) = inf{N3 ≥ 0 :

∫

Ω

|ϕ(x, t, ξ) − ϕ(x, t′, ξ)|dx ≤

≤ N3|t− t′|α/2[t−1+(k−α)/2 ∨ t′−1+(k−α)/2
], ∀t, t′, ξ}, (5.105)

N4(ϕ, k, α) = inf{N4 ≥ 0 :

∫

Ω

|ϕ(x, t, ξ) − ϕ(x, t, ξ′)|dx ≤

≤ N4|ξ − ξ′|αt−1+(k−α)/2, ∀t, ξ, ξ′}, (5.106)

R(ϕ, k, α) = R1(ϕ, k, α) +R2(ϕ, k, α), (5.107)

R1(ϕ, k, α) = inf{R1 ≥ 0 :

∫

Ω

|ϕ(Z, t, ξ) − ϕ(Z ′, t, ξ)|Jη(Z,Z ′)dz ≤

≤ R1η
αt−1+(k−α)/2, ∀Z,Z ′, t, ξ and η > 0}, (5.108)

R2(ϕ, k, α) = inf{R2 ≥ 0 :

∫

Ω

|ϕ(x, t, Z) − ϕ(x, t, Z ′)|Jη(Z,Z ′)dz ≤

≤ R2η
αt−1+(k−α)/2, ∀x, t, Z, Z ′ and η > 0}, (5.109)
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where the change of variables Z(z) and Z ′(z) are diffeomorphisms of class C1

in Rd, and the Jacobian

Jη(Z,Z ′) = | det(∇Z)| ∧ | det(∇Z ′)| (5.110)

if |Z − Z ′| ≤ η and Z, Z ′ belong to Ω, and vanishing otherwise, here det(·)
means the determinant of a d×d matrix, ∇Z, ∇Z ′ stand for the matrices of the
first partial derivatives of Z(z), Z ′(z) with respect to the variable z, and ∧,∨
denote the minimum, maximum (resp.) between two real numbers.

Definition 5.22 (Green function spaces). Let us denote by Gα,
α
2

k (or Gα,
α
2

k (Ω×
(0, T ],Rn) when necessary), k ≥ 0, n ∈ N and 0 < α < 1, the space of all
continuous functions (or kernels) ϕ(x, t, ξ) defined for x, ξ in Ω ⊂ Rd and 0 < t ≤
T , with values in Rn (usually n = 1 and k ≥ 0) and such that the above infima
(semi-norms) (5.94),. . . , (5.109) (of order k) are finite. Thus the maximum of
the quantities (5.94),. . . , (5.109), denoted by [[ · ]]k,α = [[ · ]]

Gα, α
2

k

, is the norm of

the Banach space Gα,
α
2

k . When α = 0, we denote by G0
k (or G0

k(Ω × (0, T ],Rn)
when necessary), k ≥ 0, and n ∈ N, the space of all measurable functions (or
kernels) ϕ(x, t, ξ) defined for x, ξ in Ω ⊂ Rd and 0 < t ≤ T , with values in Rn

(usually n = 1 and k ≥ 0) and such that the two infima (5.94) and (5.95) (of
order k) are finite, with the norm [[ · ]]k,0 = [[ · ]]G0

k
.

The Volterra equations (5.92) is solved in a Green function space Gα,
α
2

k . We
have

Theorem 5.23 (Green function). Under suitable conditions on the coefficients
as discussed above, and in particular if the boundary coefficients bi belongs to
C1+α(∂Ω), for any i = 1, . . . , d, then there exists the (strong) Green function
G(x, t, ξ) for the parabolic second order integro-differential operator ∂t + L − I
in Ω × (0, T ], with oblique boundary conditions given by first order differential
operator B on ∂Ω× [0, T ]. Moreover G = GL +GL ⋆Q, where Q is the solution
of the Volterra equation (5.92) in the Green function space G0

2−γ , given by (5.93)

with Q0 = IGL and the semi-norms C(∇ℓGL⋆Q, 4−ℓ−γ), K(∇ℓGL⋆Q, 4−ℓ−γ),
Mi(∇ℓGL ⋆ Q, 4 − ℓ− γ, α), i = 1, 2, Ni(∇ℓGL ⋆ Q, 4 − ℓ− γ, α), i = 1, 2, 3 and
R1(∇ℓGL ⋆ Q, 4 − ℓ − γ, α) are finite, for ℓ = 0, 1. Furthermore, if we assume
Hölder continuous coefficients then G(x, t, ξ) is also the classic Green function

and solution of the Volterra equation (5.92) in the Green function space Gα,
α
2

2−γ . In

this case, the semi-norms M3(∇ℓGL ⋆Q, 4− ℓ−γ, α), N4(∇ℓGL ⋆Q, 4− ℓ−γ, α,
R2(∇ℓGL ⋆Q, 4−ℓ−γ, α), for ℓ = 0, 1, and the semi-norms C(∇2GL ⋆Q, 2−γ),
K(∇2GL ⋆Q, 2−γ), M2(∇GL ⋆Q, 2−γ, 2α), M(∇2GL ⋆Q, 2−γ, α), N(∇2GL ⋆
Q, 2 − γ, α), Ni(∇GL ⋆ Q, 2 − γ, 2α), i = 2, 3 and R(∇2GL ⋆ Q, 2 − γ, α) are
finite.

If G(x, t, ξ) and P (x, t, ξ) are the Green function and the Poisson kernel,
respectively, then any smooth solution of the following (parabolic, differential)
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boundary value problem

∂tu+ Lu = Iu+ f in Ω × (0, T ] ,

u = ϕ on Ω × {0} ,
Bu = ψ on ∂Ω × [0, T ] ,

is given by the expression

u(x, t) =

∫ t

0

dτ

∫

Ω

G(x, t− τ, ξ)f(ξ, τ)dξ+

+

∫

Ω

G(x, t, ξ)ϕ(ξ)dξ +

∫ t

0

dτ

∫

∂Ω

P (x, t− τ, ξ)ψ(ξ, τ)dξ ,

and the Chapman-Kolmogorov identity

G(x, t+ s, ξ) =

∫

Ω

G(x, t, y)G(y, s, ξ)dy ,

for every x, ξ in Ω and t, s in (0, T ] is satisfied. In particular for f = a0, ϕ = 1
and ψ = b0 we obtain

1 −
∫

Ω

G(x, t, ξ)dξ =

∫ t

0

dτ

∫

Ω

G(x, t− τ, ξ)a0(ξ)dξ +

+

∫ t

0

dτ

∫

∂Ω

P (x, t − τ, ξ)b0(ξ)dξ .

In particular, if a0 = 0 and b0 = 0 then
∫

Ω

G(x, t, ξ)dξ = 1 ∀ (x, t) ∈ Ω × (0, T ] ,

which is one of the key property of a transition density function, used to describe
Markov processes. The weak maximum principle implies that G ≥ 0 and some-
time the strong maximum principle yields the strictly positivity of the Green
(and Poisson) functions.

All the above estimates are valid on Ω×[0, T ] for any T > 0. In an unbounded
time interval we have the following

Theorem 5.24 (time-unbounded). Let G(x, t, ξ) be the Green function for the
parabolic second order integro-differential operator ∂t + L − I in Ω × (0,∞],
with oblique boundary conditions given by first order differential operator B on
∂Ω × [0,∞] as given by Theorem 5.23. Then we have the following estimates:
for every δ > 0 there exist positive constants C0, M0 such that for any t, t′ ≥ δ

|∇ℓG(x, t, ξ)| ≤ C0, ℓ = 0, 1, 2, (5.111)

|∇ℓG(x, t, ξ) −∇ℓG(x′, t′, ξ′)| ≤M0

(
|x− x′|α +

+ |t − t′|α/2 + |ξ − ξ′|α
)
, (5.112)
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for any ℓ = 0, 1, x, ξ and x′, ξ′ in Ω. Moreover, if we assume Hölder continuous
coefficients then for any δ > 0 there exists a positive constant c = c(δ) > 0 such
that

G(x, t, ξ) ≥ c, ∀(x, t, ξ) ∈ Ω × (δ,∞] × Ω , (5.113)

we also have the estimate

|∇G(x, t, ξ) −∇G(x, t′, ξ)| ≤M0 |t− t′|α, (5.114)

and we may let ℓ = 2 in estimate of (5.112).

• Remark 5.25. Notice that from the technique used in proving of the above
Theorem 5.24 we can estimate the constants C0 and M0 appearing in (5.111),
(5.112) and (5.114) as t, t′ become large, i.e., if we define

q(t) = sup
x

∫

Ω

G(x, t, y)dy, t ≥ 1 (5.115)

then we have for any t′ ≥ t ≥ T the estimates

C0 ≤ CG q(T ), and M0 ≤MG q(T ), T ≥ 1 (5.116)

where the constants CG and MG depend on the semi-norms K2(∇ℓG, 2 − ℓ),
K2(G, 2), M1(∇ℓG, 2 − ℓ, α), M3(∇ℓG, 2 − ℓ, α) and N3(∇ℓG, 2 − ℓ, α), but all
on the time interval [0, 1]. This means that estimates for the Green function
G(x, t, ξ) on the Green spaces in the time interval [0,∞) are obtained from
estimates on any bounded time interval [0, δ], with δ > 0 plus a bound on the
expression (5.115) of q(t) as t becomes large.

In all theses estimates applied to integro-differential (or Lévy-type) oper-
ators with a dominant second order differential part. Other situation can be
found in Jacob [80, Vol II, Section 2.7, pp. 138–151], Kolokoltsov [99], Ko-
matsu [100, 101], Mikulevicius and Pragarauskas [131, 132] and Mikulevicius
and Rozovskii [133], among others.

5.5 Examples of Transition Functions

Green and transition functions are essentially the same objects, one is seen as
the inverse of a functional operator (e.g., an integro-differential operator) and
the other is the essence of a Markov-Feller processes.

Let us start with a couple of simple one-dimensional prototypes first in the
whole real line and with boundary conditions in the real semi-line. First recall
that given a locally compact separable complete metric space E, we define C0(E)
as the Banach space of all continuous real functions on E vanishing at infinity,
i.e., f : E → R, continuous and for any ε > 0 there exists a compact subset K
of E such that |f(x)| < ε for any x in ErK. Note that we are using indistinctly
p(t, x,B) or p(x, t, B) for the transition functions.
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5.5.1 One-Dimensional

Example 5.1 (Wiener process). On the state space R with its Borel σ-algebra
B we consider

p(t, x,B) =
1√
2πt

{∫

B

exp
[
− (y − x)2

2t

]
dy

}
,

for any t > 0, x in R and B in B. This is the typical one-dimensional Brownian
motion or Wiener process. The associated semigroup in C0(R) is given by

S(t)f(x) =

∫

R

f(y) p(t, x, dy) =

=
1√
2π

∫ ∞

−∞
f(x +

√
tz) exp

(
− z2

2

)
dz,

for every t > 0 and x in R. Its infinitesimal generator A is the differential
operator A

D(A) = {f ∈ C0(R) ∩ C2(R) : f ′′ ∈ C0(R)}, Af =
1

2
f ′′.

The associated resolvent operator in C0(R) is given by

R(λ)f(x) =

∫

R

f(y) r(λ, x, dy) =

=
1√
2λ

∫ +∞

−∞
f(x +

z√
2λ

) exp
(
− |z|

)
dz,

where the resolvent kernel is

r(λ, x,B) =
1√
2λ

∫

B

exp
(
−
√

2λ|x− y|
)
dy.

for every λ > 0, x in R, and B in B. A constant drift b can be added so that
Af = 1

2f
′′+bf ′ and a realization with continuous paths can be constructed.

Example 5.2 (Poisson process). On the state space R with its Borel σ-algebra
B and for a given positive constant c, we consider

p(t, x,B) = e−ct
∞∑

k=0

(ct)k

k!
✶B(x+ k),

for any t > 0, x in R and B in B. This is the typical one-dimensional Poisson
process. The associated semigroup in C0(R) is given by

S(t)f(x) =

∫

R

f(y) p(t, x, dy) = e−ct
∞∑

k=0

(ct)k

k!
f(x+ k),

[Preliminary] Menaldi December 12, 2017



404 Chapter 5. Transition Functions and PDEs

for every t > 0 and x in R. Its infinitesimal generator is

D(A) = C0(R), Af(x) = c[f(x+ 1) − f(x)], ∀x ∈ R,

Note that A is a nonlocal operator and that only a cad-lag realization of the
above Poisson process can be constructed. We can generalize this example to a
compound Poisson process (Pt : t ≥ 0), with parameters (c, µ), where c > 0 and
µ is a probability distribution on R. The probability transition function is

p(t, x,B) = e−ct
∞∑

k=0

(ct)k

k!
µk(B), µ0 = δ0, and

µk(B) = (µk−1 ⋆ µ)(B) =

∫

R×R

✶B(y + z)µk−1(dy)µ(dz),

for k = 1, 2, . . . , for any t > 0, x in R and B in B, where δ0 is the Dirac measure
at the origin. Since µk are all probability measures, the above series converges.
The associated semigroup in C0(R) is given by

S(t)f(x) =

∫

R

f(y) p(t, x, dy) = e−ct
∞∑

k=0

(ct)k

k!

∫

R

f(x+ y)µk(dy),

for every t > 0 and x in R. Its infinitesimal generator is the bounded (integral)
linear operator on C0(R), defined by

Af(x) = c

∫

R

[f(x+ y) − f(x)]µ(dy), ∀x ∈ R.

Again, only a cad-lag realization of the above Poisson process can be con-
structed.

Example 5.3 (Cauchy process). On the state space R with its Borel σ-algebra
B we consider

p(t, x,B) =
1

π

∫

B

t

t2 + (y − x)2
dy,

for any t > 0, x in R and B in B. The associated semigroup in C0(R) is given
by

S(t)f(x) =

∫

R

f(y) p(t, x, dy) =
1

π

∫ ∞

−∞
f(x+ tz)

1

1 + z2
dz,

for every t > 0 and x in R. Its infinitesimal generator is of the form

Af(x) =
1

π

∫ ∞

0

f(x+ y) + f(x− y) − 2f(x)

y2
dy, ∀x ∈ R,

and the domain D(A) contains all twice-differentiable functions with compact
support in R. Note that A is a nonlocal operator and that only a cad-lag real-
ization of the above Cauchy process can be constructed.
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Example 5.4 (Subordinator). An increasing (and so, of bounded variation)
Lévy process is called a subordinator (process). Its infinitesimal generator the
bounded (integral) linear operator on C0(R) ∩ C1(R), defined by

Af(x) = bf ′(x) +

∫

R

[f(x+ y) − f(x)]µ(dy), ∀x ∈ R.

where b is a non-negative constant and µ is a measure on R, with support in
[0,∞[, such that µ({0}) = 0 and

∫

]0,∞[

(y ∧ 1)µ(dy) <∞,

the constants b ≥ 0 and the measure µ are referred to as the drift (term) and
the Lévy measure associated with the subordinator.

For a given subordinator {Xt : t ≥ 0} with characteristic (b, µ), if µ is
bounded then the probability transition function p(t, x,B), and the associated
semigroup S(t) in C0(R) can be expressed in a way similar to a compound
Poisson process. In general, only the (infinitely divisible) distribution of X1 or
the Laplace exponent ψ of the subordinator is calculated (or given), i.e.,

E
{

e−ξXt
}

= e−tψ(ξ), ∀ξ ≥ 0,

where

ψ(ξ) = bξ +

∫

]0,∞[

(1 − e−yξ)µ(dy), ∀ξ ≥ 0.

For instance, an α-stable subordinator {Xt : t ≥ 0} has

ψ(ξ) = ξα and µ(dy) =
α dy

Γ(1 − α)x1+α
,

and in particular, for α = 1/2, this is called the Lévy subordinator, which is the
first hitting time for one-dimensional standard Brownian motion {Bt : t ≥ 0},
i.e., Xt = inf{s > 0 : Bs = t/

√
2}. Similarly, the inverse Brownian subordinator

has

ψ(ξ) = bξ +
1

σ2

(√
2ξσ2 + β2 − β2

)
and

µ(dy) =
1√

2πσ2y3
exp

(
− yβ2

2σ2

)
dy,

as its Laplace exponent and its Lévy measure. Moreover, if b = 0 then this
can be interpreted as the hitting time for a Brownian motion with drift β and
variance σ2, and its probability transition function is given by

p(t, x, dy) =
t√

2πσ2(y − x)
exp

[
− [β(y − x) − t]2

2(y − x)σ2

]
✶{y>x} dy.
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Analogously, the Gamma subordinator (process), with parameters α, β > 0 and
b ≥ 0, has

ψ(ξ) = bξ + α ln
(

1 +
ξ

β

)
and µ(dy) =

α

y
exp

(
− yβ

)
dy,

and if b = 0 then its probability transition function is given by

p(t, x, dy) =
βαt

Γ(at)
exp

[
− (y − x)β

]
(y − x)αt−1

✶{y>x} dy.

The interested reader may check, e.g., the books by Applebaum [1, Chapter
1, pp. 1-81], Bertoin [7, Chapter III, pp. 71-102], Itô [77, Section 1.11] and
Sato [157, Chapter 6, pp. 197-236].

Example 5.5 (Wiener-Poisson). On the state space R with its Borel σ-algebra
B and for a given positive constant c, we consider

p(t, x,B) = e−ct
∞∑

k=0

(ct)k

k!

1√
2πt

{∫

B

exp
[
− (x+ k − y)2

2t

]
dy

}
,

for any t > 0, x in R and B in B. This is the sum of independent Wiener and
Poisson processes. The associated semigroup in C0(R) is given by

S(t)f(x) =

∫

R

f(y) p(t, x, dy) =

= e−ct
∞∑

k=0

(ct)k√
2π k!

∫ ∞

−∞
f(x+ k +

√
tz) exp

(
− z2

2

)
dz,

for every t > 0 and x in R. Its infinitesimal generator A is the closure of the
(closable) operator Å

D(Å) = C0
0 (R) ∩ C2(R),

Åf(x) =
1

2
f ′′(x) + c[f(x+ 1) − f(x)], ∀x ∈ R,

Only a cad-lag realization can be constructed as (x + Pt + Wt : t ≥ 0), where
(Wt : t ≥ 0) is a standard Wiener process independent of the Poisson process
(Pt : t ≥ 0). We can generalize this example to a (Wt : t ≥ 0) Wiener process
(with drift b and covariance σ2) and a (Pt : t ≥ 0) compound Poisson processes
(with parameters (c, µ)), independent of each other. Thus b is a real constant,
σ , c > 0, and µ is a probability distribution on R. Again, a cad-lag realization
is given by (Xt = x+Wt +Pt : t ≥ 0) and the probability transition function is

p(t, x,B) =

∫

B

e−ct
∞∑

k=0

(ct)k

2πt k!
pk(t, x− y)dy,

p0(t, x) =
{∫

R

1√
2πt

exp
[
− (x+ bt− y)2

2t

]
µ(dy)

}
,

pk(t, x) =

∫

R

pk(t, x− y)µ(dy), k = 1, 2, . . . ,
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for any t > 0, x ≥ 0 and B in B. Again, since p0 is a probability density and µk

is a probability measure the above series converges. Notice that if µk denotes
the k convolution as defined in Example 5.2, then pk can be expressed as pw⋆µ

k,
where pw is the probability density transition function of a Wiener process. The
associated semigroup in C0(R) is given by

S(t)f(x) =

∫

R

f(y) p(t, x, dy) = e−ct
∞∑

k=0

(ct)k√
2π k!

×

×
∫

R

µk(dy)

∫ ∞

−∞
f(x + y +

√
tz) exp

(
− z2

2

)
dz,

for every t > 0 and x in R. The infinitesimal generator is the closure of the
(closable) integro-differential operator Å

D(Å) = C0
0 (R) ∩ C2(R),

Åf(x) =
1

2
σf ′′(x) + bf ′(x) + c

∫ ∞

0

[f(x+ y) − f(x)]µ(dy),

for every x in R. Again, notice the nonlocal character of this unbounded oper-
ator.

Example 5.6 (reflecting barrier). On the state space R+
0 = [0,∞) with its

Borel σ-algebra B we consider

p(t, x,B) =
1√
2πt

(∫

B

{
exp

[
− (y − x)2

2t

]
+ exp

[
− (y + x)2

2t

]}
dy

)
,

for any t > 0, x ≥ 0 and B in B. This represents Brownian motion with reflecting
barrier at x = 0 and the process itself can be constructed as (Xt = |x + Wt| :
t ≥ 0), where (Wt : t ≥ 0) is a standard Wiener process in R. Its associated
semigroup in C0(R+

0 ) is given by

S(t)f(x) =

∫

R
+
0

f(y) p(t, x, dy) =
1√
2πt

∫ ∞

−∞
f̌(y) exp

[
− (y − x)2

2t

]
dy,

where f̌(y) = f(y) if y ≥ 0 and f̌(y) = f(−y) if y ≤ 0, for every t > 0 and
x ≥ 0. The infinitesimal generator is the differential operator

D(A) = {f ∈ C0(R+
0 ) ∩ C2(R+

0 ) : f ′′ ∈ C0(R+
0 ), f ′(0) = 0},

Af =
1

2
f ′′.

Certainly, a constant drift b can be added so that Af = 1
2f

′′ + bf ′ and Xt =
|x+ bt+Wt|.

The reflected Brownian motion of above Example 5.6 can also be constructed
by means of local time as follows. First, for an given x ≥ 0 we define τx the first
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exit time of the open region (0,∞), i.e., τx = inf{t ≥ 0 : x + Wt ≥ 0}. Next,
we look at its running maximum, i.e., Mt = max{x + Ws : τx ≤ s ≤ t}, which
except for a factor 1/2 is called the local time of (x+Wt : t ≥ 0) at the origin.
It can be proved that the process (|x + Wt| : t ≥ 0) has the same law as the
process (x + Mt −Wt : t ≥ 0), which gives another realization of the reflected
Brownian motion.

Example 5.7 (absorbing barrier). On the state space R+ = (0,∞) with its
Borel σ-algebra B we consider

p(t, x,B) =
1√
2πt

(∫

B

{
exp

[
− (y − x)2

2t

]
− exp

[
− (y + x)2

2t

]}
dy

)
,

for any t > 0, x > 0 andB in B. This represents Brownian motion with absorbing
barrier at 0, i.e., the Brownian motion particle dies at the first time when it hits
the boundary {0}. The process itself can be constructed by stopping (or killing)
the process x+Wt at the first instant τx when it hits the boundary {0}, where
Wt is a standard Wiener process in R, i.e.,

τx = inf{t > 0 : x+Wt = 0}, Xt = x+Wt t < τx, x > 0,

thus (Xt : t ≥ 0) is the Brownian motion with initial value x at time t = 0
and absorbed (or otherwise said killed) at the origin. τx is the lifetime of the
process Xt. Often we introduce an extra point (indicated by △, or ∞ or ∂) to
the state space R+ = (0,∞), called the coffin state, and defines Xt for all times
by Xt = △ for t ≥ τx. Its associated semigroup in C0(R+) is given by

S(t)f(x) =

∫

R+

f(y) p(t, x, dy) =
1√
2πt

∫ ∞

−∞
f̂(y) exp

[
− (y − x)2

2t

]
dy,

where f̂(y) = f(y) if y ≥ 0 and f̂(y) = −f(−y) if y ≤ 0, for every t > 0 and
x ≥ 0. The infinitesimal generator is the differential operator

D(A) = {f ∈ C0(R+) ∩ C2(R+) : f ′′ ∈ C0(R+)},

Af =
1

2
f ′′.

A constant drift b can be added so that Af = 1
2f

′′+bf ′. Notice that p(t, x,R+) <
1 so that the process Xt dies, i.e., it does hit the boundary x = 0 in a finite time.
The semigroup S(t) may be extended to the space of continuous and bounded
function in [0,∞), where S(t)✶ = 0 for all t > 0. Moreover, the Banach space
C0(R+) includes a vanishing boundary condition at infinity and also at x = 0,
so that actually the condition f(0) = 0 in the definition of D(A) is redundant.
Generally, we look at this as a process in the closure [0,∞) and we use the
Banach space C0([0,∞[) instead of C0(]0,∞[).

Sometimes we may use the complementary error function

Erfc(x) =
2√
π

∫ ∞

x

e−v
2

dv, (5.117)
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which satisfies Erfc(0) = 1 and

2

x+
√
x2 + 2

≤ √
π ex

2

Erfc(x) ≤ 2

x+
√
x2 + 1

. (5.118)

Indeed, by considering the functions

f(x) =
1

x+
√
x2 + 1

− ex
2

∫ ∞

x

e−y
2

dy,

g(x) = ex
2

∫ ∞

x

e−y
2

dy − 1

x+
√
x2 + 2

,

which satisfy f(0) = 1 − π
2 > 0 and g(0) = π

2 − 1
2 > 0, we can estimate

ex
2

∫ ∞

x

e−y
2

dy ≤ 2

x
ex

2

∫ ∞

x

2y e−y
2

dy =
1

x
,

so that |f(x)| ≤ 2
x and |g(x)| ≤ 2

x . Calculations show that f ′(x) − 2xf(x) ≤ 0
and g′(x)− 2xg(x) ≤ 0, for any x ≥ 0, and the desired estimate (5.118) follows.

Example 5.8 (sticking barrier). On the state space R+
0 = [0,∞) with its Borel

σ-algebra B we consider

p(t, x,B) =
1√
2πt

(∫

B

{
exp

[
− (y − x)2

2t

]
− exp

[
− (y + x)2

2t

]}
dy

)
+

+ Erfc
( x√

2πt

)
✶B(0),

for any t > 0, x ≥ 0 and B in B. This represents Brownian motion with sticking
barrier at x = 0, i.e., when the Brownian motion particle reaches x = 0 for the
first time, it sticks there forever. The infinitesimal generator of its associated
semigroup in C0(R+

0 ) is the differential operator

D(A) = {f ∈ C0(R+
0 ) ∩ C2(R+

0 ) : f ′′ ∈ C0(R+
0 ), f ′′(0) = 0},

Af =
1

2
f ′′.

A constant drift b can be added so that Af = 1
2f

′′ + bf ′. Notice that comparing

with the previous Example 5.7, now the state space R+
0 includes the barrier

x = 0 and p(t, x,R+
0 ) = 1 for any t > 0 and x in R+

0 . The semigroup takes the
form

S(t)f(x) =

∫

R
+
0

f(y) p(t, x, dy) =
1√
2πt

∫ ∞

−∞
f̂(y) exp

[
− (y − x)2

2t

]
dy,

for every x in R+
0 and t > 0. Notice that the function y 7→ f̂(y), where f̂(y) =

f(y) if y ≥ 0 and f̂(y) = 2f(0) − f(−y) if y < 0, is continuously differentiable
whenever f is so. Thus, the function x 7→ S(t)f(x) can be defined as a smooth
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function, for every x in R. The process itself can be constructed by stopping the
process x+Wt at the first instant τx when it hits the boundary {0}, where Wt

is a standard Wiener process in R, i.e.,

τ = inf{t > 0 : x+Wt = 0}, Xt = x+Wt∧τx t ≥ 0, x > 0,

thus (Xt : t ≥ 0) is the Brownian motion with initial value x at time t = 0 and
stopped at the origin.

We may combine the reflecting barrier Example 5.6 and this sticking barrier
to get a process where the domain of the infinitesimal generator D(A) has a
boundary condition of the form f ′(0) − cf ′′(0) = 0 with a positive constant
c instead of just f ′′(0) = 0. This is called sticky barrier. Similarly, we may
combine the reflecting barrier Example 5.6 with the absorbing barrier to get a
process where the domain of the infinitesimal generator D(A) has a boundary
condition of the form f ′(0)− cf(0) = 0 with a positive constant c. This is called
elastic barrier. The construction of a sticky Brownian motion or an elastic
Brownian motion is more delicate, it starts with the reflecting Brownian motion
and its local time at the barrier, the reader is referred to the classic book by Itô
and McKean [78] for a complete analysis.

Example 5.9 (sticky Wiener). On the state space R+
0 = [0,+∞) with its Borel

σ-algebra B we consider

p(t, x, y) =
1√
2πt

(
exp

[
− (y − x)2

2t

]
− exp

[
− (y + x)2

2t

])
+

+ δ(y) e
t+2cx

2c2 Erfc
( t+ cx

c
√

2t

)
+

1

c
e

t+2c(x+y)

2c2 Erfc
( t+ c(x+ y)

c
√

2t

)
,

for any t > 0, x ≥ 0, y ≥ 0. This represents a slowly reflecting Brownian motion
on [0,+∞), i.e., when the Brownian motion particle reaches x = 0, it sticks there
for some time. The infinitesimal generator of its associated semigroup in C0(R+

0 )
is the differential operator

D(A) = {f ∈ C0(R+
0 ) ∩ C2(R+

0 ) : f ′′ ∈ C0(R+
0 ), f ′(0) = cf ′′(0)},

Af =
1

2
f ′′.

We can visualize this process as a Brownian motion with a suitable time change,
more specifically, starting with a standard Wiener process x + Wt we have
Xt = x+Wℓx(t), where

ℓx(t) = inf{s : As ≤ t}, At =

∫ t

0

✶{x+Ws>0} ds+ cMt,

with Mt = max{x+Ws : τx ≤ s ≤ t} and τx = inf{t ≥ 0 : x+Wt ≥ 0}.
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Example 5.10 (elastic Wiener). On the state space R+
0 = [0,+∞) with its

Borel σ-algebra B we consider

p(t, x, y) =
1√
2πt

(
exp

[
− (y − x)2

2t

]
+ exp

[
− (y + x)2

2t

])
−

− c exp
(
c(x + y) +

c2t

2

)
Erfc

(x+ y + ct√
2t

)
,

for any t > 0, x ≥ 0, y ≥ 0. This represents reflecting Brownian motion on
[0,+∞) killed elastically at x = 0. The infinitesimal generator of its associated
semigroup in C0(R+

0 ) is the differential operator

D(A) = {f ∈ C0(R+
0 ) ∩ C2(R+

0 ) : f ′′ ∈ C0(R+
0 ), f ′(0) = cf(0)},

Af =
1

2
f ′′.

We can visualize this process as a reflected Brownian motion killed at a random
time r, where P ({r > t}∩B) = E{✶B exp(−cτ(t))}, B is any Borel set of C(R+

0 )
and τ(t) is the local time of the Wiener process.

Example 5.11 (doubly reflected Wiener). We consider now a Brownian motion
with state space [0, a]. where a is a positive real number. On the state space
[0, a] with its Borel σ-algebra B we consider

p(t, x,B) =
∑

k∈Z

1√
2πt

(∫

B

{
exp

[
− (2ka+ y − x)2

2t

]
+

+ exp
[
− (2ka+ y + x)2

2t

]}
dy

)
,

for any t > 0, 0 ≤ x ≤ a and B in B, where Z is the set of all integer numbers.
This represents Brownian motion with reflecting barrier at x = 0 and at x = a.
The process itself can be constructed as (Xt = ϕa(x + Wt) : t ≥ 0), where
(Wt : t ≥ 0) is a standard Wiener process in R and ϕa is the function x 7→
min{(2a − x), x} for x in [0, 2a] and extended to R as a continuous periodic
function with 2a-period, so that ϕa maps R onto [0, a]. The associated semigroup
in C([0, a]) is given by

S(t)f(x) =

∫ a

0

f(y) p(t, x, dy) =
1√
2πt

∫ ∞

−∞
f [ϕa(y)] exp

[
− (y − x)2

2t

]
dy,

for every t > 0 and 0 ≤ x ≤ a. The infinitesimal generator is the differential
operator

D(A) = {f ∈ C2([0, a]) : f ′(0) = 0, f ′(a) = 0},

Af =
1

2
f ′′.

A constant drift b can be added so that Af = 1
2f

′′+bf ′ and Xt = ϕa(x+bt+Wt).
Notice that p(t, x, [0, a]) = 1 for any t > 0 and x in [0, a].
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Example 5.12 (doubly absorbed Wiener). We consider now a Brownian motion
with state space (0, a), where a is a positive real number. On the state space
(0, a) with its Borel σ-algebra B we consider

p(t, x,B) =
∑

k∈Z

1√
2πt

(∫

B

{
exp

[
− (2ka+ y − x)2

2t

]
−

− exp
[
− (2ka+ y + x)2

2t

]}
dy

)
,

for any t > 0, 0 ≤ x ≤ a and B in B, where Z is the set of all integer numbers.
This represents Brownian motion with absorbing barrier at x = 0 and at x = a,
i.e., the Brownian motion particle dies at the first time when it hits the boundary
x = 0 or x = a. The process itself can be constructed as (Xt = x+Wt∧τ : t ≥ 0),
where (Wt : t ≥ 0) is a standard Wiener process in R and τ is the first exit time
from the open set (0, a) for the process x+Wt, i.e.,

τ = inf{t > 0 : x+Wt ≤ 0 or x+Wt ≥ a}, t ≥ 0, x > 0,

The associated semigroup in C0(]0, a[) is given by

S(t)f(x) =

∫

R
+
0

f(y) p(t, x, dy) =
1√
2πt

∫ ∞

−∞
f̂a(y) exp

[
− (y − x)2

2t

]
dy,

for every t > 0 and 0 ≤ x ≤ a, where now f̂a(y) = f [ϕa(y)] if y ≥ 0 and f̂a(y) =
−f [ϕa(y)] if y ≤ 0. The infinitesimal generator is the differential operator

D(A) = {f ∈ C0(]0, a[) ∩ C2(]0, a[) : f ′′ ∈ C0(]0, a[), f(0) = 0, f(a) = 0},

Af =
1

2
f ′′.

Technically, the points 0 and a does not belong to the domain of definition of
functions f in the Banach space C0(]0, a[), but we identify C0(]0, a[) with the
subspace of C([0, a]) = C0([0, a]) satisfying f(0) = f(a) = 0. Again notice that
p(t, x, ]0, a[) < 1 and that the semigroup S(t) may be considered as defined on
the Banach C([0, a]) where S(t)✶ = 0 for all t > 0, so that the state of the
process could be regarded as [0, a]. A constant drift b can be added so that
Af = 1

2f
′′ + bf ′. and Xt = x+ bt∧ τ +Wt∧τ ), where τ is now the first exit time

from the open set (0, a) for the process (bt+Wt : t ≥ 0).

Some details on Brownian motion on a finite interval relative to Exam-
ples 5.11 and 5.12 can be found in Karatzas and Shreve [91, Section 2.8.c, pp.
97–100].

Example 5.13 (periodic Wiener). We consider now a Brownian motion with
state space [0, a]. where a is a positive real number. On the state space [0, a]
with its Borel σ-algebra B we consider

p(t, x,B) =
∑

k∈Z

1√
2πt

(∫

B

{
exp

[
− (ka+ y − x)2

2t

]}
dy

)
,
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for any t > 0, 0 ≤ x ≤ a and B in B, where Z is the set of all integer numbers.
This represents Brownian motion on a circle (the interval [0, a], with 0 and
a identified). The process itself can be constructed as (Xt = ψa(x + Wt) :
t ≥ 0), where (Wt : t ≥ 0) is a standard Wiener process in R and ψa(x) =
x− a[x/a] (where [x] denotes the integral part of x), which maps R onto [0, a].
The associated semigroup in C#(0, a) = {f ∈ C([0, a]) : f(0) = f(a)} is given
by

S(t)f(x) =

∫ a

0

f(y) p(t, x, dy) =
1√
2πt

∫ ∞

−∞
f [ψa(y)] exp

[
− (y − x)2

2t

]
dy,

for every t > 0 and 0 ≤ x ≤ a. The infinitesimal generator is a closed extension
of the differential operator Af = 1

2f
′′ with domain

D(A) = {f ∈ C#(0, a) ∩ C2([0, a]) : f ′′(0) = f ′′(a)}.

Note that even if ψa is not continuous, the composition x 7→ f [ψa(x)] is con-
tinuously differentiable for any continuous function f in the domain D(A).
Also, a constant drift b can be added so that Af = 1

2f
′′ + bf ′ and Xt =

ψa(x+ bt+Wt).

More generally, we may consider a Sturm-Liouville problem in [0, a] of the
form

1

2
u′′ + λu = 0, in (0, a), (5.119)

α0u(0) − β0u
′(0) = αau(a) + βau

′(a) = 0, (5.120)

where α0, β0, αa, βa ≥ 0, α0 + β0 > 0 and αa + βa > 0. A periodic condition
of the form u(0) − u(a) = u′(0) − u′(a) = 0 can also be used. There is a
sequence of (positive) eigenvalues (0 < λ0 < λ1 < · · · ), λn → ∞ as n → ∞,
with its corresponding eigenfunctions (u0, u1, . . .), satisfying the boundary value
problem (5.119) and form an orthonormal basis in L2(0, a). Certainly, un is a
linear combination of sin(x

√
2λn) and cos(x

√
2λn) and if a = π then when

α0αa = β0βa = 0 and α0βa 6= αaβ0 we have 2
√

2λn = 2n + 1 and when
α0βa = αaβ0 and α0αa 6= 0 or β0βa 6= 0 we have

√
2λn = n. In the case of

periodic boundary conditions, if a = 2π then
√

2λn = n. Define

p(t, x,B) =

∞∑

n=0

e−tλnun(x)

∫

B

un(y)dy, (5.121)

for every x in [0, a], t > 0 and B in B. The maximum principle ensures that p
in nonnegative, i.e, 0 ≤ p(t, x,B) ≤ 1, for every t, x,B. Parseval equality yields

∫ a

0

|p(t, x,B)|2dx =

∞∑

n=0

e−tλn |B|, ∀x ∈ [0, a], t > 0, B ∈ B,
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where |B| denotes the Lebesgue measure of the Borel set B. Some more details
are needed to discuss the convergence of the series (5.121), which is the eigen-
values and eigenfunctions expansion of the Green function or Green operator
relative to the boundary value problem (5.119). From here, the associate semi-
group and the stochastic process can be constructed. The interested reader may
consult the pioneer paper Feller [47] related to parabolic differential equations
and the associated semigroups.

Example 5.14 (reflecting Wiener-Poisson). On the state space R+
0 = [0,∞)

with its Borel σ-algebra B and for a given positive constant c, we consider

p(t, x,B) = e−ct
∞∑

k=0

(ct)k

2πt k!

(∫

B

{
exp

[
− (x+ k − y)2

2t

]
+

+ exp
[
− (x+ k + y)2

2t

]}
dy

)
,

for any t > 0, x ≥ 0 and B in B. This is a Wiener-Poisson process with reflecting
barrier at x = 0 and the process itself can be constructed as (Xt = |x+Wt+Pt| :
t ≥ 0), where (Wt : t ≥ 0) is a Wiener process independent of the Poisson process
(Pt : t ≥ 0), both in in R. Its associated semigroup in C0(R+

0 ) is given by

S(t)f(x) =

∫

R

f(y) p(t, x, dy) =

= e−ct
∞∑

k=0

(ct)k√
2π k!

∫ ∞

−∞
f̌(x+ k +

√
tz) exp

(
− z2

2

)
dz,

where f̌(y) = f(y) if y ≥ 0 and f̌(y) = f(−y) if y ≤ 0, for every t > 0 and
x ≥ 0. The infinitesimal generator is the differential operator

D(A) = {f ∈ C0(R+
0 ) ∩ C2(R+

0 ) : f ′′ ∈ C0(R+
0 ), f ′(0) = 0},

Af(x) =
1

2
f ′′(x) + c[f(x+ 1) − f(x)], ∀x ∈ R+

0 .

Only a cad-lag realization can be constructed. We can generalize this example
to a (Wt : t ≥ 0) Wiener process (with drift b and covariance σ) and a (Pt : t ≥
0) compound Poisson processes (with parameters (c, µ)), independent of each
other and with reflecting barrier at x = 0. The compound process is indeed
a subordinator, i.e., increasing in t so that all jumps of the sum process (x +
Wt + Pt : t ≥ 0) are inside the real semi-line [0,∞). Thus c > 0 and µ is
a probability distribution on (0,∞). Again, a cad-lag realization is given by
(Xt = |x+Wt + Pt| : t ≥ 0) and the probability transition function is

p(t, x,B) =

∫

B

e−ct
∞∑

k=0

(ct)k

2πt k!
pk(t, x, y)dy,
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pk(t, x, y) =
1√
2πt

(∫ ∞

0

{
exp

[
− (x− y − z)2

2t

]
+

+ exp
[
− (x+ y − z)2

2t

]}
µk(dz)

)
,

µ0 = µ, µk(B) =

∫

R×R

✶B(y + z)µk−1(dy)µ(dz),

for every k = 1, 2, . . . , for any t > 0, x ≥ 0 and B in B. Here some work is
necessary to ensure the proper convergence of the above series. Again notice
that µk = µk−1 ⋆µ is the k convolution of µ. Its associated semigroup in C0(R+

0 )
is given by

S(t)f(x) =

∫

R

f(y) p(t, x, dy) = e−ct
∞∑

k=0

(ct)k√
2π k!

×

×
∫ ∞

0

µk(dy)

∫ ∞

−∞
f̌(x + y +

√
tz) exp

(
− z2

2

)
dz,

for every t > 0 and x ≥ 0. The infinitesimal generator is the integro-differential
operator

D(A) = {f ∈ C0(R+
0 ) ∩ C2(R+

0 ) : f ′′ ∈ C0(R+
0 ), f ′(0) = 0},

Af(x) =
1

2
σf ′′(x) + bf ′(x) + c

∫ ∞

0

[f(x+ y) − f(x)]µ(dy),

for every x in R+
0 . If the compound Poisson process Pt has the parameter-

distribution µ in the whole space R then the sum process x+Wt +Pt may have
a jumps outside of the semi-line [0,∞). In this case, we may keep the expression
(Xt = |x+Wt +Pt| : t ≥ 0) and make appropriated modifications. For instance
the semigroup takes the form

S(t)f(x) = e−ct
∞∑

k=0

(ct)k√
2π k!

×

×
∫

R

µk(dy)

∫ ∞

−∞
f̌(x + y +

√
tz) exp

(
− z2

2

)
dz,

for every t > 0 and x in R and f̌ as above, however, the boundary condition
for the domain of the infinitesimal generator needs more work. It is clear that
absorbing and sticking barriers can be considered for Wiener-Poisson processes
by means of the expression with f̂ and the stopping argument.

As in Examples 5.7 and 5.8, we can discuss absorbing and sticking barriers
for Wiener-Poisson processes by means of arguments similar to Example 5.14.
This is on the space either R+ = (0,∞) or R+

0 = [0,∞) with its Borel σ-algebra
B and for a given positive constant c, we consider

p(t, x,B) = e−ct
∞∑

k=0

(ct)k

2πt k!
pi(t, x+ k,B), (5.122)
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for any t > 0, x ≥ 0 and B in B, where pi(t, x,B) is the transition function for
absorbing barrier with i = 1 or for sticking barrier with i = 2, as in previous
examples. Notice that

p2(t, x,B) = p1(t, x,B) + [1 − p1(t, x,R)]✶B(0).

In the case of the Wiener-Poisson process, the boundary condition for the ab-
sorbing barrier is clearly f(0) = 0. However, for the sticking barrier boundary
condition is

1

2
f ′′(0) + c[f(0 + 1) − f(0)] = 0,

i.e., the equation is satisfied up to the boundary.
Also the case of a Wiener-Poisson process with periodic conditions can be

easier studied, e.g., a Wiener-Poisson process in R is combined with the opera-
tion modulo [0, a], ψa, as in Example 5.13, which maps R into [0, a].

Trying to extend the doubly reflected Wiener in an interval, Example 5.11, to
a Wiener-Poisson process, we encounter a new difficulty, we may jump outside
the interval. This forces us to make a decision on the jumps, e.g., a natural
extension or reflection. This is a more delicate issue. For instance, if we want
the reflection on an interval [0, a], first we make a periodic condition on [−a, a]
and then we take the absolute value. However, if we want a natural extension,
first we make a constant and continuous extension outside of the given interval
[0, a] and then we use the process in the whole line.

For instance, the reader may consult the books Mandl [117] for a compre-
hensive treatment of one-dimensional Markov processes. On the other hand,
several examples (without jumps) can be found in Borodin and Salminen [18,
Appendix 1, pp. 102-119]

5.5.2 Multi-Dimensional

In the whole space Rd, d ≥ 2 we have more difficulties. A central role is played
by the Gauss kernel Γ0 defined by

Γ0(x, t, a) =
1

(2πt)d/2
√

det a
exp

(
− x · a−1x

2t

)
, (5.123)

for every t > 0 and x in Rd, where a is an invertible symmetric nonnegative
d × d-matrix, if we write by components a = (aij) then its inverse a−1 = (aij)
and x ·a−1x =

∑
ij a

ijxixj . When a is the identity matrix ✶ we write Γ0(x, t) =
Γ0(x, t,✶). In analysis the constant 1/2 is replaced by 1/4 and called heat kernel.
This function is infinitely differentiable in all its arguments and in particular, for
any derivative ∂ℓ, with ℓ = (ℓ1, ℓ2, . . . , ℓd, ℓt, ℓa) and |ℓ| = ℓ1 + ℓ2 + · · ·+ ℓd + 2ℓt
we have

|∂ℓΓ0(x, t, a)| ≤ Ct−(d+|ℓ|)/2 exp
(
− c

|x|2
t

)
, (5.124)
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for every t > 0 and x in Rd, for some positive constants C = C(d, ℓ, δ) and
c = c(d, ℓ, δ), where the symmetric matrix a satisfies δ|ξ|2 ≤ ξ · aξ ≤ |ξ|2/δ for
any ξ in Rd, for some δ > 0. Also we have

∫

Rd

∂ℓΓ0(x, t, a) dx =

{
1 if ℓ = 0,

0 otherwise.
(5.125)

This Γ0(x, t, a) is the probability density transition function of a Wiener process
in Rd, with zero mean and co-variance a. The corresponding resolvent kernel is
given by

R(λ, x) =
1

(2πt)−d/2
√

det a

∫ ∞

0

exp
(
− x · a−1x

2t
− λt

)
dt =

=
2

(2πt)−d/2

( 2λ

x · a−1x

)(d/4−1/2)

Kd/2−1

(√
2λx · a−1x

)
,

for every λ > 0 and x in Rd, where Kν is the modified Bessel function of 2nd

kind. In particular,

Kn−1/2(z) =

√
π

2z
zn

(
− 1

z

d

dz

)n
ez, n = 0, 1, . . . ,

and so

R(λ, x) =
1

4π|x| exp(−
√

2λ|x|),

for d = 3 and a = ✶, the identity matrix.

Example 5.15 (d-dimensional Wiener). A Wiener process with vector mean
b and co-variance matrix a has a transition probability function on the state
space space Rd with its Borel σ-algebra B defined by

p(t, x,B) =

∫

B

Γ0(x− bt− y, t, a)dy,

for every x in Rd, t > 0 and B in B, where Γ0(x, t, a) is the Gauss kernel
(5.123). Notice that if (Wt : t ≥ 0) is a standard Wiener process starting at the
origin, i.e., with W0 = 0, zero mean and co-variance matrix ✶ or equivalently
p(t, x, dy)Γ(x − dy, t) as its transition probability function, then the process
Xt = x+ bt+

√
aWt is a realization of the above Wiener process starting at x.

Also this can be constructed as the product of d independent one dimensional
Brownian motions, i.e., the probability transition density function Γ0(x, t) is
the product of d similar one dimensional expressions Γ0(xi, t) as the one used
in Example 5.1. The associated semigroup in C0(Rd) is given by

S(t)f(x) =

∫

Rd

f(y) p(t, x, dy) =

∫

Rd

f(x+ bt+
√
ta z) Γ0(z, 1) dz,
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for every t > 0 and x in Rd. Its infinitesimal generator A is the closure of the
(closable) differential operator Å

D(Å) = C0
0 (Rd) ∩ C2(Rd),

Åf =
1

2

d∑

i,j=1

aij ∂
2
ijf +

d∑

i=1

bi ∂if,

where aij and bi are the entries of the matrix a and the vector b.

Example 5.16 (Ornstein-Uhlenbeck). This is a modification of a Wiener pro-
cess where a linear drift is added. Two matrices a and b describe the process
X, namely,

Xt(x) = ebtx+

∫ t

0

√
a eb(t−s) dWt,

where (Wt : t ≥ 0) is a standard Wiener process. The process Xt(x) has a
Gaussian distribution with mean ebtx and covariance

qt =

∫ t

0

ebsaeb
∗sds, t > 0,

where b∗ is the adjoint matrix. Thus, the transition probability function of the
Ornstein-Uhlenbeck process (Xt(x) : t ≥ 0) on state space Rd with its Borel
σ-algebra B is given by

p(t, x,B) =

∫

B

Γ0(ebtx− y, 1, q−1
t ) dy,

for every x in Rd, t > 0 and B in B, where Γ0(x, t, a) is the Gauss kernel (5.123).
The associated semigroup in C0(Rd) is given by

S(t)f(x) =

∫

Rd

f(y) p(t, x, dy) =

∫

Rd

f(ebtx+ qt z) Γ0(z, 1) dz,

for every t > 0 and x in Rd. Its infinitesimal generator is the closure of the
(closable) differential operator Å

D(Å) = C0
0 (Rd) ∩ C2(Rd),

Åf =
1

2

d∑

i,j=1

aij ∂
2
ijf +

d∑

i,j=1

bijxj ∂if,

where aij and bij are the entries of the matrices a and b.

Example 5.17 (compound Poisson). A compound poisson process with pa-
rameter c > 0 and µ, where µ is a distribution in Rd∗ = Rdr{0} has a transition
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probability function on the state space space Rd with its Borel σ-algebra B
defined by

p(t, x,B) = e−ct
∞∑

k=0

(ct)k

k!

∫

Rd
∗

✶B(x+ y)µk(dy),

µ0 = µ, µk(B) =

∫

Rd
∗×Rd

∗

✶B(y + z)µk−1(dy)µ(dz),

for every k = 1, 2, . . . , for any t > 0, x in Rd and B in B. The probability
measures µk = µk−1⋆µ are called the k-convolution of µ. Based on two sequences
of independent identically distributes random variables with exponential and µ
distribution, a canonical realization of the compound Poisson process can be
constructed. The associated semigroup in C0(Rd) is given by

S(t)f(x) =

∫

Rd

f(y) p(t, x, dy) = e−ct
∞∑

k=0

(ct)k

k!

∫

Rd
∗

f(x+ y)µk(dy),

for every t > 0 and x in Rd. Its infinitesimal generator is the integral operator

D(A) = C0(Rd), Af(x) = c

∫

Rd
∗

[f(x+ y) − f(x)]µ(dy),

which is clearly a nonlocal operator. If the distribution µ has support in an open
semi-space Rd+ = Rd−1 × (0,∞) then we may consider the compound Poisson
process only in Rd+, which is called subordinator in the one dimensional case.

It is clear that we may mix Examples 5.15 and 5.17 to produce a d-dimension-
al Wiener-Poisson process with probability density transition function defined
by

Γ(x, t) = e−ct
∞∑

k=0

(c t)k

k!
(Γ0 ⋆ µ

k)(x, t),

µ0 = δ0, µk(B) =

∫

Rd
∗×Rd

∗

✶B(x+ y)µ(dx)µk−1(dy),

(Γ0 ⋆ µ
k)(x, t) =

∫

Rd
∗

Γ0(x− y, t)µk(dy),

(5.126)

for every x in Rd and t > 0, where δ0 is the Dirac measure at the origin.
Since µ is a probability measure on Rd∗, so is µk and the above series is clearly
convergent. The infinitesimal generator takes the form

Af(x) =
1

2

d∑

i,j=1

aij ∂
2
ijf(x) +

d∑

i=1

bi ∂if(x) +

+ c

∫

Rd
∗

[f(x + y) − f(x)]µ(dy), (5.127)

which is a second order integro-differential (non-local) operator.
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Example 5.18 (Neumann). This is a half-space normal reflecting barrier, i.e.,
on the semi-space R̄d+ = Rd−1×[0,∞), with the notation x = (x̃, xd), we consider
the function

GN0 (x̃, xd, t, ξd) = Γ0(x̃, xd − ξd, t) + Γ0(x̃, xd + ξd, t),

for every t > 0, xd, ξd ≥ 0, and x̃ in Rd−1. As in Example 5.6, we may define a
transition probability function on the state space R̄d+ with its Borel σ-algebra B

p(t, x,B) =

∫

B

GN0 (x̃− ξ̃, xd, t, ξd) dξ,

for any t > 0, x in R̄d+ and B in B. The arguments are the same, even the con-
struction of the (standard) normal reflected Wiener process in a d-dimensional
half-space is simple, since this is a (d − 1)-dimensional Wiener process and an
independent one-dimensional Wiener process with reflecting barrier at xd = 0.
Expressions for the associated semigroup and its infinitesimal generator can be
obtained, e.g.,

D(A) = {f ∈ C0(R̄d+) : ∆f ∈ C0(R̄d+), ∂df(x̃, 0) = 0},

Af =
1

2
∆f,

where ∆ is the usual Laplacian operator
∑d
i=1 ∂

2
i , here in the sense of Schwartz

distribution derivative. Except for the 1/2 factor, the local time correspond to
the so-called Poisson kernel which is P0(t, x, ξ̃) = −2 Γ0(x̃ − ξ̃, xd, t), for any
t > 0, x = (x̃, xd) in Rd−1 × (0,∞) and ξ̃ in Rd−1.

Example 5.19 (Dirichlet). This is a half-space normal reflecting barrier, i.e., on
the semi-space Rd+ = Rd−1 × (0,∞), with the notation x = (x̃, xd), we consider
the function

GD0 (x̃, xd, t, ξd) = Γ0(x̃, xd − ξd, t) − Γ0(x̃, xd + ξd, t),

for every t > 0, xd, ξd > 0, and x̃ in Rd−1. As in Example 5.7, we may define a
transition function on the state space Rd+ with its Borel σ-algebra B

p(t, x,B) =

∫

B

GD0 (x̃− ξ̃, xd, t, ξd) dξ,

for any t > 0, x in Rd+ and B in B. The arguments are the same, even the con-
struction of the (standard) stopped Wiener process in d-dimensional half-space
is simple, since this is a (d−1)-dimensional Wiener process and an independent
one dimensional Wiener process with absorbing barrier at xd = 0. If the barrier
xd = 0 is of some interest, then we may proceed as in Example 5.8 and convert
p into a probability transition function. To that effect, we note that

GD0 (x̃, xd, t, ξd) =
1√
2πt

{
exp

[
− (xd − ξd)

2

2t

]
−

− exp
[
− (xd + ξd)

2

2t

]}
Γd−1(x̃, t),
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where Γd−1(x̃, t) has the same expression (5.123) with the identity matrix a = ✶

in dimension (d− 1). Then we define

p(t, x,B) =

∫

B

{
1√
2πt

(
exp

[
− (xd − ξd)

2

2t

]
− exp

[
− (xd + ξd)

2

2t

])
+

+
[
1 − 1√

2πt

∫ xd

−xd

exp
(
− z2

2t

)
dz

]
✶B(ξ̃, 0)

}
Γd−1(x̃− ξ̃, t)dξ,

for any t > 0, x in R̄d+ and B in B. This yields the (standard) sticking Wiener
process in a d-dimensional half-space. Expressions for the associated semi-
group and its infinitesimal generator are obtained immediately from the one-
dimensional case.

A reflected Wiener process with zero mean and co-variance matrix a in a d-
dimensional half-space presents more difficulties. After a rotation of coordinates,
we can reduce the general case of a Wiener process with zero mean and co-
variance matrix a to the case where a is the identity matrix, but the boundary
condition is a oblique reflection, i.e., instead of the condition ∂df(x̃, 0) = 0 on
the domain of the infinitesimal generator A = ∆/2 we have b · ∇f(x̃, 0) = 0,
where ∇ is the gradient operator in the first d-dimensional variable, i.e., x, and
b = (b1, . . . , bd) is a vector with bd > 0. For the boundary value problem

∂tu− 1
2∆u(x, t) = 0, ∀x ∈ Rd+, t > 0,

u(x, 0) = 0, ∀x ∈ Rd+,

b · ∇u(x, t) = ψ(x, t), ∀x ∈ ∂Rd+, t > 0,

(5.128)

where ∂Rd+ = Rd−1 × {0}, we can calculate the Poisson kernel P b0 as

P b0 (x̃, xd, t) = ϕb(x̃, xd, t) Γ0(x̃, xd, t), (5.129)

and

ϕb(x̃, xd, t) = − 1

|b|2
{
bd +

+
|b|2xd − bd(b · x)

|b|
√
t/2

exp
[ (b · x)2

2t|b|2
]∫ +∞

(b·x)/|b|
√
2t

e−r
2

dr
}
,

for any t > 0, x = (x̃, xd) in Rd+. Actually, we use P b0 (x̃− ξ̃, xd, t) with ξ̃ in ∂Rd+.

Example 5.20 (oblique). This is a half-space oblique reflecting barrier in the
direction of the vector b = (b1, . . . , bd) with bd > 0. On the semi-space R̄d+ =
Rd−1 × [0,∞), with the notation x = (x̃, xd), we consider the function

Gb0(x̃, xd, t, ξd) = Γ0(x̃, xd − ξd, t) − Γ0(x̃, xd + ξd, t) −
− 2 bdP

b
0 (x, xd + ξd, t),
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for every t > 0, xd, ξd ≥ 0, and x̃ in Rd−1. This yields a transition probability
function on the state space R̄d+ with its Borel σ-algebra B

p(t, x,B) =

∫

B

Gb0(x̃− ξ̃, xd, t, ξd)dξ,

for any t > 0, x in R̄d+ and B in B. This is not a product of (d − 1) indepen-
dent Brownian motions in R with an independent reflected Brownian motion in
[0,∞), certainly, the function ϕb in (5.129) makes the coupling. Expressions for
the associated semigroup and its infinitesimal generator can be obtained, e.g.,

D(A) = {f ∈ C0(R̄d+) : ∆f ∈ C0(R̄d+), b · ∇f(x̃, 0) = 0},

Af =
1

2
∆f,

but a realization of a d-dimensional (standard) Wiener process in R̄d+ with
oblique reflection at the barrier xd = 0 is obtained from general existence theo-
rems based on the above transition probability function.

The fact that an explicit expression can be found for the above transition
function give specific estimates allowing the construct Green function for vari-
able coefficients and integro-differential operators, the reader may consult the
books Garroni and Menaldi [58, 59]. The case of a normal reflected Wiener-
Poisson process can be treated as in the one dimensional case Example 5.14,
however, the oblique reflection needs another method. Let us consider the case
of an integro-differential operator of the form A = ∆/2 + I, where

Iϕ(x) = c

∫

Rd
+

[ϕ(x+ y) − ϕ(x)]µ(dy), ∀x ∈ Rd+, (5.130)

where µ is now a probability measure in R̄d+ and c > 0. We define

Gb = Gb0 +Gb1 + · · · +Gbk + · · · , Gbk = Gb0 ⋆ IG
b
k−1, (5.131)

where I is considered acting on the first d-dimensional variables, i.e., for any
fixed t > 0, ξd ≥ 0

IGbk(x̃, x, t, ξd) = c

∫

Rd
+

[Gbk(x+ y, t, ξd) −Gbk(x, t, ξd)]µ(dy),

for every x = (x̃, xd) in Rd+, for any k ≥ 0, and the kernel-convolution

(ϕ ⋆ ψ)(x̃, xd, t, ξd) =

=

∫ t

0

ds

∫

Rd
+

ϕ(x̃− ỹ, xd, t− s, yd)ψ(ỹ, yd, s, ξd)dy, (5.132)

for x̃ in Rd−1, xd, ξd ≥ 0 and t > 0.
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The semigroup property or Chapman-Kolmogorov identity for the transition
function Gb0, namely

Gb0(x̃, xd, t+ s, ξd) =

∫

Rd
+

Gb0(x̃− ỹ, xd, t, yd)G
b
0(ỹ, yd, s, ξd)dy,

for every x̃ in Rd−1, xd, ξd ≥ 0 and s, t > 0, and the explicit form of the function
Gb0 given in Example 5.20 yield the identity Gk(x, t, ξd) = (tk/k!) IkGb0(x, t, ξd),
where Ik is the k-iteration of the integral operator I.

Certainly, we use the technique of Section 5.4 to check in what sense the
above series (5.131) converges. First we define the Green space G0

k of continuous
kernels ϕ(x, t, ξd) for x in R̄d+, t > 0 and ξd ≥ 0 such that

|ϕ(x, t, ξd)| ≤ C0 t
−1+k−d/2, ∀x, t, ξd, (5.133)∫

Rd
+

[
|ϕ(ỹ − ξ̃, yd, t, ξd)| + |ϕ(x̃− ỹ, xd, t, yd)|

]
dy ≤ K0 t

−1+k/2, ∀x, t, ξ,

for some constants C0 and K0, and the infimum of all such constants, denoted
by C(ϕ, k) and K(ϕ, k), are semi-norms for k > 0.

It is easy to check that I maps the Green space G0
k into itself,

C(Iϕ, k) ≤ 2cC(ϕ, k) and K(Iϕ, k) ≤ 2cK(ϕ, k), (5.134)

for every ϕ, k, and that Gb0 belongs to G0
2 in view of (5.124), which is valid for

Gb0 instead of Γ0.
Therefore, Gbk belongs to G0

2k+2 and

C(∂ℓGbk, 2k + 2 − |ℓ|) ≤ (2c)k

k!
C(∂ℓGb0, 2 − |ℓ|), (5.135)

K(∂ℓGbk, 2k + 2 − |ℓ|) ≤ (2c)k

k!
K(∂ℓGb0, 2 − |ℓ|), (5.136)

for every k = 1, 2, . . . and ∂ℓ, with ℓ = (ℓ1, ℓ2, . . . , ℓd, ℓt, ℓa) and |ℓ| = ℓ1 +
ℓ2 + · · · + ℓd + 2ℓt. Because of the identity Gk(x, t, ξd) = (tk/k!) IkGb0(x, t, ξd),
the expression Gbk = Gb0 ⋆ IG

b
k−1 is not really used, not integration in the time

variable is needed in this explicit case and the semi-norms (5.133) are meaningful
even for k ≤ 0. Recall that c > 0 is the constant used in the definition of the
integral operator I in (5.130).

At this point we have proved that the remainder of the series (5.131) defining
∂ℓGb, i.e., ∂ℓGbk+∂ℓGbk+1+· · · converges in the Green space G0

2k+2−|ℓ|, for ℓ ≥ 0,

so that Gb is infinitely many time differential in all its arguments. Moreover, Gb

satisfies the Volterra equation Gb = Gb0 +Gb0 ⋆ IG
b, the Chapman-Kolmogorov

identity, and
∫

Rd
+

Gb(x̃− ξ̃, xd, t, ξd) dξ =

∫

Rd
+

Gb0(x̃− ξ̃, xd, t, ξd)dξ = 1,
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since IGbk has means zero for any k ≥ 1.
To complete this explicit calculation, we denote by ∆0 the Dirac measure at

the origin to have

Ikϕ(x) =
k∑

i=0

(
k

i

)
(−1)k−1 (c t)k

k!

∫

Rd
+

ϕ(x+ y) µ̄k(dy),

µ0 = δ0, µk(B) =

∫

Rd
+×Rd

+

✶B(x+ y)µ(dx)µk−1(dy),

for every k ≥ 1, which implies

Gb(x, t, ξd) =

∞∑

k=0

k∑

i=0

(
k

i

)
(−1)k−1 (c t)k

k!
µkGb0(x, t, ξd),

µkGb0(x, t, ξd) =

∫

Rd
+

Gb0(x+ y, t, ξd)µ
k(dy),

and interchanging the order of the summation we obtain

Gb(x, t, ξd) = e−ct
∞∑

k=0

(c t)k

k!
µkGb0(x, t, ξd),

µ0 = δ0, µk(B) =

∫

Rd
+×Rd

+

✶B(x+ y)µ(dx)µk−1(dy),

µkGb0(x, t, ξd) =

∫

Rd
+

Gb0(x+ y, t, ξd)µ
k(dy),

(5.137)

for every k ≥ 1, for any x in R̄d+, ξd ≥ 0 and t > 0. Since µ is a probability mea-
sure on R̄d+, so is µk and the above series is clearly convergent as the initial one
given by (5.131). These arguments complement the one dimensional examples.

Example 5.21 (oblique Wiener-Poisson). This is a half-space oblique reflecting
barrier in the direction of the vector b = (b1, . . . , bd) with bd > 0, for a standard
Wiener process in Rd and a compound Poisson process with parameters c > 0
and µ, where µ is a distribution on the open semi-space Rd+ = Rd−1 × (0,∞),
with the notation x = (x̃, xd). In the state space R̄d+ = Rd−1× [0,∞), the closed
semi-space, we consider the function Gb defined by (5.131) or (5.137). This
yields a transition probability function on the state space R̄d+ with its Borel
σ-algebra B

p(t, x,B) =

∫

B

Gb(x̃− ξ̃, xd, t, ξd)dξ,

for any t > 0, x in R̄d+ and B in B. Expressions for the associated semigroup
and its infinitesimal generator can be obtained, e.g.,

D(A) = {f ∈ C0(R̄d+) : ∆f ∈ C0(R̄d+), b · ∇f(x̃, 0) = 0},

Af =
1

2
∆f + If,
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where the integral operator I is given by (5.130). A realization of a d-dimensional
(standard) Wiener-Poisson process in R̄d+ with parameter c > 0 and µ, and
oblique reflection at the barrier xd = 0 is obtained from general existence theo-
rems based on the above transition probability function.

It is possible to use an integral operator I of the form

Iϕ(x) =

∫

Rd
+

[ϕ(x+ y) − ϕ(x) − y · ∇ϕ(x)]m(dy),

∀x ∈ Rd+, with

∫

Rd
+

|y|2
1 + |y| m(dy) < ∞. (5.138)

The definition (5.131) of Gb still valid but not (5.137). Because of the con-
stant coefficients we can make explicit calculations and Gbk = Gb0 ⋆ IG

b
k−1 =

(tk/k!)IkGb0 but we need to work harder to show the convergence of the series.
For instance, if we assume

∫

Rd
+

|y|2−α
1 + |y| m(dy) <∞, α ∈ (0, 2],

then the integral operator I maps the Green space G2
k (kernel ϕ satisfying con-

dition (5.133) for ∂ℓϕ of order k − |ℓ|, with |ℓ| ≤ 2) into the Green space G0
k+α,

with appropriate estimates, see previous Section 5.4 and the books Garroni and
Menaldi [58, 59] for details.

On the other hand, the spectral theory of compact operators can be used to
give an eigenvalues and eigenfunction expansion of the Green function or Green
operator as in the Sturm-Liouville case.
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Notation

Some Common Uses:

N, Q, R, C: natural, rational, real and complex numbers.

i, ℜ(·), I: imaginary unit, the real part of complex number and the identity
(or inclusion) mapping or operator.

P, E{·}: for a given measurable space (Ω,F), P denotes a probability measure
and E{·} the expectation (or integration) with respect to P. As customary
in probability, the random variable ω in Ω is seldom used in a explicit
notation, this is understood from the context.

F(t), Ft, B(t), Bt: usually denote a family increasing in t of σ-algebra (also
called σ-fields) of a measurable space (Ω,F). If {xt : t ∈ T} is a family of
random variables (i.e., measurable functions) then σ(xt : t ∈ T ) usually
denotes the σ-algebra generated by {xt : t ∈ T}, i.e., the smallest sub
σ-algebra of F such that each function ω → xt(ω) is measurable. Usually
F denotes the family of σ-algebras {F(t) : t ∈ T}, which is referred to as
a filtration.

X(t), Xt, x(t), xt: usually denote the same process in some probability space
(Ω,F , P ). One should understand from the context when we refer to the
value of the process (i.e., a random variable) or to the generic function
definition of the process itself.

✶A: usually denotes the characteristic function of a set A, i.e., ✶A(x) = 1 if x
belongs to A and ✶A(x) = 0 otherwise. Sometimes the set A is given as a
condition on a function τ , e.g., τ < t, in this case ✶τ<t(ω) = 1 if τ(ω) < t
and ✶τ<t(ω) = 0 otherwise.

δ: most of the times this is the δ function or Dirac measure. Sometimes one write
δx(dy) to indicate the integration variable y and the mass concentrated at
x. On certain occasions, δ denotes the jumps operator, defined be δX(0) =
0 and δX = X(t+) −X(t−), t > 0, any process X without discontinuity
of the second kind.

dµ, µ(dx), dµ(x): together with the integration sign, usually these expressions
denote integration with respect to the measure µ. Most of the times dx
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means integration respect to the Lebesgue measure in the variable x, as
understood from the context.

ET , B(ET ), BT (E): for E a Hausdorff topological (usually a separable com-
plete metric, i.e., Polish) space and T a set of indexes, usually this denotes
the product topology, i.e., ET is the space of all function from T into E
and if T is countable then ET is the space of all sequences of elements in
E. As expected, B(ET ) is the σ-algebra of ET generated by the product
topology in ET , but BT (E) is the product σ-algebra of B(E) or gener-
ated by the so-called cylinder sets. In general BT (E) ⊂ B(ET ) and the
inclusion may be strict.

C([0,∞),Rd) or D([0,∞),Rd) canonical sample spaces of continuous or cad-
lag (continuous from the right having left-hand limit) and functions, with
the locally uniform or the Skorokhod topology, respectively. Sometimes
the notation Cd or C([0,∞[,Rd) or Dd or D([0,∞[,Rd) could be used.

Most Commonly Used Function Spaces:

C(X): for X a Hausdorff topological (usually a separable complete metric, i.e.,
Polish) space, this is the space of real-valued (or complex-valued) continu-
ous functions on X. If X is a compact space then this space endowed with
sup-norm is a separable Banach (complete normed vector) space. Some-
times this space may be denoted by C0(X), C(X,R) or C(X,C) depending
on what is to be emphasized.

Cb(X): for X a Hausdorff topological (usually a complete separable metric, i.e.,
Polish) space, this is the Banach space of real-valued (or complex-valued)
continuous and bounded functions on X, with the sup-norm.

C0(X): for X a locally compact (but not compact) Hausdorff topological (usu-
ally a complete separable metric, i.e., Polish) space, this is the separable
Banach space of real-valued (or complex-valued) continuous functions van-
ishing at infinity on X, i.e., a continuous function f belongs to C0(X) if
for every ε > 0 there exists a compact subset K = Kε of X such that
|f(x)| ≤ ε for every x in X rK. This is a proper subspace of Cb(X) with
the sup-norm.

C0(X): for X a compact subset of a locally compact Hausdorff topological (usu-
ally a Polish) space, this is the separable Banach space of real-valued
(or complex-valued) continuous functions vanishing on the boundary of
X, with the sup-norm. In particular, if X = X0 ∪ {∞} is the one-
point compactification of X0 then the boundary of X is only {∞} and
C0(X) = C0(X0) via the zero-extension identification.

C0(X), C0
0 (X): for X a proper open subset of a locally compact Hausdorff topo-

logical (usually a Polish) space, this is the separable Fréchet (complete
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locally convex vector) space of real-valued (or complex-valued) continu-
ous functions with a compact support X, with the inductive topology of
uniformly convergence on compact subset of X. When necessary, this
Fréchet space may be denoted by C0

0 (X) to stress the difference with the
Banach space C0(X), when X is also regarded as a locally compact Haus-
dorff topological. Usually, the context determines whether the symbol
represents the Fréchet or the Banach space.

Ckb (E), Ck0 (E): for E a domain in the Euclidean space Rd (i.e, the closure of
the interior of E is equal to the closure of E) and k a nonnegative integer,
this is the subspace of either Cb(E) or C0

0 (E) of functions f such that all
derivatives up to the order k belong to either Cb(E) or C0

0 (E), with the
natural norm or semi-norms. For instance, if E is open then Ck0 (E) is a
separable Fréchet space with the inductive topology of uniformly conver-
gence (of the function and all derivatives up to the order k included) on
compact subset of E. If E is closed then Ckb (E) is the separable Banach
space with the sup-norm for the function and all derivatives up to the
order k included. Clearly, this is extended to the case k = ∞.

B(X): for X a Hausdorff topological (mainly a Polish) space, this is the Banach
space of real-valued (or complex-valued) Borel measurable and bounded
functions on X, with the sup-norm. Note that B(X) denotes the σ-algebra
of Borel subsets of X, i.e., the smaller σ-algebra containing all open sets in
X, e.g., B(Rd), B(Rd), orB(E), B(E) for a Borel subset E of d-dimensional
Euclidean space Rd.

Lp(X,m): for (X,X ,m) a complete σ-finite measure space and 1 ≤ p < ∞,
this is the separable Banach space of real-valued (or complex-valued) X -
measurable (class) functions f on X such that |f |p is m-integrable, with
the natural p-norm. If p = 2 this is also a Hilbert space. Usually, X
is also a locally compact Polish space and m is a Radon measure, i.e.,
finite on compact sets. Moreover L∞(X,m) is the space of all (class of)
m-essentially bounded (i.e., bounded except in a set of zero m-measure)
with essential-sup norm.

Lp(O), Hm
0 (O), Hm(O): for O an open subset of Rd, 1 ≤ p ≤ ∞ and m =

1, 2, . . . , these are the classic Lebesgue and Sobolev spaces. Sometimes we
may use vector-valued functions, e.g., Lp(O,Rn).

D(O), S(Rd), D′(O), S ′(Rd): for O an open subset of Rd, these are the classic
test functions (C∞ functions with either compact support in O or rapidly
decreasing in Rd) and their dual spaces of distributions. These are sep-
arable Fréchet spaces with the inductive topology. Moreover, S(Rd) =
∩mHm(Rd) is a countable Hilbertian nuclear space. Thus its dual space
S ′(Rd) = ∪mH−m(Rd), where H−m(Rd) is the dual space of Hm(Rd).
Sometimes we may use vector-valued functions, e.g., S(Rd,Rn).
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[130] P.A. Meyer. Un cours sus le intégrales stochastiques. Séminaire de Proba.
X, volume 511 of Lectures Notes in Mathematics, pages 246–400. Springer-
Verlag, Berlin, 1976. 238

[131] R. Mikulevicius and H. Pragarauskus. On the Cauchy problem for certain
integro-differential operators in Sobolev and Hölder spaces. Liet. Matem.
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change-of-variable rule, 185
Chapman-Kolmogorov identity, 362
characteristic, 67
characteristic exponent, 64
characteristic function, 36
characteristic functions, 63
compensator, 72
conditional expectation, 11
counting process, 355
cylindrical sets, 4

definition of
compensator, 122
extended generator, 360
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