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6

Detection and Estimation

from Waveform

Observations: Addendum

6.1 NONRANDOM PARAMETER ESTIMATION FOR GAUSSIAN PROCESSES

In this section, we develop some very useful results for parameter estimation in-
volving stationary Gaussian processes observed over long time intervals, corre-
sponding to the SPLOT scenario of Chapter 5. We focus on the discrete-time re-
sults, but comment in advance that analogous results can be developed for the
continuous-time case.

To begin, suppose we have observations of the form y [0], y [1], . . . , y [N − 1]
where y [n] is a zero-mean stationary Gaussian random process with power spec-
trum Syy (e

jω;x), where x is a vector of unknown parameters. Then provided N
is sufficiently large (so that variations in the spectrum are on scales significantly
larger than 2π/N), we can exploit our result from the last chapter that the (normal-
ized) discrete Fourier transform (DFT) coefficients

Y [k] =
1√
N

N−1
∑

n=0

y [n] e−j2πkn/N , k = 0, 1, . . . , N − 1 (6.1)

are effectively independent Gaussian random variables1 with variance

varY [k] = E
[

|Y [k]|2
]

, λk(x) ≈ Syy(e
j2πk/N ;x). (6.2)

1In fact, for any N , the Y [k] are circular Gaussians: their real and imaginary parts are inde-
pendent and identically-distributed.
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Moreover, we recall from Chapter 3 that these normalized DFT coefficients
(6.1) can be rewritten as

Y [k] = YN(ejω)
∣

∣

∣

ω=2πk/N
(6.3)

where YN (ejω) is the Fourier transform of a windowed version of y [n], i.e.,

YN(ejω) = F {wN [n] y [n]} (6.4)

with wN [n] denoting the unit-energy window

wN [n] =

{

1/
√

N n = 0, 1, . . . , N − 1

0 otherwise
. (6.5)

In terms of parameter estimation, the observations

y =
[

y [0] y [1] · · · y [N − 1]
]T

(6.6)

and

Y =
[

Y [0] Y [1] · · · Y [N − 1]
]T

(6.7)

are equivalent. Accordingly, we can write the likelihood function for the observa-
tions in the form

pY(Y;x) ≈
N−1
∏

k=0

1
√

2πλk(x)
exp

[

−|Y [k]|2
2λk(x)

]

. (6.8)

From (6.8) we obtain, in turn,

ℓ(y;x) = ln pY(Y;x)

≈ −N

2
ln 2π − 1

2

N

2π

N−1
∑

k=0

[

ln λk(x) +
|Y [k]|2
λk(x)

]

2π

N

≈ −N

2
ln 2π − N

2

1

2π

∫ π

−π

[

ln Syy(e
jω) +

|YN(ejω)|2

Syy (ejω)

]

dω (6.9)

where to obtain the last expression in (6.9) we have used the integral approxima-
tion

N−1
∑

k=0

f(λk) ≈
N

2π

∫ π

−π

f(Syy(e
jω)) dω (6.10)

valid for sufficiently large N .

Note that (6.9) implies that for the Gaussian SPLOT scenario the periodogram
|YN (ejω)|2 is effectively a sufficient statistic: it contains all the features of the data
necessary for detection and estimation problems involving y [n]. We’ll focus on es-
timation problems in the sequel; detection problems are treated in a similar man-
ner and lead to equally useful algorithms in practice.
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6.1.1 Cramér-Rao Bounds

Using (6.9), we can obtain useful asymptotic approximations to the associated
Cramér-Rao bounds. In particular, we first obtain

∂

∂xk

ℓ(y;x) ≈ −N

2

1

2π

∫ π

−π

[

∂

∂xk

ln Syy(e
jω;x) − |YN(ejω)|2

S2
yy

(ejω;x)

∂

∂xk

Syy(e
jω;x)

]

dω

≈ −N

2

1

2π

∫ π

−π

(

1 − |YN(ejω)|2

Syy (ejω;x)

)

(

∂

∂xk
ln Syy(e

jω;x)

)

dω.

(6.11)

Differentiating (6.11) with respect to xl we obtain

∂2

∂xk∂xl
ℓ(y;x) = −N

2

1

2π

∫ π

−π

[(

|YN (ejω)|2

S2
yy

(ejω;x)

∂

∂xl
Syy (e

jω;x)

)

(

∂

∂xk
ln Syy(e

jω;x)

)

+

(

1 − |YN (ejω)|2

Syy (ejω;x)

)

(

∂2

∂xk∂xl

ln Syy(e
jω;x)

)

]

,

(6.12)

which using [cf. (6.2)]

E
[

∣

∣YN (ejω)
∣

∣

2
]

≈ Syy(e
jω;x) (6.13)

yields

[Iy(x)]kl = −E

[

∂2

∂xk∂xl
ℓ(y;x)

]

≈ N

2

1

2π

∫ π

−π

(

∂

∂xk

ln Syy(e
jω;x)

)(

∂

∂xl

ln Syy(e
jω;x)

)

dω. (6.14)

6.1.2 Maximum Likelihood Parameter Estimates

Similar approximations allow us to determine the corresponding maximum likeli-
hood (ML) estimates for this Gaussian SPLOT scenario. To see this, first note that
via (6.9) we obtain immediately that these estimates are given by

x̂ML(y) ≈ arg max
x

ℓ(y;x)

= arg min
x

J(x), (6.15a)

where

J(x) =
1

2π

∫ π

−π

[

ln Syy(e
jω;x) +

|YN(ejω)|2

Syy(ejω;x)

]

dω. (6.15b)
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From (6.15b) we obtain the following necessary condition satisfied by the ML
parameter estimates:

∂J(x)

∂xi

∣

∣

∣

x=x̂ML

=
1

2π

∫ π

−π

[

1 − |YN(ejω)|2

Syy(ejω;x)

]

[

∂

∂xi
ln Syy(e

jω;x)

]

dω = 0. (6.16)

6.2 AUTOREGRESSIVE SIGNAL MODELING

The results just developed have been used to develop and evaluate efficient es-
timation algorithms for a host of applications. As an important and illustrative
example, in this section we undertake a case study involving autoregressive sig-
nal modeling.

The scenario is as follows. Suppose we observe N samples of a discrete-time
random signal y [n] that can be modeled as output of a stable LTI filter with the
all-pole system function

H(z) =
1

A(z)
, A(z) = 1 −

M
∑

n=1

a[n]z−n (6.17)

driven by zero-mean, wide-sense stationary, white noise w [n] with variance σ2.

Such a process is referred to as an Mth order autoregressive process [AR(M)],
since it can be equivalently obtained from the forward recursion defined by the
stochastic difference equation

y [n] = a[1] y [n − 1] + a[2] y [n − 2] + · · ·+ a[M ] y [n − M ] + w [n]. (6.18)

When, in addition, w [n] is a Gaussian process, then (6.18) implies that y [n] is both
Gaussian and a Markov process of Mth order, and in this case we say y [n] is an
Mth-order Gauss-Markov process [GM(M)]. We’ll focus primarily on this case, but
will comment on the nonGaussian scenario later in the section.

Autoregressive models have, in general, proven extraordinarily useful in a
wide range of applications—from speech modeling for voice compression systems
to seismic data modeling for oil exploration systems.

The central estimation problem is as follows: given Gaussian observations

y =
[

y [0] y [1] · · · y [N − 1]
]T

(6.19)

we seek useful estimates of the unknown, nonrandom parameters

x =
[

a[1] a[2] · · · a[M ] σ2
]

. (6.20)
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6.2.1 Cramér-Rao Bounds

Let us begin by determining the associated Cramér-Rao bounds for the problem.

First, since

ln Syy(e
jω) = ln σ2 − ln

∣

∣A(ejω)
∣

∣

2
,

we obtain

∂

∂σ2
ln Syy(e

jω) =
1

σ2
(6.21a)

∂

∂a[k]
ln Syy(e

jω) =
A(ejω)ejωk + A∗(ejω)e−jωk

|A(ejω)|2
(6.21b)

where

A(ejω) = F {a[n]} = 1 −
M
∑

n=1

a[n] e−jωn. (6.22)

Using these expressions the Fisher information matrix entries [Iy(x)]kl are
obtained as follows.

Case: 1 ≤ k, l ≤ M

From (6.14) we get,

[Iy(x)]kl ≈
N

2

1

2π

∫ π

−π

(

∂

∂a[k]
ln Syy(e

jω;x)

)(

∂

∂a[l]
ln Syy (e

jω;x)

)

dω

=
N

2

1

2π

∫ π

−π

1

|A(ejω)|4
[

A(ejω)ejωk + A∗(ejω)e−jωk
] [

A(ejω)ejωl + A∗(ejω)e−jωl
]

dω

=
N

2

1

2π

∫ π

−π

[

1

A(ejω)2
e−jω(k+l) +

1

A∗(ejω)2
ejω(k+l)

+
1

|A(ejω)|2
ejω(k−l) +

1

|A(ejω)|2
e−jω(k−l)

]

dω

= N

{

1

2π

∫ π

−π

1

A(ejω)2
e−jω(k+l) dω +

1

2π

∫ π

−π

1

|A(ejω)|2
ejω(k−l) dω

}

,

(6.23)

where to obtain the last equality in (6.23) we have used that A∗(ejω) = A(e−jω)
since the sequence a[n] is real-valued.

Next we let b[n] denote the sequence whose Fourier transform is

B(ejω) =
1

A2(ejω)
(6.24)
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and c[n] the sequence whose Fourier transform is

C(ejω) =
1

|A(ejω)|2
. (6.25)

Then with this notation (6.23) becomes

[Iy(x)]kl ≈ Nb[−k − l] + Nc[k − l], 1 ≤ k, l ≤ M (6.26)

However, since we can write

b[n] = h[n] ∗ h[n] (6.27)

where h[n] is the causal sequence with Fourier transform

H(ejω) =
1

A(ejω)
, (6.28)

we see that b[n] is also causal, so

b[−k − l] = 0, 1 ≤ k, l ≤ M. (6.29)

Hence, using (6.29) and the fact that

c[n] =
1

σ2
Kyy [n] (6.30)

since

Syy (e
jω) =

σ2

|A(ejω)|2
,

we obtain, finally,

[Iy(x)]kl ≈
N

σ2
Kyy [k − l], 1 ≤ k, l ≤ M. (6.31)

Case: 1 ≤ k ≤ M , l = M + 1

For this case, we have

[Iy(x)]kl ≈
N

2

1

2π

∫ π

−π

(

∂

∂a[k]
ln Syy(e

jω;x)

)(

∂

∂σ2
ln Syy(e

jω;x)

)

dω

=
N

2σ2

1

2π

∫ π

−π

1

|A(ejω)|2
[

A(ejω)ejωk + A∗(ejω)e−jωk
]

dω

=
N

σ2

1

2π

∫ π

−π

1

A(ejω)
e−jωk dω

= h[−k] = 0 (6.32)

where we have again used that h[n] is causal.
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Case: k = l = M + 1

Finally, for this case we have

[Iy(x)]kl ≈
N

2

1

2π

∫ π

−π

(

∂

∂σ2
ln Syy(e

jω;x)

)2

dω =
N

2σ4
. (6.33)

Combining (6.31), (6.32), and (6.33), we obtain the Fisher information matrix

Iy(x) =

[

(N/σ2)Λy(x) 0

0 N/(2σ4)

]

(6.34a)

where

[Λy(x)]ij = Kyy [i − j], i, j = 1, 2, . . . , M. (6.34b)

From (6.34) we obtain the following Cramér-Rao bounds on unbiased esti-
mates of the parameters:

var â[k] ≥ σ2

N

[

Λ−1
y (x)

]

kk
, k = 1, 2, . . . , M (6.35)

var
σ̂2

σ2
≥ 2

N
(6.36)

Useful insight can be obtained from examining the special case correspond-
ing to M = 1. In this instance, recall from Example 4.15 that the associated first-
order spectrum

Syy(z) =
σ2

(1 − a[1]z−1)(1 − a[1]z)
(6.37)

corresponds to the autocovariance

Kyy [n] =
σ2

1 − a2[1]
(a[1])|n| (6.38)

so that (6.35) specializes to the condition

var â[1] ≥ σ2

NKyy [0]
=

1

N

(

1 − a2[1]
)

. (6.39)

Hence, the closer the pole of the shaping filter H(z) is to the unit-circle, the better
we might expect to be able to estimate the pole location. This behavior holds more
generally for other values of M—the closer the poles are to the unit-circle, the more
peaky the spectrum, and the more effective we can expect an estimation algorithm
to be.
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6.2.2 Maximum Likelihood Parameter Estimates

Let’s determine the form of the ML estimates for the Gaussian autoregressive mod-
eling problem. First, since

Syy(e
jω) =

σ2

|A(ejω)|2
(6.40)

the function J(x) in (6.15b) specializes to

J(x) =
1

2π

∫ π

−π

[

ln σ2 − ln
∣

∣A(ejω)
∣

∣

2
+

1

σ2

∣

∣YN(ejω)
∣

∣

2 ∣
∣A(ejω)

∣

∣

2
]

dω

= ln σ2 − 1

2π

∫ π

−π

ln
∣

∣A(ejω)
∣

∣

2
dω +

1

σ2

1

2π

∫ π

−π

∣

∣YN(ejω)
∣

∣

2 ∣
∣A(ejω)

∣

∣

2
dω. (6.41)

The second term in (6.41) is zero. To see this, first note that A(ejω) is the
frequency response of a causal, BIBO-stable system, so A(z) converges in some
region of the z-plane including the unit-circle, and, hence so does A(1/z) and

B(z) = B̃(z) + B̃(1/z) (6.42)

where

B̃(z) = ln A(z) = ln

[

1 −
M
∑

n=1

a[n]z−n

]

. (6.43)

Since the second term in (6.41) is b[0], the sequence whose z-transform is (6.42)
evaluated at n = 0, it suffices to show that b[0] = 0.

Since a[n] is causal, the region of convergence of A(z) extends to |z| → ∞, so
we can exploit that for suitably large z, we have2

B̃(z) = −
∞
∑

k=1

(−1)k

k

[

M
∑

n=1

a[n]z−n

]k

(6.44)

which we see consists of strictly negative powers of z. Hence,

b̃[n] = 0, for n ≤ 0. (6.45)

Finally, from (6.42) we see

b[n] = b̃[n] + b̃[−n] (6.46)

so combining (6.45) with (6.46) we obtain b[0] = 0 as claimed.

2Here we have used the familiar power series

ln(1 − x) = x − 1

2
x

2 +
1

3
x

3 − · · ·

valid for |x| < 1.
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Thus, (6.41) simplifies to

J(x) = ln σ2 +
1

σ2

1

2π

∫ π

−π

∣

∣YN(ejω)
∣

∣

2 ∣
∣A(ejω)

∣

∣

2
dω. (6.47)

The objective function (6.47) has a unique local minimum corresponding to the
ML parameter estimates, which are the solutions to the stationary point equations

∂J

∂σ2
=

1

σ2
− 1

σ4

1

2π

∫ π

−π

∣

∣YN(ejω)
∣

∣

2 ∣
∣A(ejω)

∣

∣

2
dω = 0 (6.48a)

∂J

∂a[k]
=

1

σ2

1

2π

∫ π

−π

[

A(ejω)ejωk + A∗(ejω) e−jωk
]
∣

∣YN(ejω)
∣

∣

2
dω = 0. (6.48b)

From (6.48a), we see that the ML estimate of σ2 is specified in terms of the ML
estimates of the filter parameters:

σ̂2 =
1

2π

∫ π

−π

∣

∣YN(ejω)
∣

∣

2
∣

∣

∣
Â(ejω)

∣

∣

∣

2

dω (6.49)

where

Â(ejω) = 1 −
M
∑

n=1

â[n]e−jωn. (6.50)

To obtain the filter parameter estimates, we note that since the sequence a[n]
is real, (6.48b) simplifies to the condition

1

2π

∫ π

−π

Â(ejω)
∣

∣YN(ejω)
∣

∣

2
ejωk dω = 0, (6.51)

which using (6.50) can be expressed directly in terms of the coefficients â[n], i.e.,

M
∑

l=1

â[l]

[

1

2π

∫ π

−π

∣

∣YN(ejω)
∣

∣

2
ejω(k−l) dω

]

=
1

2π

∫ π

−π

∣

∣YN(ejω)
∣

∣

2
ejωk dω. (6.52)

To put (6.52) in its final form, note that as a consequence of (6.4) we have

∣

∣YN (ejω)
∣

∣

2
= F

{

K̂yy [n]
}

(6.53)

where K̂yy [n] is the sample covariance function

K̂yy [n] =















1

N

N−1−|n|
∑

k=0

y[k] y[k + |n|] |n| ≤ N − 1

0 otherwise

. (6.54)

Hence, the ML equations can be written in the form

M
∑

l=1

â[l] K̂yy [k − l] = K̂yy [k], k = 1, 2, . . . , M, (6.55)
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i.e.,










K̂yy [0] K̂yy [1] · · · K̂yy [M − 1]

K̂yy [1] K̂yy [0] · · · K̂yy [M − 2]
...

...
. . .

...

K̂yy [M − 1] K̂yy [M − 2] · · · K̂yy [0]





















â[1]
â[2]

...
â[M ]











=











K̂yy [1]

K̂yy [2]
...

K̂yy [M ]











. (6.56)

The equations (6.56) are referred to as the estimated Yule-Walker equations, and
the resulting algorithm as the autocorrelation method of linear prediction for reasons
that will become apparent.3 It is also possible to show that the solution of these
equations have a variety of attractive characteristics, perhaps the most important
of which is that for any N the resulting â[n]’s always correspond to an Â(z) with
its zeros strictly inside the unit circle, so that the resulting all-pole modeling filter
1/Â(z) is always stable. Furthermore, it can be shown that the resulting parameter
estimates are consistent.

Equally importantly, the equations (6.56) can be efficiently solved using a
fast algorithm referred to as Levinson’s recursion. The problem of solving a set of M
linear equations (e.g., by Gaussian elimination) has, in general, a computational
complexity of O(M3). However, with Levinson’s recursion (6.56) can be solved
with O(M2) complexity. While a detailed development of Levinson’s algorithm is
beyond the scope of these notes, it is worth pointing out that the algorithm exploits
the special structure of estimated Yule-Walker equations, recursively computing
the Mth-order model parameters from those of the (M − 1)st-order model, etc.
This means, in addition, that as a byproduct the Levinson algorithm yields all
lower-order solutions to the modeling problem, which can be useful in scenarios
when the appropriate model order is not known a priori.

Finally, note that σ̂2 can be readily obtained from the filter parameter esti-
mates. In particular, using (6.50) and (6.53) in (6.49) we obtain

σ̂2 = K̂yy [0] −
M
∑

k=1

â[k] K̂yy [k]. (6.57)

It is also worth pointing out that for nonGaussian problems—and even purely
deterministic ones—the same parameter estimates are obtained as the solution cor-
responding to a different performance criterion that does not require knowledge
of process statistics. In particular, let ŵ [n] denote the output of an FIR filter with
system function Â(z) driven by the zero-padded observations

ỹ [n] =

{

y [n] n = 0, 1, . . . , N − 1

0 otherwise
. (6.58)

3By contrast, the exact ML estimates for the closely related Gauss-Markov parameter esti-
mation problem in the homework correspond to the autocovariance method of linear prediction.
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Then the coefficients â[n] that minimize the total energy at the output of the filter,
i.e.,

∑

n ŵ 2[n], are obtained as the least-squares solution of a (overdetermined) set
of N + M linear equations for the M unknown coefficients, which in turn corre-
sponds to the solution of (6.56). Moreover, σ̂2 corresponds to the average power
in the resulting minimum energy output, i.e.,

σ̂2 =
1

N + M

∑

n

ŵ 2[n]. (6.59)

6.3 LINEAR PREDICTION

Let us finish with an observation of a key connection between the modeling prob-
lems developed above, and a fundamentally different Bayesian estimation prob-
lem involving prediction. Suppose y [n] is a zero-mean wide-sense stationary ran-
dom process with known covariance function Kyy [n]. In this problem, Kyy [n] is
arbitrary—we do not assume that y [n] is an autoregressive process of any order.
And let us develop a linear-least squares estimate of y [n] based on y [n − 1], y [n −
2], . . . , y [n − M ]. We write this estimate in the form

ŷ [n] = a[1] y [n − 1] + a[2] y [n − 2] + · · · + a[M ] y [n − M ], (6.60)

and recognize that the one-step prediction process y [n] can be viewed as the output
of a M-tap FIR filter with system function

A(z) =

M
∑

n=1

a[n] z−n (6.61)

driven by y [n−1]. Then by the orthogonality principle developed in Chapter 3, the
optimum predictions have the property that the corresponding prediction errors
are orthogonal to the data, leading to the normal equations

E [(ŷ [n] − y [n]) y[n − k]] = 0, k = 1, 2, . . . , M, (6.62)

which can be written in the form

E

[

M
∑

l=1

â[l] y [n − l] y [n − k]

]

= E [y [n] y [n − k]] , k = 1, 2, . . . , M. (6.63)

Hence,
M
∑

l=1

â[l] Kyy [k − l] = Kyy [k], k = 1, 2, . . . , M (6.64)

which, in matrix form, corresponds to










Kyy [0] Kyy [1] · · · Kyy [M − 1]
Kyy [1] Kyy [0] · · · Kyy [M − 2]

...
...

. . .
...

Kyy [M − 1] Kyy [M − 2] · · · Kyy [0]





















â[1]
â[2]

...
â[M ]











=











Kyy [1]
Kyy [2]

...
Kyy [M ]











. (6.65)
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The normal equations (6.65) for this problem are referred to as the Yule-Walker
or linear prediction equations. Interestingly they are strikingly similar to those that
arose in the very different estimation problem involving autoregressive model-
ing, viz., (6.56). Note that (6.65) differs from (6.56) in that samples of the true
covariance function for y [n] are involved in the former rather than the estimated
covariance function. Nevertheless, the similarities in the form of the equations can
be exploited in a variety of ways. As one important example, Levinson’s recursion
can be used to efficiently solve this linear prediction problem.

It is also interesting to note that the resulting â’s in (6.65) do not depend on
n—i.e., the prediction filter is time-invariant. This is a consequence of the fact that
the process y [n] is wide-sense stationary. Also, the variance of the prediction error
follows from an application of Pythagoras’ theorem exploiting the orthogonality
characteristics of the error:

λLLS = var [ŷ [n] − y [n]] = Kyy [0] −
M
∑

n=1

â[n] Kyy [n], (6.66)

which we see also has a form directly analogous to that of (6.57).

In the next section of the course, we will more generally explore linear-least
squares estimation problems involving random processes.


