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The difficulties of extending to relativity the results obtained in a preceding paperO are 

set forth; in particular the relativistic behaviour of •the time and length minimal constants 

brings us to a well-known problem. The proposed vi·ews attempt to deal with these questions. 

They give a relativistic generalization of the classical diffusion theory, from which the Klein

Gordon equation is deduced. Consistent results are obtained by a relativistic survey of 

Dirac's fluid model. Subsequent investigations have been carried out concerning the character 

of relativity and the limitation of its validity in microphysics. 

§ I. Introduction 

In a preceding paper/> (which will be referred to as (A)), we have shown 

that, with suitable conventions, Schrodinger's equation can be deduced from the 

laws of stochastic diffusion. We have seen that the diffusion process involves 

time and length constants (the time and length mean intervals between two 

collisions) having the meaning of minimal entities for diffusion, and consequent

ly for quantum mechanics. This investigation had the double aim of providing 

· a concrete basis to microphysics, and answering the need for minimal length 

and time constants, connected with ·the experimental data leading to spatial 

extension of particles. 

A further investigation in the field of relativity is advisable both to better 

generalize the result of the earlier work, and to specify the relativistic behaviour 

of the constants therein introduced. 

But this latter task meets with a well-known difficulty: How can minimal 

time and length constants be invariant, and if they are not, how can they have 

a physical meaning? This discrepancy, and the subsequent impediments in the 

quantum field theory, have already incited several physicists to think that some 

modification should be found (probably in limiting its extension) to the use of 

relativistic formalism in microphysics. 

This necessity also appears if one attempts to conciliate stochastic processes 

with relativity. The first step should be to generalize the classical diffusion 

theory, which is not relativistic ; but this seems to lead to a deadlock In the 

field of diffusion theory, a stochastic element has no definite velocity (see(A), 

§ 2,2); how then can it be related to a Lorentz frame? On the other hand the 

Fokker-Planck equation lacks just one term that could render it relativistic; it 
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148 J. C. Aron 

is thus very unlikely that its relativistic extension should meet with a definitive 

impossibility. 

We will show below how this contradiction can be overcome, together with 

the aforementioned difficulty concerning the variance of the constants. We will 

first prove that appropriate· postulates permit a relativistic approach to the theory 

of diffusion, from which relativistic quantum potential and the Klein-Gordon 

equation can be deduced. We will then examine the consequences of the pro

posed views on relativity and relativistic microphysics. (When we refer to our 

thesis/) we shall mention it by (T)). 

§ 2. Scheme of the present work 

2 ·1 Recall of the basic assumptions used in the previous work 

we associate to every particle of rest mass mo a stochastic fluid, the diffus

ion constant of which is k = h/mo c, within the approximation of the classical 

diffusion theory. The physical character of this fluid is not specified: It may' 

be either a real subquantal fluid, or the fluid of probability concerning the par

ticle itself, submitted to stochastic motions.*) In any case, all the ordinary d~ta 

concerning continuous media (temperature, entropy, etc.) are macroscopic enti

ties which have no meaning at the scale of our study. 

The basic assumptions concerning the laws of diffusion properly, will be 

recalled in § 3. 

When the spin is taken into account, it is considered as representing local 

(and non aleatory) rotations in the fluid. Dirac's fluid is obtained by addition 

of two spinned constituents, as recalled in § 5. 

2 · 2 Extension of the classical theory of diffusion 

We have given in (A) reasons leading to take the velocity of light c as 

the free travel velocity of the stochastic elements. We now show that, with 

_ this choice, the approximation of the classical diffusion theory is identical to 

the non relativistic approximation. 

The extension of the diffusion theory to the relativistic case consequently 

entails new laws for diffusion, of which the classical laws are an approximation. 

The following question then arises: shall we, as it is commonly done, start 

from the relativistic formalism ? If we do so, we fall again into the aforemen

tioned deadlock: impossibility of associating a Lorentz frame to basic elements 

with no definite velocity .. We therefore infer that relativity should not apply 

at the basis, but-the relativistic formalism being not taken into account for 

the basic elements-it should appear by itself, at the higher level where an 

average velocity can be defined. 

*> In (A), we suggested at the end that the double character of the fluid should be maintained, 

and should be an aspect of the quantum dualism. 
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Stochastic Processes in Microphysics in Connection with Relativity 149 

This will be verified in two ways : 

a) by searching for the general laws to be laid down for diffusion. We 

shall see that convenient stochastic assumptions make Lorentz's contraction ap

pear by itself. 

b) by working out the equation generalizing the Fokker-Planck equation; 

after stochastic assumptions equivalent to those of a), relativistic covariance 

also appears by itself, the space-time formalism having not been used at the 

start. 

But if relativity does not apply at the basis, this implies an inferior limit 

of its validity in the microscopic field. This point is confirmed by the fact 

that the covariance of the general diffusion equation is only obtained if the 

entities involved are the proper ones, although the frame is unique in the whole 

space. 

We defer to the end (see subsection 2 · 4 hereafter) the close investigation 

of this limitation. 

2 · 3 The model of Dirac's fluid 

We now examine the model of Dirac's fluid in the relativistic case; this 

survey, worked out independently of the former, leads exactly to the- same 

results: 

a) Lorentz's contraction appears from itself in the model. 

b) The concrete interpretation given by the model implies that relativity 

IS not valid for the motions inside the proper frame (local microscopic motions) . 

2 · 4 Further suggestions 

It still remains to define the limit of the field of relativistic laws. We 

propose an explanatory principle and show that: 

a) it covers all the points dealt with in the present work; 

b) it answers several problems or difficulties concerning quantum mechanics 

and relativity; 

c) it is consistent with all the laws of relativity, and allows, with the help 

of the stochastic basic fluid, a concrete interpretation of these laws. 

§ 3. A relativistic approach to the theory of diffusion 

3 ·1 Preliminary observations 

a) Recapitulation of the principles of the theory of diffusion 

These principles have been explained in ((A), § 2). A homogeneous and 

isotropic diffusion process for the positional chance variable X is defined: 

a) by the probability P(xt/ (X (0) = x0)) of transition from a position x 0 

given at time zero to a random position x at time t; 

{3) by the average velocity: 
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150 J. C. Aron 

u=limit: 1/t· ( (x-xa)P[xt/(X(O) =x0)]dx, 
t-J>O J (1) 

r) by the diffusion constant k given by 

with the condition Ior higher orders: 

tJ) by the probability density p (xt) connected with u by the Fokker

Planck equation 

(4) 

These conditions define a diffusion representation in which: the velocity 

(J'o of the free travel is infinite ; the number of collisions in any finite time is 

infinite (if the mean free path is finite); the mean time (} between two colli- · 

sions is infinitesimal ; the individual stochastic elements have no definite velocity; 

only the average velocity u can be defined. 

To this representation we have opposed the kinetic representation in which 

(Jo is finite, (} non infinitesimal, and consequently, between two collisions, the 

elements have a velocity. To determine a boundary between these two represen

tations, which are not situated on the same scale, we started from the diffusion 

representation, and assuming the position of an element to be known in M at 

time zero, we pictured the diffusion as follows : 

I. We first assume u=O. The diffusion at time t is figured by the sphere 

of expansion (2) of center M and radius L1 = vkt (standard deviation at time 

t). The radial expansion velocity of (2), (J=LI/t= Vk/t, is infinite for t~O, 
which confirms that the diffusion representation is not valid for small· values 

of t, for one must have (J <(Jo. 

We have defined the boundary between the two representations as given 

by the instant(}' when (J=(Jo, then (}'=k/(Jo
2

• We identify (}' with the time (} 

of free travel, and then for the free path A, we get A= (}(Jo; (} and A take on 

the meaning of. minimal constants. 

II. If u=FO, this picture vanishes, as during the minimal time fJ the center· 

111 of (2) is displaced by u(} ; the picture may however be maintained if this 

displacement is much smaller than the expansion A= fJ(Jo i.e. if 

u<(Jo. (5) 

b) The constant (Jo 

In (A) we have taken ()0 = c; this choice (besides letting us successfully 

deduce the quantum laws from the stochastic laws), is justified for the follow-
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Stochastic Processes in Microphysics in Connection with Relativity 151 

1ng reasons : 

a) The condition (5) provides a limit of vaiidity to the above picture. 

Another limit emerges from the fact that the diffusion theory is not relativistic. 

It is very likely that the two limits should be the same; if so, G0 =c. 

{3) If a stochastic fluid is assumed to afford a physical basis to matter, 

the free travel velocity of this fluid is a structural constant which should appear 

in matter equations; this also gives 6o=c. 

r) We have suggested in (A) that there should be no separation between 

the stochastic fluid and the vacuum ; the diffusion model extended by this con~ 

tinuity to the vacuum should then give an average velocity u equal to zero in 

every frame of reference. Now, since u is obtained by addition of velocities 

of magnitude Go, we again find Go= c. 

With Go=c, (} and A become respectively: 

fo = h/mo c
2
, lo = h/moc. 

c) First consequences 

a) The choice Go=c shows by (5) that the approximation of the classical 

diffusion theory is identical to the non-relativistic approximation. 

,{3) This approximation is also characterized by the fact that, during the 

minimal time ro, the translation lo = uro is negligible in comparison with the ex

pansion Ao = l0• Now if we call the two entities d and A at any arbitrary in

stant t>ro, we have d=ut, A= vkt. The condition d<A will be satisfied if t 

is infinitesimal. 

Applying, this for t = ro, we see that the non-relativistic approxinzation con

sists in the fact that ro may be considered infinitesimal. 

It follows that beyond this approximation the definitions of u and k by Eqs. 

(1) and (2) are no longer valid, for on one hand they are based on the limit

ing process t~O, on the other hand they belong to the diffusion representation, 

in which t > ro. These two conditions are not consistent if ro is not infinitesimal. 

We have to replace Eqs. (1) and (2) by new formulae containing, instead of 

t~O, the minimal time ro, i.e. 

u<1
) = 1/ro · ~ (x- Xo) P[xro/ (X (O) = Xo)] dx, (6) 

kW =1/ro·) (xi-Xio) (xi-X~o)P[xro/(X(O) =Xo)]dx. (7) 

We may consider u<1
) as a new conventional definition of the average velocity 

(henceforth we write u with the meaning of u<1
)). As for the kW, we write 

(with the approximation defined below): 

kg> rv kij = k 0 ij , (8) 

The physical assumption which exists implicitly in Eq. (8) will soon appear. 
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152 .l. C. Aron 

We finally remark that the Fokker-Planck Eq. (4) does not contain r 0 , k 

being finite (which actually gives r 0 infinitesimal, as r 0 = k/c2 and c is infinite). 

In the relativistic case c is finite, then k=r0 c
2 is of order 1 in r 0• We assume 

that Eq. (8) is valid to the same order. 

3 · 2 Basic assumptions for the relativistic case 

In the non relativistic case we had considered, during the infinitesimal time 

t, the average translation motion drvut and the isotropic dispersion Drvvkt, 

with I d I<D. 
Let Mi (t) be the mean quadratic value of the coordinate xi, we have 

Mi
2 
= di

2 + D 2
• 

The assumption di<.D can be expressed as follows: For t--)0 the mean 

quadratic value Mi and the isotropic standard deviation Di = D are equivalent; 

in other words 

limit M//t=limit D 2/t=k. 
t~O t~O 

Moreover k is a constant; at the limit t--)0, 1\lfi and D have an invariant 

character; only the average motion depends on the frame of reference; the 

structure of the fluid, determined by k, is not modified by the relative motion. 

In short, the approximation of the classical diffusion theory may be defined 

as follows: 

The mean quadratic value and the standard deviation of a coordinate, 

taken in an infinitesimal time interval, are equivalent, and invariant during a 

change of reference frame. 

Outside this approximation, we have to compare the two mean values Mi 

and D at time ro; they remain the same for the coordinates normal to u, if the 

direction of u has not varied sensibly during the time ro ; but for the coordinate 

directed along u, we have, (calling L the mean quadratic value and l the stan

dard deviation after time r o) : 

(9) 

Then, not only L and l are different, but the difference of their squares 

depends on the reference frame. This result can be expressed as follows : 

In the relativistic case, the quadratic mean value Land the standard devia

tion l of the coordinate directed along the average velocity, at the minimal time 

r 0,*) are no longer the same, and consequently cannot be both invariant in a 

change of reference frame. 

To lay down new laws for diffusion, we shall keep our choice as simple 

as possible: We may adopt the invariance of either l or L. 

*l They could be, instead, taken at the corrected time 't'of2 , as the expansion is linear up to -ro. 
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Stochastic Processes in Microphysics in Connection with Relati'vity 153 

First choice : Invariance of l. 

We equate l to the proper value lo. 

Second choice: Invariance of L. 

We put L = l 0 , as the two mean values are the same In the proper frame. 

Equation (9) yields 

l2 
= L 2 

- u
2 I c2 ·lo 2 

= lo 2 
( 1 - ti I c2

) • 

The appearance of the Lorentz contraction with the second choice incites 

us simultaneously to decide for the second choice and to lay down a connec

tion between the standard deviation of the coordinates (at time r 0) and the 

macroscopic lengths. 

From the law of lengths the space-time formalism can be deduced.*) As 

for the law of mass and energy, we could define the mass in motion m by the 

relation l=hlmc, (similar to lo=hlmoc) whence m=m 0 /Vf-u
2 /~ 2 • But we can 

proceed less formally, observing that the relation m 0 =hllo c defines the rest mass 

as inversely proportional to the frequency of collisions: Thus mass-energy equi

valence means that the rest mass may be defined as random agitation energy 

of the stochastic fluid. 

Then, if this significance is conserved for the system in translation, and if 

the energy of agitation remains proportional to the density p of the fluid, which 

varies inversely as l, we get for the energy W 

Wlmo c
2
=loll= 1lv1-tilc

2
• (10) 

Remark. In (A) we have introduced the quantum velocity v connected to u by 

v=u-cl0/2 · V log p. (10') 

As v and u differ by a gradient, they are equivalent in macrophysics, where 

the relativistic formulae may be written with v instead of u. 

3 · 3 The relativistic equation of diffusion 

We have already mentioned the impossibility of assigning a frame of ref

erence to a stochastic element without definite velocity. A similar fact appears 

when considering the definitions of the basic diffusion constants: For instance 

let us take Eq. (6) and ask ourselves in what frame of reference it could be 

read. Obviously this question is meaningless : The only velocity which could 

determine a reference frame is that defined by the formula itself. This shows 

that spacetime formalism cannot be considered as a starting point for the study 

of the individual elements, but should afterwards appear by itself-in connection 

with the average translation motion-just as we have seen the Lorentz contraction 

arising from physical postulates concerning diffusion. This will be verified in 

*) We shall hereafter deduce it directly from concrete considerations. 
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154 J. C. Aron 

working out the relativistic equation of diffusion. 

a) Recapitulation of the proof of the Fokker-Planck equation 

We here give the more intuitive proof, on which the principle of rdativis

tic extension appears in the simplest way ; we refer to (T) for rigorous demon

strations based on Chapman's equation (Markovian processes) or on more general 

assumptions (non-Markovian processes), and also for the equation in terms of 

initial variables. 

Let a stochastic element be in M(x) at time t; we compute in two ways 

Q =limit 1/ (t'- t) · iJj, iJf being the variation, between t and t', of the average 
t' --'J>t 

value of a time-independent function f(x) in its field of existence V. 

We first have, p (x t) being the probability density: 

Q=li~l~ [1/(t' -t) · {~ f(x)p(xt')dx- ~f(x)p(xt)dx}] 
v v 

= ~ f(x) fJp (xt) /8t · dx. (11) 

v 

On the other hand, to account for the transitions between t and t', we also 

have, calling (S) the whole space : 

Q= ~ p(xt)dx[~f(x')P[x't' /(X(t) =x)]dx' -f(x)]. 

V (S) 

Expanding: 

f(x') =f(x) + (x/ -xi)fJjfJxi·f(x) + (x/ -xi) (x/ -x1) 82/8x/}x1 ·f(x) + ... , 

we get by Egs. (1), (2), (3) and ~ P[x't'/(X(t) =x)]dx'=1, 

(S) 

Q = ~ [p (xt) ui (xt) fJ jfJxi ·f(x}dx + k/2 ·P (xt) Jf(x) ]dx} (12) 

v 

= ~f(x) [-8/fJxi· (pui) +k/2·Lfp]dx. 

v 

Equating Eq. (12) with Eq. (11), we get, V andf being arbitrary, the Fokker

Planck equation 

b) Adaptation to the relativistic case 

The only modification is that, instead of limit 1/ (t'- t) · iJj, we have to take 
t' --'J>t 

1/ro·iJlf, o\f-being the variation off between t and t+ro; besides, Eqs. (1) 

· and (2) must be changed into Eqs. (6) and (7). 
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. Stochastic Processes in Microphysics in Connection 1-vith Relativity 155 

We now have, instead of Eq. (11) 

Q=1/ro· c)f(x)p(x, t+ro)dx- )f(x)p(x t)dx], (13) 

v v 

and, to obtain the new first order equation in ro, we have to expand p (x, t + ro) 

in Eq. (13) to the second order in ro ; thus 

Q= )f(x) [8pj8t+ro/2·o 2p/8t2]dx 

= )f(x) [8pjot+k/2c2 ·o2pjot2]dx. 

Equating (14) with (12) we get 

8p/8t+8/8xi· (pui) =k/2·0 p. 

This equation leads to the following remarks: 

(14) 

(15) 

a) It has space-time symmetry, which, as foreseen, has arisen by itself, no 

relativistic formalism having been imposed at the beginning. 

(j) We have worked out this equation without specifying in which reference 

frame it should read; about this frame two conditions appear. 

{jl) The frame (1:) must be unique, for the calculation takes into account an 

extended volume where the velocity u is variable. 

(j2) Nevertheless the equation is not covariant unless the density pis the prop

er density and the velocity u is defined by means of the proper time. 

We seem once more to have fallen upon a contradiction, impossible to 

reconcile with classical views, and of the same type as before: Taking into 

account the proper entities means ignoring the formalism at the outset of our 

reasoning, and yet the results ,deduced force us into this very formalism.*) 

The connection with subsection 3 · 2 is easy: The postulate now admitted 

is expressed by Eq. ,(8); it means, by Eq. (7), the invariance of the mean 

quadratic values of the coordinates after time ro, provided (in accordance with 

condition {jl) that the random point is related to the fixed and unique frame 

(l:). 

These points will be confirmed by consistent results concerning the spin 

particle model (§ 5). 

§ 4. Relativistic diffusion and quantum mechanics without spin 

4 ·1 Relativistic quantum potential and the Klein-Gordon equation 

a) QuantU1n potential 

We proceed similarly to the non relativistic case; there we had chosen an 

action function 9: given for u = 0 by 

*) This will be explained below more accurately (§ 6). 
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156 J. C. Aron 

(16) 

Po being related to p by 

[Po dx] (t) = [p dx] (t-To/2). (17) 

The entity p represented both the stochastic and the quantum densities; 

only the velocites (u and v) were different. In the relativistic case we shall 

see that the densities also must be distinguished. Therefore, we shall hence

forward call p the density of the stochastic fluid, reserving p for the density 

which we shall find in the quantum equations. 

with 

We then remark that Eq. (15) reads 

ji = pui- c
2/2. 'to ap jaxi (i = 1, 2, 3)' 

j4=ic(p+ 1/2·ro apj8t). 

(18) 

(19) 

(20) 

This allows us to define a fictitious velocity v and a fictitious density p 

forming a conservative stream whose fact leads us to consider them as the 

velocity and density of the quantum fluid; we take 

vi= ic jtfj4 = (pui- c2 ro/2 · 8pj8xi) / (p + ro/2 · 8pj8t), (21) 

p=p+ro/2·8pjat. (22) 

Now, similarly to Eq. (17), we define a density Po by 

[Po dx] (t) = [p dx] (t--r 0 !2), (23) 

and change Eq. (16) into 

pr;I = - f1Po1noc 2 (for u __: 0), (24) 

where f1 may be a function of local entities, equal to 1 for ro = 0, and expressi

ble, to the second order in r o, by 

tL = 1 + ar o + (1r o 
2 

, 

a and t1 being indeterminate functions. 

We have by Eqs. (23) and (24) 

pr;I dx=- (1+aro+t1ro2
)mo c

2
(p dx)Ct--ro/2). 

Now, by Eq. (22) 

(p dx) (t--ro/2) = (p dx) (t)- ro/2. a j8xv. (pu,J (t) -'dx (t) 

= [p(t) -r0/2·8pj8t(t)]dx(t) -to/2·8/fJxv· (puv)(t)•dx(t), 

whence, by Eq. (15). 

p5I= -mo c2 (1+aro+t1ro2
) (p-ro/2·8pj8t-c

2 ro2/4·DP] 
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Stochastic Processes in Microphysics in Connection with Relativity 157 

or, as we have, to the second order in ro; ro
2 

D pr----ro
2 

D p: 

9:= -mo c2 (l+ar0 +/1ro2
) [1-ro/2p·8pj8t-c

2 
ro

2
/4P·D p]. (25) 

This expression is to be equated to that obtained with the quantum entities 

p and v. Now, in relativistic mechanics, a mass point has an action function 

We must then put here 

(26) 

K accounting for the quantum potential. 

By Eqs. (19) and (20), Eq. (26) reads, for u= 0, to the second order in ro: 

9:= -mo c
2
Vl-c

2 
ro

2
/4p

2
• (Vp)

2
·K } 

r..J -moc2 V1-c
2 

ro
2

/ 4p
2 

• (V p) 
2 

• K 

(26') 

Equation (25) must contain no term of first order in ro, as the action function 

does not contain such a term in the non-relativistic approximation [see (A), 

Eq. (19)]; thus a= 1/2p · 8pj8t. 

Then, identifying Eqs. (25) and (26'), we have 

K 2 =1-c2 r 0
2 [1/2·D pjp-1/4P2 ·L;(8pj8xv) 2

] + [2/1-1/4p
2

• (8pj8t)
2
]ro

2 

=1-c2 ro2 D Yp/Yp+2ro2[/1-1/8P
2

• (8pj8t)
2
]. 

Relativistic invariance gives 

(C) being a linear combination of relativistic invariants, quadratic in the dxw 

The correct expression in the non-relativistic approximation is obtained only 

if (C) vanishes ; then 

9: = -mo C
2
Vl-h

2
/mo C

2
• DYp/Y p· V1-v

2
/c

2
, 

whence we deduce the quantum potential 

Q= -li2/2mo· oV pjV{J: 

1.e. the value known in quantum mechanics.3
) 

b) The Klein-Gordon equation 

To get the Klein-Gordon equation for a free particle, we consider a mono~ 

chromatic wave in the rest system: 

· cjJ = V P (xyz) exp (imoc2t) /It 
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158 J. C. 'Aron 

for which the quantum potential must vanish, the particle being stationary; 

this condition yields 

(27) 

Any combination of monochromatic waves satisfies the same equation, and 

it is possible, as in ((A), § 3, 2, b) to connect the amplitude a and phase q; of 

a non-monochromatic solution of Eq. (27) to the local entities of the stochastic 

fluid, (putting here r"" = - 11/mo · aq;jax""), which allows us to associate with every 

non-rotational stochastic fluid a wave function ruled by the Klein-Gordon equa· 

tion. 

c) Renzark 

It is very easy to obtain 5I in terms of jJ, in the frame where u= 0; Eq. 

(25) reads to the second order : 

5:!= -moc 2 [1+ro/2p·~p +ro
2
/8P

2
• (apjatrJ [1-ro/2p·8pj8t-c2 r 0

2/4·Dpjp], 
at 

or, expanding (with prvp in the second order term) 

5:!= -mo c2 [1-ro2/8p2
• (8pj8t) 2 -c2

f 0
2/4·Dpjp]. 

4 · 2 Survey at higher order of approximation 

(28) 

In the non-relativistic case, the diffusion equation was worked out to order 

zero in ro. Now we have obtained the diffusion equation to order 1, and drawn 

from it the Klein-Gordon equation. 

We ask ourselves if, with a higher order of approximation, we should obtain 

not only a new equation for diffusion, but also a new wave equation. 

a) Diff~tsion equation to the second order in ro 

The additional terms should satisfy the following conditions: they should 

be rational functions of densities, velocity components and their derivatives ; 

they should be covariant in three dimensional space; and they should not include 

rot u, as we are still dealing with a spinless fluid, and we have seen in (A) 

that spin is connected with rotational properties of the stochastic fluid. We 

modify our previous conventions as follows : 

a) The velocity defined by Eq. (6) -and hereafter called u 1-is no longer the 

correct velocity u ; we may put u = u 1 + u', and because of the. aforementioned 

condition, we have to write, with indeterminate numerical coefficients JCa), J<o), 

J<c), J<d>, IC1, IC2 (u and u 1 being equivalent in the corrective terms): 

u/=r0
2/p· {JCa)8 2 (pui)/8t 2 +A(b)c28pj8xi· (divu) +J<c)p82ui·/8t2 

+ J<d)pui [ (divu) 2 + 1C1/ p2 
• ~ (apjaxj) 2 + 1C2/ p 2 

• (apjat) 2]}. 

j 

(3) Instead of Eq. (8) we write 
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Stochastic Processes in Microphysics in Connection with Relativity 159 

ki1 = koi1 +). <e)ro2
/ p ·a (puiu1) /at+). (!)ro2

/ p · uiu1 apjat. 

r) Finally we introduce the third order moments, and put 

IJ.i1,.=1/ro· ~ (x/ -xi) (x/ -x1) (x,.' -x,.)P[x', t+ro/(X(t) =x)]dx 

We have now to adapt the proof worked out in (§ 3·3, b) for the diffusion 

equation, and expand to the third order derivatives. In, Eq. (13) we get the 

additional term (with p instead of p): 

1/6. ro2 aap/ats, 

In Eq. (12) the integration by parts gives 

for a): 

for {3): 

for r): 

The addition of the terms 

-a jaxi · (pu/), 

1/2 a
2 
/a xi ax1 • (p ki1), 

-1/6 a3jaxi aXj ax,_• (p/1-ijk). 

-1/6 · r o 
2 fJSp jat3

,- r o2 A (a) a3 (p.ui) /at2 a xi, 

1/2 A (e) to2 a3 (p Ui Uj) jaxi axj at, 

-1/6 A('J) ro2 a3 (p Ui Uj u,.) jaxi OXj ax,. 

gives, with A (a)= 1/6, A (e)= 1/3, A <u) = -1, the invariant 

1/6 • to2 a3 (pUP U, Uu) jaxp. fJx, fJxu 

(as it is still admitted that space and time variables are proper variables). All 

other coefficients must vanish. The diffusion equation becomes 

a (pup.) joxp. · -c'~/2 · roOP -1/6 to
2 a3 

(pup.u,uu) /ax# ax, a xu= 0 

(29) 

or aj p./axp. = 0, with 

j P. =pup. -c
2 ro/2 · apjfJxP. + j P-

1
, 

putting 

j / = -1/6 • to2 a2 (pUp. Uv llu) jfJx, OXrr. 

b) Quantum potential 

We write 

and 

v/ = j // p', P' = j // ic. 

In the frame where u = 0, we have again 

(30) 
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160 J. C. Aron 

(31) 

To find g, the most convenient way is to start from Eq. (28), with addi

tional terms determined by the following conditions : 

a) g_- must be invariant in three dimensional space; 

{3) In Eq. (28) we had (for g_-/mo c2
) a term r 0

2/8p2 
• (8p/8t) 2 connected with 

density variations, with a first order derivative ; and a term c2 r 0
2

/ 4 · Dp/ p, con

nected with the first order derivatives of the additional stream: c2 -c0
2/2 · 8pj8x"" 

We lay down the same conditions, the additional stream being now j/. 
Thus, using indeterminate coefficients, we have 

q= -m0 c2 [1-ro2/8p2
• (8pj8t) 2 -c2 ro2/4·Dp/p 

+f) c2 r 0
3

/ p 3 
• 8p/8t · ~ (op/8xi) 2 + r;ro 8v/ /8xi 

i 

+ ( 'fo/P · op' jot+ ~ro v/ jp ·opj8xi]. 

We have then to write 

p= p -ro/2· opj8t+ 0 X ro, 

opjoxP- = opj8xP-- r 0/2 · 02p/8t oxP- + 0 X 'f0 , 

Dp=D p-ro/2+0X'fo. 

(32) 

Substituting in Eq. (32), and calculating K [by Eqs. (30) and (31)), with 

u = 0] from the expression 

K=q + 1/2·v2/c2 =q + ~j//2p 2 c2 

i 

= 9"' + ~ ·1/2P
2 

C
2 

• [ -c
2 
r

2
o/2 · op/oxi + j/J 2, 

i 

the computation gives [see details in ( (T), chap. VII)] : 

K= 1-c2 'fo2/2· Dvp-/V p+c2 'fo3/4·o(DVpjVp) jot 

+ (f) -1/8) c2r0
2

/ p3 
• opjot ~ (opjoxi) 2 + (~ -1/2) ro/ p · v/ opjoxi 

i 

+ r;ro 8v/ joxi + (ro/ p · op' jot. 

Taking, for the sake of covariance, {) = 1/8, ~ = 1/2, r; = ( = 0 we get 

This equation is covariant if, in an arbitrary frame (t0 being the proper 

time), we write 

(DV Po/V Po) ct-To/2) = (DV Po/V Po) ct)- ro/2 · D (DVp~jv Po)/ Dto 

and we may take D/Dto=vP- 8/oxP-, as vP- and uP- have a difference of first order in r 0• 

c) Wave equation 
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Stochastic Processes in Microphysics in Connection ·with Relativity 161 

Thus we have obtained a refined expression for the quantum potential, ac

counting for a time shift t~t- r 0/2 in the action function. This shift is a 

consequence of the theory, for the action function being the basic entity, quantum 

entities are drawn from it with a relative time shift of + r 0/2. 
To get the Klein-Gordon equation we had stated that for a stationary mono

chromatic wave the quantum potential vanishes. This condition gives again: 

DVpjVp=O; thus we obtain no equation other than Klein-Gordon equation. 

It is very likely that the result would be the same at higher orders: One 

would get only finer corrections of the local entities. But these corrections 

could be divergent expansions if ro were not infinitesimal on the scale of the 

variations of the system, and both the equation and the quantum potential would 

then lose their meamng (see below § 6 ·1). 

§ 5. Spin fluid, model and relativity 

5 · 1 The model of Dirac's fluid outside the proper frame 

We have shown in (A) that Dirac's fluid is obtained by addition of two 

constituents (/) and ?J! with opposite screw motions, having velocities equal to c 

and colinear to their spins. 

Calling (JIJ), VI/) and srP the density, velocity and spin density of the fluid (/) 

(and similarly for ?J!), and rJ, v and S the same entities for the global fluid ; 

one has the following properties : 

vi/) and viJ! are respectively colinear to SIJ) and S1Jl (vi/) along SrP, v1Jl contrary 

to S1Jl), 

Fig. 1. Fig. 2. Fig. 3. 

In the proper frame (v= 0), vi/) and v1Jl are both colinear to the spin SjJ 

of the global fluid, vi/) along S, viJ! contrary to S; as jvl/)j = jv1Jlj =c, it results rJm 

= rJ 1Jl = (J /2. The model is depicted by Fig. 1. 

Outside the proper frame (v=FO), the model is represented by Fig. 2. 
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162 J. C. Aron 

First case 

We first examine the case of S and v being normal (Fig. 3). Then 

(fq)= (fljf= (f 12. 

In this case sina=(fvl(fc=vlc. Thus the passage from Fig. 1 to Fig. 3 

actually corresponds to the passage from the non-relativistic to the relativistic case. 

Each component stream is related to the circular orbit (T(T) or TlJf) defined 

in ((A), § 4, 2 and 4), having the spin (S(T)I(f(T) or Sljfl(fljf) for its axis, lal2 for 

its radius, the orbit being described by a fictitious point of velocity c, so that 

the spin is the angular moment of this point bearing the mass of the particle. 

The radius (MPm=MP1Jf=lal2) of the orbit (T(T) or Tljf) defines the dispersion 

at time rol2 of a random element (f]) or 7Jf) located in 1.11 at time zero. The 

projection of these two orbits on a plane normal to S is the same ellipse (e), 

of which the diameter of the minor axis, directed along v, IS 

l = lo cos a = lo V 1 - v
2 I c2

• 

In the case of Fig. 1, (TcD) and (Tljf) corresponded to the unique orbit (T) 

of which the diameter lo was the standard deviation of coordinates in the sto

chastic fluid after the minimal time ro. We may admit that (G) has the same 

significance; then l represents, for the coordinate x directed along the transla

tion velocity v, the standard deviation in the global fluid after time r 0• 

Thus we find again, independently, the result obtained in § 3: The stan

dard deviations of coordinates after the minimal time r:0 accord with the 

Lorentz transformation. 

General case 

In the general case (Fig. 2), the projections of MP(T) and MPljf on v are 

now different ; say x(T) = lal2 ·sin a1 ; xlJf = lal2 ·sin a2. But (f (T)x(T) = (f 1Jfx1Jf ; then we 

may imagine a fictitious fluid, such that the standard deviation X of the coordinate 

x after time ro would be given by 

or 

(f 12 • X= (f m xcD = (f 1Jf xljf. 

The calculation of X [see (T), chapter X, p. 101] yields, with /3=vlc 

X 2 =lo2l4· (1-/32
) [1-11/32

• ((fcD-(f1Jf) 2l(f2
],', 

X 2 
= lr/ I 4 · (1- /32

) sin
2 e I (1- /3 2 

cos2 e), 

(fJ angle of v with S). 

The difference with the Lorentz transformation Is of the second order in 

nl2-fJ, or in (f(T)-(flJf. If these entities are small, X can be defined as a con

ventional free path, the variation of which follows the Lorentz transformation. 

This law having been obtained in § 3, it leads us to suppose that the normal 
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Stochastic Processes in Microphysics in Connection rvith Relativity 163 

state of the fluid is the state in which the densities (J 1JI and (J 1JI are equal or 

nearly equal, and the velocity normal or nearly normal to the spin. 

5 · 2 Relativity and local motions 

We have again arrived at relativity from the model; but we can go a step 

further. A concrete interpretation of Takabayasi's representation (known to be 

equivalent to Dirac's equation) has been given in ( (T), Appendix I). Now, 

in working out this interpretation, we have taken no account of relativistic rules. 

For instance : 

a) The relation ((A), 35) for the angular momentum L 

L=mo lo2/4·rot v 

which does not violate the relativistic formalism for the global fluid (as v = 0 

in A1, the calculation being carried out in the proper system), has been applied 

to each of the component fluids (Lm=m 0 l 0
2/4·rot Vm, etc.), although !vml and 

Jv1Jil are equal to c; and this has 'given the correct term rotS for the momentum. 

{3) The angular momentum of the fictitious point P moving on the orbit (T) 

with a velocity c has been computed in a Newtonian manner, as mo lo/2·c=h/2, 

which has given the interpretation of the spin as the value of this momentum. 

r) The tensions have been calculated after the Newtonian formula tij = mo rJ0 

X vivi> and the energy as the work done by them on the unit of length, which 

for the primary motions Vm and vljl has given the proper energy density 

mo [rJ mlvml
2 + (J 1Jilv1Jil

2
] = moc

2 
(rJ m + (J IJI) ='!no c

2
rJ. 

]'bus the following conclusions appear: 

a) The laws of relativity are included in the model, and concern the global 

translation motion (velocity v) to which alone a proper frame of reference can 

be related. 

b) The 1notions inside the proper frame (local nzicroscopic motions) are not 

subtnitted to relativistic laws. In other words, the times and lengths involved 

in these motions are always the proper times and lengths. 

These two conclusions are identical to those drawn in § 3 from a critical 

survey of stochastic diffusion. 

Let us remark that we already adopted implicitly this view in (A), when 

making out the uncertainty relations (§ 3 · 3, a): for the dispersion on P:c, (actions 

inside the proper frame with velocity c) we had taken simply mo c. As V (.dx)2 

is the invariant quadratic mean value,*) the relation is invariant. 

§ 6. Comments and suggestions 

6 ·1 The definition of the relativistic case 

*> Because all measurements are exerted from the fixed frame (see § 6. 2b). 
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164 J. C. 'Aron 

a) Principle 

The relativistic case is usually characterized by the magnitude of v /c. But 

we have obtained a more general definition (see § 3 ·1, c). We enter the field 

of relativity as soon as ro-and consequently la= vkro-are not infinitesimal at 

the scale of the times and lengths involved; or, in other words, as soon as the 

physical entities have variations sensible on ro or lo. 

The condition urvc is a particular application of this general rule to the 

coordinates. But relativity also applies if other local entities, for instance the 

density p, have variations sensible on ro or lo. This has already appeared 1n 

Eq. (10'): if fi'P/ p has variations sensible on l 0, it gives to v- u variations of 

order c, so that at least one of the two velocities is relativistic. 

A confirmation appears in the interpretation of Takabayasi's relations, which 

is valid only up to the second order in r 0 (see (A), § 4 · 4, c). 

b) Consequences 

These views explain two facts that have seemed rather difficult to under

stand; viz. uncertainty of localization arising with relativity, and connection of 

spin with relativity. 

a) Uncertainty of localization 

As Newton and Wigner have shown,4
),

2
) the positional operator X= -ilt8/8p 

is hermitian in Schrodinger's equation, and admits x for eigenvalue. In the 

Klein-Gordon and Dirac equations, X is not hennitian; the eigenfunctions for 

coordinates are no longer o functions ; the correct eigenfunctions have a field 

of extension of order lo; why has this indeterminacy arisen with relativity? 

The answer is obvious ; the non-relativistic case is the approximation in 

which lo is infinitesimal. 

{3) Spin and relativity 

Why is it necessary, in order to obtain a correct wave equation, to intro

duce simultaneously spin and relativity? For instance, why does Pauli's equa

tion fail to give an exact forecast for hydrogen atom spectroscopy, although 1n 

this atom no motion has a relativistic velocity? 

Here again the answer is simple. The elementary vibration described 1n 

((A), § 4 · 2, b) involves spin and density variations sensible on ro and l~. That 

is why Dirac's equation is consistent, taking into account both spin and relativity. 

The Klein-Gordon equation is not consistent, for a relativistic equation should 

contain the spin vibration.*) As to Pauli's equation, which is not relativistic, 

it cannot provide a complete picture of the elementary local motions;**) it only 

*) Here we study particles with spin 1/2, which, according to the theory of fusion, are the 
basic ones. In that view, an equation "without spin" does not mean that the particle is spinless, 
but that its spin variations are neglected. 

**) This can be verified in following the passage from Dirac's to Pauli's equation.5) In the 
momentum vector G [see (T), chap. IX, Eq. (15)], the term 1/c·SoA/fJt is neglected, which is not 
legitimate if A has rapid temporal variations, as it has in the elementary vibration. 
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Stochastic Processes in Microphysics in Connection with Relativity 165 

gives a global representation of local structure on a higher scale (see (A), § 4, 3). 

The only consistent equations are Schrodinger's equation (spin and relativity 

both neglected) and Dirac's equation (Spin and relativity both admitted). 

6 · 2 Character and limits of relativistic formalism 

a) First comments 

By two independent methods we have obtained the same result; Eqs. (6), 

(7) and (15), in which the times and lengths involved are at every point the 

proper time and length (although related to a unique frame in the whole space) 

as well as the model of Dirac's equation, show that at the basis relati7Jity does 

not apply. Relativity appears with the average translation motion, that allows 

us to define a physical frame of reference, the " proper " frame ; local micros

copic motions inside that frame are not submitted to relativistic laws; no 

physical frame can be assigned to them. 

This leads us to think that the classical interpretation of special relativity 

may be somewhat conventional ;*l for instance imagining an observer with rulers 

and clocks riding on a microscopic element might have but a formal significance. 

We do not even know if the motion in close contact of two Galilean macro

scopic systems with relative velocity approaching c is physically possible :**l 

relativistic effects concerning galaxies are measured on photons emitted by 

them.***l In fact, effects of special relativity have been always observed on 

microscopic elements confronting a macroscopic material system. 

Let us now show that the whole formalism of special relativity can be 

grounded on a concrete basis, admitting only principles sure to be physically 

significant. 

b) Concrete interpretation of the formalism 

At the basis is a stochastic fluid (F) moving before a fixed system (.2'); 

all measurements, all physical actions are exerted from (Z); the "proper" frame 

(Zo) will only be alluded to in order to prove the practical equivalence of the 

proposed views with the classical ones. 

Instead of comparing measurements in (1:) and (Zo), we compare measure

ments in two states of (F): 

State I: 

State II: 

(F) motionless in (1:), ****l 

(F) moving before (Z). 

*> This is not easily recognizea because Einstein's views on space and time seem to give a 

physical basis to the formalism. But they are purely critical, and the formalism is directly laid 

down, without any basis other than the experimental invariance of c. 

Another difficulty is that special relativity is commonly considered as a part of general rela

tivity; but the formal unity may cover facts which are physically different (see below remarks on 

general relativity). 

**> See below remarks on artificial satellites. 

***> See below for Doppler effect. 

****> Or far enough from (.S) (see below). 
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In the first state lengths concerning (F) are unperturbed (and also times, 

as will be shown); in the second state they are perturbed by the motion, in a. 

way that will be investigated later. 

Obviously, as far as the measurements are concerned, this view is equivalent 

to the classical one: Measurements done from (.l:o) would yield the results of 

~tate I, the entities to be measured and the measurmg devices being perturbed 

in the same ratio. 

a) Propagation of actions with velocity c. Invariance of this velocity 

The maximal propagation velocity of actions in the fluid is the velocity c 

of free travel (transmission along an axis by successive collisions, the elements 

concerned having each time their velocities directed along this axis). We call 

elementary action*) such an action propagating with velocity c. 

Now the propagation of an elementary action exerted from (.1:) on the fluid 

in M at time t depends on its microscopic local structure at time t + ro/2, such 

as it appears to an observer in (.1:). This structure is figured by the quadra

tic mean values of the distances to (.1:) at time t + ro/2. These values being · 

invariant, the local structure is also invariant, and so is the propagation velocity. 

Thus, the invariance of the maximal wave velocity is another expression of the 

invariance of the quadratic mean values of the coordinates up to the minimal 

time ro. 

(3) Measurements of times 

We define clocks in (.1:) by the vibration of elementary waves propagating 

in (.1:) with velocity c. 

(31) Period of waves 

If (F) is unperturbed 1n state I [in: which case we call it (Fo)], the wave 

(W0) can be identified with the propagation of an elementary periodic action 

in (F0): period T 0 , dephasing between two elements E1 and E2 at distance Xo: 

(f/o = 2n Xo/To. 

If (F) is in state II [moving before (.1:)], we consider a wave (W) of 

period T, of velocity c in (.1:), [as caused by a physical action exerted from 

(.1:) J, and clocks in (.1:), of which the dephasing between two points M and 

N at the distance x is cp ~ 2rcx/ cT. 

Taking for E 1 and E2 the elements of the fluid being at the same time 

respectively in M and N, we consider that (W) and (Wo) correspond to each 

other if cp ~ cp0• In other words the phase is the intrinsic character defining the 

wave. 

This gives 2nx/T=2nxo/To, whence 

*> It might be in fact the basic mircoscopic action, actions propagating with lower velocities 

being macroscopic averages, such as the average velocity u defined by Eq. (1) or (6). 
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/32) Simultaneousness 

The setting up of the clocks (C) is done by the emisswn of elementary 

waves. 

Let (E1) and (E2) be the elements of (F) passing respectively at time zero 

before two clocks M and N of (.Z); (MN = x). At this time we launch an 

elementary wave from J.Yf to N; when it reachs N, (E2) is in N' (NN' = v · x/ c), 

another element (E3) is in N, having the phase (say zero) that (E1) had at 

time zero ; (E1) has now the phase cp = 2nx/ cT. We choose as simultaneous 

events in (F) the phase zero for (E3) and the phase cp for (E1). 

Let us now launch in (Fa) an elementary wave from (E1) to CE2); let E1, 

E 2, E 3 be the positions of (E1), (E2), (E3); the phase of the vibration of CE1) 

when (E2) has the phase zero is '(/Jo = cp; the instant at which the phase of (E1) 

is cp (wave in E 2) is then separated from the associated instant (wave in Ea) 

by a delay: 

to= -E2Es/c=- (l/vl-v
2/c2

) ·NN' /c= -'l'X/c21/1-'l'2/c2
• (34) 

/3a) Lorentz formulae for time 

Let eel) and ce2) be two events. occurring at the points (AI) and (A2) of 

(~) at times zero and t respectively, and concerning elements (E1) and CE2) 

of (F). Let (E/) be the element arriving in (A1) at time t; we associate with 

(Er') and (E2) the two events (er') and (C?2), (e/) being the phase of (E/). 

These events being simultaneous in (.Z), are separated in (Fa) by a time ta<
2
l 

given by Eq. (34). (el) and (er') are measured on the clock in (A1); the 

corresponding time ta<1
> in (Fa) is given by Eq. (33), I.e. 

ta<l) = t/v~r=--.; 2 /l-)~ 

The addition gives 

to= ta<1
l + ta<2

l = (t- 'lJX/ c2
) /1/1- 'l,2j c 2 ~ 

r) Addition of 'l'elocities 

(35) 

Let (Sa) be a fluid moving before a fixed system (S) with the velocity v 

along Ox. A mass point M has along Ox a velocity V relative to (S); let va 

be the velocity of M relative to (So). 

In time dt [measured in (S)], the motion of A1 is dx. Let (E) and (E') 

be the elements of (Sa) that coincide respectively with M at either end of the 

interval dt. The distance from (E) to (E') is (V -v)dt. 

Now let (Sa) be unperturbed; The Lorentz contrac;:tion being cancelled, (E) 

and (E') are now at a distance dx0 = (V-v)/V1-v
2

/c
2
~dt. The time dt0 mea

sured in (Sa) unperturhed, between the coincidences of M with (E) and (E'), 
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168 J. C. Aron 

IS given In terms of dt and dx by Eq. (35), 1.e. 

dto = (dt- v · dxlc 2
) I v1~ :~/1~ 2 -= dt ;-vi =~/};; 2 

• (1 - v vI c2
), 

whence 

Vo=dxaldta= (V'--v)l(1-vV/c 2
). 

o) Kinetic entities 

The mass in motion m having received a stochastic definition, we substitute 

m for mo to get the relativistic momentum G = mv ; then we consider the force 

as defined by 

-----------

F= mdGI dt = mo/v.f-v21 c 2
• d. (mo vj-j/1- v

2
/ C

2
) I dt. 

We similarly obtain the canonical tensor; for instance, for the free fluid, 

the quantity of momentum passing per unit time in direction v through an unit 

surface normal to the axis 11 is 

Tpv=Pvf' Gv=Polmo·Gf' Gv. 

The symmetry of the tensor results from the mass-energy equivalence. 

c) Proper angular momentum and spin 

The classical calculation for the relativistic variance of proper angular mo

mentum applies6
l to the model of a rotator M turning with velocity v 0 round 

a point G. This point is the origin of a reference frame (1:0) moving before 

(1:) with a velocity v along Ox; the velocity of Jt1 relative to (1:) is V. One 

takes the moments of the momenta m 0 Vlvl-=-1-12lc 2 and 1no v0/V1 _:_;o 2 /~ 2 • 

When adding the velocities, the square roots forming these two denominators 

vanish, and there remains plainly 

(36) 

This calculation means that one has substituted the mass in motion of M 

for the rest mass, or its contracted free path l for l 0 • But the rotation of M 

is a motion inside the proper frame (1:0); one must take simply in (l:o) 

So= m 0 GMAvo. (37) 

The expression of the spin in (1:) is deduced from Eq. (37), taking into 

account the Lorentz contraction in GM and v0 ; whence directly the relations 

(36), without having introduced the redundant factors v1-v~ 2 /c 2 
and vi- V 2/c2

• 

The model of Fig. 3 gives also the result: When passing from Fig. 1 to 

Fig. 3, the spin component normal to v is multiplied by cos a= v1-v2/c2
• It 

may be verified that the definition of the spin as an orbital angular momentum 

remains valid, the elliptic orbit being substituted for the circular orbit (T). 

r;) Doppler effect 
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Stochastic Processes in Microphysics in Connection with Relativity 169 

Let (S) be the Earth, (S') a star of relative velocity v, (Z) a photon 

emitted by (S') towards (S) in a direction of which the angle with v, in (S'), 

is fY. Let us recall that the photon frequency has no concrete significance unless 

its velocity is not strictly c ; i.e. its rest mass mo not strictly zero [see (A) § 4, 

4, bs]. Then, let w and w' be the velocities of (Z) relatives to (S) and (S'). 

The action of (S') on (Z) gives to the photon a frequency v' connected to 

i~ proper frequency ~ by 

The action of (S) on (Z) gives similarly a frequency 

whence 

c) Additional remarks 

a) On the consequences of the views proposed 

a1) They allow us to understand why the velocity of light is included in matter 

equations; the privileged role of light in Einstein's arguments on space and 

time had never be clearly justified. 

a2) They solve the aforementioned difficulties and contradictions. 

The fact that the diffusion equation is not covariant unless it is read with 

the proper entities in an unique frame in the whole space, is now easily ex

plained. The proof of this equation deals with an unperturbed fluid: times 

and lengths involved are the proper entities available for the free fluid. The 

equation being thus written, (i.e. in the view of the formalism, written in the 

proper system), carrying out on it a Lorentz transformation means that we now 

take into account the effects on lengths (and consequently on times, as shown 

above) of the motion before a macroscopic system. 

As for the variance of the length and time constants, it gives rise to no 

difficulty. The longitudinal standard deviation l, the time r= l/c of the longitu

dinal free path, are average entities of an extended random fluid, and submitted 

to the laws of relativity: l transforms like a length*) and r like the period of 

a wave. The intrinsic conceptions (for instance the "radius " of a particle) 

concern the unperturbed fluid, and apply to the proper entities. In particular, 

if the radius of the individual stochastic elements can ever be defined, it will 

*> In as much as it is a standard deviation; but in the elementary actions exerted on the fluid 

the invariant quadratic mean value is involved. 
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170 J. C. Aron 

afford the universal and inv~riant basic length, which has been formally intro

duced in several recent works. 

{3) The physical nature of the Lorentz contraction 

We have considered the Lorentz contraction as a perturbation exerted on 

the moving fluid; what can be its nature? 

If, as suggested, relativistic effects arise by the motion of a stochastic fluid 

before a macroscopic material system (1:), it is natural to think that the per

turbating effect should consist in a physical action from (1:). In favour of this 

assumption we make the following remarks: 

{31) In the model of Dirac's fluid, the two component streams are colinear at 

rest ; motion produces an angle a (sin a= vIc); thus the model has been distort

ed, and the distorsion becomes sensible with vIc. 

{32) Relativity has embodied the kinetic energy in the mass, and the mass itself 

is here identified with stochastic agitation energy ; thus, when the fluid is sub

jected to a motion, the increase in its energy has two aspects : (1) as a sto

chastic effect, it results from the decrease of the free path, due to the Lorentz 

contraction; (2) as a kinetic effect, it results from an external action. The 

equivalence of these two aspects again suggests the consideration of the Lorentz 

contraction as a physical action, which besides appears natural once we have 

admitted the solidarity of macroscopic lengths with the standard deviation in the 

fluid. 

{33) By this assumption several effects of special relativity become concretely 

accountable (necessity of a torque to maintain the equilibrium of a cranked 

lever in translation, etc.). 

{34) A possible objection could be raised in imagining two systems (S) and 

(Z) adding their perturbations on a third one. This case would be difficult to 

conceive; but it does not seem to be concretely possible. If the system (.Z) 

;:;atisfies both conditions having a relativistic velocity and remaining near enough 

to (S) so as to undergo its perturbating action, its dimensions should probably 

be relatively small in comparison to those of (S); then, if another material body 

is launched from (1:), when its motion becomes uniform the action of (Z) will 

be negligible before that of (S). 

Let us point out that the proof given above for the addition of velocities 

does not involve such cumulative actions ; for it does not take into considera

tion the reference frame connected to the point M in motion; only the action 

of (S) on (50) is accounted for. 

{3 5) The idea that all relativistic effects are of purely geometrical nature has 

lost much of its weight since the existence of gravitons has been assumed. 

, y) Connection ·with general relativity 

If we send an artificial satellite far enough from the Earth, should we ex

pect a decrease in the effects of special relativity? 
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Stochastic Processes in lt1icrophysics in Connection with Relativity 171 

In practice we also have to take into account effects of· general relativity, 

which similarly consist of a reduction. Are these two effects identical or 

different? Experience should decide. In the first eventuality the views pro

posed would bring no limitation to relativity in the macroscopic field; the local 

action of a reference frame in relative motion would be embodied in the general 

action of all the masses of the universe. 

~ 7. Conclusion 

Is it surpns1ng that from the special problem of diffusiC?n two general con

sequences should arise for relativity: its limitation and its concrete int~rpreta

tion? We do not think so, as we have suggested in (A) that stochastic diffus

ion should be considered as a basis for matter ; it is then quite natural that it 

should also afford a concrete basis to relativity. It is commonly considered that, 

in comparison to microphysics, relativity is macroscopic ; but it may seem to 

be so because it has not yet been investigated at the lower level. In fact, the 

difficulty of dealing with extended particles within the frame of the relativistic 

formalism (and the other difficulties mentioned above) should lead to this new 

investigation. 

Let us finally remark that we have changed nothing in relativity, but vague 

interpretations which are loose transpositions of the formalism: for instance, 

the common affirmation that " each observer carries his space and time ". Some 

apparent difficulties, such as the variance of the radius of particles, may simply 

arise from the fact that the relativistic formalism is taken as a physical basis, *l 

whilst it is nothing more than a formalism. 
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