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CZii X = (X))

STELLINGEN
bij het proefschrift

STOCHASTIC PROCESSES AND POINT PROCESSES OF EXCURSIONS

van

J.A.M.van der Weide

. Zij P een Markov-kern op een meetbare ruimte (E,E). Definieer de Markov-kern

P op de meetbare ruimte (E x[0,1], £ @ B([0,1])) door
[
PEG,a) = [ POx,dy)) [ £(y,y,)dy,
E 0

waarbij £ : Ex[0,1] - R een begrensde, meetbare functie is en (x,a) ¢ Ex[0,1].

De in {11 voor meetbare functies h : E » [0,1] gedefinieerde potentiaalkern Uh

heeft de volgende stochastische interpretatie. Voor x € E en A ¢ £ is

T
Uy (x,A) = E(x,u)[ TAx [O,l](Yn)]

h

L

n=1 -

de Markovketen op Ex[0,1] is met overgangskern P en waarbij

waarbi] (Yn)nZO
T, de eerste terugkeertijd is van A = {(x,y) € Ex{0,11 : y £ h(x)}.

[ 1] Revuz, D. : Markov Chains. North-Holland, Publ.Comp. Amsterdam 1975,

20 standaard Brownse beweging startend vanuit O en zij A = (At)

het additief functionaal gedefinieerd door

t=0

t
A, = g Irg,uf (Kg)ds-

- Wezo < -
X = (xt)t> o 8egeven door Xt =X e Te kan direct geconstrueerd worden uit het

Zij t = ( de van rechts-continue inverse van A. Het stochastisch proces
Itd-Poisson puntproces van excursies vanuit 0 van de Brownse beweging X. Uit een
eenvoudige berekening volgt dat X gereflecteerde Brownse beweging is.

Williams,D : Diffusions, Markov Processes and Martingales, Volume | : Foundations.

ch. III, section 38, Wiley, New York 1979.

In [1] wordt een Suslin ruimte gedefinieerd als een Hausdorff topologische ruimte
E waarvoor een Suslin-metriseerbare ruimte P bestaat en een continue, surjectieve
afbeelding van P op E. De opmerking dat dit Bourbaki's definitie van een Suslin
ruimte is als aangenomen wordt dat P een Poolse ruimte is, is onjuist.

[ 1] Dellacherie, C. and Meyer, P.A. : Probabilities and Potential. North-Holland,
Amsterdam 1978.



4. Als de kansverdeling {pk : k € Z} in sectie (4.2) van dit proefschrift een
eindig tweede moment bezit, dan convergeert de rij kansmaten (Ps)n))n>] in

o 2
stelling (4.2.4) zwak naar de kansmaat Pm. n

5, Zij YY = (Yy(t))tzo het Markov proces geconstrueerd uit het It3-Poisson punt-
proces van excursies vanuit O van standaard Brownse beweging waarbij de temm
YT, Y 2 0, is opgeteld bij de som ('ra + A(1)) van de lengtes van de excursies.
tot en met tijd T (zie sectie (4.3) van dit proefschrift). Zij verder L de
"Blumenthal-Getoor locale tijd in O van proces Y . Dan is voor A,u > 0 en
0<a < 5)\2 Y

2V2a
(20-1%) (u (VI+y) +ay +VIE)

oot Eq(expl-3Y, (£) - wL(e)Dde =

Ot 8

6. Laat het Markov proces Y gedefinieerd zijn als in stelling 5 en laat
m, = min(t @ Yy(t) = a) het eerste treffen van toestand a ¢ R zijn. Dan

is voor A > 0
-im

-aV?2 ~2av7n. -1

Eo(e 8y = vIxe @ A (Ay+VZX -)ye 2a >‘)

7. Het verdient aanbeveling om ook bij het onderwijs aan de TU Delft in de vakke:
Analyse, Lineaire Algebra, Kansrekening en Statistiek meer gebruik te maken

van computers.

8. In de Breitkopf uitgave van Johann Sebastian Bach's Matthaeus Passion is in
de aria "Gebt mir meinen Jesum wieder' de tweede tel van de vierde maat niet
in overeenstemming met het handschrift van Bach. Bij uitvoeringen van deze

aria verdient de oorspronkelijke door Bach aangeduide stokvoering de voorkeur
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INTRODUCTION AND SUMMARY

Tn his studies [35] and [36] of the sample paths of Brownian motion,
Lévy developed the idea to decompose the time set [0,®[ in a part Z at
which the process is in state O and intervals of time spent in R\{0}.
Throughout the year-s this has proved to be a very fruitful idea. On
one hand the study of the set of zeros Z led Lévy to the description of
local time as an occupation density (Lévy used in [35] the term "mesure
du voisinage” . See for occupation densities the survey article of
Geman and Horowitz [14], who discuss connections between the behaviour
of a (non-random) real-valued Borel function and the behaviour of its
occupation density. Local times for general Markov processes were
introduced by Blumenthal and Getoor in [3]). On the other hand Lévy's
study of the behaviour of Brownian motion on zero-free intervals was
the starting point of excursion theory. Lévy's theory was extended in
Itd-McKean [27]. (2.9) and (2.10). See also Chung’s article [6], in
which elementary derivations are given of a number of Lévy's results.
This research led to many deep theorems ébout the behaviour.of the
paths of diffusions, see for instance Williams [58] and Walsh's
discussion of Williams' results in [53]. Another important application
of excursion theory can be found in the construction of those strong
Markov processes, which behave outside a fixed state (or more generally
outside a set D) as a given Markov process X. In this area the works of
Dynkin [9], [10] and Watanabe [54], [55] are important. For excursions
from a subset S, see the works of Maisonneuve [38], [39] and Getoor
[16]. Getoor gives also an application to invariant measures, see also
Kaspi [30] and [31]. Unlike occupation densi‘ties. which are also useful
in the study of non-random functions, excursion theory takes its use
from the Markov character of the random process. To make clear the

ideas behind excursion theory, let X=(X),so be a homogeneous Markov



chain with state spacé E. Let a € E be a given state. Denote for

k=1,2,... by ug the time at which the Markov chain X visits the state a
for the k*™P time; Dg = o if there are less than k visits to a. Suppose
that a is a recurrent state, i.e. Pa[v;_ ¢ ®] = 1. Then the kth

excursion V. = (Vi(n)), 50 from a of the Markov Chain X is defined as

follows
[ Xy, oo for0<n< pk*l_yk
n
V() =1 2
L a for n 2 v§+l—v§

Let V, = (Vo(n))n20 be defined by

r o Xg for n < v;
Vo(n) = 1 i
L a for n 2 vy

It follows from the strong Markov property that the sequence of
excursions (vk)k>1 is independent and identically distributed. It is
clear that the process X can be reconstructed pathwise from the
sequence (Vk)kzo-

For Markov processes with continuous time parameter the situation is
more complicated. As an example take standard Brownian wmotion
B = (B;);yp and consider the excursions from state O. Let Z be the set
of zeros of B. The component intervals of [0,®[\Z are called excursion
intervals. Since Z is a topological Cantor set of Lebesgue measure O
(see Itd-McKean [27], problem 5, p.29), with probability 1 there is no
first excursion interval. Let I=]a,B[ be an excursion interval. The map
Vi ¢ [0,2[ = R defined by

B

ot for 0 { t < B-a

VI(c) =
0 for t 2 B-a
is the excursion made by B from O corresponding to the excursion

interval I; (=f-a is called the length of the excursion. Put Ty=¢(a),
where ¢ is the local time of B at zero. Itd proved in [25] (see also
Meyer [41]) that the random distribution of points (7{,Vy) in

[0,[ x U, I running through the excursion intervals and U being the



space of excursions from O, is a Poisson point process on [0, x U
whose intensity measure is the product of Lebesgue measure A on [0,®[
and some o-finite measure v on U. This means that the number of points
(TI.VI) in a subset [u,v[ x U, of [0,#[ x U is Poisson distributed with
expectation (v—u)v(U,) whilst the numbers of points (t1.V1) in disjoint
subsets of [0, x U are independent. Itd proved this result actually
for excursions of a standard Markov process X from a regular point a,
and he gave a characterization of the excursion law v of a recurrent
extension of X, i.e. a strong Markov process, which behaves as X until
the first hitting of state a.
It is interesting to look at Itd’'s definition of a point process. Let
(S,¥) be a measurable space. A point function p : ]0,*[ - U is defined
to be a map from a countable set Dp C J0.o[ into U. Meyer in [41]‘
considers a point function p as a mapbdefined for all points in ]O,«[
by putting p(x)=3 for x € ]0,00[\Dp where J is an extra point added to
U. Let now II be the space of all point functions: JO,®[ - U. Denote for
p €T and for E € 3(]O0,[) ® ¥ by N(E.p) the number of the time points
t € D, for which (t.p(t)) € E. The Borel o-algebra %(II) on II is defined
as the o-algebra generated by the sets {p € I : N(E,p) = k},
E € $(JO0,[) ® ¢, k=0,1,2,... Itd defined a point process‘ as a
(1, %(IT))-valued random variable. For instance the point process of
excursions from O of Brownian motion is the (stochastic) point function
p defined by

Dp = {r1: I an excursion interval} and

p(t) = Vi, t =711 € Dp.
This definition gives a clear picture of point processes such as they
appear in excursion theory and that is presumably the reason why in
studies about excursion theory this definition ;s always used, see for
instance Watanabe [54] and Greenwood and Pitman [17]. Beside this

definition of a point process as a stochastic point - function, there



exists a fairly general theory of point processes which views a point
process as a discrete random measure. See Neveu [44], Jagers [29] and
Krickeberg [34] for point processes on a locally compact space and
Matthes, Kerstan and Mecke [40] for point processes on a complete,
separable metric space. This measure-theoretical approach to excursions
makes it possible to use some important results from' this theory, such
as e.g. the Palm-formula, which were up to now not used in the
literature about excursion theory. An example of the use of the
Palm-formulé can be found in the construction of a Markov process from
a Poisson point process of excursions. Itd only remarks in [25] that
this can be done by reversing the procedure of deriving the excursion
process from a Markov process. In Ikeda & Watanabe [22] Brownian motion
is constructed from its excursion process using the general theory of
stochastic processes (compensators and stochastic integrals). And in
[2] Blumenthal gives a construction of which he claims that it is the
construction Ité had in mind; this contruction consists of a pathwise
approximation of the Markov process. The most recent and complete work
along these lines can be found in Salisbury [47] and [48]. The
construction that we will give is based on an application of the Palm
formula and on the so-called renewal property of a Poisson point
process of excursions. This construction has in our opinion the
advantage that it makes clear why the constructed process has the
Markov property and it displays the role of local time in the
construction. The same method can be used to write down a formula for
the resolvent of the constructed process.

We continue with the definition of a point process as a discrete random
measure. Let X be a topological space with Borel o-algebra %(X).
Roughly stated, a point process on X is a probability measure on the
space of locally finite point measures on (X, %(X))., or a random

variable with values in the space of locally finite point measures on



(X.%(X)) by which we identify a random variable with its distribution.
From now on we will use the word point process only in this sense. In
excursion theory the topological space X is the (topological) product
of the set of nonnegative reals [0, with the usual topology and the
space of excursions U endowed with the Skorohod topology. For example
the point process of excursions from O of Brownian motion is the random
measure E{G(TI’VI):I an excursion interval} where &, is the notation
for the Dirac measure in x. Note that X = [0,9[ x U is a polish space.
The main reference on point processes on polish spaces is the book [40]
of Matthes, Kerstan and Mecke. The theory which they develop depends
essentially on a fixed metric d- on X, chosen in advance, such that the
metric topology coincides with the topology of X and (X.d) is a
complete, separable metric space. A nonnegative Borel measure on X is
locally finite if it is finite on the'sets in %(X), which are bounded
in the sense of the metric d. This theory is not directly applicable to
excursion theory. The point measures which arise in excursion theory
are finite on the sets [a,b[ x [{ > 1], 1 > 0, (remember that { is the
length of the excursion) and the most interesting cases are those where
the set [a,b[ x U has infinite mass. Note that the set [{ > 1] is
dense in U. Thus it is not clear how to choose a metric d on X for
which the set of locally finite measures contains this family of point
measures. Instead of trying to -find such a metric, it seems more
natural to define local finiteness directly in terms of the sets
[a,b[ x [ > l]. More general, let ¥ be a family of Borel subsets of X.
A nonnegative Borel measure p on X is called $-finite if p(A) ¢ » for

every A € ¥ and a point process P is an $-finite point process if the
probability measure P is concentrated on the space of ¢Y-finite
measures. The set of locally finite measures in t»he sense of Matthes,
Kerstan and Mecke coincides then with the ¥-finite measures, ¥ being
the family of all open balls with finite radius. Point processes on

locally compact spaces are probability measures on the set of Radon




measures, which is the same as the set of ¥-finite measures with ¢
consisting of the compact subsets.

So far we did not discuss a measurable structure on the set #'(¥) of
$-finite measures, which is of course necessary for the definition of
probability measures on A'(¥). A o-algebra on A'(¥) should at least
measure the maps p € A1(¥) - p(A), A € B(X). In Matthes et al. [40] the
o-algebra on ﬁ+(9) (¢ being the family of open balls of finite radius)
is defined in an abstract way as the o-algebra o generated by these
maps. In the literature about point processes on locally compact
spaces, on the other hand a o-algebra on the set of Radon measures is
introduced in a topological way as the Borel o-algebra %(M+)
corresponding to the vague topology on ﬂ+(9). It turns out that %(ﬂ+)=$
in this case, so we have a definition of o« as a Borel o-algebra
corresponding to a nice topology on M+(9). which makes it possible to
use the apparatus of topological measure theory. In section (1.1) we
will define a topology on the set ﬂ+(9) of ¥-finite measures on an
arbitrary polish space X. Let #(¥} = {f € G (X): 3A € ¥ : supp(f) C A}
and let 7(¥) be the topology o(ﬂ+(9), #(¥)) of pointwise convergence on
#(#). If ¥ is a family of open subsets of X filtering to the right such
that ¥ covers X and such that ¥ contains a countable, cofinal subset,
then it will turn out that (A" (¥), 7(¥)) is a Suslin space whilst the
Borel o-algebra on ﬂ+(9) coincides with . At the end of the section we
compare our results with the results of Harris in [19] and [20], who
also defines a topology on some family of nonnegative Borel measures on
a complete, separable metric space.

Section (1.2) contains standard results for ¥-finite point processes,
in particular the Palm~formula which is now a direct consequence of a
general theorem on disintegrations of measures from topological measure
theory. Further ¥$-finite Poisson point processes and Cox processes are

discussed. Section (1.3) is devoted to the study of a special class of



¥-finite Poisson point processes on X=[0,®[ x U, ¥ being the family of
subsets I x U, of X where I is a bounded, open sub-interval of [0,
and (Un)n'z1 is a sequence of open subsets of U, increasing to U. It is
clear that ¥ is a filtering family of open subsets of X which covers X
and has a countable, cofinal subsequence. Denote by Mi(y) the set of
$-finite point measures p for which p({t} x U) < 1, t 2 0. An
Itdo-Poisson point process is a Poisson point process P on X with
intensity measure A ® », A denoting Lebesgue measure on [0, and v a
o-finite measure on U satisfying v(Un) (® n ) 1. We choose the name
Itd6~Poisson point process, because the point process of excursions, as
constructed by Itd, is of this type. Following Itd, the measure v is
called the characteristic measure of P. Further P(Ai(?)) = 1 for an
It6-Poisson point process P. The first important property of
It6-Poisson point processes is the reﬁewal property which is treated
here as a generalization of the property that a Poisson process is free
from after-effects. The renewal property was already mentioned in Ité
[25], but without a proof. We continue with Itd’'s characterization of
It6-Poisson point processes with a proof using 'point process
techniques"”. We end section (1.3) with a beautiful theorem of Greenwood
and Pitman [17], which states that an Itd-Poisson point processbP has
an intrinsic time clock in the following sense: if u € ﬂi(?). denote by
fkl(p), sz(p),... the Uy -sequence of p, i.e. .

supp(p) N ([0.®[ x Up) = (7p3(n). §ki("))121 where ghe enumeration is
such that the sequence (Tki(“))i21 is increasing in the order of R. The
sequence Ek = (fki)i>1 is an i.i.d. sequence on the probability space
(#i(y),P). The theorem of Greenwood and Pitman states that the time
coordinates Ty; can be reconstructed from the sequence §p;.fpo.-.. if
v(U)=tw. We give a complete proof of a slightly more general version of
this theorem. which was formulated in [17] as a theorem on stochastic

point functions.



In chapter 2 excursion theory is treated for Ray processes. We have
chosen to treat excursion theory for Ray processes, since this class is
in some sense the most general class of strong Markov processes, see
Getoor [15] and Williams [59]. After a brief survey of Ray processes in
section (2.1), we construct in section (2.2) the Itdé-Poisson point
process of excursions from a given state a of a Ray process Y. Since we
want to include branchpoints in our discussion, we use a definition for
excursions which differs a bit from Itd’s definition, see also Rogers
[45] who uses the same definition. We call excursion intervals the
connected components of the complement in [0, of the closed set of
time points where the process hits or approaches the state a. Let
(rk)kZI be a decreasing sequence of positive real numbers and let

Ug={u € U : {, > rp}. Denote by V,  the nth

excursion of Y with length’
exceeding rk- The strong Markov property implies that the sequence
(Vim)n>1 1is an independent, identically distributed sequence. Let

Tg=inf{t > O : Y,=a or Y _=a}. An application of the theorem of

t
Greenwood and Pitman yields:
- If P,[7,=0]=1 there exists an ¥-finite It6-Poisson point process
N defined on (Q.3,P,) whose [{ > 1]-subsequence is the sequence
of excursions of Y of length greater than l. The characteristic
measure v of N is the unique (modulo a multiplicative constant)
measure on U of which the conditional distribution ”lUj is the
probability distribution of le; v is a o-finite measure with
total mass v(U)=+5. The Markovian properties which v inherits
from the process Y are described in theorems (2.2.3) and
(2.2.4).
- In the remaining case where Pé[Ta=O] = O there exists an i.i.d.

sequence (fn)nZI of U-valued random variables on (2.%,P,) whose



[€ > l]-subsequence is the sequence of excursions of Y of length

greater than L.
Note that it was not necessary for this construction to introduce
explicitly a local time at state a. Local time at state a will be
discussed in section (2.3), in which we construct Markov processes from
an y—finite I1tdo-Poisson point process. The basic idea is the following.
If p € ﬂi(V), then supp(p) can be considered as a countable, ordered
subset (uo)aeJ(u) of U where J(p) denotes the projection on [0,%[ of
supp(p) and where u =u iff (o.,u) € supp(u). Note that (ua)a € J(n) is
not necessarily a totally ordered subset of U. Let L : U > [0,%] be a
given, measurable function on U. Define for o € [0,®[

B(o.p) = Z{L(u;) : 7 € J(1) N [0.0]}

Jﬂ(drdu)l[o_a](T)L(u)

and

C(n) U [B(o-.p). B(o.n)[.

o€J(u)
If T=C(p) then denote. by u the concatenation of the functions

Yo |[0.L(u)[ @ € JW). that ds

ho [0 S E

i(s) = ug(s-Bo-.m)) =[u(drav)(v1pq. 1 (yy[) (s-B(T=.1))
where o € J(u) such that s € [B(o-.up), B{(o.u)[. In general we do not
have that [0,#[=C(u). If B{o.u) is strictly increasing as a function of
o, then [0,®[ is the disjoint union of C(u) and the range R of B(..u).
Let now P be an ¥-finite It6-Poisson point process with characteristic
measure v. We want to construct Markov processes, so we have to assume
that v satisfies the properties of the characteristic measures which
arose by the construction of the It6-Poisson point processes of
excursions in section (2.2). But it is not necessary to assume that
v(U)=t». In this context it is more natural to consider a family

(Px)er of point processes, where P, is the ¥-finite It6-Poisson point
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process P to which is added a first excursion corresponding to a start
from x, taking in account the transition mechanism which is contained
in the measure v. For our construction we will follow the above
described basic idea with ;the lifetime { in the role of L. Considered
as a function of u € .Mi(?), B(r.,u) is a random variable on the

probability space (.Mi(y’). P,). The Poisson-property of the point

process P, implies that the stochastic process (B(T))TZO is a

subordinator (i.e. the process (B(T))TZO has nondecreasing cadlag
realizations and stationary independent increments}. In our
construction we add a linear term stationary ~7 to B(t), with v a
nonnegative real parameter, which gives us the general form of a
subordinator with the same Lévy measure as B(7T). An interpretation of
the parameter v will be given in chapter 4. The simple Markov property
for the constructed process is proved in theorem (2.3.6). In theorem
(2.3.8) we give an expression for the resolvent and in theorem (2.3.9)
the strong Markov property is proved under a weak extra condition. In
theorem (2.3.10) we give an explicit formula for the Blumenthal-Getoor
local time at state a. We end this section with an example of the
construction of a stochastic process from a more general point process
than an It6-Poisson point process. This construction is based on a Cox
process and leads to a strong Markov process which is killed
exponentially in the local time at a.

In chapter 3 we give some applications of excursion theory. In the
first two sections we derive explicit expressions for the
characteristic measures of the Ité6-Poisson point processes of
excursions from O attached to standard Brownian motion and Brownian
motion with constant drift. A natural problem is to describe all strong
Markov processes which behave like a given Ray process Y until the
first hitting or approach of a given state a. As far as we know the
only complete solution for this problem is given in Itd and McKean [26]

for the case of reflecting Brownian motion on
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[0.[. In section (3.3) we given an interpretation in terms of
excursion theory of the parameters which appear in its description. In
section (3.4) we will construct a model for random motion on an n-pod

E that is a tree with one single vertex O and with n legs having

n
infinite length. This is the most simple example of random motion on a
graph. In defining the process on E we should like it to be Markovian
with stationary transition probabilities. We should also like to have
the process to behave like standard Brownian motion restricted to a
half line, when restricted to a single leg. Using the results for
reflecting Brownian motion from section (3.3) we are able to
characterize all strong Markov processes which satisfy this
description. Frank and Durham present in [12] for the first time an
intuitive description of such a process for the case n=3. They
" considered the case of continuous entering from O in a leg, which was
chosen according to some given probability distribution. The difficulcy
which arises in the construction of this process is that the process,
when starting from O, will visi.t 0 infinitely many times in a finite
time interval. It is therefore not possible to indicate the leg which
is visited first starting from O. In section (4.2) we will explain what
is meant with choosing a leg according to some given probability
distribution with the help of a random walk approximation. The
construction that we will give is based on section (2.3); our model
allows also jumping in a leg, stickiness at O and killing with a rate
proportional to local time at O. In section (3.5) we show how theory of
section (2.3) can be applied to the construction of certain Markov
processes which Blumenthal uses in [2] and for the construction of
which he refers to Meyer [42]. As already mentioned above, chapter 4
contains random walk approximations. Let Snz(snk)kelN' n=1,2,... be a
sequence of Markov chains on Z with transition matrices P, and initial

distributions v, . Define for n 2 1 the process Xn=()g_l(t))t20 with
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continuous time parameter by

_ a4
Xn(t) =n Sn.[nt]
n
and let Pﬁn) be the distribution of Xn vhere My, is the distribution of

X,(0}. In section (4.2) we consider the case where P =P does not depend

on n where P is given by

P(m,m-1)

P(m.m+tl) = for m £ 0

[\ I

P(0.k) Py for k € Z

in which {pk : k € Z} is a probability distribution on Z. Harrison and

Shepp proved in [21] that for the special case py=a, p_;=f, a+S=1 the

sequence of probability measures (Pgn)) converges weakly to the
distribution of skew Brownian motion starting from O. Skew Brownian
motion was introduced in Itd-McKean [27] as an example of a diffusion
process. In the terminology of section (3.4) skew Brownian motion can
be considered as a random motion on a 2-pod which behaves like standard
Brownian motion outside O and which enters continuously in a leg chosen
with probability distribution (a,l—a); We will prove a part of a more
general result which was stated without proof in Harrison and Shepp. If
the probability distribution (p,) has a finite first moment and if the
sequence of probability measures (v,),y; on R with supp(v,) C %z

converges weakly to a probability measure m on R, then the finite

dimensional distributions of the sequence (Pﬁz)) converge weakly to the
finite dimensional distributions of skew Brownian motion with initial
Ek+pk

slklpy

Section (4.3) gives a random approximation for the stochastic process

distribution m and with parameter a =

Y, constructed from the It6-Poisson point process of excursions from O
of standard Brownian motion, where we have added to the total excursion
length B(T) up to time T the term +r. Let the transition matrix P, of

the Markov chain S, be defined by

1
P (i.i+1) = P (i.i-1) = 5 fori#0
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P,(0.0) =a,
1
Pn(O.l) = Pn(O,—l) = 5 (l—an)
~on”
where a, = ———% It turns out that the distributions of the processes
1+v°n’

Xn defined as above converge weakly to the distribution of Y,.

In this thesis only excursions from a single state a are treated. It
looks as if it is not too difficult to generalize this approach to the
description of excursions from a finite set of states. It seems that
one will need Cox processes to describe the excursions from a finite
set of states. These Cox processes will not satisfy the renewal
property, which will be replaced by some kind of Markov property. See
also I1té6 [25]. who proposes to call the excursion point process Markov
in this case. However these Markov excursion point processes are not

discussed by Ito.



CHAPTER 1

POINT PROCESSES

A point process is a random distribution of points in some space X. The
case where X is the real line, more generally a locally compact, second
countable Hausdorff space or a separable metric space, has been studied
extensively. One always assumes that there is a family ¥ of subsets of
X, each of which can contain only .a finite number of points. ¥ is the
family of’compact subsets if X is locally compact and if X has a metric
structure then ¥ is the family of bounded subsets of X.
Mathematically the concept of a point process is formalized as follows.
Let X be a topological space and let ¥ be a family of open subsets of
X. To a distribution Z of points in X we assign the point meésure
Z 6

z€z %'
measures on X has greater flexibility than the description with subsets

where 52 is the Dirac measure in z. The description with

of X and is mathematically more convenient because of the richer
structure of the linear topological nature of the space of measures.
Moreover in the case of point processes with multiple points the
approacﬂ via measures is more natural. So let 4% = M+(9) be the set of
all nonnegative Borel measures on X which are finite on the elements of
#. Denote by o the smallest o-algebra on A" which measures the maps
pedt - u(A), A € B(X). Let A" = H"(¥) be the subset of A" consisting of
the point measures on X. An ¢¥-finite point process on X is a
probability measure on (ﬂ+.d) which is concentrated on A", or an
H'-valued random variable where we identify a random variable with its
distribution. However, the measure-theoretic introduction of the

o-algebra o is not quite satisfactory. There are several reasons to
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prefer a definition of o as the Borel o-algebra corresponding to some
topological structure on i oa topology on #*, which induces the
corresponding narrow topology on the space of measures on A, makes it
possible to discuss weak convergence of point processes. Further,
measurability properties of subsets of it (for instance H") can be
derived from topological properties and there is a powerful
disintegration theorem for measures on topological spaces.

As an example, consider briefly the set of nonnegative Borel measures
on a locally compact, second countable Hausdorff space X. Then
#t = #*(¥) is the set of all Radon measures on X (¥ is the family of
compact subsets of X). Let # = #(¥) be the set of all continuous
functions on X with compact support. Endow H" with the vague topology
T = a(.M+.7l) of pointwise convergence on the elements of #. A net (ua)
in &% converges vaguely to u € M iff pa(f) - p(f) for each f € #,
where p(f) is the functional-analytic notation for the integral of f
with respect to p. The vague topology renders it a polish space, i.e.
4" is metrizable with a complete metric. The Borel o-algebra % on
(.M+,T) coincides with the o-algebra o generated by the maps p € H -
r(A), A € 3(X). The basic result on weak convergence is Prohorov’s
theorem, which gives a characterization of the relative compact subsets
of (M+,T). The set of point measures M" is a vaguely closed subset of
A*. See for proofs Bourbaki [5] and Krickeberg [34].

In the literature about point processes on complete, separable metric
spaces (X,p) one studies always ¥-finite point processes, where ¥ is
the family of bounded Borel subsets of X. The point processes which
arise in excursion theory turn out to be ¥-finite point processes on a
polish space U, where ¥ is some family of open subsets of U. The theory
of point processes on complete, separable metric spaces is not
applicable in this case, since it is not clear whether there exists a

complete metric d for U such that' ¥ coincides with the family of
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d-bounded subsets of U. So, before we can study excursion theory we
have to study the set .M+(9’) of ¥$-finite Borel measures on a polish
space U for some family ¥ of open subsets of U.
Let X be a completely regular Suslin space (for exam;_)le a polish space)
and let ¥ be a family of open subsets of X such that

(i) ¢ is filtering to the right with respect to inclusion,

(ii) ¢ has a countable cofinal subset, and

(iii) ¥ covers X.
We will construct in section (1.1) a topology on the set i = J{+(9) of
nonnegative, ¥-finite Borel measures on X. Let # = #(¥) be the set of
all bounded. continuous functions on X with support contained in an
element of ¥. Equipped with the topology T =a(.4{+,3f) of pointwise
convergence on the elements of ¥, A" turns to be a Suslin space whilst
the Borel o-algebra on (.M+,'r) is identical to the o-algebra # generated
by the maps p € AT - r(A), A € B(X). For polish spaces X we have the
stronger result that (.4(+,'r) is a Lusin space. Our treatment is based on
the results for polish, Lusin and Suslin topological spaces in Schwartz
[49]. The set of ¥-finite point measures {"(¥) turns out to be a closed
subset of ¥, as it is for the vague topology on ‘the set of Radon
measures on a locally compact, second countable Hausdorff spaée, In
section (1.2) we will discuss $¥-finite point processes on a polish
space X. The existence of Palm measures, which are, loosely stated, the
conditional distributions of the point process if it is known that a
certain element x € X occurs (see Jagers [28] for the case that X is
locally compact), follows now from a general disintegration theorem
from topological measure theory. Further Poisson point processes and
Cox processes (so called doubly stochastic ‘point processes) are
discussed. It will be shown that for every ¥-finite measure v on X
there exists an ¥-finite Poisson point process with intensity measure

v. The point processes. which arise in excursion theory are ¥-finite
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Poisson point processeé on a polish space X, which is the topological
product of the half line [0,®[ and a polish space U, whilst ¥ consists
of the sets I x Uy where I is an open, bounded sub-interval of [0,%[
and (Un)nZI is an increasing sequence of open subsets of U which covers
U:; the intensity measure is the product of the Lebesgue measure A and a
Borel measure v on U which is finite on the sequence (U, ), y;. Itd was
the first who studied these processes as stochastic point functions and
that is the reason why we call them Ité-Poisson point processes. In
section (1.5) we discuss the renewal property for Itdo-Poisson point
processes and the characterizations of these processes which were given
in Itd [25] and in Greenwood & Pitman [17]. We will give full proofs of
slightly more general versions of these theorems which were originally
formulated in terms of stochastic point functions: the renewal property

was stated in Itd [25] without proof.

Topological spaces of Borel measures.

Let X be a Suslin space with Borel o-algebra %(X). A Suslin space is a
Hausdorff topological space for which there exists a polish space Y and
a continuous surjection from Y to X, see Schwartz [49], p. 96. To have
enough continuous functions on X we will assume that X is a completely
regular space, i.e. for each x € X and each open neighbourhood U of x
there is a continuous function f on X to the closed unit interval such
that f(x)=1 and f is idenfically zero on X\U.

Let G be an open subset of X. Equipped with the relative topology, G is
a completely regular Suslin space (Schwartz [49] theorem 3, p.96).
Denote by C(G) the space of bounded continuous functions on G and by
#(G) the subspace of Cp(G) consisting of restrictions to G of bounded

continuous functions on X with support contained in G
#(G) = {flg = £ € Gy(X). supp(f) C G}.

The space of nonnegative, bounded Borel measures on G will be denoted
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by M;(G). Endowed with the narrow topology, that is the topology
71(G) = a(ﬂ;(G). Cp(G)) of pointwise convergence on Cy(G). ME(G) is a
Suslin space, see Bourbaki [5], p.6. Denote by T9(G) the topology
o(M;(G), #(G)) on ﬂg(G). It is clear that 79(G) C 7{(G).

Note that 12(G) # 71(G). Indeed if (x,) is a sequence in G converging
for no® to a point x in the boundary of G, then the sequence of Dirac
measures (&, ) converges in the space (AE(G), T9(G)) and diverges in

*n
the space (Ag(G), 71(G)).

Proposition. Let X be a completely regular Suslin space. If G is an

open subset of X, then (ﬂg(G), T9(G)) is a Suslin space.

Proof. Since 75(G) C 7{(G) and (Mg (G)..TI(G)) is a Suslin space, it is
sufficient to prove that (#g(G). 79(G)) is a Hausdorff space. Let 0 C G
be an open subset of G and let x € O. X is a completely regular Haus-

dorff topological space, so there is an open neighbourhood V of x such

that V C O and there is a continuous function fx on X to the closed

unit interval such that f_(x)=1 and f  is zero on X\V. It is clear that

supp(f,) C ; COCGand 1y = sup{f, : x € O}.
Any Suslin space is a Lindelof space, so that the family {f : x € O}
has a countable subfamily (f_),y; with the same upper envelope 1j,, see
Schwartz [49]. p. 103 and 104. Define for n 2 1 the function g, as the
pointwise supremum of f; up to and including f,. The sequence (g,) is
an increasing sequence of functions on X with support contained in G
and with supremum 15. Hence for v.,u € ﬂg(G) we have
Vf € #(G) : v(f) = u(f) > v(0) = n(0)
for any open O in G. Let
¥ ={A: A€ BG). v(A) = p(A)}.
¥ is a d-system containing the open subsets of G. By the monotone class

theorem it follows that ¥ = %(G), see Williams [59]. p.40. So ¥#(G)

v
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separates the points of ﬂg(G) and this implies that 72(G) is a Haus-

dorff topology on Mg(G). g

Remark. A Hausdorff topological space is said to be a Lusin space if
there exists a polish space Y and a continuous bijective mapping from Y
to X, see Schwartz [49], p.94. It is clear that any Lusin space is a
Suslin space. If we assume that X is a polish space, then the topologi-
cal space (ﬂ;(G), 71(G)) 1is also a polish space (see Bourbaki [5].

p-62) and we may conclude that (ﬂ+ G).79(G)) is a Lusin space.
b 2

Let ¥ be a family of open subsets of X, which is filtering to the right
with respect to inclusion, i.e. VAL BE€Y I C€Y¥Y : ACCand B CC.
For all pairs A,B € ¥, A C B, we define the map TAB by

Mg ¢ H5(B) > KS(A). mpp(n) = zu
where ,u denotes the restriction of p to A: ,u(G) = u(G), G € %(A). It
is clear that ((Mg(A), To9(A)). myg) is a projective system of Suslin
spaces. Note that ((ﬂg(A), Tl(A)). Tpg) is not a projective system of
topological spaces, as the T,p are not Tl—continuous. The projective
limit M = M(¥) = lip AR ﬂg(B) is the subspace of the productAgé AE(A)
whose elements p = (n)) satisfy the relation py=myp(pg) whenever A C B.
The projective topology on M is the coarsest topology which makes the
projections

mg 2 M > (B, wp((1y)) = pp

continuous and is therefore the trace on M of the product topology on
m ME(A). Let &% = K*(¥) be the space of nonnegative Borel measures on
(X, %(X)). which are finite on ¥. Elements of #* are called ¥-finite

measures.

Proposition. If ¥ covers X, then the map

gp:p,€¢“+ - (Ap)GM
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is a bijection of At onto M.

Proof. It is clear that ¢ maps A% into M.

Let (pp) € Mand G € B(A) N B(B) for some A,B € ¥. Since ¥ is filter-
ing, there exists a C € ¥ such that A,B C C.
Then 1y (G) = (mpe He)(G) = pe(A N G) = pe(G) and in the same way
1g(G) = Hp(G).Therefore

i U 8(A) SR . u(G) = uy(C) if G € H(A)
is an unambiguously defined setfunction on the ring U%(A).
If (Gn)n>1 is a pairwise disjoint sequence in UB(A) with union 3G,
contained in UA(A), then G 3G, "€ %(C) for some C € ¥.
It follows that ’

m(36,) = Ho(36,) = Buc(G,) = ().

So p is a finite, o-additive measure on (X, Alé'boB(A)).
Being an open cover of a Lindelof space, ¥ has a countable subcover. It
follows that #(X) is the o-ring generated by the ring UB(A) and p has a
unique extension to a measure u € A*. See Halmos [18], p.54. It is
clear that ¢(i) = (py)-

This proves that ¢ is a bijection of A* onto M. D

Assume that ¥ covers X. Denote by T = 7(¥) the coarsest topology on H*
which makes the bijection ¢ : At > M continuous.

Defining

#) = {f € Cy(X) : 3A € ¥ : supp(f) C A},

T is equal to the topology a(ﬂ+. #(¥)) of pointwise convergence on
#(¥). If 9 is a cofinal subset of ¥ (i.e. for each A € ¥ there is a
D € 9 such that A C D) then #(¥) = #(9) and o(A". #(¥)) = o(4*. #(2)).
Denote the Borel o-algebra on (4*,7) by % = B(H*(¥)) and define the

o-algebras d; and 5 on 'y by

d; = o(p € k" - p(B), B € %(X))
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and

do = o(u € A > u(f), £ € #(¥)).

1.1.4 Theorem. Let X be a completely regular Suslin space and let ¥ be a
family of open subsets of X filtering to the right. ¥ is a cover of
X and if ¥ contains a countable cofinal subset, then
(i) (N(¥), T(¥)) is a Suslin space and
(i1) oy = oy = %.

Proof. Let 9 be a countable cofinal subset of ¥. Being a countable
projective limit of Suslin spaces, M(?) is a Suslin space, see Schwartz
[49].p.111. Hence (A+(@). 7(?)) is a Suslin space. It is clear that
HH(#) = 4 (D) and T(2) = T(¥). which proves (i).
The family of continuous maps p € A" = u(f), f € #(¥). separates the
points of A'(¥). Indeed, let u,» € 4t so that p(f) = v(f) for every
f € #(¥) and let A € ¥. Every f € #(A) being the restriction to A of a
function g € #(¥) with support contained in A,

A(E) = (g) = v(g) = po(f).
So A = AV by the proof of proposition (1.1.1) and it follows that
u = v since A was arbitrarily chosen in ¢¥. Since (4'(¥). 7(¥)) is a
Suslin space, there is a countable subfamily (f_),y; of #(¥) such that
the points of A+(9) are separated by the maps Yy, ' p € #+(9) = p(f,)-
By Fernique’'s lemma, the sequence (wn) generates %. See Schwartz [49],
p. 104, p.105 and p. 108.
So 3 C o.
Let now f € #(¥) and let A € ¥ be such that supp f C A. Since f is a
continuous function, there exists a sequence of #%(X)-stepfunctions,
zero outside A, converging uniformly to f. It follows that the map
n € 4H(¥) » u(f) is sf;-measurable.

So 942 C dl'
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Let A € ¥. Let O C A be an open subset of G. As in the proof of prop-
osition (1.1.1) we can construct an increasing sequence (fn)nzl in #(¥)
with supp(fn) C A and with supremum lg,.

It follows that the map p € .44+(9’) - p(0) is %-measurable. A monotone
class argument gives the %-measurability of the maps p € A¥(¥) - u(G).
G € Agy %(A). Since ¥ has a countable cofinal subset, every Borel set
in X can be written as a countable union of elements of U %(A).

So #4; C &.

It follows that o = dy = %. 0

From now on we will assume that the space X is a polish space. Let d be
a metric on X such that the metric topology is the topology of X and
(X,d) is a complete metric space. ¥ will be a fixed family of open
subsets of X satisfying the conditions of theorem (1.1.4). By ¥’ we
will denote the family of all Borel subsets of X contained in some
element of ¥. Note that the space (.M+.‘r) of ¥-finite measures is a

Lusin space in this case, see remark (1.1.2).

Remark. Even for polish spaces it need not be true that a filtering
family of open subsets, which covers the space, has a countable cbfinal
subset. For example, let X be the space of all pairs of non-negative
integers with the discrete topology. X is a polish space. A set A is
member of the family ¢ iff for all except a finite number of integers m
the set {n : (m,n) € A} is finite. ¥ is a filtering family of open
subsets of X, which covers X. But ¥ does not have a countable cofinal
subset. Indeed, let (A ),y be a sequence of subsets of X contained in
¥. For every k > 1 we can choose an element x, = (m,n) € X such that
n > k and x € A . The set B = {x; : i21} is an element of ¥ and there

is no Ak such that B C Ak.
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The following proposition provides a condition equivalent to

. +
convergence of a net in (A ,T).

Proposition. Let X be a polish space and let ¥ be a family of open
subsets of X satisfying the conditions of theorem (1.1.4) and let
(1y) be a net in A and p € 4t
Then the following statements are equivalent:

(i) By 2K in (M+, T).
(ii) iimsup 1, (F) < p(F) for all closed F € ¥’ and

lHminf p,(0) > p(0) for all open O € ¥'.

Proof.
(1) » (i1)
Let F be a closed subset of X, FC A for some A€ % and let 9 be a
countable dense subset of X. Define

I={(x.q):x€9, q€Q, B(q) NF =0}
where B, (q) = {y  y € X, d(x.y) € q}. I is a countable set. For
i = (x.q) € I, the sets F and A* U B,(q) are disjoint closed sets,
where A® denotes the complement of A. Since X is a normal topological
space, there are disjoint open sets U and V such that F C U and
A*u B,{q) € V. By Urysohn's lemma there is a continuous function f; on
X to the interval [0,1] such that f; is zero on U* and one on F. It is
clear that supp (f;) CUN V¥ C A, so f, €% If y € F, then there is
an element (x.q) € I such that y € B, (q).
It follows that

1p = inf {f; : i € I}.

Define g = inf(fil,..., fin}. n 2 1, where (in)nZI is an enumeration
of I. It is clear that (g,) is a sequence in ¥ converging pointwise to
1F‘

So for eachn 2 1



Lim Ho(en) = n(g,) and
ligsup na(F) < ligsup role,) = uleg,).
It follows that
limsup p,(F) < p(F).
Let O be an open subset of X, O C A for some A € ¥. Let (g ) be an
increasing sequence of bounded continuous functions such that
supp(g,,) € A and 15 = sup g,. (See the proof of proposition (1.1.1).)
For each n > 1
I;m Ha(gn) = ng,) and
liminf p_(0) 2 liminf = .
m ,(0) m ro(en) = puley)
It follows that
liminf p,(0) 2 p(0).
This completes the proof of (i) = (ii).
(ii) = (1)
Let f be a bounded nonnegative continuous function on X with
supp(f) C A for some A € ¥.

Define for k > 1 the functions up, vt X > R by

L
uy, =2 —1 .
k ~; i
RIk f¢=1naA
Kk
L s 1
vV = - + — : N
k = "supp £ T3y [f < =]
Kk

the summations being finite summations since f is bounded.

It is clear that up < f < Vi for all k21 and that uy T f and Vi lf.

Hence
liminf (u,) 2 3 ! li f ([f < ! 1N A)
iminf p_(u 2 - imin —
a at) 2 Sk e e k.
1 1
2 3 —~p([f <—=]1NA by (ii
31k (r k] ) (ii)
= H(Uk)

and analogously

ligsup Ho (Vi) € u(vy)-
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It follows that
r(u) < liminf p,(£) < limsup p (f) < u(vy)-
By taking limits for k - @ we get
lim p (f) = p(f)

which completes the proof of (ii) 3 (i).O

A measure u € #* is called an ¥-finite point measure if
YVGeEP : u(G) €N
An #-finite point measure is called simple if
Vx € X, p, = u({x}) € {0.1}.
The set of $-finite point measures will be denoted by A" = H{"(¥) and

the set of simple ¥-finite point measures by A' = {'(¥).

Proposition. Let X be a polish space and let ¥ be a family of open
subsets of X satisfying the conditions of theorem (1.1.4).

Then A" is a closed subset of (4*,7).

Proof. Let (p,) be a net in A" converging to p € A, Take x € supp ()
and let U be an open neighbourhood of x, U € &',
Then by proposition (1.1.6)

0 < p(U) < liminf p,(U).
Since p,(U) € N, it follows that

liminf p,(U) 2 1.
Consider now a decreasing sequence (U ), y; of open neighbourhoods of x
in ¥'such that U, l {x} and Up+1 C Uy, for every n 2 1.
From Urysohn's lemma follows the existence of a sequence (h,) in #(¥)
such that 1 < < 1;; for every n > 1.
Un+1 hn Un Y

Then
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N

1iEsup “a(Un+1)

u(hy) = im p,(hy)

[\

liminf “a(Un+2) > 1
a

= 1i > 1.

My = lim n(h,) 2
It follows that supp{(p) is a discrete set and therefore for n suf-
ficiently large

By = 1(Up) = n(Uyy.-
Proposition (1.1.6) implies that

w(U,) 2 lizsup Bo(Uy)

> limsup p (U} 2 liminf p (U.) 2 n(Uy).
a a )

Hence for n sufficiently large

My = l;m B (Uy) €N,

and it follows that p € H'. O

Let Uy,....,U, be a finite sequence of open subsets of X such that
Up.....U, € ¢ and let ky,..., k, € IN.
Define

\Y 3 = € M U, =ul_l- = k,,i=1,..., n}.

Ups oo Uik s (B u(Ug) = pU;) = Ky }

It follows from proposition (1.1.6) that the map

pedt - uG)
is lower semicontinuous (resp. upper ;emicontinuous) for each open
(resp. closed) subset G C X in ¥'. Hence

1 = 1
Vu "knﬁ AN (s (U )Okg- E'and r(Ug ) <kg+ 53 i=1,..,n}

10+ Upiky. oo
is open in A".
Let % be a countable base for the topology of X consisting of open
subsets with closure in ¥' (see appendix Al) and let A, Ag,... be an
increasing, countable cofinal subfamily of ¢.

Define for k, n 2> 1

Okn =YWy, . ..U

n'

where the union is taken over all finite sequences Ul.....U

L in A whose
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elements are contained in Ak. It follows that Ok n is open in H' and
that the set
{ued” : p(Ap)=n} = {p€d” : p(A)>n-1} \ {u€d” : p(Ay)>n}

is a Borel subset of H".

So
[+ [+
=N U € X' : p(Ay) = n} N
SRS {u r(AL) }Nog 4

is a Borel subset of A".

So we have derived the following proposition:

Proposition. Let X be a polish space and let ¥ be a family of open
subsets of X satisfying the conditions of theorem (1.1.4). Then A’

is a Borel subset of (ﬂ+.T).

In chapter 2 we will be interested in a special class of point meas—
ures on a product space.

Let X be the product T x U of the halfline T = [0,o[ with the usual
topology and a polish space U. The space X with the product topology is
a polish space. Let (Uk)k>1 be an increasing sequence of open subsets

of U, U,1 U. Define

$={I xG:1ICT open and bounded, G C U open

and G C U, for some k 2 1}.

¥ is a filtering family of open subsets of X which satisfies the con-—
ditions of theorem (1.1.4). Denote by 4" the set of ¥-finite measures
on (X,%(X)) and by Ai the set of simple Y—finite point measures p sat-
isfying the condition

vt € T : p({t} x U) < 1.

Proposition. Let X and ¥ be defined as above.

Then H; is a Borel subset of (M+.T).
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Proof. The proof is analogous to the proof of proposition (1.1.7) and

is therefore omitted. O

1.1.10 Remarks.

(1)

(i1)

(iii)

If X is a locally compact, second countable Hausdorff space and
¥ the family of compact subsets of X, then A' is a dense Gg set
in A".

Let (X.,d) be a complete, separable metric space and let ¥ be the
family of all bounded open subsets of X. The family ¥ satisfies
the conditions of theorem (1.1.4); a countable cofinal subset of
¥ is the sequence of open balls (B (z)),y; with radius n € N and
center a fixed point z€X. Matthes, Kerstan and Mecke define in
[40], section (1.15) a metric p on A". It turns out that (A",p)
is a complete, separable metric space and the metric topology on
A" coincides with the relative topology on M" as a subspace of
(4. 7).

Let (X,d) be a complete, separable metric space and x, be a
fixed point of X. ngris calls in [19] a (nonnegative Borel)
measure p on X X,—finite if

(a) u(X\V) < @ for each open set V containing X, and

(b) u({xx}) = O.

Let M be the class of x,—finite measures and let

E, = {x x €X, d(x.%0) 2 %}. t > 0. The sets E; are closed and
have disjoint boundaries.It is clear that

ne€MESuE,) <= for all t > 0.
Harris introduced in [19] a topology on M, which we will de-—
scribe now. Denote for t > O by Lt the Levy-Prohorov distance on
ﬂg(Et). that is a metric on Mg(Et) such that (ﬂ;(Et). Lt) is a
complete, separable metric space and the Lt—topology onAA;(Et)

is the narrow topology G(ﬂ;(Et)- Co(E))-
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If u, v € M put

[+
ot

e ‘L _(u,v

L(p.v) = J'———t—(——) dt,
o 1+L (1. v)

where Lt(u,v) denotes the Lt distance of the restrictions of p
and v to E,. L is well-defined and is a metric for M such that
(M,L) is a complete, separable metric space.

Consider now the polish space X\{x,}. Let ¥ be the family of

1
open subsets A, = {x € X\{x,} : d(x.%,} > -}, t > 0.

t
¥ satisfies the conditions of theorem (1.1.4). Denote by p the
restriction of the measure p € M to X\{x,}. B is a ¥-finite
measure on X\{X.}.
Proposition. The map x : o € M > 1 € 4 is a continuous bi-

jection from (M,L) onto (4*,T).

Proof. It is clear that x is a bijection. To see that x is con-

tinuous, let f € ¥ and let (un) be a sequence in M converging to

p, i.e. lim L(pn,p)=0. Then supp(f) C A, for all t sufficiently
n-w

small. It follows that there exists t > O such that supp(f) C Ay
1
t

and p({x : x € X, d(x,X,) = ~}) = O. From Harris [19], theorem

(2.2) we conclude that

éig up(f) = éig Atﬂn(fIAt)

f = u(f).
Atu( lAt) u(f)
So the maps p € M » (x{(p)){(f), f € # are continuous, which im-

plies the continuity of x.0

If p,v € ' put

d(p.v) = Lix Yw). x 1(v)).

(A+,d) is a complete, separable metric space. Let 7, denote the
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d-topology on AY. From the foregoing proposition it follows that

TCTd.

Proposition. Let (pn) be a sequence in AT and u € A, Then

T-lim = < d-lim = p.
n—mun 33 n__mlln M

Proof. The implication (&) holds since T C 74. So assume that

1
T-lim po= p. If p({x : x€X, d(x.X,) = =}) = O. then p(éE;) =0,
n-x® t
where SE, denotes the boundary of E .. By proposition (1.1.6} we
have that lim p (E.) = p(E;). Identifying p and v(u), it follows
-
that the restrictions of (n,) to E, converge in (M;(Et). L’é) to
p. see Topsoe [50], p.40. From Harris [19]. theorem 2.2 we may

conclude that d-lim My =p. O

So for the topologies T and Tq Oon #* we have:
(.M+,Td) is a polish space,
T C T4
T Td
B, 2 n iff My, .
One cannot conclude from this that 7 = 74. Take for instance
(X.7) as in example E of Kelley [33], p.77 and take for Tq the

discrete topology on X. It is clear that T and T4 satisfy the

above conditions and that T # Ty-

Poisson point processes.

Let X be a polish space and let ¥ be a family of open subsets of X
which is filtering to the right with respect to inclusion. Assume that
¥ has a countable cofinal subset and that ¥ filters to X. Denote by A+
the Lusin space of nonnegative Borel measures on X which are finite on

¥. See section (1.1). Let P be a probability measure on (4, %(.4(+)).
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For a finite sequence By,...,B, in #(X) the finite-dimensional

distribution PBl g is defined as the image of P under the map
--.By

e & > [uB).....uB)] € ([0.2])™
Note that it is a consequence of theorem (1.1.4) that probability
measures on M° with the same finite-dimensional distributions are
identical.

The Laplace transform P of P is defined by
B(e) = [ Plaw) exp [- [ £00u(@0]
Xt X

where f runs through the cone %(X), of nonnegative measurable
functions. The moment generating functions of the finite-dimensional

distributions PB1 B_ are determined by ﬁ as follows from
..By
J w! “m p (dx;...dx ) = B(3 1 (—1 g )
u;“... u - = n .
1 m Bl"'Bm 1 1 uy Bi

where O < u;

i £1,i=1,...,m. So P is uniquely determined by its Laplace

transform. The intensity measure i=iP of P is the Borel measure on X

defined by

i(8) = | P(awu(®). B € 5(x).
S at
We say that P has ¥-finite -intensity if i € #*. Denote by p the

Campbell measure of P, that is the measure on At x X defined by

[ Foexptan.ax) = [ peaw) [ w(ax) Fu.x).
HxxX «* X
It is clear that p is a o-finite measure if the intensity measure i of

P is ¥-finite. The projection p(.M+ x .) of p on X is the intensity
measure i of P. If the intensity measure ip of P is ¥-finite, then a
general theorem on disintegrations of measures (see Bourbaki [5],

section 2.7) implies the existence of a measurable family of

probability measures (Px)xex on At such that
F dp
Hrx X
= [ P [ (@0 P = [ 1@ [ P anFu) (%)
'y X X i

for every measurable nonnegative function F : # x X - R. The
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probability measures P, on A" are called Palm measures of P and the
formula (%) is the so-called Palm formula for P. Note that P is
completely determined by the intensity measure ip and the Palm measures
(Px)x€X‘ A straightforward calculation gives a formula for the Laplace

transforms of the Palm measures P, . Let f.g € #(X),. then

I ip(dx) ﬁx(f)-g(x) = - j_t P(f + tg) | -0
A probability measure P on At will be called an ¥-finite point process
with phase space X or an ¥$-finite point process on X if P(A"(¥))=1. If
the phase space and the family ¥ are clear from the context we will
speak of a point process. A point process P will be called a simple
point process if P(A°)=1. As usual in probability theory, an H*-valued
random variable N will also be called a (simple) point process if its
distribution on A* is so. A point process is said to be free from
after-effects if its finiAte—dimensional distributions satisfy the

relation

P, =Phb® ... 0P
By...B By B

m m

where PBl 8...8 PBm is the product of the measures PBi on 1?4 A point
process P will be called a Poisson point process with intensity measure
v if P is free from after-effects and if the one-dimensional distribu-
tions Pg. B € B(x), are Poisson distributions with expectation v(B),
i.e.

[v(B)I*

X! eV(B) k=0,1,2,... if v(B) < »,

Pp({k})
Pa({=}) =

|
—

if v(B) = =.

Proposition. Let P be a Poisson point prdcess with ¥-finite intensity
measure v. Then the Laplace transform P and the Palm-measures P,
are given by

B(f) = exp [- f v(ax)(1-eFON)] | £ e @(x),.
. .
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P, =5, %P . X €X,

where 5x denotes the Dirac measure on A7 in the point Gx.
Proof. Follows from standard calculations.O

Proposition. For every v € A+(9) there exists a unique ¥-finite Poisson

point process on X with intensity measure b.

Proof. Let A € ¥. The restriction A of v to A is a finite measure on
(A.%(A)). So there is a unique {A}-finite Poisson point process ,P on A
with intensity measure ,v, see Matthes et al [40], section 1.7. ,P is a
probability measure on (ME(A). %(ﬂg(A))), where %(ME(A)) is the Borel
o-algebra on (AE(A), T9(A)). see for T5(A) the definitions preceeding
proposition (1.1.1). Let A,B € ¥, A C B and let mpyg be the projection
of M;(B) on ﬂ;(A) as defined in section (1.1). The image myp(gP) of gP
is a probability measure on (ME(A). %(ﬂg(A))). A straightforward
calculation gives (WAB(BP))A = (AP)A. So myp(pP) = AP and it follows
that (M;(A), %(M;(A)), AP. wpp) is a projective system of probability
spaces. Since ¥ has a countable cofinal subset, it is a consequence of
Bochner's theorem (see Bochner [4], p. 120) that there exists a
projective limit P, which is a probability measure on (A+, %(ﬁ+)). An
easy calculation yields that P is the $-finite Poisson point process on

X with intensity measure v.0O

Denote by PD the ¥-finite Poisson point-process on X with intensity
measure v € A7 Note that P, is a simple point process iff the intensity
measure v is a diffuse measure (i.e. p({x}) = O for every x € X). The
family of point processes {P,: v € A+} is a measurable family, i.e. for
every G € B(4*) the map v € £ - P (G) is measurable. Let V be a

probability measure on (ﬂ+. @(ﬂ+)) and let Q be the probability measure
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on (A, B(4T)) defined by
Q - I V(dD)PD
s

It is clear that Q is a point process on X, which is simple iff V is
concentrated on the diffuse measures in 4. Such a process Q is called

a Cox process.

Proposition. Let Q be a Cox process as defined above. The intensity
measure iQ. the Laplace transform 6 and the Palm measures (Qx)xex
of Q are given by

iQ(B) = iy(B) . B € %(X),
ace) |
Q

where 6  denotes the Dirac measure on A in the point 6.

V(1-ef) . f € B(X),.

5, * va(du)Pv . x € X,

Proof. The formulas for iQ and a follow directly from the definitions.
To prove the formuia for Qx' let F: &Y x X > R be a measurable, non-

negative function. Then

Jataw fu@Fm.x) = vy fp,@ fJu@re.x
[v(@v) [orax) [(3, * P,)(@u)F(u.x)
Jiv(dx) JVx(du)JPv(du)F(u+5x,x)

[1qtex) [(By * [Vy(av)P,) (aw)F ()

from which the result follows. O

-~ .
Ito-Poisson point processes.

Let X be the product T x U of the halfline T = [0,®[ with the usual
topology and a polish space U. The Borel o-algebras on T and U will be
denoted by %T and Y. Endowed with the product topology X is a polish

space and its Borel o-algebra %(X) is identical to the product o-al-
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gebra %T ® 4. Let (Uk)k21 be an increasing sequence of open subsets of
U which covers U. The family ¥ of open subsets of X defined by
" 9={A:A=IxG ICT open and bounded,
G C U open and G C Uy for some k 2 1}
is filtering with respect to inclusion and contains a countable,
cofinal subset. The topological space of ¥$-finite measures on X will be
denoted by (ﬂ+.T). see section (1.1). The Borel o-algebra ¥ on At is
identical to the o-algebra generated by the family of maps
{py: A€%(X)}, where p, is defined by py : v € At = v(A). The family
() >p of sub o-algebras of ¢ defined by
¢, = o(py. A € 3(X). AC[0,t] xU)

is a filtration on (ﬂ+,@). A measurable map ¥ : A' - T is called (¢.)-
adapted if [V < t] € 4. for every t € T. An Itd-Poisson point process
on U is an ¥-finite Poisson point process P with phase space X whose
intensity measure p is the product of the Lebesgue measure A on T and a
nonnegative Borel measure v on U, which is finite on the sequence
(Ug)k>1- Following Itd [25]. v is called the characteristic measure of

the It6-Poisson point process P.

Proposition. Let P be an ¥-finite Itd-Poisson process on U, then

P(4;)=1.

Proof. Since the intensity measure p = N8v of P is diffuse, P is a
simple point process on X; Define the mappings m, (k>1) by

me ¢ M > M m(n) = [B € B - u(B x U],
where M} is the space of point measures on T which are finite on all
bounded subintervals of T. The map m, is a P-a.e. defined, measurable
map on A*. The measure P, = m(P) is the Poisson point process on T
with intensity measure i, = »(Up)-N. Since the intensity measure i, is

diffuse, the point process P is a simple point process. It follows
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that
P(m 1 (#1)) = P (4f) = 1
and
P(4]) = P‘;& ml(41)) = 1.

which completes the proof of the proposition.n

Let ¢ A% 5 T be a measurable map. Define the transformation R¢ by

R, : 4" = 4",
JRW(u)(dadu)f(a,u) - Iu(dadu)f(a.u)l[o'w(“”(o). res(x), .
Let for o € T the map t, be defined by
t, * (t.v) € Jo,o[ x U > (7-0.v) € X.

Define the transformation T¢ by
Tw F LN ﬂ+,
J&w(u)(dcdu)f(a.u) = Jﬁ(dadu)fotw(p)(o.u)ljw(“)'w[(a)
= Jﬁ(dadu)f(a—w(u).u)1]¢(u).wt(a).

We will write simply R, and T, if ¢ is the constant map n € Mo s,
The following picture illustrates these definitions. The picture shows

supp(n). supp(Rvu) and supp(T¢u) for a simple point measure u.

supp(R 1)

supp(k) .

. supp(T1)

%

(1) fo,=[
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Lemma. Let ¢ : 45 5 T be a measurable map. The above defined

transformations R¢ and T¢ are measurable.

Proof. Define for k,n = 1,2,.
A, = {1 € A5 0 k2™ Cp(u) < (k#1)-277)

and

?n = 3 (k+1)e27M1, .

kn

The sequence of measurable stepfunctions (¢n)n>1 is a strictly de-
creasing sequence, which converges pointwise to ¢. It is clear that for
every bounded continuous function f : X - R with support contained in

some element of ¥ and for every p € i

éim (Twn“)(f) = (Tp)(f)
and
Lim (R, u)(£) = (Ry)(£).

It follows that the sequences (T¢n)n21 and (R¢n)n21 converge pointwise
to T¢ and R¢. So it is sufficient to prove the measurability of TW and
n
R¢ . Let A € B(X) and p € 4. Since
n
R, u)(A) =31 AN [0, (k+1)-27"[ x U
( o )(A) z Akn(u) 1(A N [0, (k+1)-277[ x U)

and

-1
T, p)(A) =21 t _ A)).
( o, )(A) "> Akn(u) r{( (k+1)-2 n) (4))
it is clear that the maps p € 4¥ - (R¢ n)(A) and p € W (T¢ n)(A) are
n n

measurable maps which implies measurability of the transformations R

n
and T¢ .0

n
Theorem (Renewal property). Let ¢ : #* 5> T be a measurable map and let
P be an Itd6-Poisson point process. If ¢ is (@t)—adapted, then R¢
and Tv are independent A'-valued random variables on (M+,@.P) and

T, (P)=P.

Proof. Consider first the case that ¢ is a stepfunction, say
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¢ =2 s.1, , A; €% i>1).
i>1 1 Ai i 5§ ( )

Since P is free from after-effects
-(Rg) (£)-(T ) ()

[p(anye
' -(Rg W) (£)~(T 1) (e)

=3 [panny ) e

-(Rsiu)(f) (T 1) (8)

=3 [P, o e + [peame %1
i )
for f,g € %(X)+. Let v be the characteristic measure of P. Then for

every s)0:

JP(du) Tl ()
= exp [- Ida Jv(du)(l_e_g(a—s,p))J
s

exp [ [do [o(an)(1-e8(0-1))]
. 0
P(g).

Hence
=(Rpu}{(£)-(Tu)(g) “(Ru)(f) ~
[plamy & PEL pame ¢ Bl
which completes the proof of the theorem for stepfunctions. The general

case will follow by approximating ¢ from above by a sequence of step-

functions as in the proof of lemma (1.3.2).0

Remark Without further assumptions, it is not possible to say more
about RW(P)' As an example, let P be an It6-Poisson point process on X
with ¥-finite characteristic measure v. Let U, € vae a subset of U
such that v(Uo) > 0. Define the map ¢ : H; = T by

¢o(p) = min {t € T : p{{t} x U,) = 1}.
Since

(€At p(u) <t} = {nedf: u0.6] xUp) > 1},

p is a (¥ )-adapted map on My. For f € B(X),
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(R,(P))"(£)

JP(du) e

Jpean) futaranigyga o

= JdTJv(dv)IP(du) 1[¢(”+5(T v))=T]e
0 U '

= JdTJU(dV)J?(d”)[l[v(u)=f]+1[w(u)>T]IUO(V)]e
o u

='Jd-rj U(dv)J’P(dM)[l[u([O,T]XUo)=0] e

0 g,

[
=0 )-f(r.v -u(1 «f
= JdTI v(dv) e (Uo)=f(7.v) JP(du) e u [0.7IXUNY, ).
0 U,
Let Q. be the image of the probability measure v(.on) under the map

-(Rg1)(£)

=(Rp)(f)

‘(RT(M+5(T'V)))(f)

~(Ry) (£)-£(7.v)

1o, r3xun, ) -F(Tv)

u€lU-545 € A*. It is clear that for f € %(X)
(T.u) +

1
v(U,)

J u(dv)e_f(T'v).

Uy

Q(f) =

Let S, be the image of the probability measure P under the map
n € i 1[O,T]xU\Uo°“ € & It is easy to see that ST is the Poisson

point process with intensity measure 1[0 T]XU\U *(AN®v). It follows that
' o

~ “ -tv(U_) A~ A
R P (6) = far vup)e ) & (5)-80)
0

(

“ -Tp(U ) -~
= JHT v(U,)e. o (Q, *S8,) (f)
0

and

-Tv(U
Ry(P) = [dr v(u) e ol xs.).
0

A measure p € At is called recurrent if
u([t.o[x U) > O for every t > O and k 2 1.

Denote by 4. the set of recurrent measures. A point process will be
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called recurrent if P(Mr)=l. An Itd-Poisson point process with charac-
teristic measure v is recurrent if v(U.) > O for every k 2 1.

Let u € Mj N K,. For every k 2 1 the support of the restriction pu of p
to T x Uk is a countable infinite set whose projection on T has finite

intersections with bounded subintervals of T. So we can write

supp(yH) = ((tki'uki))izl where tp; € T,y < te. i+l and up; € U, i21.

For i,k=1,2,... define the maps 7. fki and o4 on #i N . by putting
Tki(H) =ty
Seq (1) = g
Ty (B) if i=1
Uki(“) = '

Tri() = 1y () if 151
All these maps are measurable. Denote by oy, and fk the vectors

(o)1 °k2"") and (§pq1. Eyo.---). k21.

1.3.4 Theorem (Itd). Let P be an ¥-finite récurrent. simple point process on
X and let v be a measure on (U,¥) such that O < v(Uy) < @ (k21).
Then, P is the It6-Poisson point process on U with characteristic
measure v iff for each k2l
(i) (€xi)i>1 is a sequence of independent and identically

distributed random variables, with distribution

P[Eki €A]=T(A€°H);
b ™

(ii) (aki)izl is a sequence of independent and identically

distributed random variables, with distribution

-tv(Uy)

CPloy; > tl=e . (t > 0);

(iii) oy and §; are independent vectors.

Proof. Let P be the Ité6-Poisson process on U with characteristic
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1

measure v. Then for k > 1, A > O and A € % we have
=\ k1
[ Pamyte K, (5 ()

= J P(du) j u(dodu) l{ckl(u)}x(AﬂUk)(U’u)e—Aa

Jag I v(du) J P(du) l{okl(u+5(a u))}x(AnUk)(a.u)e_Aa
o .

by an application of the Palm formula and proposition (1.2.1)

Jdo I v(du) JP(du) 1AﬂUk(u)l{ak1>a}e_xa
o]

v(ANU ) Jdo e_av(Uk)e_xa

0
v (AU, ) v(U,)
v(U) A+ p(Uy)
Let now k,n > 1, A{.... A, > O and Ay,....A €.

Then
A .
Jb(du)igl (e i%ki 1p, et )

A S NC
= fran e K 1y eI Ro - B (e A 1y (6 1)) Ty 1)

-\0 ’ n-1 —N; 1003
= Jram e K 1y G- JranTm @R L Eg))w)
by an application of theorem (1.3.3)

n “AO%k1
= [reamce K 1, (500
by mathematical induction
n Vv(ANUL) v(Uy)
=0 p(U)  Ag*op(ly)
It follows that (i), (ii) and (iii) hold. To prove the converse, let

f € B(X),.

P(£) JP(dp) e Jdn

~fro.73xu, fu

Lin [pean) e

T30
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Ll n
= lim {nzl Jéxp(— % £(15.44))
P[Ey; € duy, ty € dry, i=1,....n|y <rdey 0 TPy <<y ]
+ P[tkl > 1]}
T T T
. © "D(Uk)T
= lim (nzl e JATI J dry. .. I dr, J v(dul)...J v(du,)
o m ™1 Y% Uk
n ~v(U )7
exp[-% f(riuy)] + e }

-v(Up)T

T

tim 3= Jor [oaneF@m)y”
0 U

exp (- Jda Ju(du)(l-e—f(a'u))),

0
Hence P is the Itd-Poisson point process with characteristic measure

1

v.0

1:3.5 Theorem.(Greenwood & Pitman). Let N be an #t-valued random variable
defined on some probability space (2,%,P). If N is an Itd-Poisson
point process with characteristic measure v and

if 0 <v(U,) <@ (n 2 1) and v(U) = @ then

1
Illg m m([o,t] X Un) =t

uniformly on bounded t-intervals for P-a.e. o € .

Proof. Fix t 2 O and define for n > 1
¥F,=0(w €2 >N ([0.t] x U). k 2 n).
The random variable N([O,t] x Up) is integrable with expectation given
by
E N([0.t] x U) = to(Uy).

A straightforward calculation yields
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v(U,)
-D(Un+1)

N([0.t] x U,), #,),>1 1is a reversed martingale on

E?n+1N([0,t] xU) =

N([0.t] x U_,;).

Therefore (
v(U,)

(2.3.P). It follows that N([0.t] x U ) converges a.s. and in L!

v(U,)

to a limit which is a random variable measurable with respect to

%o = N %,. See Neveu [43]. Since for A > O
n>1

N([0.t] x U,))
A
v(U,)

exp(— A (0

= exp {tv(U,)(1-e

)} = e M asn oo,

we may conclude

lim N([0.t] x U ) = t a.s. and in L1,

n» v(U,)
The statement of the theorem now follows from a general lemma on the

convergence of positive non-decreasing functions for which we refer to

Appendix A3.10

Let N be as in theorem (1.3.5). For w € 0 such that N, € H] N 4. we
write Tp;(0). Epq(e) and o (w) for 7 (N,). E;(N,) and o (N,). see
the definitions preceeding theorem (1.3.4). Denote for k>j by Tkji(“’)

the index at which the ith

§(w) = E(N,).

If N is an Itdo-Poisson point process, then Ty §ki and o) are

point of type Uj appears in the vector

P-a.e. defined random variables.

Corollary. Under the assumptions of theorem (1.3.5) we have

lim

P Tkji((") = 'rji(m) P-a.s.

Proof . By definition of Tkji(“’) we have

Nw([o'Tji(“’)] x U) = Tkji(“’)'u
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The corollary implies that an Itd-Poisson point process N can be
constructed from (U..f,) whenever v(U)=+®; the times T7); at which the
§xj occur, are already determined by (Uk.fk). We will put this in a
more general framework.
Let for k=1,2,... Vk = (Vkl,sz,...) be a sequence of Uk—valued random
variables on (Q2,%,P).
(Uk'vk)kZI is called a nested array if

(i) Vi is a sequence of independent and identically distributed

random variables, and
(ii) for j < k, V; is the Uj—subsequence of V) .consisting of

J

those terms which are in Uj.
See Greenwood & Pitman [17].
From theorem (1.3.4) it is clear that (Uk‘ Ek)k>1 is an example of a
nested array.

If u is a measure on (U,4) and if E € 4 is such that O < p(E) < ®, then

”lE denotes the measure on U defined by
u(ANE)
u(E)

lp(a) = (A €a).

Proposition. If (Uk'vk)k>1 is a nested array on the probability space
(Q,.9.P), then there exists a unique measure v on (U,%) such that
v(U;)=1 and DIU.=DJ. where vj denotes the probability distribution

J
of le.

th point of

Proof. Let j < k. Define Skji as the index at which the i
type Uj occurs in the sequence Vk. For A € %

vj(A) = P(V;) € A)

o]

2 PV € A Syqp=i)

=3 (P (Vo, ¢ UL PV, € AW
=2 {P (Vi q j)} (Vi1 j)

= Dk IUJ(A) .
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Dk(Ul)
Substitution of A=U; yields v;(U;) = ——— It follows that for j < k
J vy (U5)
and A € 4
vj(AﬂUj) ) vk(AﬂUj)
Define

% = U{A:A€%and AC Uj}'
J
% is a ring of subsets of U, and the o-ring generated by % is %. From
the above it follows that we can define consistently a setfunction v on

% by putting

v(A) = for A€%, AC Uj (2 1).

Dj(Ul)
v is a o-finite measure on %. So v has a unique extension to a measure

on (U,%), see Halmos [18]. From the construction follows that v has the

desired properties.O

Define for k 2 1

It follows from the proof of proposition (1.3.7) that Py = . Hence

U(Uk)

is a decreasi sequence of positive real numbers and lim
(Prliy1 ng seq p im Py
exists:
p(U) =+ & lim = 0.
W ko Pk ‘
In the next theorem we associate an Ité-Poisson point process N to a

nested array (U,.Vy) such that the Uy -subsequence (£ ;}i>; of N is V.

1.3.8 Theorem.(Greenwood & Pitman). Let (U..Vy))5; be a nested array on the
probability space (2.%,P). If
lim =0,
ko Pk
then for P-a.e. w the limits

tjn(m) = iig Pk Skjn (w)
exist for all n,j = 1,2,... where Skjn(m) is the index at which the
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nth point of type Uj occurs in the sequence V). The sequence of

limi tpoints (tjn(”))nzl is a strictly increasing sequence of
positive real numbers.

The P-a.e. defined random variable

(2]

w €N —)E 3 5(t ((‘)) V. (.d)
j=1 n-an(m)er_l jn Jn( )

is an Itd-Poisson point process on U with characteristic measure v,

where v is the measure defined in proposition (1.3.7).

Proof. Define for k > j, n > 1,
Des1 o = Skjre
ij.n+1= Skj,n+1 - Skjn'

and
Dpj = (Dyj1» Dyjyor---)-
Then for measurable sets Al,...,Am C Uj and dl...'.,dm € IN:
P(iji = d;+1, Vii € Aq. i=1,....m)

m
% di m
{P(Vkl ¢ Uj)} .igl P(Vk1 € Ai)

2dy
(l—vk(Uj)) ve(Ag) ..o (Ay)

Pk 3d; Pk
(1 - ;‘") (;) vi(A)- - oAy
J J
since vy = vkluj;see the proof of proposition (1.3.7).

So ij and Vj are independent sequences of random variables. The random

variables (iji)121 form an i.i.d. sequence and are geometrically
P
distributed with expectation — .

Py
<Jj)(21). k" k> jandn 3 1 we have

For 9j =o(V;. 1

E | S§j" |7 Pk
(Sk'jn k) = E(l=1 Dy ¥ = Pk’ skjn‘
So (pkskjn' gk)kZJ is a martingale on (Q,%.P), and it follows that
outside a set of P-measure O the sequence (pkskjn)k>j converges for all

n,j 21 to a finite limit, say tjn'
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t3n(©) = lim by S 45 ().

It is clear that O ¢ tjl(w) S'tjz(w) ¢ ... . Since py =0,
—)\pll)] .
(e %)

Pk -Apy 1

— e -

Pj Pj

= - ] as k » »,
Pk -x
1_(1_ _)e pk p—+ A

Pj J

for i,j 2 1. It follows that the random variables tjl’ tj,n+1_tj.n
(n21) are independent and exponentially distributed with expectation
Pj- So P-a.s. the sequence (tjn(m))nZI is strictly increasing.

Theorem (1.3.8) implies that

00
weEN-> 3 3 6
351 niV 5 (0)€U5 ) (tjn(@).Vjn(@))

is a Poisson point process on T x U with intensity measure A ® v.0O

Let N' : 0 - 4% be an Ité-Poisson point process with characteristic
measure v' such that the Uy subsequence (§y;)iy; of N' is V. (k 2 1).

Using the notations and definitions of theorem (1.3.8) we get:

Corollary. There exists a positive constant ¢ such that for j,n > 1

v’ = cv and Tjn = ;'tjn'

b’ (U;)
Proof . P(fl‘(l € Ul) = Pk but also P(Ell(l € Ul) . *—-:-(U—) )
v
k

1
Hence v'(Uy) = — v'(U;).
Pk
It follows that for A € 4, AC Uk' k21
v’ (U;) v(A)

P v(ly)
So v' = cv on the ring U %(U,). where c = v'(U;).

v (A) = v (U)P(Ef; € A) = = ' (U;)*n(A).

Finally for j.n 2 1

1
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1 1
T, = lim =~ 11m =—t. .0
in T iy (Uk) SkJn © koo Py SkJn c JIn

1.3.10 Corollary. Let (Uk' Vk)kZI be a nested array on the probability space
(2.9.P). If ’
linn > 0
then for P-a.e. w the limits
E,(w) = lzm Vin (@)
exist for every n > 1. The sequence (En)n>l is an i.i.d. sequence

of random variables,

P(E, €A)—L)—,A€°Il.

v(U)

Further the (Uy)-subsequence of the sequence (f,),y; is P-a.s.

equal to (vki)iZI'

Proof. Since lim p, > O, it follows from the proof of theorem (1.3.8)
k-0

that iim Skjn(m) exists P-a.s. So for every n 2 1, Sy, is constant for

k sufficiently large, say k > K,. It follows that (Vkl.....Van) is

constant for k > Kn where Mn lim Skln 2 n.

Define for n 2 1: = limV,_.

It is clear that the sequence (§n)n>1 is an i.i.d. sequence of random

variables. Let A € 4, then
P €A lim P(V, € A) = —_=
(En € A) = 330 Plhn € A) = k-mu(uk) »(U)

Finally, it is clear that the (Uy)-subsequence of the sequence (£ )31

is P-a.s. equal to (Vy;};5;.0



CHAPTER 2

EXCURSION THEORY

Let Y be a standard Markov process with state space S and let a € S be
a given state, which is recurrent for Y. In [25], Itdé defined the
excursion process of Y with respect to Pa in the following way: let
S(t) be the inverse local time of Y at a. If t is such that

S(t~) < S(t)., then the function .u; defined by

Y(S(t-)+s) , 0 ¢ s < S(t)-S(t-)

ut(s) =

a , s 2 S(t) - S(t-)
is called the excursion of Y in ]S{t-), S(t)[. Itd6 proved that the
random distribution of the points (t,u.), t € {s : S(s-) < S(s)}, is a
Poisson point process on [0,*[ x U, where U denotes the space of all
excursions. In the first part of this chapter we will study the
excursions of a Ray process Y in the maximal components of [0,o[\,
vwhere Z = {t € [O,[ : Y, =aor Y, _ = a}. The strong Markov property
implies that the sequence of excursions in the intervals of length
greater than a given positive real number r, is an i.i.d. sequence with
respect to P,. Using the theorem of Greenwood & Pitman (see section
(1.3))., one can construct the Itd-Poisson point process of excursions
without the explicit introduction of local time; the characteristic
measure v is determined by the sub-Markov semigroup (Kt)tzo defined by

Kt(x.dy) = Px[Yt €dy; Y. Y,_#a for all s { t] and an entrance law

s’
for the semigroup (Kt)‘ If the state a is regular for Y, the total mass
of v is +»,

In the last part of the chapter we construct stochastic processes from

1tdo-Poisson point processes. Let P be an It6-Poisson point process with
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characteristic measure v determined by the semigroup (K,) and an
entrance law (ng)gyo for the semigroup (K,) such that ng({a}) = O for

every s > 0, such that
_Cu
J (1-e “Y)p(du) < ®.
§)

The stochastic process Y constructed by concatenation of the excursions
of P, will turn out to have the simple Markov property: the proof of
this property is based on an application of the renewal property of
Itdé-Poisson point processes and an application of the Palm formula. Of
course, the assumptions about v are necessary to get a Markov evolution
of the process inside an excursion. We will give sufficient conditions
for the process Y to be a Ray process. A simple calculation based on
the Palm formula will give a formula for the resolvent of Y. Further we
will give a formula for the Blumenthal-Getoor local time of Y at state
a. Finally, we will give an example of the construction of a Markov

process from a Cox point process.

Ray processes.

This section contains a summary of some important of properties of Ray
processes. For proofs we.refer to the books of Getoor [15] and Williams
[59]. Let E denote a compact metric space with Borel o-algebra. §. C(E)
is the space of continuous functions on E.
A family (Ry)yyp of kernels on (E.£) is called a Ray resolvent on E if
(i) AR1 < 1. (A D> 0). (sub-Markov property),
(ii) RA'Rp+(A'“)RARu=O' (A,u > 0), {resolvent equation),
(iii) R, (C(E)) C C(E). (A > 0),
(iv) ago CSM* separates the points of E, (Ray property),
where CSM® is the family of continuous a-supermedian functions relative
to (Ry). There is a standard construction to change a Ray resolvent
(R\) into a Markov Ray resolvent (i.e. AR\1 = 1 for every A > 0) on a

space
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E', which arises from E by adjoining an isolated point. So we may
suppose that (R,) is a Markov Ray resolvent on E. The construction of
the Ray process with resolvent (R} goes via a Markov semigroup (Pt)‘:20

whose existence and uniqueness is guaranteed by a theorem of Ray.

Theorem (Ray). Let (R,) be a Markov Ray resolvent on a compact metric
space E. Then there exists a wunique Markov semigroup (Pt)tZO
satisfying for f € C(E) and x € E

(i) t - P f(x) is right continuous on [0,«[,

(i1) RyE(x) = je"‘t P E(x)dt  (A0).
0

Proof. See Williams [59]. p. 187. O

Let (Ry)yo be a Markov Ray resolvent on E and let (Pt)tZO be the
semigroup determined by (Rh)' We continue with a brief description of
the construction of the canonical realization of the Markov process
with transition semigroup (P.).

The sample space {1 is the space D[o,w[(E) of cadlag functions from
[0,«[ to E. Let Y=(Yt)t20 be the coordinate process on (: .

Y (w)=u(t) for w €0, t20.

Let ?% be the o-algebra o(YS.Ogsgt) on ) generated by the maps Ys, s{t,
and %° = o(Y,.t20). For every probability p on (E,€), there exists a.

unique probability measure Pu on (Q,?o) such that for 0<t < ...<t,
P'p([Y0 € dx,. Yti € dx;., i=1,....n])
Jﬁ(dx) Po(x'dxo)Ptl(xo'dxl)Ptz—tl(xl'dxz)'"Ptn—tn_l(xn—l‘dxn)'

Let (2 ,9V3{$%}) be the usual Ph—augmentation of (R ,?o.{yg}). that is

gt is the Ph—completion of %° and 9% is the o-~algebra generated by

° =N%%® and the class of all P -null sets in %*. Then
t+ T3S [

Y = (Q, M, (g%}, (Yt)tZO' Ph) is a strong Markov process, this means

g
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that for every {."ﬂé‘}—stopping time T and every bounded F*-measurable
random variable 1 on Q
E, [mo6p - 1[T<m]|°ﬂf] = Ey(1)[n]*1[T¢w] Pya-s-.
see Getoor [15], p.24. Let D be the set of x € E such that
P,(x.*) = 6,. The set D is a Borel subset of E. Points in B = E\D are
called branchpoints.
Pu[Yt €D, Yt 2 0] =1 for every pu.

So the paths t € [0,[ > Y (v) are a.s. right continuous functions with

values in D and left limits in E.

Theorem. Let p be a probability measure on E and let
Y = (0. ., (F), (Y)eyor Py) we as above. Let (7,) be an
increasing sequence of {3%}—stopping times. Let T = sup Tn and
A=[r < o ; 7,4 for all n]. If f is a bounded universally

measurable function on E, then Pu—a.s. we have

Bu LY Iprcal gy #r ] = fo¥rtdprco) 1p + Pof (Yr) 1y
Proof. See Getoor [15], p.25. O

Y = (0, {"ﬂé‘} (Yt)tzo, Pu). where p runs through the set of
probability measures on (E,§) will be called the canonical realization
of the Ray process associated with the resolvent (R)\). Define ¥ (resp.
i’It) as the intersection of the o-algebras # (resp. 3’;) where p runs
through the set of all probability measures on (E,§). Y also has the

strong Markov property with respect to the filtration {¥ }.

Point processes of excursions of_a Ray-process from a given state.

Let Y be the (canonical realization of the) Ray process with Ray

resolvent (R)\))OO on the compact metric state space E. We will use the



notations of section (2.1). Let a € E be a given state. The polish
space of cadlag functions f : [0,9[ - E will be denoted by U. See
appendix A2. The Borel o-algebra % on U is equal to the o-algebra
generated by the coordinate evaluations. For f € U, let Z(f) be the
closed set of points at which f approaches or hits the state a:
Z(f) = {t € [0.,o[ : f(t) = a or f(t-) = a}.

The connected components of [0,*[\Z(f) are called excursion intervals
from a of f. Let I=]D,T[ be an excursion interval of f. The map

Vi(£): [0.®[ > E defined by
f(D+t) if 0 ¢ € < T-D

vi(E)(e) = :
a if t 2 T-D
is called the excursion of the function f from point a on the excursion

interval I. If it 1is clear from which point the excursions are
considered, we will speak simply of excursions and excursion intervals
of f. Themap { : f € U= (; € [O,»o[ defined by

C¢ = inf(Z(£)\{0})

is a lower semi-continuous function, see appendix A2. If

inf(Z(£)\{0}) > O, then {; is the first time after zero at which f hits
or approaches the state a. {(Vy(f}) = T-D is called the length (or the
duration) of the excursion VI(f). We will now study the excursions of
length greater than r, for a fixed positive r, of the realizations of
the Ray process Y. Denote by (]D,(w). T, (w)[),3; the sequence of all
excursion intervals of Y (w) with length exceeding r, enumerated in
such a way that D (w)-< D, ,q(w), n 2 1. This sequence is at most
countable, and it is also.possible that there are only finitely many
excursion intervals of length exceeding r. The excursion corresponding
to the excursion interval ID (w), T, (w)[ will be denoted by V().

Note that V, @ w € Q - V (v) € U is a partially defined, U-valued
random variable. Define T (w) = +» if there are less than n excursion
intervals of length exceeding r. Note that T : v € 2 > T (v) € [0.»] is

an (% )-stopping time for each n21.
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With the above introduced definitions and notations we have the

following theorem.

2.2.1 Theorem. Let Y be a Ray process on E, a € E and r > O.
(i) The sequence of excursion intervals from a of length
greater than r is P,-a.s. an infinite sequence if and only

1.

if P[T; < =]
(i1) If P,[T; < @] = 1, then the sequence (Vn)n21 of excursions
from a of length greater than r is a sequence of indepen—

dent, identically distributed U-valued random variables.

Proof. We start with the construction of a sequence of (32)—stopping
times which increases to T;. Let (6n)n>1 be a strictly decreasing
~sequence of positive real numbers, 5, 1l 0 (n » »). The sequence (Tn)n>1

defined by

Ty =1inf {t : t>r, Y €B,(5) and Y .Y, #a, s € [t-r,t[}

where B,(5,} is the open ball in E with center a and radius §,, is an
increasing sequence of (?t)—stopping times. Denote as 1in theorem
(2.1.2)

T=supToand A=[r <@ v, <T, n2 1].
Let w € 0 and let t be such that Y, (w) or Y, (v) = a and
Y (0), Yg_(w)#a for all s € [t-r,t[.
If Y (w) = a, then 7 (v) < t for all n > 1. B
If Y;_(v) = a, then for every n 2 1 there exists a positive real number
e, such that Y (w) € B,(5,) for all r € Jt-e .t[. Since Y(t_r)_(m) £ a,
there exists an n>0 such that Y (v).Y,_(w) # a for all s € [t-r-n.t-r].
Hence 1 (®0) < t - min(e,.m) < t. Consequently in both cases 7 (0) < t
for all n > 1.
It follows that T(w) £ Ty(w). (1)

To prove the converse inequality 7(w) 2 Tl(m), we consider first the
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case that w € A. Since YTn(w) € B,(6,). it follows that Y _(w)=a.
Further, it is clear that Y (0). Yo (@) # a for all s € [T(w)-r, T(v)[.
Hence T(w) 1is the right-hand endpoint of an excursion interval of
length greater than r and it follows that T (w) ¢ T(w) for w € A.
Suppose now that w € A and T(w) < ®. For k sufficiently large,
T(w)=7(w). This implies

YT(Q)(w) =z=a and Vs € {T(w)-r, T(w)[ : Yo(0), Yo (0) # a.
It follows that Ty(w) < T(w). (2)
From (1) and (2) we may conclude that T,=7.
To prove (i) let A = [T, @] be the event that there are at least n
excursions of length greater than r and let A be the event that there

is an infinite sequence of excursions of length greater than r.

Pa(An+1)= EBa[1[T ¢w7°14 ° O1,]

Eé[l[Tl<w]PY(T1)(An)] (strong Markov property)
L a(1gr,co1Prry) () | v %)

Ey(10T, co]Py(T,) (An) g% + 1A-IP0(YT1_ +dy)Py(AL)]

by an application of theorem (2.1.2). It is clear that YTl = a on

[Ty<@In A* and YTl_ =a on A.
Hence
Pa(Ane1) = Eall[r, colPalhn)] = PalApPa(Ay)
and by mathematical induction
Po(Ay) = (Bu[T <@ ])™
It follows that
P_(A) = lim (P [T;<»])" = 1 iff P [T{<=] = 1.
n-x°
This completes the proof of (i).
To prove (ii) let n22 and let (fi)l(i<n be a finite sequence of bounded
measurable functions on U. An application of the strong Markov property

yields
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n
B[ V)]

E,[£,(V])*f5(V0 eTl)'- o A (Vg 0 )]

Consider first the case that the state a is a branch point. Then
%* .
P (A ) £ Pa[YT =a] =0.
Hence Y, =a (P,~a.s.) and the sequence (7,) foretells 7=T; and T; is
predictable. It follows that ?Lrl__: v %, . An application of Galmarino's
n
test (see Dellacherie & Meyer [7]., p. 149) yields the
%rl_—measurability of 'f1(V1)- So
(*) Ea[fl(vl) Ea( Y(T)[fZ(Vl).' . '.fn(v —1)l v y-rn])]
E,[£1(Y)) [Po(Yy .dy) By(fg(V) ... £,V 1))]
E,[f1(Y) J Po(a.dy) Ey(fo(Vq)e-..+ Fy(Vp_1))]
Ea[fl(Vl)] Ea[fz(vl)’. .o .-fn(V _1)].
If a is not a Dbranch point, then by theorem (2.1.2)
P [Y(T))=a]
= Eatl{a}o YTl’lA*] + Ea(lAJPO(YTI_,dy)l{a}(y)) = 1.

So in both cases we have
n
Ea[il=11 fi(vi)] = Eafl(Vl)'Ea[fz(Vl)* el fn(V _1)].

An induction argument completes the proof of (ii). O

Let Y, r, a, D,, T, and V, be defined as in the beginning of the

section. Define the maps
Py + Q- [0.2], p,(w) = sup{t 2 0 : Y (w)=a for every s(t},
o, + @ [0,°], o,(0) = inf{t 20 : Y (v)=a or Y _(v)=2},
>

Ty ¢ 02 [0,»], T,(0) = inf{t

a 0: Y. (0)=a or Y, (w)=a}.

The maps o, and T, are stopping times. The point a is called a holding
point for Y if P,[p,>0] > O. Define for t20 the kernel K, on (E,€) by
Kt(x,A) = PX[Yt €A, 0, >t], x€E, A€

The family (K. );yo is a sub-Markov semigroup on (E,¢).
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Define for s>r the measure e_ on (E,§) by

s
es(A) = Pal¥p 4s € A, Dy#s < Ty (@] A€ L.
Let p be the P —distribution of V;: u is a finite measure on (U.%).

With the above introduced notations and definitions we have the

following lemma.

2.2.2 Lemma. (i) e/ =eg . s2r, t20:

(ii) For 0 £ty < .... £t  and xq,...,x, € E\{a}

n
plu(r+t;) € dx;. i=1,....n]
= er+tl(dx1)Kt2_tl(x1 ,dX2) ...K

(iii) P [r,=0] = O or 1.

o195

th -

Proof. Note that D1+s is a stopping time for s > r. Let A € §, s>r and
t20, then

e K, (A)= IPa[YD1+S € dx, Dy +s<T <] P, [Y €A, o >t]

Fall[pyrscr <o]® xp | [1alYe): o2>t])

Ea[1[D1+s<T1<w]1[aa°9D1+s >¢11A0D +s4¢)]

(strong Markov property)

eg.c(A).

This completes the proof of the first part of the lemma. Let

0<ty £ ..<t and xq,....%x, € E\{a},
plu(r+t;) € dx;, i=1,....n]
= By[Dy+r<T <, 0,00y 4 >tn. Y 6p 4 € dxy. i=l.....n]
=F@ﬂ%m5&rhhwm%>%L

by an application of the strong Markov property on stopping time Dy+r.
A repeated application of the simple Markov property yields
PX[Yti € dx;. i=1,....n, o, > t.]

= Ky, Oeodi Ko (k. dx9) - Ky o (g d).

An application of statement (i) completes the proof of (ii).
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The third statement is a consequence of Blumenthal’s 01 law, see

Williams [59], p. 126. O

Let X be the product T x U of the halfline T = [0,o[ with the usual
topology and the polish space U of cadlag functions f : [0,®] - E.

Let a € E and let ¥ be the family of open subsets of X defined by
$={ACX: A=1Ix([{>t], ICT open and bounded, t > O},

where { is the first time after zero at which f hits or approaches a.

The elements of Uy, = {u : u € U, {, > 0} will be called excursions. Let

Y, o, and K; be defined as above and let ? be the process defined by

a
_ Yt if ¢« o,
Yt::
a if t 2 o,

Denote by a., X € E, the Px—distribution of Y. Then ay is a probability

measure on U and the finite-dimensional distributions of a, are given

X
by
a ([u(t;) € dx;, i=1,....n])
= Kcl(x'dxl)Kcz—tl(xl »dxg) . . ‘Ktn—tn_l(xn—l 2dxy).
where 0<t;<...< t  and x;....,%X; € E\{a}. The shift operator on U will

also be denoted by 6., so for t20 and u € U, 6,u is the element of U
defined by

(8,u)(s) = u(s+t), s20.
With the above introduced notations and definitions we have the

following theorem.

2.2.3 Theorem. Let Y be a Ray process and a € E, which is not a holding point
for Y and let Pa[T{ (o] =1 for some r > O where T{ denotes the
endpoint of the first excursion of length greater than r.
- If P,[1,=0] = O there exists an i.i.d. sequence (En)n21 on
(2.%.P,)) of Uy-valued random variables whose [{>l]-subsequence

is the sequence of excursions of Y of length exceeding 1.
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- If Pa[Ta=0]=l there exists an Y-finite It6-Poisson point process
N defined on (9.%,P,) whose [{ > l]-subsequence is the sequence
of excursions of Y of length exceeding 1. A

The characteristic measure v of N is a o-finite measure on U, having

the following properties,

(i) v is concentrated on {u : u € U, and u(s)=a for every s 2 Cu}

(ii) for each f € b%,, t > O and A € o(u € Uy, = u(r), r < t) we

have

£(6,u)v(du) = J oy (1) (F) v(du),

Lm[m] AN[E>¢]
(iii) v([C > t]) < » for every t > O.

Proof. Let (rp)yy; be a strictly decreasing sequence of positive real
numbers, such that iig r,=0 and P,[T{;<=]=1, where T{; is the endpoint
of the first excursion of length exceeding ry. For k.n = 1,2,... denote
by 1D ,(0). Tyn(w)[ resp. Vp,(v) the n'h excursion interval resp.
excursion of the realization Y (w) with length exceeding ry. Since
Tyq € Typ. it follows that P, [T <»]=1 and the sequence (an)621 of
excursions of length exceeding r is an i.i.d. sequence of U-valued
random variables, see theorem (2.2.1).

Define for k=1,2,...

U ={u:uel {, >}

Vie = (Vege Voo o -2
v = Ve (Py) and
P, = v(Up)-

Then (Up.Vy)y>] is a nested arréy on (2,%,P)), see section (1.3) for
the definition of a nested array. '

If P,[1,=0]=0, then ii?w py > 0.

Indeed, si 11 =1 >0], ha
ndeed, since kl?m 1U1(Vk1(w)) [Ta>r1](w) on [7,>0], we have
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ll{ig pk = ll{i_”T Pa[Vkle Ul] = Pa[Ta > I'l] > 0.
By corollary (1.3.10) there exists an i.i.d. sequence (§,)p>1 of random
variables whose Uj-subsequence is P -a.s. equal to (V). 51-

If P,[1,=0]=1. then iin py = 0.

Indeed, since a is not a holding point for Y, we have

P,({o : 3K, ., Vk 2 K, V1 €Uj}) =1

hich implies that li = lim P_[V,, € U;] = O.

which implies k42 Py k:z aLVi1 1]

It follows from theorem (1.3.8) that P,-a.s. the limits

tin = ﬁig Py Skjn (n.j=1,2,...)

exist, where for k>j Skjn denotes the index of the nth

excursion of
length greater than r; in the sequence (vkn)n21 of excursions of length

greater than rp . The P ,-a.s. defined random variable

o
N:wueQ-> 3 3 13
J=1 iV (0)€U5_ (tjn(@).Vyn(@))
is an ¥-finite It6-Poisson point process on U, with characteristic
measure b determined by

J
Further, the Uk—subsequence of N is the sequence (an)n21 which implies

v(U;)=1 and |y, = Yy
J

that for every 1>0 ‘the [{>l]-subsequence of N is the sequence of
excursions of Y of length exceeding 1.
If (rk)k>1 is another strictly decreasing sequence of positive real
numbers with the same properties as the sequence (rk)k>l' then the
Ito-Poisson point process N' constructed as above starting from the
sequence (rk) has a characteristic measure v' which differs only by a
multiplicative constant from v, see corollary (1.3.9):
We continue with a proof of property (ii).
Fix t > O and choose k such that Ty < t.
Let for O ¢ tq < ... < t <t 0 < s1 <...< Spe Al"“'Al € § and
fi.....f, €bé

A= [u(ti)€ Ay i=1,...,1]
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n
fw) = T f5(u(s)). ueu.
Then by definition of v

JAﬂ[()t] £(6,u) v(du)
1

= — f(o d
) Jinteey FeOu)

1
s E [T 1, (Viq(ty))-1 - £ (Vy(s5+t))]
Pa[Tk1>Dk1+rl] at § "A;V'kIVHE [C(V1)>¢e] j o d k1\®j
l -—
= E_[M, (Y(Dpq*t;))-1 T £ (Y(s;))o8
P T oo ] alT1A, (Y(Dyp*5)) 1D, 4 ecty ) T E5(r(sy Dy g+t
1
e BT 1, (Y(Dyq+t;))e1 o ()]
Phonery] A Ay (YDip*€30) 1rp 4edTy  12Y(D, +t)

(by an application of the strong Markov property)

= a f) v(du).
Jinpesey o) v
A standard monotone class argument completes the proof of (ii).
For the proof of (i) first note that the set

W={u:ué€lU, and u(s) = a for every s 2 (}
is a measurable subset of U,. It is clear that a,(1ly) = O for every x €
E. So (ii) implies

| 1y(8,u) v(da) = | (1y) v(du) = 0.

[e>e] ¥t [o>e] WOV

On the other hand, if {; > t then 1y(8.u) = 1y(u).

Hence
jlew(u) o(du) = Ly J'[c>t]1w(u) v(du)

1im I 1y(6.u) v(du) = O,
10 Jrose) w(Beu) v(du)
which completes the proof of (i). Finally, »([{>t]) = n(E) < = for

every t > 0. O

A family of finite measures (eg)gyp on (E.&) will be called an entrance

law for the (sub-Markov) semigroup (Kt)t>0 whenever

eSKt = Egyt for all s > 0, t > O.
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2.2.4 Theorem. There is a one-to—one correspondence between o-finite measures
m on (U,.%,) satisfying properties (i), (ii) and (iii) of theorem
(2.2.3) and entrance laws (eg)oyq for the semi-group (K,) satisfying

e.({a})=0 for every s > O.

Proof. Let us first assume that m is a o-finite measure on (U, %)
satisfying properties (i), (ii) and (iii) of theorem (2.2.3).
Define_for s >0and A € &
e (A) = m({u : u€ U, u(s) €A, C, > s})-
(eg)g>o is a family of finite measures on (E, &) satisfying es((a})zo,
s>0. For A € &, denoting A\{a} by A',
e K (A) = Jm(u(s)édx, C08) B L1y (Y )i o]

- J[§u>51 m(du) Ey(g)[15-(Y)]

- J[§u>5] () ay(5) 1 (2())]

= J[Cu>s] m(du) 1,.(u(s+t)) (by property (ii))

I[Cu>s+t] m(du) lA-(u(s+t)) (by pYoperty (i)

= eget(A') = gy (A).
So {(eg)gyp is an entrance law, which proves the first half of the
theorem.
To prove the second half of the theorem, let (e ) yy be an entrance law
for the semigroup (K.) satisfying eg({a})=0. s > O.
Define for t > O
%, = {B: BCU,andB=[{>t] N 6;1(A) for some A € U}
where 4, denotes the Borel o-algebra on U,.
The sets
{utue€ly (, >t u(t+sy) € F;. i=1,....n}
where n>1, 0¢s<...<s_ and Fl“"‘Fn € &, generate the o-algebra gt'

n

If r<t, then %, D $. 3 ¢,. Indeed, let B € 9. say B = [{ > t] N 671(A)
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with A € @,. Then B = [T > r] N 671([0>t-r] N 071 (A)) € ¢.. Note that

go %, is a ring generating %U,. The setfunction u, defined on 4, by
¢ !

n (L>€] N 671 (A)) = J;t(dx)ax(A). A€,
is a finite measure on the ring @t, whilst for r<t

u ([C>eIN071A) = J&r(dx) a [0>t-r, 1, © 6,__]

= J;r(dx) Ex[l[o>t-r].1A ° Y(8y_ )]
= Jgr(dx) ch_r(x.dy}ay(A) (simple Markov property)

fectan) o,

ne([E>t1N6T1A).

It follows that we can define a setfunction p on go ¢, by putting
t

M(B) = ut(B) if B € gt.
p is a o-finite measure on the ring g @t, and has a unique extension
t>o
to a o-finite measure on (U,,%,), see Halmos [18]. From standard

monotone class arguments it follows that for f € b%, and t>0

[ uan) £(8,0) = [eq(ax) ay(s). (%)
[0>¢] ¢ e
Fix t > O and define
A = [u(ry) € Ay, i=1....,1]
where O§r1<...<rl$t and Al.....Al € 8.

For O<r<ry and f € b%,

Jungorey MO 10

1
Jert@x) fa @)l T 1pu(e cryen; 3007 Ippser) (@O gu)

l
Jerte) Jalanl T 1pu(r —ryen; 3007 1ppseer ety (emry()

by an application of the (simple) Markov property

1
J[§>r] u(du)[igl 1[u(ri+r)€Ai](9ru)] 1[()t—r](eru) aeru(t—r)(f)

by (%)

(du) au(t)(f).

Jkn[c>t1 .

This proves the formula
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JAﬂ[C)t]f(Gtu)D(du) = J;n[§>t]au(t)(f)u(du)

for elementary sets A. From a standard monotone class argument follows
that this formula is true for all A € o(u € U, - u(r), r < t). As in
the proof of theorem (2.2.3) it now follows that v is concentrated on
the set {u : u € U, and u(s) = a for all s 2 {;}. From the definition

of v it is clear that v([{ > t]) < @ for all t > O, which completes the

proof .0

Remark. In theorem (2.2.3) the excursions of Y are considered on the
probability space (Q,y,Pa). It is clear that on a probability space
(Q,y,Px) we have to add to the It6-Poisson point process (or to the
i.i.d. sequence (En)n>l) a first excursion describing the process Y up

to time o,. Let x € E, x # a. The map W : 2 > U defined by
Y (w) for t < o,(w)
(Vo)(t) =

a for t 2 g,(w)
is a Uy-valued random variable, describing the process Y up to time g,.
As in the proof of theorem (2.2.3), let (rk)k>1 be a strictly
decreasing sequence of positive real numbers, Ty l 0 as k > ®. For

th

k.n= 1,2,... Vﬁn(w) denotes the n excursion from a with length

exceeding r) of the realization Y_(Gaaw). So Vﬁn(m) = Va(6,0).

Define the vector Vﬁ by Vﬁ = (Vﬁl, Vﬁz....).

As in lemma (2.2.2) we can prove that for every x € E\{a} the sequence

(Vﬁ, Uk)kZI is a nested array on (Q2,%.P,) and
P [WeB, VE; € A;, i=1,...,n] = P _[WEB] P,[V} ;€A;.i=1,...,n]

for every n 2 1, B, Al,..., An € 9.

When Pa[Ta = 0] = 1, we define the point processes NX and Q¥ by
N:weQ- N(Gaaw), N as in theorem (2.2.3),

and

Q1w €8>530,W(w))-
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It follows that the point processes NX and Q* defined on (Q.?.Px) are
independent and as in theorem (2.2.3) the point process NX is an

Itd6-Poisson point process with the same characteristic measure v as N.

Remark. If state a is a holding point for Y, then there exists an
i.i.d. sequence (£, )51 on (2.%.P,) of Uy-valued random variables whose
[{>1]-subsequence is the sequence of excursions of Y of length greater
than 1. Between two consecutive excursions the process Y remains in the

state a. These time intervals are exponentially distributed.

Construction of stochastic processes from It6-Poisson point processes.

We will start this section with a list of the notations and definitions

used throughout this section.

Notations_and definitions.

As in section (2.2) (E,p) will denote a compact metric space with Borel
o-algebra € and a € E will be a given point of E. The space of cadlag
functions defined on T=[O.§[ with values in E will be denoted by U.
Endowed with the Skorohod topology, U is a polish space. The-Borel
o—a}gebra on U will be denoted by % and this o-algebra is generated by
the coordinate evaluations on U. The map { : U - [0,2] is defined by
C(u) =C, =inf {t : £ > 0, u(t) = a or u(t-) = a}.
For u € Uy, = [{ > O] the number {, is the first "time"” after zero that

u hits or approaches a. The map ( is lower semi-continuous. On the

space (E,&) there will be given a Markov semigroup of kernels (Pt)t>0
such that for every x € E there exists a probability measure a, on
(U.%) which is concentrated on the set {u€U : u(t) = a for all t 2 {,}

and which has finite-dimensional distributions given by
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a fu(ty) € dx;. i=1,....n]

= 5 x,dx E _, (xq,dx - 5 s
tl( 1) ty tl( 1-9%9) tn—tn_l(xn—l dx,)
where O £ t < ... < th and Kirew oo Xy € E.
For t > O the kernel K, on (E.&) is defined by
K (x.,dy) = e [u(t) € dy, {, > t].

The family (K.);yp is a sub-Markov semigroup of kernels on (E,£). On
(E.&) there will be given also a family of finite measures (mng)gyg
which is an entrance law for the semigroup (K,) 3o with n ({a}) = O for
every s>0. By theorem (2.2.4) there is a unique measure on (U,, %,).
which will be denoted by v, satisfying the three properties

(i) v is concentrated on {u € Uy * u(s) = a for every s 2 (,}.

(ii) for each f € bY,, t > O and A € o(u € Uy, » u(r), r { t) we

have

£(6,u) v(du) = j

AN[O>t] () (F) vldu).

JAn[ot]

(iii) o([{ > t]) < » for every t > O,
such that

ng(dx) = v([{, > s. u(s) € dx]), s > 0.
We will always consider v as a measure on U by putting v(U:) = 0. The
product topological space T x U, where T is equipped with the usual
topology will be denoted by X and A" is the space of nonnegative Borel
measures on (X, %(X)) which are finite on the family ¥ consisting of
the subsets I x [{ > t] where I runs through the bounded subintervals
of T and t > 0. The ¥-finite It6-Poisson point process on U with
characteristic measure v will be denoted by P. (The exisfence and
unicity of P follows from proposition (1.2.2).) By proposition (1.3.1)
P(#;) = 1. where M; is the set of Y-finite point measures p such that
p({t} x U) <1 for every t > O.
For p € M', it is clear that supp(p) is a countable set. If p € M this
set can be considered as an ordered subset (u, ), ¢ J(w) of U where J(u)

denotes the projection on T of supp(p) and where u, = u iff
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(o,u) € supp(p). Let L : U - [0, be a given, measurable function on

U. Define for 0 € T and p € Mi

B(o.un) = 2 {L(u,) : 7 € J(p) and 7 < 0}
= Jﬁ(drdv) l[o‘a](T)L(V)
and
Cu: U B—. .B , .
(1) UGJ(u)[(U 1), B(o.u}
If T = C(un) then denote by ; the concatenation of the .functions

ual[O,L(uo)[' o € J{u), that is
p:T-E,
R(s) = ugls - Blo-.m)) = [u(drav)(v+1pq | (yy[) (5-B(T=.1)
where o € J(u) such that s € [B(o-,u), B(o,u)[;: the function u, is
called the excursion straddling s.
It follows that for an ¥-finite point process Q with phase space X such
that
Q{n € 4j : T =C()) =1
the maps’YS, s 2 0; defined by
Yo i€ {ne€di T =Cu)} - uls)
are Q-a.e. defined random variables on the probability space

(#4347 .Q).

In what follows we want to consider a construction of this kind for the
Itd-Poisson point process P. With an extra assumption about the
characteristic measure v of P it will turn out that the process

Y = (Yt)tzo is a Markov process. So it is natural to consider a family
of probability measures :(Px)er on (A+,%(ﬂ+)), where P, is the
probability distribution of the process Y stafting in x. So we have to
add a first point to P corresponding to a start from x taking in
account the given transition prdbabilities (Et).

Consider the measurable map

u€U—)5(Ou)€J{+.
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For x # a, Qx denotes the image of the probability measure a, under
this map. Q, is a point process with phase space X. The intensity
measure iQx. the Palm measures (QX)(T v) and the Laplace transform ax

are given by

iQx=5°®ax,
Q) (r.v) = 55(T'v) ' (r.v) €X,
B (£) = [ay(au) O, £ e B(X),.
Define
Qx * P if x € E\{a}
P. =

x »
P if x=a

(Py)yeg is a family of point processes on X. The most important

properties of the point processes P, are collected in the following

lemma, whose straightforward proof is deleted.

2.3.2 Lemma. For x # a, the intensity measure ip . the Palm measures
X

(PX)(T,V) and the Laplace transform ?x'of the point process Px are

given by
iPx = iQx + iP .
Px * 65 for veUand v > 0
(PX)(T V) = (T,V) s
4 66 * P forveUand 1t =0
(0.v)
GBI = J&x(du) e~f(0.1) oyp [—I(l—e'f)dk®v], £ € %(X),.
Further
Px(#i) = 1.

Let = M and ¥ the trace of #(4*) on 0. Our basic family of
probability spaces will be (Q. ¥, P,). x € E.

Define for w € Qand v > O

A(T.0) = Jw(dadu) l]O,T](U)cu‘
X

The random variable A{T) is the sum of the lengths of the excursions

up to and including time T, leaving out the excursion at time 0. As a
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function of T, A(7T.,0) is a non-decreasing cadlag function on [0,®[ for
every w € Q. The Laplace transform of the random variable A(r) is given
by:

Je—M(T) dPx =exp [-T J'(l—e—xgu)v(du)], AD>O0, x €E.

Q U
From now on we will assume that

J(l-e-gu)v(du) < .
U

Then A(T) is P -a.s. finite for every x € E. Note that the family of
random variables (A(T))Tzo is a subordinator whose Levy measure is the
image {(v) of the measure v under the map {. See for subordinators Itd
[24]. Addition of a linear term 7, v 2 O, to A(T) gives us the general
form of a subordinator with Levy measure {(v). Define for 7 > O and

w €N

o, (v) J@(dadu) 10y ()0,
B(T1.0) = o,(0) + A(T,0) + 7.
It follows from a straightforward calculation that the Laplace
transform of the random variable B(r) is given by
Je'AB(T)dPx = J;—Agadpx-exp[-T(kv+ I(l—e-xgu)u(du))].
For w € 0, denote by R(w) the range of B(-,0w):
R(0) = {s € [0.%[ : 3r : s = B(7.0))
and let ¢(+,w) be the right continuous inverse of B(-:,w):
¢(s.w) = inf {7 : B(T,0) > s}, s 2 0.
It follows from the definition of ¢ that
B(¢(s.0)-.w) < s < B(o(s.w).0)
for every s 2 O, where B(O-,0w) = 0. Let J(w) be the projection of the
support of the measure w on T:
Jw) = {0 €T : w({o} xU) =1}, we€q.
Note that J(w) is P,-a.s. a discrete subset of T if p(U) (o and a

countable, dense subset of T if »(U) = +».
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Define for w € Q

C({w) =a€g(w)'[B(a—,w). B(o.w)[-

With the above introduced definitions and notations we have the

following lemma.

Lemma. Let x € E. Then Px—a.s.
R{w) + C(w) if v(U) = +@ or v+ > O
T =

C(w) if 0 ¢ v(U) < @®and v+ =0
where the union is a union of disjoint sets.

Proof:. Assume that v(U) = + ©® or v+ > 0. It is clear that the function
B(-.w), is Pya.s. a strictly increasing function, B(t,w) 1 ®as 7 » o,
The assertion in the lemma follows from appendix (A3.3).

We continue with the case 0 < v(U) < ® and + = 0. In this case J(v) is
P -a.s. a discrete set, which can be written as J{(w) = (an(m))nZI with

oy(w) < og(@) <... Further o, (v) 2 ® as n » ®. Since v =0,

B(o,~, w) = B(o,,_1.w) and the assertion of the lemma follows. O

Llet w € Rand t > 0. If t € C(w), u is the excursion (in w) straddling
t, if there exists a 7 X0 such that t € [B(r-,0), B(T,0)[ and O(r u)=1;
note that 7 = ¢(t.0} and that {, = B{e(t,0),0) - Ble(t.0)-.0).

With w € Q2 we associate a function @ : T »E defined by

N u(t - B(p(t.w)-,w)) if t € C(w)
w(t) = ., t €T,
a if t € C{w)

where u is the excursion straddling t. Note that
o(t) = Jw(dadu) (w1pg. ¢ [)(E-Blo=.0))  if ¢ € C(o).
Sy
and
@ = Jw(dodu) Iro,¢,[(tB(o=0)).
It follows that the map w € (Q,%) = o€ (ET, ET) is measurable. Denote

the coordinate evaluations on EV by Y,. t 20, i.e.
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Y, : ET  E. Y (f) = £(¢).
and the image of the probability measure Px under the map w = 5 by Px.
Then, Y = {Y, + t 2 0} is an E-valued stochastic process on the
probability space (ET, £T, P ). We continue with the calculation of the

finite-dimensional distributions of the process Y. From the definition

of the measure v it follows that
v([u(s) € dx. T, > s+l]) = n (dx) P(x, E\{a}), s.1 > O.
Writing B, for the a —distribution of (.
B (dl) = a [L € dl] = dP;(x. {a}).

we get

v[u(s) € dx, {,~s € dl] = ny(dx)B,(dl), s,l > 0.

2.3.4 Proposition. Let f € bf such that f(a) =0 .

If v(U) = +® or ~ > O then

0
0 ift=0

E[£(Y)]

t
{ [peaw) fasa.0) faeq(av) £ 1£ >0

and for x # a

t
Jkt(x.dy)f(y) + be(dl) WLE(Y,_ )], if €50

E[£(Y)] 0
[Role.a)E() + B ({0}) J[F(Y)]  if £ =0

If 0 < v(U) < @ and v=0 the same formulas hold except for the case

x=a and t=0:

E,[£(Yp)] = Jv(du) £[u(0)].

v(U)

Proof. The proof is based on an application of the Palm formula, see
section (1.2). Let t > O.
E[f(Y)] = JP(dm) lC(w)(t) jw(dadu) (fbu-l[oygu[)(t—B(a—,w))
= d oy _ -,
JP(dw) J@(da u) (fou l[o_gu[)(t B(o-,w))
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= oo Jocaw) [peas) (rous1go ¢ ) (EBlo-0 + 8y )
0
= JP(dw) Jéa Jﬁt_B(a_,w)(dY) £(y)
0]

t
= IP(dw) Jﬁ¢(q,w) Jﬁt_q(dY)f(Y)
(0]

where in the last step we have used an integration formula for right
continuous inverses for which we refer to appendix A3.
For t=0 and v(U) = ® or v > O

P[0 € C(w)] = P[B(O,w) > O]

= P[w({0} x U) = 1] = O since A®v({0} x U) = O.

It follows that P,[Yy = a] = 1, so E,[f(Yy)] = O.
If 0 < v(U) < » and v=0, then the formula for E,[f(Yy)] follows from
theorem (1.3.4). Let x # a and t > 0. For both cases we have
E[£(Y,)]

- dexp(dw) J@(dadu) (four1po ¢ [)Et-B(o-.0))

- jbx(dw') fo (doau) 1[o)(e)(Feur1rq ¢ [)(®)

+ JQx(dw') jf(du) J@(dadu) 190,ef (0} (four1po ¢ [)(E-Blo=.wru')
= folau)ipe 5eqfute))

+ J&x(dv) Jﬁ(dm) J@(dadu) (fourlpg ¢ p)(t-Blo-.0)L,)

t
= IKt(x.dy)f(y) + be(dl)Ea[f(Yt_l)]-
0

For t=0 we only have to note that
J&x(dv) JP(dw) J@(dadu) (fou-1pg ¢ [)(0-B(o-.0)C,)
=€, = 01"E,[£(Yp)]
= B{0)) “E,[£(Yo) 1.

Which completes the proof of the proposition. O
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Define the measure ® on [0,®[ and the kernels (S¢)¢>p and S, on (E.§)
by:

dda) = [P(a0)de(a.a).

19}
(P = n) (dy) for x=a, y#a

st(x-dY) =

lag

t
Ke(x.dy) + [B(dl)(® % m)_ (dy) for x.y # 2,
0

S (x. {a}) =1 - S (x, E\{a}).

If v(U) = +® or v > O then

.

0 for x=a, y#a
Sy(x.dy) = 1
[ K, (x.dy) for x,y#a
If 0 < v(U) ¢ and v = O then

-

0 v(u(0) € dy. (, > 0) for x=a, y#a

So(x.dy) = | By({0})
[ Ko(x.dy) + o)

v{u(0) € dy. {, > 0)

for x,y#a
In both cases

S,(x.{a}) = 1 - S (x.E\{a}).
The kernels (S;) yg are a family of Markov kernels on (E,¢§).

Then the statement of proposition (2.3.4) can be written as
E[f(Y,)] = S f(x). t20.f € be.

Define for t > O the map \pt : 0 -0 by
Tw(t)(“) if t € R((ﬂ)
Ve(w)

2(0.0¢ p(p(t.0)-,0)) T Te()(¥) €€ RE)

where u is the excursion straddling t and where T¢ is defined as in
section (1.3) p.37.

The meaning of the map Ve is explained in the following lemma.

2.3.5 Lemma.For s,t ? 0 and v € Q we have

o(s+t.0) = 9(t.0) + o(s. ¥w)
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and

Y [($0)"] = Ygur(0).

Proof. First note that o, (¥.0) = B(¢(t,0).0)-t.

Indeed, if t € R(w). then

o,(¥) = aa(Tw(t)“)

= (T, (1y0) (doau) 10y (00,

=0

J@(dadu)1]¢(t’m).m[(G)l(o}(U‘w(t-w))fu

and the result follows, as B(¢(t,w),w) = t for t € R(w).

If ¢ € R(w) then

“alte) = %(500.60 p(y(c,0)-.0y2)) * alTo(0)?)

B(e(t.0) 0)- t

Cu — (t = Ble(t,0)-,0))

since u is the excursion straddling t. We continue with the calculation

of B(T.yw).

B(T.9,0) = 0,($0) + A(T.$0) + 7T

= B(e(t.w),w) - t +

Iw(dadu) IJ‘P(C.(J) .\P(t,ﬁ))‘*’T](a)gu.PYT

= B(p(t.,0).0) - t + B(e(t.0) + T.0) - B(e(t.0),0)

= B(o(t,w) + T,0) -

Hence

t. ()

¢(s.¥w) = Inf {7 : B(7, ¥y0) > s}

= inf {7 : B(¢(t,w) + T,0) > s + t} by formula ()

= —p(t,0) + o(st+t,0).

which proves the first part of the
For the second part, suppose first
Then, for some T 2 O

B(7. ywv) = s,
hence by formula (3¢)

B(e(t,w) + T,0) = t + B(T, Yw)

lemma.

that s € R(wtm).

i
o

+ s,
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and it follows that s+t € R(w).

So YS((wtw)N) = Ys+t($) = a by definition of Y, see p.72. Suppose now
that s € R(yw). Let s < o,(d0) = B(e¢(t.w),w) - t. Then
p(s+t,w) = ¢(t,w) and there is one excursion (in ) straddling both t
and s+t, so

Yo((¥0)) = u(s+t = Bp(t.0)-.0))
= u(s+t - B(g(t+s,0)-, 0)) = Yg, (@)

where u is the excursion straddling both t and s+t. For s > aa(¢tw) we

have B(0.y,w) < s so ¢(s.y.w) > 0. It follows that

(¢tm)(¢(s.wtw),u) = (T¢(t)w)(¢(s+t.w)-¢(t.w).u)

= Op(s+t,w),u)

and the excursion straddling s in Vo is the same as the excursion
straddling s+t in w. Note that B(s(s.¥.w) -, ¥.w) = B(e(s+t.w)-.0) - t.

Indeed B(¢(s.y¥w)~, V)

éig B(o(s. ¥ w)-e, ¥.0)
= éig B(o(s+t.w) - o(t.w) - €, Yyw)
= lim B(¢(s+t,w)-e.w) - t by formula ()
e+0 )
= B(e(s+t,w)-.0) - t.
It follows that

Yo((¥,©))

u(s - B(e(s.90)-. ¥,0))

u(s+t - B(e(s+t,0)-.0)) = Y, (@).

where u is the excursion straddling s in wtw.D

Theorem. Let n > 2, fl""'fn € b8, 0 < ty < ... < th and x € E then

n
Be [ M £5(Ye)]

i=1
- Jstl(x.dyl) Jét2_t1(y1,dy2)...Jétn_tn_l(yn_l,dyn)fl(yl)...fn(yn).

Proof. We will only consider the case x # a and t; > 0. The proof for

the other cases is analogous and is therefore deleted.

. n n n
EL T fi(Yti)] = Ex[fl(Ytl) g fi(Yti)] + fi(a) E L T £3(Y )]
i i=2 i 1

i= i=2
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where T; is the function on E defined by T (x) = f,(x)-f(a).

Since T;(a) = 0,
n
BT (Y ) T £5(Y)]
i=2 1

n
= B l1c(e) (Y ) T £4(Y, )]

i=2 1

n
- fpx(dw) J@(dodu)(rlou.1[o_gu[)(cl—B(o-,u))izzfi(Yti_tl)((wtlw) )
- jdx(dm') jp(du) I(w+w')(dadu)(?1°u°1[o’§u[)(tl—B(a—,m+m‘))-
n

iZ2 fi(Yti_tl)(th(w+w') )
= fou(av) [P(a0) fordodu) — + [o(do') [P(av) [o(dodu) —

I+ II.

n
= J&x(du)(flou‘l[o_c [)(tl)JP(dm) I £;(Ye ¢ ) (w+5(0,u)) )
u i=2 1 1 1
It is clear that (u>t1 implies B(T,m+5(o_u)) = B(7,0) + i Y
for every 7 2 0. So (¢, w+6(0,u)) =0 and t; € R(m+6(0'u)).

It follows that wtl(w+6(o‘u)) = 6(0’9t1u) + To(w+5(0'u))

5(0.6t1u) + w P-a.s.
n

- J&x(du)(rlbu.1[0’cu[)(t1) Jﬁ(dm)'nzfi(yti_tl)((w+5(o’etlu))~)
1=

n
= [ke (xeay) T foy(aw) jP(dw)iZ2 £ (Y ¢ J((©+B(0,4)) )

n
= JKtl(x.dy) i (y) Ey[izz fi(Yti—tl)];

1= Iax(dv) J?(dw)J@(dadu)(rlou—l[o‘gu[)(tl-gv—B(a—,w))-
n

152 fi(Yti_tl)((¢tl(U+5(o'v))) ) -



9

= Jax(dv) Jda jv(du) JP(dw)(Tlou‘l[O'gu[)(tl—cv—B(O—,(‘H'é(a’u)))‘
0

n
‘n2 £3(Ye ¢ ¥ (@0(0,v)* O(g,u)) )
i=

by an application of the Palm formula, see section (1.2).
If t;-C,B(o-.0} < {,. then B(o-, v + G(O'V) + a(o,u)) >ty
Hence ¢(t1.w+6(0 v)+6(a.u))  o.
If 0 ¢ tl—fv—B(a—.w). then B(a—.w+6(0 v)+6(a u)) <ty
Hence w(tl,m+5(o’v)+6(a'u)) 2 0. It follows that
W(tl,w+5(o'v)+6(a'u)) = ¢ and tl "3 R(m+5(0,v)+5(a’u))
So ¥, (0+0(0,v)*0(0.u)) = 8(0,8) * To(@*8(0,v) * O(q,u))

= 5(0,6) + T (w) P-a.s.

where u = etl—B(a—.w)—fvu'

= J&x(dv) JAU Ju(du) JP(dw)(T1°u°l[o'gu[)(tl—CV—B(a—.w))'
0

n
T e (0.5 *+ Too)

= J&x(dv) Jﬁa Ju(du) IP(dw)(flo u°l[o,cu[)(tl—fv—B(a—.w))°
0

n
J'P(dm‘ )11_12 fi(Yti—tl)(“"“S(O.ﬁ))
by an application of the renewal property (see theorem (1.3.3))

= fagtan) Jox me ¢ (@70 faytan)
n
JP(dw') (Y ¢ )0+, u)

i=2

4 n

= [ Bal) J@x e L @)T o) BL T £0x, 01
o i=9 i1

It follows that

n n
[m f;(Y,)1= Se, (xay)Fy(WEL T £(Y, _ )]
Ey io1 ithey J;\{a} ty 1 E& 520 i‘viti-ty
n
+ fi(a) Ej( I fi(Yt.—t )]
i=2 i "1
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n
- J;stl(X-dv)fl(Y) BLT £30ee))]:

An induction argument completes the proof of the theorem.O

As a consequence of theorem (2.3.6). (S.).yg is a Markov semigroup on
(E.&) and Y is the canonical representation of ‘the Markov process with
transition semigroup (st)t>0‘

Let (Vy)pyp be the resolvent of the semigroup (St)tZO

V) i b& > b,
0 ' o
Vyf(x) = Jé‘*‘stf(x) dt = E, Jé'xtf(Yt)dt, x € E.
0 0

Denote the resolvent of the semigroup (K.).yo by¥ (G\)x>o-
Define for A > O and f € bé

ﬁk(f) = Jdt eAt Jﬁt(dx) £(x).
0 E

This integral is finite because of the assumption

I(l-e—gu) v(du) = 1y(1) < .
Define for A > O and x € E

-\
Z\(x) = J a, (du) e Cu.

In the next lemma we prove some relations between (G,). (ax) and zy.

2.3.7 Lemma. Let A, p > O and f € b§, then
(1) (NMR(G,f) = my(£) - m,(£),
(i1) zy, = 1-AGy1,
(111) (#A)n,(2)) = wm,(1) - Am(1).

Proof.

(1) (u-k)ﬁk(cuf) = (u-A) J&c e Mt Jﬁt(dx) Jé‘“s K f(x)ds
0 0
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(v

o0
(u-n) jdt e At Jé‘”s Ngpp(£)ds

0 0
s

Jas e™HS n (f) j(p—k)e(“-x)tdt
0 0

= m(£) - B, (f).

. -A
(ii) Za(x) = J&x(du)e Ly

= J&x(du) J&s 19¢ 'm[(s)xe_xsds
0 u
Jie‘xs(1—xsl(x))ds

0
l—Ale(x).

(111)  (22) Mu(za) = EA)RANGD)  (by (i1))
= (N (DAM, (1) - M) (by (1))
= “%u(l) - am(1). o

We continue with a theorem which gives an expression for the resolvent

MJaso-

2.3.8 Theorem. Let A > 0, f € b§. Then
Vaf(x) = Gf(x) + z\(x) Vyf(a) where
m(f) + ¥i(a)

V7\f (a) = =
Ar + A (1)

Proof. Let x € E\{a} then

Vaf(x) = JPx(dw) J@(dodu) Jé—kt (fou'l[o'gu[)(t—B(a—,m))dt
0

+ JPX (dw) IIC*(w)(t) e Mi(a)de
0
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- JPx(dw) Iw(dadu) Ie—)‘t (Fourlrg ¢ [)(t-B(o-.0))dt + % f(a)
o

where T(+) = £(*) - f(a).
g, o
_ = 1
- Iax(dv)I e M (v(t))de+ Jax(dv)J e MEa[I'(Yt_gv)}dH = f(a)
0 Z,

It

Jé‘At K, T(x)dt + J&x(dv)e_RCV. V\I(a) + % f(a)
0

= Je_)‘t K, £(x)dt + (1 - A Je-)‘thl(x)dt)-V)\f(a) (%)
0 0

- ) -At oy - — .1.
Vaf(a) = J}(d ) J@(dadu)ié (fou 1[0,§u[)(t B(o-,w))dt + N f(a)

© gu
(J)do Jv(du) jp(dw) e NB(0-.0) ()[ e N T(u(t))de + % £(a)

J&o Iv(du) exp [-o(Ar + J(l—e—kgw)v(dw))]?
(¢}
At 1
({e F()1pp 5 + < f(a)

(4]

- 1
¢ Ie At Iv(du) T(u(t))1[§u>t]dt + ; f(a).
M+[(1-e  ¥)u(dw) O

1

Note that j(l—e_}‘f") v(dw) = A (1),

and [N [o(du) T(u(t)) Irgoe1dt = M)
0

Hence
m(f) + vf(a)
V\f(a) = —— —— . (1)
Av + Ay (1)
Fur ther

[++] 0
1 -2 Je_}\t K 1(x)dt = J Ae M1 - K, 1(x))dt
0 0
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- J'ax(du) J')\e_)‘t g gegdt
0

=\
= ,[ax(du) e Cu, (2)

Substitution of (1) and (2) in formula (%) completes the proof. O

The next theorem states that the resolvent (VA) inherits the Ray
property of the resolvent (G,) if the following extra condition is

satisfied: zA(x) <1 for every x # a.

Theorem. If z,(x) <1 for every x # a and if (G,) is a Ray resolvent,
then the same is true for (Vk)’ In this case the process Y has

cadlag paths Px—a.s. and is therefore a strong Markov process.

Proof. If (G,) is a Ray resolvent, then the same proof as in Rogers
[45] can be used to prove the Ray property for the resolvent (V,). By
construction, Y is the canonical representation of the Markov process
corresponding to (V,). So P ,-a.s. the limits X, =Q3éiTt Yq exist for
all t 2 0 and the process X=(Xt)t20 is a cadlag version of the process
Y which has the strong Markov property, see Williams [59], ch.III,
p.194 ff. So it is sufficient to prove that the processes X and Y are
P -equal. It is clear that X (w)=Y (w) for every t € C(w). So there is
nothing to prove in the case +=0 and 0 < p(U) < ©, since in this case
T=C(w) (see lemma (2.3.3)). Suppose now that v+ > O or v(U) = +» and
that t € R(w), say t=B(r,v).
If v(U)<w», then there is a first interval [B(o-,w), B(o,w)[ following
t, i.e. ' A

t < B(o-,0) and [t,B(o-,0)[ C R(w),
and it is clear that X (0) = a = Y (v).
If v(U)=+», there is no first interval [B(o-,w).B(o.w)[ following t,

since this would imply that w([r.o[xU) = O for some ¢ > r which is
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impossible. So for every e > O, the interval [t,t+e] contains an
excursion interval. Since we can choose in each excursion interval a
rational number q so that Yq(w) is in an arbitrary small neighbourhood

of a, it follows that X (v) =a = Y (v). O

The following theorem gives an explicit formula for the
Blumenthal-Getoor local time for Y at a, see Blumenthal & Getoor [3],
ch. V. In this theorem the map ¢(t) defined on 4] is considered as a
(Px-a.s.) defined map on the sample space El of the process Y, which is

possible since the map w € ;] 2w € E! is an injection.

Theorem. Under the assumptions of theorem (2.3.8), the Blumenthal-
Getoor local time L=(L.) 5o -at the state a of the process Y is given

by

Ly = [v+ J(l—e —gu)v(du)]°¢(t).

Proof. Let o, be the first time that Y hits or approaches the state a.
-B(0,w

JPx(dw)e (0.0)

JQ)((dU') J’P(dw) e"‘B(O,GH'(J .)

[o(a0r)e™B(O0, (1)

-q

Ee )

IPx(dw) Jé_tdw(t,m)
o 00
- JPx(dm) Ie-t 1[B(0.w) o[ (t)40(t.0)
0

= JQx(d(d') IP(dw) Je_t l[B(O,(.H-(.)'),m[(C) d\P(t.(;H-w') = (*).
0

Note that B(O,w+w')

B(0,0') for P almost every w, and

B(7,w')

B(0.0') for Q  almost every w'.

So ¢(t,wtw') = inf {7: B(T,wtw’') > t}



inf {7: B(7T.v) + B(0,0') > t}

¢(t-B(0,w'),w) for t > B(O,w').

Substitution in (%) yields:

(9

Jéx(dw') JP(dw) Je_t I[B(O,w'),m[(t) de(t-B(0.,0').w)
o}

JQx(dw') e‘B(O-“')~JP(dw) Jé'tdw(c.m). (2)
0

IP(dw) Te‘td¢(t.w) T&t IP(dm) e B(t.0)
0 0

1
= < . (3)
r+f(1~e “")v(du)

Substitution of (2) and (3) in (1) yields

_.aa

Ege 2) =[x+ I(l-e_gu)v(du)] be(dw) Je_td¢(t,m).
0

Since the It6-Poisson point process of excursions from a can be
reconstructed from Y, it follows that ¢(t) is measurable with respect
to the o-algebra a(Yt:tzo) generated by the process Y. An application
of Galmarino’'s test, see Dellacherie & Meyer [7] p. 149, yields that
the process (w(t))t>0 is adapted to the filtration of the process Y.

Finally, it follows from lemma (2.3.5) that the functional {(¢(t)).yq is

additive, which completes the proof of the theorem. O

We end this section by a short description of the process Yb, which is
the process Y, constructed as above from the family of point processes
(P}, with killing on state a at a rate § proportional to the local
time. This is also an example of the construction of a stochastic
process from a more general point process than an Itdo-Poisson point
process. Let for s > O the point process P® be defined as the image of
P under the mapping w € Ht - l[O.s]wa € A*. It is clear that PS is a

Poisson point process on X with intensity measure 1[0 s]k®v where v is
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the characteristic measure of P. Let for 6>0 the point process s? be

the Cox process on X defined by

o0
sd - Jae'5spsds.

0
and let for x € E the family of point processes Sg be defined by

Qx %* S6 for x # a
6 _
Sx

= »

sd for x = a
where the point process Q. is defined as in the beginning of this

section. Let the map k : At - [0.,»] be defined by
k(w) = inf {7 : w([7.*[xU) = O}
and define

fw(dadu)l[o'T](a)(u + a7 for T < ¢(w)
B(r,0) =
B(e(w).w) for T > ¢(w)
where v is a positive constant.

The process Y0 is now constructed from the family of point processes
(Sg) in the following way. Until time B(®,w) the construction is the
same as for the process Y associated with the family of point processes
(P,). At time B(»,w) the process Y% is killed. It can be shown that YO
has the simple Markov property.

We will only give an expression for the resolvent of the process Y5,

Let (V{)%>O be the resolvent of the process YO,

o«
v £(x) = E, Ie_xtf(Yg)dt. x €E, f € be.
0

2.3.11 Theorem. Let A > O and f € b&. Then

VOE(x) = Guf(x) + 2, (x) VOf(a) where

s ™ (£)+£(a)
Vif(a)

5+ A + A (1)

Proof. We only calculate ng(a). The rest of the proof is analogous to
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the proof of theorem (2.3.8). Suppose first that f(a)=0.

o«

ng(a) = Jéa(dm) w(dadu)Jé‘kt(fou-l[o,gu[)(t—B(a—,w))dt
0

Jas se~0s JP(dw)J@(dadu)l[o s](a)Jéc e_xt(fOu-l[O ¢.[)(t-B(o-.0))
. Ly
0 0

}ds 5e_észdajv(du)JP(dw)£dt e_xt(f0u€1[0'§u[)(t-B(o—.w))
0

~ ¢
- jdaju(du)jb(dw)e'5°‘AB(°“-w)dec e Me(u(t))
0 0

1

-A
=Y. J&c e tJ},(du)f(u(c)n[gu)t]
5+ M + [(1-e W)u(dw) O

ME)
5+ M + x%x(l) -

Further

B(»,w)
Vi(a) = Jéa(dw) J dt e Mt

0
B(s,w)
= Jas 5 e 0s IP(dw) j dt eMt
o 0
©

—s(Aﬁ+Rﬁx(1))]

1
—fas s es 1 -
A

0

T+ (1)

&+ M + Ay (1)
So for f € bé

[Ve(£-f(a)-1)1(a) + £(a)V31(a)

Vo (a)

mE-£(a)* 1)+ (14 (1)) £ (2)
) 5+ M + M (1) '
m(E) + f(a)

= .o
& + M+ M (1)




CHAPTER 3

APPLICATIONS

In chapter 2 we saw how to construct for a Ray process Y the
Itd6-Poisson point process of excursions from a recurrent state a, which
is not a holding point and for which P [7, =0]=1 where 7, is the infimum
of the times t > O at which Y hits or approaches the state a. In the
first section of this chapter we will show how one can get an explicit
formula for the characteristic measure of the Ité-Poisson point process
of excursions from zero for standard Brownian motion wusing the
elementary calculations of the distribution of Brownian excursions in
Chung [6]. By means of adjunction of a Radon-Nikodym factor we get from
this result an explicit formula for the characteristic measure of the
Ito-Poisson point process of excursions from zero for Brownian motion
with constant drift. This will be done in section (3.2).

A well-known problem which can be treated with excursion theory is to
describe all strong Markov processes which behave like a given strong
Markov process outside a given state a (or more generally outside some
subset of states D). We will consider the problem to describe all Ray
processes on [0, which behave like Brownian motion outside zero. This
problem was first treated by Feller [11] using theory of differential

equations. Feller's solution was that the infinitesimal generator of
a2

such a process is the differential operator ¢ = > ——5 on Cy([0,=[) with

domain D defined by

D=C([0.*[) N {u : pju(0) - pou'(0) + p3u"(0) = [ py(dx)[u(x)-u(0)]}

where P1. P9 and p3 are nonnegative real numbers and py @ o-finite

measure on ]O,®[ such that



3.1

Py +pg tP3g t j§4(dx)(1—e_x) = 1.

Itd and McKean constructed in-[26] the sample paths of these processes,
which they called Feller’'s Brownian motions, from the reflecting
Brownian motion and its local time and (independent) exponential
holding times and differential processes. Rogers derived in [45]
Feller's result using resolvent identities. We will give in section
(3.3) an interpretation of the parameters p;, py, p3 and the measure py
by means of excursion theory. In the following section we will use
these results to construct a model for random motion on an n-pod E.
that is a tree with one single vertex O and with n legs having infinite
length. This problem comes from a problem which arises in considering
the movement of nutrients in the root system of a plant and also has
possible application to the spread of pollutants in a stream system and
to the analysis and design of circulatory systems, see Frank and Durham
[12]. We will construct all strong Markov processes which behave like
standard Brownian motion restricted to a half line, when restricted to
a single leg.

In the last section we will construct a Markov process on [0,%[ of the
following description: starting at a point x € ]JO,®[ it evolves like a
given strong Markov process until reaching O where it waits a length of
time having an exponential distribution with parameter a after which
time it jumps independently to a new position in ]O,®[ according to a

given probability measure 1 and then proceeds as before.

The Itd-Poisson point process attached to Brownian motion.

In this section we will apply the results of section (2.2) to Brownian
motion. In particular, we will derive an explicit formula for the
characteristic measure v of the It6-Poisson point process of excursions

from zero. The ‘derivation is based on theorem (2.2.3) and on the
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elementary calculations of the distribution of Brownian excursions in
Chung [6].

Let B = (Bt)tzo be a standard one-dimensional Brownian motion on a
probability space (Q2,%.P;). Let r>0 and let V; be the first excursion
of B from zero with length greater than r. Following Chung [6], we

introduce the notations:

B(r) = inf {t>r : B, = 0},

7(r) = sup {t<r : B, = O},
B(r) - x(r).

So Jx(r}. B(r)[ is the excursion interval containing r. As P [B =0] = O

L(r)

and B has continuous realizations, L{(r) > 0 (P,-a.s.). Denote as in

section (2.2), the first excursion interval of length > r by ]D,,T{[.

Forn 21, 0< ¢ty < .... <t and x1.....%, €R, (or x{,....,x, €R))
P [Vi(t;) € dx;. i=1,....n]
= P [Vi(t;) € dxg, i=1.....n, L(r) < 1]

+ P[Vy(t;) € dx;. i=1....,n, L(r) > r]

I+ II. ()
It is clear that

[L(r) < r] =[D; 2 B(r)] and that

Dy = B(r) + DyoBp(,y on D 2 B(r)].
It follows that

I

PolV1(£5)00p(py € dxy. i=1,....n, B(r) - 7(r) < 1]
P[B(r) - ~(r) < r]-P[V{(t;) € dx;, i=1,....n] (2)

by an application of the strong Markov property on stopping time B(r).
It is also clear that [L(r) > r] = [ty = B(r). Dy = ~(r)]. It follows
that

II = P[B € dxg, i=1,...,m, L(r) > max (t,.7)] (3)

v(r)+ty
Substitution of (2) and (3) in (1) yields

P [V,(t;) € dx;, i=1,....n]




92

P [B(v(r)+ty) € dx;.i=1.....n, L(r) > max (t,.r)]
= : - (9)
P, [L(r) > r]
A simple calculation using Chung [6], formula (2.20) results in
2
P[L(r) >r] == (5)

and the same reasoning as in Chung [6], theorem 6 yields for
1 > max (t,.r)
P [+(r) € ds, B(v(r) + t;) € dxy, i=1,....n, L(r) € dl]
= p(s:0,0)g(ty:0.x1)q(ta-t1ix7.%X5) . -
q(tn—tn_l;xn_l,xn)g(l—tn;O.xn)dsdxl...dxndl

where

1 2
p(t:x,y) = exp [~ 50 (x-¥)“]1.

1 % |yl 1 5
o) <[ = P e - L2,
g( ) p— o oxP 1 50 ]

a(tix,y) = p(tix.y) - p(t:x.-y).
The probabilistic interpretations of p,g and q are given by
P [B(t) € dy] = p(t:x,y)dy .
Po[oy € dt] = g(t;0,y)dt,
P [B(t) € dy, g, > t] = q(t:x,y)dy.
for t > 0 and x*y > O.
Hence for th >r

P [B(v(r) + t;) € dx;, i=1,....n, L(1) > t.]

2r %
= [ —;1 ] g(tl;0,x1)q(t2—t1;x1,x2)..q(tn—tn_l;xn_l,xn)dxl..dxn.

(6)
Substitution of (5) and (6) in (4) gives for t > r

P [Vi(t;) € dx;. i=1.....n]

4
= [ 5— ] g(tl;0.x1)q(t2—t1;x1,x2)...q(tn—tn_l:xn_l,xn)éxl...dxn.
This formula enables us to calculate some important quantities.

P[T, < ] = Jéo[vl(r) € dx]

2 (2wr)% jg(r;o,x)dx =1
o]
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and
P [T, - D >r+s]=[L]%.
o-'1 1 r+s
Let (ry)y>1 be a strictly decreasing sequence of positive real numbers,
such that iig r, = 0. Let (Uk’vk)k21 be defined as in the proof of
theorem (2.2.3), i.e. Vi is the sequence of excursions from O of length

greater than rp and Uy is the set of functions u € U = D[O oo[(IR) for

which fu > ry- Then

Tx %
14 = lim P_(Vpq € U;) = 11 [ ] -0,
iim P = Ui FolViy € U1) = Jin rtTy

so there exists an Ité-Poisson point process N on U whose [{ > 1]~
subsequence is the sequence of excursions of B of length greater than
L. The characteristic measure v of N is given by

vfu(ty) € dxg, i=1,...,n]
nr 1
=[ vy ] g(t:0.x)q(to-tyix . xg) . - .qt —t, qix_1.%)dxg. . .dx
where 0 < ty < ... XL ty and Xpo---aXp > 0 (or xl....,x£ < 0). Taking
8 .
ry = — we get the same normalization of v as in Ikeda & Watanabe [22],
T
2
p. 124. With our notations it is more convenient to take r; = — .
L

The Ito—Poisson point process . attached to Brownian motion with constant

drift.

With the results of section (3.1) for standard Brownian motion, it is
not very difficult to write down a formula for the characteristic
measure of the Itd-Poisson point process of excursions from zero of
Brownian motion with constant drift. The passage from Brownian motion
densities to densities of Brownian motion with drift is done by
adjunction of a Radon-Nikodym factor. see for instance. Imhof &
Kummerling [23], section 5. Let Y = (Y¢)¢yp be Brownian motion with

constant drift &, i.e.
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Y(t) = 6t + B(t), t > O.

A straightforward calculation yields

P [Y(t;) € dyi.i=1.....n]
1
= exp[6(y,~x) - > 62tn] P [B(t;)€ dy;.i=1.....n]
for O ty ¢ ... ¢ t, and Yi+--+2» ¥n € R.

It follows that the Radon-Nikodym derivatives p(t;x,y). g(t;0,y} and
q(t:x,y) of the measures P [Y(t) € dy], Po[ay € dt] and

Px[Y(t) € dy, g, > 0] with respect to the Lebesgue measure are given by

Btix.y) = exp [6(yx) - = 6261 p(eix.y),

g(t:0.y) = exp [dy - % 82t] g(t:0.y).

§tix.) = oxp [8(y0)- = 8%] a(eix.y).
for t > 0 and x*y > O.
Let Jv(r). l_i(r)[ be the excursion interval of Y containing r with
length i.:(r) = L_S'(r) - 7(r) and let ]l_)l, '?1[ resp. ‘_ll be the first
excursion interval resp.--the first excursion of the process Y with

length greater than r, then a simple calculation yields

P[Y(3(r) + t;) € dy;. i=l.....n, L(r) > t]

r
[ o=" exp (= = 82)a)E(eg50.9)
= —_— € - - S )as t,:;0, .
2rs P 2 gt N1
n-1
{_Hl Aty 17tyiiyi.Yieq)tdyy- - dyy
1=
for 0 < ty <...< t i ¥yy.ea ¥y 2 0 (or Yi{+---2¥y < 0)and t, > r.

It follows that

Le )

[% ]% exp (- % 6%s)ds) Jé(r:o,x)dx

P,[L(r) > r] = ( —

oY —

—00

and

P,[V;(t;) € dy;. i=l.....n]
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1 - _
= }—:2——:;-;;; g(t1:0.y)a(to-tyiyy.¥9). .-
g(r:0.x

a(tyty-1:¥p-1-Yn) 4y --- dyy.
So
P [T, < ®] =1
and
- ' [ g(r+s;0,x)dx
J &(r:0,x)dx
Since
+00
i} 1 1% 1,
J &(ri0max <[ = Jexp(- = &%) Ey([B(1)| exp [8B(1)¥])
-—00 r
we get
[ g(r+s;0,x)dx
lim —————

rlo [ g(r:0.x)dx

E, |B(1)| exp[8B(1)(r+s)%]
= 0.

r % 1 o
= lim [—] exp(—EG r)

rlo = T*s E, IB(1) exp[6B(1)r¥%]

So in the same way as for standard Brownian motion it follows that
there exists an Ité-Poisson point process N on U whose [{ > l]
subsequence is the sequence of excursions of Y of length greater than

l. An appropriate choice for r; yields the following formula for the

characteristic measure v of N:
bfu(t;) € dy;. i=1,...,n]
= g(t1:0.y)a(to-tyiyq.¥9) - - a(t —t, 1:y_1.¥,)dyy- - -dyy

where 0 < t; < ... <t and yy.....y, > 0 (or Yiee--a¥p € 0).

Feller’s Brownian motions.

Let B = (Bt)tSO be a standard one-dimensional Brownian motion on a
probability space (Q,%,P;). The process Y = (Y.} 5o defined by Yt=lBt|

is called reflecting Brownian motion. Let r > O be given and let
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Vy(resp. VB) be the first excursion from zero of the process Y (resp.
B) with length greater than r. Then, for n 2 1, 0 < t; < ... < t, and
Xps-e0 Xy € R+. we have

P [VV(t;) € dx;, i=1.....n]

PVB(t;) € ax;. i=1.....n] + Po[-VB(t5) € dx;. i=l1.....n]

1
2[ I% ]Ag(tl;O'xl)q(t2_t1;xl‘x2)"q(tn_tn—l;xn—l'xn)dxl"dxn
since g(t;0,x)=g(t;0,—x) and qt;x,y)=q(t;—x.-y). (See (3.1) for the
definitions of g(t;0,x) and q(t;x,y).) It is now clear that the
characteristic measure v of thg Itd6-Poisson point process of excursions

from zero of reflecting Brownian motion is given by

vlu(t;) € dx;, i=1,...,n]
= g(t1:0.x1)a(to=ty X1 Xg) . - .a( b~ _1ixp_q.x)dxg .. .dx,
where 0 < t < ... X< t, and Kiseo Xy € R,. The characteristic measure

of the Itd6-Poisson point process of excursions from zero of Brownian
and reflecting Brownian motion correspond to the same semigroup (Kt)tzo
which is defined by

K (x.dy) = q(t;x,y)dy.
The entrance laws (ng).yo are given by

g(s;0,y)dy for Brownian motion

ng(dy)

and

ng(dy) l]o_w[(y)g(s;o,y)dy for reflecting Brownian motion.

It is easy to see that all strong Markov processes Y, which behave like
Brownian motion until the first hitting Tz of 0, i.e.
PlY; € dyy. i=l.....n, 5 t] = P B € dyj. i=l.....n, 7>t]
(ogc1<...<tngt).
have characteristic measures (for the Itd6-Poisson point process of
excursions from zero), which correspond to the semigroup (Kt)' It is
clear from the construction of these processes from Ité-Poisson point

processes that the converse also holds. A problem extensively studied

in the literature is to describe all the Ray processes on [0,®[, which
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behave like Brownian motion until the first hitting or approach of 0,
see among others Feller [11], Ité6-McKean [26] and Rogers [45]. It
follows from an application of the strong Markov property that the

resolvent (VA)A>0 of such a process satisfies the following formula

Va£(x) = GyE(x) + € XY2A Vi£(0) | £ € C ([0.9[). x 2 O,
where
Gf(x) = J'e'7\t K f(x)dt
0

TO
E, j e Mg (B, )dt.
0

Rogers [45] gives the following characterization of V,f(0): there exist
non-negative constants P1.P9.P3 and a non-negative measure p4 on 10, [
such that

[ pataa-e™) <=
10,9

and such that

2py J'e-Xﬁf(x)dx + paf(0) + J p4(dx)Gyf (x)
JO,

PL+ PV + Apy + | pa(dn)(1-eXN)
J0.0

Actually we should have considered these processes on the one-point

vy £(0) =

compactification [0,®] of [0,o[, the point ® playing the role of a
cemetery, where the process is sent to when killed. We have left this
out to avoid annoying technicalities. Rogers derived this formula from
the resolvent equation for the process Y and he remarks that the
constants pj, Pog and P3 and the measure P4 have mnatural inter-
pretations in excursion theory. Indeed, let for s > O and n 2 O the
measure e, on [0,®[ be defined by
eys(dy) = q(s:x.y)dy for x > 0

and

€os(dy) = g(s:0.y)dy.
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The families (eyg)gyg. X 2 O, of finite measures on [0,®[ are entrance
laws for the semigroup (K ). According to theorem (2.2.4), the
semigroup (K.) and the entrance law (egs)s>o determine a unique
o-finite measure v, on the excursion space (U,.%,) satisfying property
(i), (ii) and (iii) of theorem (2.2.3) such that

exs(dy) = v ([T, > s. u(s) € dy]).
It is clear that v, is the characteristic measure of the It6-Poisson
point process of excursions from zero of standard Brownian motion, see
section (3.1) and for x > O the measure v, is identical to the
distribution a, on (Ug,%,) of standard Brownian motion started from x,
which is absorbed in state 0. Let p be a nonnegative measure on [0,®[
such that p{[x.®[) < ® for every x > 0. Define the measure v on (U,,%,)
by

v = I p(dx)v,.

[0.[
Then the family (ng)gyo defined by

v([y > s, u(s) € dy])

[ plae,g(an)
[o.of

is an entrance law for the semigroup (Kt)' For A>0 and bounded,

ng(dy)

measurable functions f on [0,®][ we have

) = fase™ [n (ay)e(y)
0

p(10) [ e(y)ay + [ plax)eE(x).
o] ]0.ef
It follows that

Jaa-e ucan) = 5;)
U

1 -
= 500N + [ plag-e™),
10,9

Let P be the Itd-Poisson process on [0, with characteristic measure
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-C
v. As in section (2.3) we assume the finiteness of I(l—e Yo (du)
U
to guarantee that the sum A(7) of the lengths of the excursions up to

time T is finite. This condition is equivalent to the following
condition on the measure p

[ p@0-e2) o

JO. o[

Let v 2 O and define as in section (2.3)
B(T.0) = o (w) + A(T.0) + T
Finally, let 6 2 O be the killing-rate in local time at state 0. If

(Vadayg is the resolvent of the strong Markov process attached to P

then by theorem (2.3.11) we have

[ Ghf(x) + V2 v, £(0) for x #£ 0
p((0}) [ £(y)ay + [ p(ax)GuE(x)+vE(0)
(¢} ]0,[
for x = 0.

5+ Av + %p({onvﬁx s e
10.5

It follows that p; is the killing-rate in local time at state O. The
constant p3 corresponds to v, which is a measure for the stickiness at
state O as will be explained in section (4.2). Further, it is easy to

see that v, is concentrated on the set of excursions {u€U,:u(0)=x}. so

X
pq(dx) is the rate in local time at zero by which there appear
excursions from zero starting at x. The constant 2py is the rate in

local time at zero by which the process exits zero continuously.

Brownian motion on_an n-pod.

In this example we will construct Markov processes on an n-pod En' As a

set E  is defined by

E, = J0.®[ x {1,....n} U {0}.
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Let 4 : En x E, = R be defined by
xty for 1 # j

A L(x.1). (v.9)]

4500.(x.1)]
dn[0,0] = 0.

The function d, is a metric on E  and the topological space (En'dn) is

|x-y| for i = j
X,

a locally compact, second countable Hausdorff space. The topological
space E, is called an n-pod. Denote by &, the Borel o-algebra on E, and
by Ap. k=1,...,n, the subset

Ay ={e €E : e=0o0re=(x.k) for some x > 0}

of E . The subset A, is called the kP axis of E,- It is clear that Eg
is homeomorphic to the real line R and that Ai is homeomorphic to
[0,#[. We want to consider strong Markov processes Y on E_, which
behave like Brownian motion until the first hitting or approach 9, of

state 0, i.e.

Q(t:X.y)Ri(dy) for j=i
Pix.1)([Y¢ € (v.y+dy)x{j}. o5 > t]) =
. 0 for j#i
where A; is the image-of the Lebesgue measure on [0,*[ under the map

9y ¢ [0,o[ - Ai defined by

(x.i) for x > O

¢i(x) = .
0 for x =0
and where q(t:x,y) is defined as in section (3.1).

Define for t > O the kernel P? on (E .§,) by

PR(e.F)= [15((y.1))a(tix.y )N (dy)+1p(0) (1= [a(ti.y )N (dy))} if e=(x.1)

0 0
and PP(0.F)= 15(0). ‘
The family of kernels (P?)tzo, where PJ is the identity kernel on
(E,.&,). is a Markov semigroup of kernels on (E,.8,) which can be shown
to correspond to a Feller-Dynkin semigroup on Co(En) (see Williams
[59]. p.115 for the definition of a Feller-Dynkin semigroup). Let Qg

e € E;. be the measure on the function space U(n)=DE ([0.®[) (see
n
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appendix A2) whose finite dimensional distributions are given by

a [u(ty) € dey. i=1,....m]
= P? (e.de,)P" e,,des)...p" e ..,de
¢, (e:de))Pe ¢ (e1.deg). P _¢  (epp.dep)
where m)1, ogclg...gtm and e.....e, € E,- The measure a, is

concentrated on the set {u € y(n): u(t)=0 for all t2{ } where (, is
defined by (,=inf{t>0 : u(t)=0 or u(t-)=0}. Denote by (K?)t>0 the
sub-Markov semigroup of kernels on (En.sn) given by

K?(e.dy) = a [u(t)edy, {Ot]
q(t:ix.y)A;(dy) for e=(x,1i)

0 for e=0
Let Y be a strong Markov process on En' which behaves like Brownian

motion until the first hitting or approach of O, and let v be the
characteristic measure of the It6-Poisson point process of excursions
from zero of the process Y. It follows then that the measure v is
determined‘ by an entrance law (ng)gyy for the semigroup (K?) with
n4({0})=0 for every s>0 (same reasoning as for reflecting Brownian

motion, see section (3.3)). We have
w©
n . n
[rgtaenie.an) = 3 [nl@atexyng@y) = 3 1 (Ingye(dy)
i=1 i=1
0

1

where né = ¢;1[1Ai'ns] is the w; -image of the restriction of ng to the

axis Ai‘ It follows that for i=1,....n
[+e]
(Jﬁ;(dX)Q(t:X-Y))dy = ng(dy)-
0

As in section (3.3) there exist measures p(i), i=1,..,n on [0, such

that

[p @) (1-e) < w
0
and
nitay) = [ p()(@x)eyqlay).
[0.of

where e, is defined as in section (3.3). It follows that the resolvent
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(Vadyoo of the strong Markov process Y is given by

V£ (x.1) = J'c)\(x,dy)f(y,i) + e 2Ry £(0)
0
with

V)\f(O) =

> p(gon J Py + 3 [ ) (@) for(ean)i(y. e 0)
i=1 i=1 ]0 oo[ 0

5+ A + —V‘Z\ z p(l)({O}) + z I p(1) (dx) (1-e¥V2Ry
i= i=1 ]0 oo[

where 7 and 6 are nonnegative constants and f € bé .
As a special case take n=2, 6=1=p(1)(]O,w[)=p(2)(]0.m[)=0 anda + >0

where a=p(1)({0}) and B:p(z)({O}). Then we get

VA£(0) =[§] — {af YV f(y.1)dy + ﬁj RAC f(y.2)dy}.

If we map E5 on R via the map w defined by

¥y.1) =y
v(y.2) = -y
\p(O) =0

and if we use again f for the map foy on R, we get after some

straightforward calculation that

Vo £(0) =[ )2—\] — {a J yv‘z_f(y)dy + B j y‘/z—f(—Y)dy}

VAE(x) = jé eV Y| 4 sign(y) ——Ee‘m“’"*'y“]f(y)dy

for all x € R\{0}, in which
-1 for y <O
sgn(y) = 0 for y=0.

1 for y>0
This is the resolvent of so-called skew Brownian motion, see Itdé and

a
McKean [27]., p. 115. The numbers —— and —E— may be interpreted as the
a+f atp
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probabilities for an excursion on the right- resp. left hand side of O,
see Harrison and Shepp [21] and section (4.2).
In [12] Frank and Durham give an intuitive description of symmetric

Brownian motion on a 3-pod, which corresponds to the case 6=v=0 and

1
p(1)=p(2)=p(3)= 5 8,- We end this section by remarking that a similar
construction is possible for processes which behave outside zero like

Brownian motion with constant drift.

A remark by Blumenthal's construction of the Markov process attached to

an Ité6-Poisson point process.

In [2] Blumenthal constructs for a given characteristic measure and
entrance law the extension of the original process whose entrance law
is the given one, claiming that this construction is the one that Ité
was referring to in [25]. Let E be a compact metric space and let a € E
be a fixed point. Let X = (xt)t>0 be a Ray process with space E.
Blumenthal considers the case E = [0,9[, a=0 and X is a standard Markov
process. By a standard construction for Markov processes, X can be
considered as a Ray process on the one-point compactification [O_,°°] of
[0.o[. see Getoor [15]. Denote as in section (2.2) by a, the
distribution on U = Dg([0,®[} of the process X absorbed in a after the
first hitting or approach o, of the point a and by (Kt)tzo the sub-
Markov semigroup of kernels on (E,§) defined by
a, (x.dy)=a [u(t)edy, {, > t].

Blumenthal's construction is based on an approximation with Markov
processes of the following type. Starting at a point x € E\{a} the
process evolves according to the transition probabilities of the
process X until reaching the state a where it waits a length of time
having an exponential distribution with mean a>0 after which time it

jumps independently to a new position in E\{a} according to a given
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probability distribution n and then proceeds as before. The measure 7
is called the jumping in measure and a is called the holding parameter.
For the existence of such a Markov process Blumenthal refers to Meyer
[41]. A standard calculation using the strong Markov property yields

for the resolvent (Uk)k>0 of this process the formula

Le +Jd £(y)
a(a) n§Y)Gy\(y

-\,
Unf(x) = G\f(x) + E (e a) I
Za+ foang (e %)
a
where

©
Gf(x) = [e"\txtf(x)dt and f € be.

0
It is not difficult to construct this process with the methods of

_ section (2.3). Define the family of finite measures (mg ) yg on (E,€) by
(@) = [n(ax)K,(x.dy).
It is clear that the family (ng)gyg 1s an entrance law for the
semigroup (K,) satisfying the property ng({a})=0 for every s>0. Let v
be the o-finite measure on (U,%) corresponding to the entrance law (ng)
and the semigroup (K ). see theorem (2.2.4), and let P be the
It6-Poisson point process on U with characteristic measure v. Let Y be
the Markov process attached to P as in section (2.3), then by theorem

(2.3.8) the resolvent (Vy)y50 of Y is given by
g, MUE) + vE(2)

Vaf(x) = Gyf(x) + E(e ?) ———— ., f € be.
A+ Ay (1)
Since
mf) = Jdt e Mt Jn(dx)ch(x)
0
= [n(ax)cyE )

and, for x#a,

0

AGy1(x) = Ixe‘“xtl(x)dc
0
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o]
_ -At
= JXe Ex(l[oa>t])dt
0
%a
= E, I Ae Atde
0
-0
= B (- 2,
the process Y with v = — is the above described Markov

a

process.

The

strong Markov property for Y follows from the assumptions in Blumenthal

[2] about the resolvent (G,),5g. see theorem (2.3.9).



CHAPTER 4

RANDOM WALK APPROXIMATIONS

In chapter 3 we derived an expression for the characteristic measure v
of the Itdé-Poisson point process P of excursions from zero of
reflecting Brownian motion. Let e, be the sign of excursion u:

e, = —1 or +1 according as u(t) < O or > O for t € 0.0 [. .
The measure v is concentrated on the set of excursions with sign +1.
Consider the product U x {-1,1} of the excursion space U and the set
{-1,1}. Let p be a probability distribution on {-1,1} and let v' be the
image of the product measure v®p under the map (u,e)€ Ux{-1,1} - e-u€U.
Denote by P' the Ité-Poisson point process with characteristic measure
"v'; one should think about P' as the point process derived from P by
changing independently the signs of the excursions with probability
1-a = p({-1}). It turns out that the Markov process attached to P' is
skew Brownian motion X%, see section (3.4). In [21] Harrison and Shepp

gave a random walk approximation of the process X%. They considered a

Markov chain (Sn)n>0 on Z with S0 = 0 and with transition probabilities

given by
1
P[S 41 = Sy+1IS ] = P[S,; = S, -1[S,] = > if S, # 0,
P[S_,; = IS, = 0] = «,
P[S .1 = -lIS, = 0] = 1-a.

Let now X, = (X ,(t)) 5o be the process defined by
-
xn(t) =n A‘S[nt].
Harrison and Shepp proved in [21] among other things the weak

convergence of the sequence {X,, mn 21} to the process X%. They
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conclude their article with a remark that this result can be extended
to a Markov chain with a more general type of behaviour at the origin.
We will consider the following behaviour at the origin:
PlSyep = kIS, = 0] = oy

with {p,, k € Z} a probability distribution on Z.

In the construction of a Markov process from an Itd6-Poisson point
process P we added a linear term vT to the sum of the lengths of the
excursions up to and including time T. Section (4.3) is devoted to a
random walk approximation of the process Y'7 constructed in this way
from the Ité-Poisson point process of excursions from O of standard
Brownian motion, see section (3.1). It will turn out that such an
approximation has to be based on a sequence sn=(snk)k>0’ n=1,2,... of

random walks on Z, with transition probabilities given by:

' 1
P[S_,q = S*1lS,] = P[S 4y = S, -118,] = 5 if S #0,
P[S, 141 = OISy =01 =7 .
1
P[Sp ke1 =+ 1 Isn,k =0] = 9 (1-7,)
1
It will turn out that we have to take Ty = 1 - —_—
1+'7°nA
Approximation by discrete semigroups.
Let S, = (Sy)ken: P=1.2....., be a sequence of Markov chains on Z with

transition matrices P, : Z x Z - [0,1]. Define for n 2 1 the process
X, = (xn(t))tzo with continuous time parameter by

Xp(t) = n—%'sn,[nt]'
The probability distribution of the process Xn is completely determined
by the transition matrix P, and the initial distribution v of the

Markov chain S . We will denote the distribution of the process X, by

P(n), where p is the distribution of Xn(O)i u({k-n_%}) = v({k}), k € Z.

73
. o (n) : (n) | .
If p=6, we will write simply P_ °. The measure Pll is a probability
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measure on the space of cadlag functions on [0,®[, which will be
denoted by D in this chapter. See appendix A2. Let for a finite,
strictly increasing sequence (ti)l(i<k of nonnegative real numbers

k4 be the projection of D on RK:

tl.--tk .
”tl...tk(“) = (u(ty).....u(t)). u €D

n
Then the finite-dimensional distributions of Pﬁ ) are given by

(n)

"tl.. .tk u (A)

= 3 u({mo-n_%}) PEnt11(m°.m1) g PEnti]_[nti_l](mi_l,mi)
m,€Z i=2

where A € %(Rk). and where the summation is over all vectors
(mg. ... .m) € Z¥*1 such that n_%~(m1,....mk) € A. Let C (R} be the
Banach space of (bounded) continuous functions on R which vanish at
infinity, normed by the supnorm and let for n > 1

2, be the space of functions f on the discrete space n%.Z which

vanish at infinity, normed by the supnorm Noun:

el = sup {(1f(x)]| : x € n_%-l}, and

#, be the operator from C (R) to 3 which assigns to f € C (R) its

restriction to n %Z.
The sequence (3. yn)nzl is an approximation of the Banach space C (R).

see Kato [32], p. 512. Define for n2l the operator U, on 3 by

1 n
frruc1 2™ e

jgl Pn(x-n%. i) f(j*n—%), x €nkz, fe Sh-

U f(x)

U, is a bounded linear operator on 2 . Denote by U = (Un(t))tzo the

extension to t € [0,9[ of the discrete semigroup on 3 with time unit

Th = ;-and with generator n(U -I):

Jf d(thin))

nt ¥ L% .
jgz (PP (xen® j)e(jn#), xenFz fes.

[Un () £1(x)

So U, =U (7,). Let T = (T(‘))tzo be a semigroup on C,(R). The sequence

(%,);,»1 is an approximation of the semigroup T if for every t € [0,®[
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and for every f € CO(R) it is true that

Lim WU (ko1 ) (P f) - Q‘H[T(to)f]lln =0

n-»
for any sequence {k,} of nonnegative integers such that k -1 - t;. A
necessary and sufficient condition for the sequence (%,);y; to be an
approximation of the semigroup T is given by the theorem of
Trotter-Kato, see Kato [32]}, p.511. With our notations this condition

is that for some A > O

Lim J 1+ Eg‘fnt]‘l U (t)(%,f)de - @n[j e MT(t)f deJu = 0
0 0

for every f € CO(R). Assume that the semigroup T is a Markov semigroup
and that for every probability measure m on R there exists a
(probability) measure P, on D with finite-dimensional distributions
given by

Teg -ty Pn(A)

= Jﬁ(dxo)ITtl(xo,dxl) thz_tl(xl.dx2)...

thk_tk_l(xk_l,dxk) 14(x1. %), OS ty< ... <ty A € B(RK),

where T (x.dy) denotes the unique Markov kernel on (R.%(R)) such that

T(t)f(x) = th(x,dy)f(y). t 20, x €Rand f € Cy(R).
With these notations and assumptions we can prove the following

theorem.

Theorem. Let (Dn)n>1 be a sequence of probability measures with

supp(v,) C n%.Z and let m be a probability measure on R. If (% ),y

is an approximation of T and if v, #m as n», then

k4 P(n) >7 P as n & ®
tl-..tk Dn tl...tkm )
for every finite, strictly increasing sequence (t;)q¢j¢x ©f

nonnegative real numbers.
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Proof. The proof is by induction on the number of elements of the

sequence (ti)lgiSk' Let t 2 0 and f € C (R). Then

ljf drrtPl():) - Jf dr P |

lfun(t)(ynf)dun - fT(:)fdml

1
< IIUn(t)(‘.’Pnf)dun - JUn([nt]';) (#,f)dv, |
1
+ IJUn([nt]-;)(@nf)dun - J’Q‘n[T(t)f]dvnl
N IJ??n[T(t)f]dvn - JT(t)fdm|
<0+ MU ([nc]-0)(8.0) - B [T()ET,
n

+ IJT(t)f dv,, - J’T(t)f dn| 20 as n - o,
the second term since (U,) approximates T, the third term since (v)
converges weakly to m.

Hence

()
Un
which proves the theorem for sequences of length one.

‘WtP > "th as n-e,

Assume that the theorem is correct for sequences of length k. Let

0ty <o <y <ty and let fy.....f 4 € Co([R). Denoting the
k+1 k+1
function (xy....,xp,) € R Lo £i(x3) by 8 f; we get:
i=1 i=1
+1 » (n) k+1
| ? By et o, j @ & d"tl...tktk+lpm|
i=1 i=1
[ntk+l]—[ntk] (n)
= | Jf‘l@...wk_l ®(fk-Un(——n———)9Pnfk+1) dre o Po
- Jf1®...® £l 1 ®CF T(t 1=t ) Freer) dntl___tkpml
(by the simple Markov property)
[ntyy11-Inty]
< llflllw-...-llfkllmdlUn(————:——-) P frr - PalTCt ) fr I,
J1£,0 £ d P(n) P
18 e O T( b i) e o By T e o)

>0 as n oo,
the first term since (U,) approximates T and the second by the

induction hypothesis. O
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Skew Brownian Motion.

In [27] It6 and McKean introduced skew Brownian motion as an example of
a diffusion process. They defined skew Brownian motion X* as follows:
consider standard Brownian motion and alter independently of the
procéss the excursions away from zero, each excursion being positive
with probability a and negative with probability B = l-a; a is a
parameter, a € [0,1]. In [52] Walsh gives an expression for the
transition density q%(t;x,y) of X%:

q%(t:x,y) = p(tix,y) + (a-B) sgn(y) p(t:0. |x[|+]y[).t>0, x.y € R,

where
1 % 1 2
p(eixy) = [ 5= ] ol == 52,
-1 for y <o
sgn(y) = 0 for y=0

1 for y > 0.
It follows by direct calculation that (qa(t:.,.))t>o is a Markov

transition density on R, i.e.
(1)  o*(tix.y) 2 0;
(ii) q%(t:...) is B(R)®%(R) - measurable;
+00
(111) [ a%(tsx.y) dy = 1;

—o0
+00

(iv) J q%*(s:x.y) q%(t;y.z) dy = q%(s+t:x.z).

Let T (t), t > O, be the integral operator with kernel q*(t:...) on the
Banach space B of bounded, Borel measurable functions f on R, normed by

the supnorm:
400
(T () = [ £(y)a(tix.y)dy. x € R.

With T (0) the identity operator on B, the family T, =(Tﬁ(t))t20 is a

Markov semigroup on B. Remember that a one-parameter family (Pt)t>0 of
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bounded linear operators on B is called a Markov semigroup on B if

(1) Vt 20, VF€B, 0<f<1 3 0LKPf <1
(ii) Vvt 20, Pl =1

(iii) Vs 2 0, Vt > 0, Py, = PP ;

(iv) Vt 20, V(f )5 CB: £ lo=>Pf 1O (pointwise).

A Markov semigroup (Pt)tzo on B is called a Feller-Dynkin semigroup on
CO(R) if we have in addition that

(v) vt 2 0, Py @ C (R) - C, (R):

(vi) Vf e co(m), %18 WP f-fllg, = O.
So a Feller-Dynkin semigroup is a strongly continuous Markov semigroup
of linear operators on C (R). See Williams [59] for further

information.
Proposition. The semigroup T, is a Feller-Dynkin semigroup on CO(R).

Proof. We only need to prove that T, (t) is an operator on C, (R) and

that Ta is strongly continuous. For f € co(m) and x € R we have

T, (t)f(x)
400 ) 400
= [ p(exey)Eay + (@B)tfpce:0. Ixl)Eday - [ p(t:0. xl-y)E(r)ay)
-0 ’ 0 —00
+o © - Ix|
=Jb(t:O-Y)f(X+Y)dy+(a-ﬁ){ J p(t:0.y)f(y-|x|)dy- J p(t:0.y)f(y+|x|)dy}.
- [x] -

Since the integrands are all bounded by the integrable function
Nfllep(t;0,.), we may take limits for the variable x under the integral
sign and from this it can easily be seen that T, (t)f € C (R).

To prove the strong continuity of the semigroup, we first note that for
f € C,(R) and x € R

T (t)f(x) - f(x)

+0

40
= J p(t:x.y)[f(y)-f(x)]dy + (a-B)J sen(y)p(t:0. [x[+|y D[f(y)-f(x)1dy
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+00

©0
= [ p(e:0.)[EGety)-£(x) 1y + (@-B) [p(e:0. [x[+y)[£(y)~£(~y)1ay.
—o 0

As f € C (R), f is uniformly continuous. Choose €>0. There exists a 6>0

such that |y-y'| < 26 3 |£(y)-f(y')|< e. Then:

ITa()E(x) - £(x)]

6 ® 5
<e Jp(t;O.y)dy + 4lflg, Jp(t;O.y)dy + lapBle Jp(t;O, |x |+y)dy
-5 & . 0
0
+ 2|a-B Wflg J’p(t;O, [x|+y)dy
8
oo
< (etl|a-Ble) + (4lifly, + 2[a-B|UfN,) J p(1;0,y)dy.
%
5ot

It follows that 118 NT (t)f-fll, < 3¢ for every e>0 which implies the
t

strong continuity of T,.O

From proposition (4.2.1) follows the existence of a strong Markov
process with transition density q”(t;x,y) and with right continuous
paths. In fact with probability 1 this Markov process has continuous

paths as follows from:

I J q®(t:x,y)dy]|

R-]x~e ,x+e[

X-€ © ]
< 2( I + J Jp(t;x,y)dy = 4 I p(1;0,y)dy = o(t) as t |l 0.
- X+e et

See Dynkin [8], chapter three, theorem (3.5). So q*(t;x,y) is the |
transition density of a diffusion process. In the next two propositions
we give expressions for the resolvent R% and the infinitesimal
generator G, of the semi-group T,.

4.2.2 Proposition. Let A > 0, f € C (R) and x € R. Then
©
REF(x) = Je‘“Ta(c)f(x)dc
0
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+00

- [ 1Tl s sy aep) U D ey

Proof. The result follows immediately from the formula:

o0
1
-At -Vﬁilx—yl
t;xX,y)dt = —— e u]
g P( ¥) 5N

4.2.3 Proposition. Let G, be the infinitesimal generator of the semigroup Ta‘
Then
D(Gy) = {(heC(R) : h(2) exists on R\{0}: ah’(0+) = Bh’(0-):
n(2)(0+) = n(2)(0-): h(2) continuous on R\{0}:
1im h(®)(x)=0}

Ix |-
é~h(2)(x) for x #0,
(Geh) (x) = h € 9(G,) .
% h(2)(0+) for x =0

Proof. Let h € %(G,). Since 2(G,) = R%(CO(R)), there exists an
f € C,(R) such that h = Rxf € C,(R).

It follows that

X (o]
h(x) = % e XV2A J Vs (y)dy + % V2R J e (y)ay
X

+00

+ E o IxIVX L (a-B)sen(y) e 1V V2e(yyay.

By direct calculation we find:
h(2)  exists on R\{0):
ah'(0+) = Bh'(0-);
n(2)(0+) = n(2(0-):
h(2)(x) = 2an(x) -2f(x) for x # O;

n(2) s continuous on R\{0O} and  1im h(2)(x) = 0.
1x]5 @
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From ()\—Ga)R%f = f we conclude that
1
= —n(2
Gah(x) = 5 h(2)(x) for x # 0.

Further:

1
Goh(0) = 1im — [Ty (£)n(0)-h(0)]

[+ 4]

2B 2a
Lim ([ = p(t:0.9)[h(x)-h(0) 1y + [ = p(£:0.y)[h(y)-h(0)1dy} -
ti0 t 0 t

Now we use a Taylor expansion for h:

h(y)

h(0) + yh'(0+) + %Y2h(2)(0+) + e(y)y2 for y > 0O

h(y)

where e(y) 2= 0 as y = 0.

h(0) + yh'(0-) + %_yzh(z)(o-) + e(y)y? for y < O

Using ah'(0+) = ph’'(0-) and h(2)(0—-) = h(2)(0+) we get:

+00 ©

1 1
Lin (260" (0-)] = p(£:0.9)y dy + (asp)n(2(04) [ ¥2 p(ri0.1)dy
ti0 _oot o t

o

2a
p(t:0.¥)e(y)y2dy + f — p(t;0,y)e(y)y2dy}
0

G,h(0)

+
— O
|8

t

b

1
= w2 o+
> (0+)
since e(y) is bounded by Ilh(2)llm and tends to O for y - O.
It follows that the operator C defined by
_ . 2 . . ! _ " (0-):
9(C) = {h € C,(R) : h(2) exists on B\{0}; ah'(0+) = Bh’ (0-):
h(2)(0+) = n(2)(0-): n(2) continuous on R\{0}:

1im  h(2)(x)=0}
Jx [
%h(z)(x) for x # O
Cf(x) = { ‘ h € 9(C),

% h(2)(0+) for x = 0

is an extension of G,. Let h € 2(C) and let Ch = h. By direct
calculation it follows that h(x) = 0. From the corollary to theorem 1.1

in Dynkin [8] chapter one we conclude that C = G,.O

In what follows, we will use without further mentioning the notations
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and definitions of section (4.1). In [21] Harrison & Shepp gave a
random walk approximation of the process X%, Let Sn be the Markov chain

on Z starting in O with transition matrix Pn=P not depending on n

defined by
1
P(m,m-1) = P(m,m+1) = 5- for m # O
P(0,k) = Py for k € Z

where {pk : k € Z} is a probability distribution on Z. Harrison & Shepp
proved in [21] that for the case

pp=a p;=B., atf =1,
the sequence of probability measures (P(()n)) on D converges weakly to
the distribution P‘; of the Fel.ler-Dynkin process starting in O with
transition semigroup T,. They conclude their article by remarking that
this result can be proven for more general probability distributions

{py * k € Z}. With these notations and definitions we will prove the

following theorem.

Theorem. Let (v, ). y; be a sequence of probability measures on R with
supp(v,) C n 4.z converging weakly to a probability measure m on R.

If 0 < 3lk|p, < =, then for every k > 1 and 0 < t; < ...< t, the

(n)
finite dimensional distributions ':rtl t P, converge weakly to
n
the finite dimensional distribution 7 t P": as n &> ®,
1tk
skt
where in a = and P‘r: is the distribution of the Feller-Dynkin

process with initial distribution m and with transition semigroup Ta'

Proof. Once we have proved that the sequence (qln)nzl is an
approximation of the semigroup Ta for a i)robability distribution
{pk : k € Z} satisfying the inequality O < Elklpk { @, statement (i)

follows directly from theorem (4.1.1). D

So the proof of theorem (4.2.4) is complete once we have proved that
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the sequence (mn)nZI approximates Ta' The rest of this section is

devoted to this proof which is split up in a series of lemmas.

4.2.5 Approximation lemma. If O < EIklpk< @, then the sequence (), is an
approximation of the semigroup T,, i.e. for each t € [0.@) and for

each f € C (R) it is true that
1
Lim W0, (k=) (Fpf) = F[Ty(tg) My, = O

1
for any sequence {kn} of nonnegative integers such that k,*— > t, as
n

n - o,

To prove the approximation lemma we use the theorem of Trotter-Kato
which says that the sequence (mn) is an approximation of Ta if for some

A > O the next statement holds:

P A ~[nt]-1 P
Lin 1 £ (1+3) [ne] UL (£)(F,6)de - & _( Je—AtTa(t)f ae)ll, =0
0

for every f € C (R).

From now on A > O is fixed. We introduce the following notation

[++]
If = Jé‘*tTa(t)f dt for £ € C (R)
0
[+<]
A ~[nt]-1
If = J(1+ 5 U (t)f dt for f € 3.
0

Our first step consists of calculating I f.

4.2.6 Lemma. Let A > 0, f € 3_and x € n % Z then

1 L )
(I £)(x) = — (x-n%, §)£(jn7%)

G
A+tn j€Z -1
1+ —
(n)

where

Gy(1.3) = k§0 (uP)k(i.j), i.j €z.
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Proof . J(1+ g)'[nt]_lUn(t)f(x)dt
0

J(“ l)-[nt]'l( 3 PInt)(xen®, j)£(3on7#%))de
o n i€z

=3 pun (s Dl s prpenh, 5)p(gen)ae
n

k=0 "[-.— [ j€z
n n
® 1 A
=3 3 — 1+ )7k pkeen® 5)r(5on7%)
k=0 jez n
1

=— 3 G 5 _ (xnhpiganHo
AN ez (14 o)7L
n

For the calculation of the potential matrix Gu we proceed in the
following way. Let Z = (Z,, n€lN) be the Markov chain starting in x € Z
with transition matrix uP, O < u < 1. (see page 117 for the definition
of P). For y € Z we define Ny as the total number of visits of the

process Z to the state y:

0

N, =3 1 o Z,-
k
Y o {r}
Then we have

E(Ny) =3 B (7 = y]
k=0

[+
=3 (uP)¥ (x.y) = Gy(x.y)-
k=0
An application of the strong Markov property gives:

PIN, 2 k] = Plo, < ®] (P[0} < w])k-1

where o, =inf {n >0 : Z =y}

y

1 _ . =
ay_inf{nZI-Zn—Y}
inf @ = +o,

We conclude that

Gy(x.¥) = Ey[N,]

= 3 PB[NK]
k>1
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Px[ay < «]

l—Py[a; <ol
Put h(x.y) = Px[ay (=], x,y € Z.
The function h has the following properties:
(i) h(x.y) = % u h(x-1,y) + é-u h(x+1l,y), x.y € Z, x # 0,y
("Markov property");
(ii) h(y.y)
(iii) h(0.y)

1;

3 upph(k.y). ¥y # 0;
kezZ
(iv) O < h(x,y) < 1.

Fix y. Consider first the case y < O.

Equation (i) is a difference equation with characteristic equation

1 1
—u 22 -z +—u=0.
2 2

1
The solutions of this equation are § and E_l where £ = —<(1- (l—uz)%).
u

It follows that 0 < § < 1 and that h must be of the following form:
Ayfx + Byg‘x for x { y
h(x.,y) = Dyfx + cyg‘x for y { x €O,
X -X
Eyf + Fyf for x 2 0
where Ay,....Fy are constants, only depending on y and satisfying the
relations
A -y
Ayf + Byf
Cy + Dy = Ey + Fy.
Property (iv) implies that

Ay = Fy =0

and it follows from property (ii) that

-y y
Cy§ + Dy§

-y Y - 1.

Cy EY + Dy & 1

It follows that for y < O
X for x €

A\
<

h(x.y) =

v/
<

x| X
Cyf + Dyf for x 2
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and : cyf'y + DEY = 1.
Analogous calculations yield for y=0
h(x,0) = §|"'

and for y > 0

9]
“n
»
+
¢<CJ
ml
X
-
]
~
x
A
~

vn
i
<
lagd
o
=
»®
v
«

4.2.7 Lemma

eyl glxlelyl
Gu(x.y) = A + Ty A .
§“IYI Zupkflk_Y|-l+A1{y:O}
where: Ty = ,
. 1 - 2upk§|k|
A = (1-u)%;
1
§ = — (1-4).
u

Proof. An application of the Markov property gives for y < O:
1 1 1
Py[ay<w] = E-UPy+1[ay<w] + > uPy_l[oy < ]
1 1
=3 uh(y+1.y)+ Euh(rl.y)
1 -y-1 y+1 !
=3 u(CyE + Dyf ) + 5—u§ <

l(1 A)C E7Y l(1 A)D EY l(1 4)
= + + - + -
2 y 2 y 2
-1 - y
1 ADy§ .
In the same way we get for y = O:
Po[ag o] =3 upk§|k]
and for y > O
1 -1 - -y
P&[ay (o] =1 ADy§
Substitution of the expressions we have found for Px[ay < ©] (=h(x.y))

and P&[ai < @] in the formula
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Px[ay(w]
G (x.y) = N
1-P [0y<e]
yields
eyl gkl ¢
Gy(x.y) = 1 +y 3 . where Ty = —y— .

Substitution in property (iii) of the function h gives us an expression
for Ty- We take again the case y < O:
h(0,y) = Cy + Dy

h(0.y)

Zpupph(k.y) (condition (iii))
=3¢ up, £V K + 3oy upk[Cyflkl + Dyfk]
-y v _
Cyf + Dyf = 1.

Hence
1
-k k k
Ty + 1 = 5— 2k$y upy, YK + zk)y up £° + 7 2k>y up, §| |
y
and
EY + §Y -
v + = -
y
Dy
2y-k k
ZugyPiE YT FpupE” - 1
So v, =

y 1 - Zup, Elkl

§"’Y|2 upkflk‘YI_l

1 - 2upk§k

The same kind of calculation for y=0 and y>0 gives the result.O

Combination of lemma (4.2.6) and lemma (4.2.7) gives us the following
formula for I (f):

For f €3 and x € n %z

+00

(D) = [ Ky Gy)Eyp)dy

where

Iy

Yo =
n%

A% xeyp [n® (Ix|+ ]y, [n*
_] (5 " o 'A] n " )’

k(xy) = [2ar N yon
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>

A A 2N
g =1+—--[(2+= 1%
n n n

§;|[Y°n%]| zupkak"[Y°D%]|_ 1+ 4 10,

Tyen®1 " k]
1 - Eupkfn
-1
withu=(1+ )"
n
Denote the kernel of the resolvent of the semigroup T, by k{x.y).

-V |x-y | —VQA(IX|+|YI))_

1
k(x,y) = =y (e + (a-B)sgn(y)e

The following lemma contains estimates for Ei and 7[ %] .
y.

4.2.8 Lemma.
1-6 x' AR
(i) lim {suB n'TOfEX - exp (- x[ — ] )|} = O for every & > O.
n—» x> n
(ii) For every 6 > 0, 0 > O and M > O, there exists a number N
such that for all n > N we have:
sup vy - (a-B)sgn(y)] < 6.
y € (-MMNI-n.al [y-n¥]
Moreover there exists a constant V such that

| ~ (a-B)sgn(y)| < V'for all y € [-M,M].

[y-n*]

Proof. See Appendix A4. D

Proof of the approximation lemma (4.2.5).

Note that it is sufficient to prove the lemma for f € C, (R) with
compact support. Indeed let f.,g € CO(R). If lf-gl, < € then

NI (P F) - & (I 60

< HIn(an) - In(@ng)un + HIn(yng)—ﬂn(Iag)nn + H?f’n(Iag)—f’Pn(Iaf)lln

[ZaN

1, (P.8) - 2 (Ig)ll + e f[(1+ ;p'[“t]'l + e Mtae
. 0

€.

I~
>N

HIn(yng) - Q’n(Iag)Hn +

As the functions with compact support are dense in C (R), we can
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restrict ourselves to f € CB(R) with compact support. From now on we
fix a function f € C (R) with compact support, say

£(y) = 0 for |y] > M.
Let € > O and i > O. From lemma (4.2.8) it follows that for n
sufficiently large:

gty (PIsEn)] < e, for all y € [M.HN}-m.nl:

[

|-y, I e-IX~yn|(2k)”

2. u < e,
sup 13 | <
(xl*lyp D% (Ix]+ly, D%
sup |§n -e | < e
X,y
. 2%
3. | (@)% - [27\ + —} | < e:
n

4. 0CE <1
| - (a-B) sgn(y)| < V for all y € [-M.M].

Hence

1[ym%]

Be(21) 74 for x € R, y € [-M,MP\-Tn.0[

[ky(x.y) - k(x.yp) | <
(4&+V)(2k)-% for x €R, y € -In.n[.
It follows that for all n sufficiently large

NI (F,£) - (I 0),

400 +00
= sup | J Kk, (x.y)f(yy)dy - I k(x.y)f(y)dy|
x €ntz -
< s | [ Og(ey)k(xyy) (v )dy |
x € n kg
+¢0 +00
+ 1l J k(-.y,)f (v )dy - J k(. y)f(y)dyll,
< 10(2A) 7% MH;Hwe + 2(20) 7% (4e + V)nlfll, + €.

Since € and 1 are arbitrarily chosen,
%im HIn(ynf) - gn(Iaf)IIn =0

which completes the proof of the lemma. D.
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Stickiness.

In section (3.1) we derived for standard Brownian motion (Bc)tZO an
explicit formula for the finite-dimensional distributions of the
characteristic measure v of the It6-Poisson point process of excursions
from zero:

v[u(t;) € dx;. i=1,....n]

= g(tl;0,x1)q(t2—t1;x1,x2)...q(tn—tn_l:xn_l.xn)dxl...dxn
for 0 < t4<...< € _and Xq.---0%y > 0 (or xq....x; < 0). See section
(3.1) for the definitions of g(t;0,x) and q(t:x,y). Let for s > O the
measure 7y on R be defined by
ng(dy) = v[u(s) € dy. {, > s]

g(s:0,y)dy.

The measure n, is a finite measure: 7 (R) = 2(21rs)_%.
Let, as in section (2.2), for t > O the kernel K, on R be defined by

K (x.dy) = P [B, € dy. gy > t].
The family of kernels (K.} g is a sub-Markov semigroup on R and the
family of finite measures (ng)gyg on R is an entrance law for the
semigroup (K.) satisfying n ({0}) = O for every s > 0. The resolvent

(G)nso of the semigroup (K.) is given by

+00
Gf(x) = v‘—;_{ J'(e—v‘z_ﬂx—yf - e_@\IX+y,)f(y)dy for x > O,

0
and

0
1
Gf(x) = —I (e-\/‘2_7-\|x—y| - e_ml)ﬂy‘)f'(y)dy for x < O.
V2A
—
Note that we can write:
+00

Grf(x) = J'% (e VA Ixy| o VRUxI+lyDyg(yyay, x € R (1)

—00

The measure a, (see section (2.2),p.60) is the distribution of Brownian



4.3.1

126

motion absorbed in 0. Let P be the Ité-Poisson point process with
characteristic measure v and -let Yq be the Markov process constructed
starting from the family of point processes (P,),cp where the term ~T
has been added to the sum (o,(w)+A(T.0)) of the lengths of the

excursions up to time T, see section (2.3). In this case we have

7(1)

J (l—e_gu)v(du)
U

[+

Je-s 2(2#5)—% ds = 2%,

0
Let (VX)A>O be the resolvent of the process Y,.

Proposition. For A > O and f a bounded, measurable function on R we

have:
P A P
= [ — VA Ixy| AL VR ( x|+
i) = [ = BTl - — [ — By Di ey

T e—VQXIXI £(0).

+
AV

Proof. By theorem (2.3.6) we have
Gf(x) + z(x)Vf(0) for x #0

VIt = ~
() M (£)+1£(0) (2)
—A— for x =0
A + am (1)
with
-\
zp(x) = Jﬁx(du) e Cu.
It is well known that for Brownian motion we have
2\ (x) = e VAAIx], (3)

see Williams [59], p. 85. For y # 0 and A > O

©0

I e_xtg(t;o.y)dt = e—VQXIYI.
0

© 400

Hence m(f) = [ [ 0 (av)f(y)ar
0

—0
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+00
= J e-VQX'Y|f(y)dy. (4)
Substitution of (3) and (4) in (2) yields:
400
I e"vgi'y]f(y)dy + v£(0)
x| =

VIf(x) = G f(x) + e
A GA Av + V2R

The result follows from this expression after substitution of (1) for

G\f(x).O

Note that for v=0 we get the resolvent of standard Brownian motion. In
this case the construction given in section (2.3) is a pathwise
reconstruction of the original process B.

For v=+», the family (Vz) is the resolvent of Brownian motion absorbed
in 0. Finally, we note that one can also verify directly from the
formula for V{ in proposition (4.3.1) that the family (Vi)x>o satisfies‘
the resolvent equation. Since (Vg)x>0 is the resolvent of standard
Brownian motion, it is a strongly continuous Markov resolvent on CO(R).

and it follows from the formula

+00
Ay 1 _ -
V() = VREx) - —= —= A [emly MR y)-e0)1ay.

that (VX)A>O is also a strongly continuous Markov resolvent on CO(R).
The theorem of Hille-Yosida implies the existence of a unique strongly

continuous Markov semigroup {QZ. t 2 0} on C (R) such that
o«
je‘Xt Q{fdt = VXf . A >0, f € C(R).
0
See Williams [59], p.110. Let A  be the infinitesimal generator of the

semigroup (Qz)c)o.
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4.3.2 Proposition. If 0 < v < @ and
D = {h € C(R) : h(2) exists on R\{0}; h'(0+)= h'(0-) + n(2)(0+):
h(2)(0+) = h(z)(O—); h(2) continuous on R\{O};

1im h(2)(x) = 0},

E3

then 9(A,) = D and for h € D

N
o

% h(2)(x) for x
(Ah)(x) =

H
o

% h(2)(0+) for x

Proof. Fix A > 0.
D(A,) = Vx(C,(R)).

Let h € 9(A,), say h = VJf, f € C (R). By direct calculation we find

that h € D and
h(2)(x)

i}

2M\h(x) - 2f(x) for x # 0.

From (A—AW)V{f = f we conclude that

w
o

% h(z)(x) for x
(A1) (x) =

Eh(2)(o+) for x = O

It follows that the operator C defined by
2C) =D
1
- h(z)(x) for x # 0

Ch(x) = .
5 n{2)o+) forx =0

is an extension of A,.
Let h € 9(C) and Ch = h. By direct calculation it follows that h = 0.
From the corollary to theorem 1.1 in Dynkin [8] chapter one we conclude

that C = A,.u

Remember the definition of the complementary error function
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[++]
2 2
erfc (x) = 7 Ie Vidv.
X

Define the function e : R - R by

2
e(x) = eX erfc (x) . x €R.

Proposition. Let f € C (R) and O < v < @. Then

+00
Vot *
Q7 (x) = [ {p(esx.y)-p(e:0, Ixl+ly L1 - e[l’%+ =152y

x| VBt

+ Vort p(t;:0,x e[—-—- + —]f 0). \
( ) = (0)
Proof. By inversion of the Laplace transform V;'\f of Q”{f. o

Before giving a random walk approximation of the process Y,,, we will
discuss some properties of the family of processes (Y,,')O<,7<w. In the
first place consider the behaviour at state 0. For ~ > O the
probability of the event [Y (t)=0] and the expected sojourn time in O
up to time t are positive. If we start the process Y, in O we get:

vat '

P [Y,(t)=0] = e(—)
¥

and

T ”’2 V2s s\%
E, JI(O}(Yq(t))dt =5 () - 11+ 7F%ﬂ.
]

On the other hand, the set {t > O : Y (t) = O} does not contain
intervals of positive length P -a.s.. Indeed. since the characteristic
measure v of the underlying Ité-Poisson point process has infinite
mass, the range R of the function B (see section (2.3), p. T1) does not
contain intervals of positive length. The processes Y, have continuous
realizations. This can be seen from the construction in section (2.3),
but it can also be verified directly from the transition semigroup

(QZ)' Indeed, since O < e(x) < 1 for every x € ]0,®[, we have for
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~2
t < —, 80 and x£0
27
x-6 @ 2
(Q’Z lm\]x—alx-{.&[)(x) < (J + Jp(tix.y)dy + exp [— E]
- x+6
0
%2
=2 | p(1:0,y)dy + exp[— —]
, 2t
5ot ™%
<2
and for x=0 we get the same estimation but without the term exp [— ;]
t

It follows that

(Qz lm\]x_é'x+6[)(x) = O(t) as t 1 0
and it follows by Dynkin [8], chapter 3, theorem (3.5) that Y, has
continuous realizations. A straightforward, but tedious calculation

yields that all moments of Y,Y(t) exist, especially

E (Y, (t)) =x
and
[ x|
Ex[(Y’Y(t)_x)2] =t - g(zﬂs)%P(s:O.x) e@ %] ds
- x2 (2rt)% ;0.x)e ver + ﬂ 4
(2re)# p(t:0.%) [”52 )

It follows by the inequality of Cauchy-Schwarz that
4

EL(Y,(£)-)"] ¢ &2

and
[(Y,(te)~Y, ()] < (tg-t))?

E L(Y, (2) =Y, (1)) 7] € (tg-ty)”.
As a consequence the family (Y"I)OS'VS“’ is tight, see Billingsley [1].
p-95 and appendix A2. Let (7n)n21 be a convergent sequence in [0,®],
say v, = 7g- Denote the distribution of the process Y,r with initial

distribution u by PI(L"’).
A A

1
{ — -
R, ! A+VIN A VIR |

Nfll,, the finite

. 4
As IIVYE — VYfII —_—
A A VX

n)
dimensional distributions of the sequence (P’_(L n )n21 converge to those



131

e 4
of P;(J. °) and we may conclude that T, 2 T,asn-® implies that
v ~
Pl(ln)_’PL(LO) as n = o,

We continue with a random walk approximation of the process Y, Let
Sn=(snk)k20 be a Markov chain on Z with transition matrix
PUZ xZ - [0.1] given by

1
P (1,i+1) = P (i.i-1) = 5 for 1 #0,
P (0.0) =ap. 0<a <1,
1
Pn(O,l) = Pn(O.—l) = 5 (l—an).

Define the process )%:(Xn(t))tzo by
Xo(t) = n7%e S [hep. €20,

Denote as in section (4.1) the distribution of the process X, by P;(Lx)’
where 1 is the distribution of X (0)}; if v, is the initial distribution
of the Markov chain S . then u({k-n_%}) = v ({k}). k € Z. If Pl()") is

the distribution of Y, and if v, » v, we want to choose the parameters
a, in such a way that Pz():) > Pl(,") as n 2o We will use the same
methods as in section (4.1) and (4.2). Let us start out with a summary
of the notations used in these sections.
Forn> 1
En is the space of functions f on the discrete space n_%°Z. which
vanish at infinity, normed by
£, = sup {(lf(x)]| : x € n—%%)
and
‘.’}‘n is the operator from C,(R) to 3 which assigns to f € C,(R) its
restriction to n %-Z.
The sequence (2. gpn)nzl is an approximation of the Banach space C_ (R).
Further for n)1

U, is the operator on 3 defined by

-1, '}
U f(x) = jgl P (x-n%j) £(jn7%), x entez, fe53.
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The operator U, is a bounded, linear operator on Z,. The extension to

t € [0,9[ of the discrete semigroup on 2, with time unit Ty = — and
n

with generator n(U -I) is denoted by &, = (U,(t)) 5o°
[U,(£)£](x) =% (PP en® )e(in#%), x en oz, £ e 3.

In the next proposition we will prove that the sequence (mn)n>l is an

1
von:

approximation of the semigroup (Qz)t>o if we choose a, = ”
- 14v+n

'1°n%

Proposition. Let f € C (R) and «, = . Then for every t, € [0,

1
1+v+n’
it is true that

1
Illg IIUn(; k (P, £) - ?n(QZOf)Iln =0

for any sequence (k;),y; of nonnegative integers such that

1

lim — kn = t,-

n-® n

Proof. To prove the proposition we use the theorem of Trotter-Kato
which states that the sequence (%,) is an approximation of the
semigroup (Q:} if for some A > O
. - Y -
%:2 HIn(9nf) 9n(ka)un =0

for every f € CO(R), where for g € 3

(e
A
Le = [a+ Sl g (o ac.
n
0 1
It follows from lemma (4.2.6) that for A > O, g € 3, and x € n %z
1 (n) . .
(Ig)(x) =—— 3 G '  (xnf.)e(3n™)
An JEZ (1+_)—1
n
where for 0 < u <1
(CY I
G, =3 (uP)k.
k=0
An application of lemma (4.2.7) yields for x,y € Z

1
Py = L ebevl s o Llxlely
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where
A =(1-u)%,
1
f = —(I-A)o
u
and
a,(u-1)+a A
fory =0
. A(l—an)+a.n(l—u)
y - a,(u-1)
for y # O.

A(1-a, )+a (1-u)
It follows that for A > 0, f € C_(R) and x € n %-Z

[1,(P,F)1(x)
S s M ety fgen®
" An Jé'l G(1+.).\.)—1(x n8) £ )
n
7\2 =% |x-n%—j| )
= [2>\ + n—] n Ajgz 13 £(jon%)
(1-u)) 2., on’
2 [+ )% s g Ity e o)
AL (1-ap)+a, (1-u) n j€z
) (o, ) (o + A2]_% sy ™|
N : il
Ay (1-ap )+a, (1-u) (un—l)\/n (l—fn)\/n n "

+00

A2~ |x-y,, In*
2N + ; I3 f(y,)dy
—c0

“n(17n) N2y T (e by
B vy (1) [ 7 (£ ()£ (0))dy
o) (o, ] [ore 7\2]-"$f(o)§|x°“%|
+ - *
A (1-ap)+ap (1-uy) Yup=1)vh  (1-§)vh n
where
At
u, = (1+ ;) ,
An = (1—1%)%,

1
&, = ; (1-4,)
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=[yvﬁ].

and Yn 7
=4
Substitution of a, = ; yields
1+~v+n
ap(1-up) Ay
lim =
n A (l-a)+eg (1-u ) V2N + Ay
and
4, 148,
111133 { {u,~1)vh * (l—fn)\/n} =0
Since
1 p A v 1
Ty | e-V2RIx-y| o 0T [ AR+ Iy _
Vaf(x) Vo Le f(y)dy M+v§7\L\fZX e (£(y)-£(0))dx.

the result follows from of lemma (4.2.8)(i).o

Theorem. Let (“n)n21 be a sequence of probability measures on R with

supp(un) C n~%.2 converging weakly to a probability measure m on R.
ven®

If a, = - then for every k > 1 and O ¢ t1 <...< ty the finite
1+v+n’
S s (n) .
dimensional distributions Ty t P converge weakly to the finite
1---% v,
()

dimensional distribution 7 P as n - ©,
tl...tk m

Proof .The result follows from theorem (4.1.1) and proposition (4.3.4).0

Remark. It can be proved that under the assumptions of theorem (4.3.5)

n

the sequence of probability distributions (Pg )) on Dp([0.®[) converges
n
("

weakly to the probability distribution P ~. We suspect that weak

convergence of the finite dimensional distributions of the sequence of
n .

probability distributions (Pﬁ )) in theorem (4.2.4) also can be
n

strengthened to weak convergence of the probability distributions if

the probability distribution (p,. k € Z) has a finite second moment.
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APPENDIX

The existence of an $-finite base for the topology.

Let X be a polish space and let ¥ be a collection of open subsets of X.
Denote by ¥' the family of all Borel subsets of X contained in some

element of ¥.

Proposition. If ¥ covers X, then there exists a countable base for

the topology consisting entirely of open subsets with closure in ¥'.

M.' Let D be a dense subset of X and let d be a metric on X
compatible with the topology of X. For each x € D there is an A € ¥
such that x € A. Let 6 = d(x,A*) = inf{d(x,y): y € A}; since A* s
closed and x € A™ we have & > O.

If 0 < r < &, then the closure B (r) of the ball with center x and

radius r is contained in A. Indeed
y € B (r) 3 d(x.y) < r 3 d(y.A%) 2 d(x.A%) - d(x.y) 2 51 > 0
2y €A 3y €A
So Ex(r) € ¢'. Define for x € D
I, = {q €@ B(q) €'}
We claim that % = {B,(q): x € D, q € I} is a countable base for the

topology of X. To see this let O C X be open. It is clear that

0 3 U{B,(a): By(a) € %, B,(q) C O}. (1)
Let y € 0. There is an A € ¥ such that y € A. Then

e = min (d(y.0%), d(y.A®)) > o.

1 1 3
For x € D N B_(—) and € QN J-e,— e[ we have
y(5e) and q Jeog el
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d(x.A%) 2 d(y.A%) - d(x.y) 2 e - ;lle 5 a.
So q € I, and y € Bx(q). Hence

0 C U{B,(a): B,(a) € 1, By(q) C O} 2)
It follows from (1) and (2) that each open set can be covered by

elements of 4. O

The Skorohod topology.

Let (X,p) be a sample separable metric space. Let t,.T € R, t, <T and
let DX([to,T]) be the space of functions u : [to.T] - X which are right
continuous on [t ,T[ and have left limits on Jt,.T]. Let A([t,.T])
denote the class of strictly increasing, continuous maps
A [ty T] = [t,.T]. such that A(t)) = t;, and A\(T) = T. For u and v in
DX([tO.T]). define d;(u.,v) to be the infimum of those positive e'é for
which there exists a map A € A([t,.T]) such that

sup{|A(t)-t| : t € [t .T]} e
and

sup{p(u(t)., vor(t}) : ¢ € [t .T]} < e.

The function d; is a metric on Dy([t,.T]). The topology on Dy([t,.T])
induced by d; is called Skorohod's J; topology. Equipped with the J;
topology, Dy([t,.T]) is a polish space. See Billingsley [1]. Let U be
the space of cadlag functions of [0,#[ in X. There are several papers
about the extension of the J; topology to U, see among others Lindvall
[37] and Whitt [57]. We will summarize the theory from Whitt [57]. Let
rye @ U > Dy([b.c]) be the restriction to [b,c] defined for any
0 <b<c by (rpx)(t) = x(t), b { t < c. For any x,y € U, let d be
defined by

©

d(x,y) = I dt e b max [dot(rotx' roeY). 1]
0
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where d,, is the metric on Dy([0.t]) as defined above. The function d
is a metric on U. The topology induced by d is called the Skorohod
topology on U. Note that a sequence (x,) C U converges to x € U iff
dot (rotxn' rotx) - O for almost all t. The basic properties of the
Skorohod topology are:
(i) the space U equipped with the Skorohod topology is a polish
space,
(ii) the Borel o-algebra on U coincides with the o-algebra
generated by the coordinate evaluations,
(iii) let P, n 2 1, and P be probability measures on U, then PP

if and only if réktk(Pn) > rsktk(P) on Dy([sy.t),]) for all k
[
and some sequence {[s),t,]. k 2 1} with U [sy.tyl = [0.[.
k=1
Fix a € X and define the map { : u € U > { € [0,2] by

{y = inf {t > 0: u(t) = a or u(t-) = a}.
Lemma. { is a lower semi-continuous map.

Proof. It is sufficient to prove that the sets {u € U : {, <k}, k > 0,
are closed. So let k > O be fixed and let (u,) be a sequence in
{u€U: [, {k} converging to u. Let € > 0. If the restrictions of u,
to [0.k] converge in Dy([0.k]) to the restriction of u to [0.Kk], there
exists for every n sufficiently large a function A € A([0,k]) such that

sup{|A(t)-t]| : t € [0,k]} < e

sup{p(u,(t). uor(t)) : t € [0.k]} < e.
So
p(ued(t),a) < p(uor(t), w,(t)) + p(uy(t).a) < 2e
for some t € [0,k]. It follows that

Ve > 0, 3s € [0,k], p(u(s)., a) < ef
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and this implies that {, < k.

If the restrictions of u, to [0,k] do not converge in Dy([0.k]) to the
restriction of u, there exists a sequence (km) decreasing to k, such
that ro]ﬁ“un - rOKnu as n 2 ® for every m 2 1. As above we may conclude

that Cu < lﬁ'n for every m 2 1 and it follows that (u <k. 0O

Some results on real functions.

Lemma. (Greenwood & Pitman). For each n > 0 let fn(t) be a positive,
nondecreasing function of t € [0,[ and let S be a subset of [0,[.
Suppose that, for each s € S, f (s} converges to a finite limit f(s) as
n - o, and that the set of limitpoints {f(s): s € S} is dense in [0,»[.
Let a = sup S. Then there is a continuous nondecreasing function f
defined on [0,a[ such that xll-i.)moo f,(t) = f£(t) uniformly on bounded

sub-intervals of [0,a[.

Proof. For every n > O and s € S we have 0  f (0) < f (s). So

0 < lim £,(0) < lim £.(0) ¢ inf {f(s) : s €S} =0
and
lim fn(O) = 0.
Let x € J0.,a[. If S N [0.x] = @, then lim f (x)=0. In the remaining

case we have

sup{f(s) : s € S N [0,x]} < Lim £ (x) < Lim £ (x)
< inf {f(s) : s € SN [x,»[}.
Since {f(s): s € S} is dense in [0,®[, lim f (x) exists. Define the
function f : [0,a[ - [0,®[ as the pointwise limit of the sequence of
functions (f ). It is clear that f is a nondecreasing, continuous
function on [0,a[. If the convergence of the sequence (f,) is not
uniform on bounded sub-intervals of [O;.a[...: then there exists an‘M <a

and an € > 0 such that
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Vn € N, 3t € [OM]. | £ (t)) - £(t )] > e.
Let (t,:) be a convergent subsequence of (t,), te = lim t .. Choose
X1.Xg € [0,a[ such that
1

x) €ty <xg and f(x9) - f(xg) < ” €.

If ty = O, take x; = 0. Then for n' sufficiently large
fooxg) = £(ty ) < () - £(ty) < fa(xg) = £(t,0),
and it follows by letting n' - @ that
> e < lim [£ () - £(t,)] < 1 €

which is a contradiction. So the convergence of the sequence (f ) is

uniform on bounded sub-intervals of [0.,a[. O

Let A be a function on [0,»[, which is nonnegative, nondecreasing and
right continuous. Denote by A the Lebesgue measure on [0,®[, and let ¢
be the distribution function of the measure v = A(A) on [0,o[.
Then for t > O
#(t) = [1[0, (A0
= II[O.t]OA dA
AM{x : A(x) < t}) = sup {x € [0,[ : A(x) £ t}.

¢ is a nonnegative, possibly infinite valued, nondecreasing function on

[0.»[. It is also clear that ¢ is right continuous. If ¢(t) { y, theny

. is an upperbound of the set {x : A(x) < t}. It follows that A(y+e) > t

for every € > O and this implies that A(y) = A(y+) 2 t. So A(y) is an
upperbound of the set {t : ¢(t) € y}. On the other hand, if u is an
upperbound of the set {t : ¢(t) £ y}. then ¢(u+te) > y for every e > O.
It follows that A(y) € u+e for every e > 0. So

A(y) = sup {t : ¢(t) {y} and A is the distribution function of the
measure ¢(A).

¢ is called the right continuous inverse of A. We have shown that A is
the right continuous inverse of ¢.

Let F € Ll(v). then
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[F o aGon@) = [Faae) = [Fiy) aotn).

A3.3 Let f be a nondecreasing, right continuous function on [0,®[, such that
f(0) = O and lim f(x) = +o.
X= ©

Define

(-
1}

{t € 10, : f(t-) < f(t)}
and

R = range (f) {s € [0, : s = f(t) for some t 2 O}.

Lemma. If f is strictly increasing, then

(0.« =R+ 3 [f(t-), £(t)[
t€]J
where the union is a disjoint union.

Proof. Let t € R, say t = f(r). Assume that there is an s € J such that
t € [f(s-)., £(s)[-
Then
f(s-) < f(r) < f(s).

It follows that r < s, so f(r) = f(s-). This can only be the case when
f is constant on [r,s[ which is impossible since f 1is strictly
increasing. So

RN 3 [f(t-), £(e) = ¢.

t €]
Let t € [0,o[\R. Then for any s € [0,°[ we have f(s) < t or f(s) > t.

Define
u = inf {s : f(s) > t} = sup{s : f(s) < t}.
Then
f(u) 2 t, so f(u) > ¢t
and

f(u-) ¢ t.
It follows that

t € [f(u-), f(uw)[ C U [£(c-). £(t)[. :
. te]
which completes the proof of the lemma. O



A4

141

Proof of lemma (4.2.8).

Proof of (i).
Let x > O.

From the mean value theorem it follows that
X A% x In § A4
lEn- et (501 = 1" - en- B 0l
n ] n

x eX MnX)| 1 Ey + F—:]%[

1

A%
where 1(n,x) is a number between Inf, and —[i—] .
n
A A 2\\4% A% A
E, =1+ —_[(_)2 + _] =1 - [_2_] + =4 O(n_3/2)
n n n n n

AN Y%
k== (3 + g g = 02,
so:  |n® n(n.x) + (20)*%] < | g (m)].

It follows that

A 1
IEE - exp(—[2—n] x)] ¢ S Y ¥ M(n.x) len(m) |

- lgx(m) |
n(n.x) N
1 1
< - ; FXOLEE
(20)”* - |gp(n)n”|
We conclude: )
A% 1
1-5 [2 ] 3/2-5
sup n - e -l—| x < n) n .
8 [&, - exn( — )| gy (n) I

(20)% - gy (n)n¥|

The righthand side of this inequality tends to O as n » @

1
since g, (n) n3/2-6 O(n—é) and ” s 0(1).
' (27)% - g\ (n)n”]
This completes the proof of the first part of lemma (4.2.8).

Proof of (ii).

For the proof of the second part. we first note that

T N A A
ey ™1l s gl [yn]l'l-;+(l+§)m(y=°}

[Y'lll] A
k
1+~ - Epk §| |
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It is sufficient to give a proof for y > O, since the case y { O can be
obtained from the case y > O by substitution of the distribution {q}
with q = P_y for the distribution {pk}.
Fixy >0 and e > O:
A. The first step consists of estimating 1 - 3 Pk §Akl.

1 -3 p glkl = 3 p (g k],

From lemma 4.2.8 (i) follows the existence of a number N; such that
A%
R e N ]

A% A%
= |z pk(fikl - exp(-F%ﬂ k)] < e°F%j for all n » Ny.

From the mean value theorem follows the existence of a number
A\ %

¢ € ]o, —-J [ such that
n

- e[ kD = B el el

So

F%ﬂ% 3|k|p, exp(- F%ﬂ”lkl) < 2pk(1—exp(‘F%ﬂ%|k|)) < F%3%2|k|pk.

It is possible to choose K and Ny such that

3 |klpg < e
|k |>K

and

A%
exp(- ——J K) 2 1-e for all n 2 Ny.
n

This implies:

1\

(1-e) = |k|py
[k | <K

Slklpy + e-(-1-3|k|py).

Slklpy exp(- (2 Iy

A%

So for n 2 max (N;.Ny)

BY 5 kin + e B 2 - 2l
¢ 3 p1-glkly < F%ﬂ% 3 |klp, + e—F%a%, (1)

B. Consider
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- ok k=Tven®
Enl[ynJIEpk(frll [yn]l_l)
: k-2 |[y-n*
= 3 PR(Ek-1) + 3 PL(E, yn™2l 1).
k<[y-n”] W[y+n*]
In the same way as in A we find:
A% A%
- B g e - (]
% A%
-k _ - = B
< 3y PER 1) € B 3, Ko e 2 @lklng (2)

and
—f—i]% 3 kp + e-(ﬂ]% < s pk(§:-2|[3'°n%]l - 1) < 0.3)

k>2[y-n%] n K>2[y-n%]
So we only have to estimate
%
- 2|[y-n”]|-k
k
3 y (- 1) + y 2 " P&y - 1). (4)
0<k¢[y-n*] [y-n#1<k<2[y-n*]
We have:
A% A
El=1 + f—] + =+ 0(n"¥2y,
n n
For x > O

lfl'_lx_ exp [Ez\_l]%x)l - x ex'r(n,x)“_n §r_11' [%]'Al

A%
with 7(n,x) a number between lnf;l and [2—] .

n
So for 0 < k ¢ [M'n%] we have:

A% : -1yy -
|E7K- exp( [Z—n] k)| < Meexp [M((20)%0(n"1))] o(n71)

and it follows that

_ A%
i o2 bl
lim { sup } = 0.
=300

A%
O<k¢[M-n*] (2—]
n

A%
Substitution in (4) of exp(—F—] ) for £, gives an expression which,
n

for n sufficiently large, say for n 2 N3, differs no more than e« |~

7\]%
n

from the original expression.

Applying the mean value theorem again yields:
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ES ™ <)

0<k¢[[y-n*]
A% A% A%
$ > (E_k - D<= 2 kppexp(|—| k) + e-|—| .
oyt < Ez“] 0k[y-n*) Fij Ezn]

Choose 1 > O then
% Ko
[y-n™] 2 K for all y € [n.M] if n 2 (-)°.
1
There exists also a number N4 such that exp( (2—] K) ¢ 1+¢ for all
n
> N4-
This gives for n 2 max ([K Ny)

) kpy, exp( rz

O<k([y- n”

M- (27)%
< k'pk(1+e) + e 3
O<k<K K(k<2[y°n%]

kpy, + e-( 2 kpy + M (2)‘) ). since |E| |k|pk e.

k)O
It follows that for all y € [n,M] and n 2 max([li . N3, Ny) it is true
77

that

[27\]% s 5 (27\]%

= - 2. |—

n’ k>0 kP n
< 03 " P(Enk- 1)

O<k¢[y 0’
A% A%

= . M- (2\

S[Zn] k§0kPk+e[2n] k)Okpk*.e ( ) b (5)
Further for all y € [,M] and n > max ([5]2 N3. Ny):
7
2[y-n#]-k

o< s Pk(fn[y n*]-k 1)

[y-n%1<k¢2[y -n*]
o (O ey 10 oo (B i) + e B

IN

A% Y% A%
 2|— eM.(2)\) > + e |—
F“] [y-n¥1<k<2ly n#] P “]
A%
< ee —n] (2 M2% 1). (6)

For a given 6 > 0, combination of (2). (3), (4). (5) and (6) gives that

2
for all y € [n.M] and for all n > max(Nl, No. N3, N4, [E] ) we have
T)
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|7[y.n%] - (e-B)| < 8.

From the same inequalities follows the existence of the constant V in

lemma 4.2.8 (ii).0O
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STOCHASTISCHE PROCESSEN EN PUNTPROCESSEN VAN EXCURSIES

SAMENVATTING

In excursietheorie bespudeert men stochastische processen aan de hand
van de eigenschappen van de excursies vanuit een gegeven toestand a.
Excursies vanuit toestand a zijn restricties van het proces tot
tijdsintervalien tussen twee opeenvolgende bezoeken aan toestand a. Deze
methode is in het bijzonder succesvol bij de bestudering van Markov-
processen, omdat uit de Markov-eigenschap onafhankelijkheidseigen—
schappen volgen voor de excursies. In 1970 publiceerde Itd een artikel,
waarin hij de excursies van een sterk Markov-proces beschreef als een
stochastische puntfunctie.

In het eerste deel van dit proefschrift wordt een theorie ontwikkeld van
puntprocessen, die eindig veel punten hebben in de deelverzamelingen die
behoren tot een gegeven filterende familie. Vervolgens beschrijven we in
dat kader het puntproces van excursies vanuit een gegeven toestand a van
een Ray-proces. Omgekeerd construeren we een stochastisch proces uit
zo'n excursieproces, waarbij nu gebruik gemaakt kan worden van
technieken uit de theorie van de puntprocessen.

In het tweede deel van dit proefschrift construeren we met behulp van
deze theorie stochastische bewegingen op een eenvoudige graph. De
betekenis van verschillende parameters die optreden in deze constructie

wordt nader onderzocht met behulp van Random-Walk benaderingen.
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