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Stochastic processes shape microeukaryotic
community assembly in a subtropical river
across wet and dry seasons
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Abstract

Background: The deep mechanisms (deterministic and/or stochastic processes) underlying community assembly
are a central challenge in microbial ecology. However, the relative importance of these processes in shaping
riverine microeukaryotic biogeography is still poorly understood. Here, we compared the spatiotemporal and
biogeographical patterns of microeukaryotic community using high-throughput sequencing of 18S rRNA gene and
multivariate statistical analyses from a subtropical river during wet and dry seasons.

Results: Our results provide the first description of biogeographical patterns of microeukaryotic communities in the
Tingjiang River, the largest river in the west of Fujian province, southeastern China. The results showed that
microeukaryotes from both wet and dry seasons exhibited contrasting community compositions, which might be
owing to planktonic microeukaryotes having seasonal succession patterns. Further, all components of the
microeukaryotic communities (including total, dominant, always rare, and conditionally rare taxa) exhibited a
significant distance-decay pattern in both seasons, and these communities had a stronger distance-decay
relationship during the dry season, especially for the conditionally rare taxa. Although several variables had a
significant influence on the microeukaryotic communities, the environmental and spatial factors showed minor
roles in shaping the communities. Importantly, these microeukaryotic communities were strongly driven by
stochastic processes, with 89.9%, 88.5%, and 89.6% of the community variation explained by neutral community
model during wet, dry, and both seasons, respectively. The neutral community model also explained a large
fraction of the community variation across different taxonomic groups and levels. Additionally, the microeukaryotic
taxa, which were above and below the neutral prediction, were ecologically and taxonomically distinct groups,
which might be interactively structured by deterministic and stochastic processes.

Conclusions: This study demonstrated that stochastic processes are sufficient in shaping substantial variation in
river microeukaryotic metacommunity across different hydrographic regimes, thereby providing a better
understanding of spatiotemporal patterns, processes, and mechanisms of microeukaryotic community in waters.

Keywords: Biogeography, Plankton, Microeukaryotic community, Subtropical river, Environmental factors, Neutral
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Background
Microbial community assembly, the mechanisms shaping
the microbial community diversity, and its distribution,
functions, succession and biogeography, is a central, but
poorly understood, topic in aquatic microbial ecology, es-
pecially in lotic ecosystems [1–5]. Niche-based and
neutral-based theories constitute two important and com-
plementary mechanisms for understanding microbial
community assembly [6–8]. The niche-based processes
considers that microbial communities are shaped by the
deterministic abiotic (environmental factors such as pH
and temperature) and biotic factors (species interactions
such as competition and predation) due to different habi-
tat preferences and fitness of microbes [9–11]. On the
contrary, the neutral theory asserts that stochastic pro-
cesses, such as birth, death, immigration, speciation, and
limited dispersal, shape the microbial community struc-
ture [4, 8, 12, 13], and assumes that microbes exhibit a
stochastic balance between the loss and gain of taxa [7,
14]. Although stochastic processes are considered to play
important roles in shaping microbial community structure
[6–8, 15], the importance of ecological stochasticity in in-
fluencing community structure is far less appreciated. The
main reasons for such little appreciation are the difficulty
in defining stochasticity and the methods used in repre-
senting stochasticity [4]. Community diversity and distri-
bution patterns can provide evidence for the processes
underlying community assembly [1, 16]. The neutral com-
munity model (NCM), proposed by Sloan et al. [7], is par-
ticularly useful in quantifying the importance of neutral
processes [7, 13].
Most microbial community assembly studies have fo-

cused on marine, soil, and lake environments [2, 10, 17–
19]; however, microbial plankton investigations of lotic
ecosystems (e.g., rivers) are still limited, especially in
subtropical region [20]. The river environments are al-
ways accompanied with complex biogeochemical and
microbial community variations. Indeed, certain devel-
opment activities, such as agriculture, industry, and
urbanization, can affect environmental variables of lotic
ecosystems, leading to environmental conditions that are
more complex and dynamic compared to lentic ecosys-
tem (e.g., lakes), so it is difficult to make broad general-
izations about freshwater systems [3, 21, 22]. The
Tingjiang River, which is the largest river in the west of
Fujian province, southeastern China, provides the major
source of drinking water for a large number of people
[23]. This river includes many small tributaries and
shows highly dynamic environmental conditions similar
to other lotic ecosystems in subtropical monsoon region
[3, 24]. Further, the hydropower dams built along the
main channel and its tributaries might exacerbate river-
ine ecosystem vulnerability and reduce the value of eco-
system services [3]. The microeukaryotic diversity and

biogeography from the Tingjiang River have not been in-
vestigated in the previous studies. Additionally, in
aquatic ecosystems, seasonality is a key driver of envir-
onmental fluctuation, distinct microbial community di-
versity, and composition [20]. However, there exists
limited knowledge on the factors shaping microeukaryo-
tic biogeography across seasons in subtropical rivers.
Therefore, understanding the spatiotemporal patterns,
processes, and mechanisms of Tingjiang River’s micro-
eukaryotic community across a hydrologic gradient in
different seasons is of great importance because of their
importance to river health, water quality, and ecosystem
services.
In natural ecosystems, microeukaryotic communities

include abundant taxa as well as rare or low-abundance
ones [25, 26]. The abundant or dominant taxa normally
contribute major functions in ecosystems because of
their high abundance [27]. Recent advances in microeu-
karyotes profiling using the high-throughput sequencing
allowed us to directly observe and study the “rare bio-
sphere” [27–29]. Although the dominant taxa drive
many ecosystem processes, these rare taxa can also ex-
hibit unique metabolic activities, carrying out particular
metabolic functions, and present distinct biogeography
[10, 29, 30]. Further, rare and abundant taxa have dif-
ferent life histories that could influence their dispersal
capacities [28]. Another interesting point is that taxa
which are usually rare but occasionally become more
prominent in their communities, namely the condition-
ally rare taxa (CRT). The rare-to-abundant occurrence
pattern of CRT has been reported in multiple ecosys-
tems, where CRT ecology may help to identify the
biological, chemical, and physical drivers of microbial
dynamics [29]. Considering the ecological importance
and difference of always rare taxa (ART), conditionally
rare taxa (CRT), and dominant taxa, understanding
whether these groups exhibit similar or different bio-
geography in rivers will provide a more comprehensive
understanding for microeukaryotic community assem-
bly [25, 28].
In this study, the planktonic microeukaryotes, together

with environmental and spatial factors, were analyzed in
the Tingjiang River during both wet and dry seasons
(Fig. 1). We first hypothesized that microeukaryotic
plankton communities exhibit a significant distance-
decay pattern during both wet and dry seasons, and this
pattern is stronger in the dry than wet seasons due to
high level of the spatially structured environmental
gradients in dry season, thereby decreasing the relative
importance of stochastic processes. Further, we pre-
dicted that abundant and rare taxa are assembled via
similar mechanisms as they are likely to have similar
ecological responses to environmental and spatial changes
[5]. In addressing this hypothesis, we separately
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investigated community assembly mechanisms shaping
the entire microeukaryotic communities, as well as the
dominant, always rare, and conditionally rare taxa sub-
communities. To quantify whether neutral or stochastic
processes drive the biogeography, we employed the neu-
tral community model of Sloan et al. [7]. For quantifying
the effect of niche or deterministic processes, we exam-
ined the relationship between microeukaryotic communi-
ties and various environmental and spatial factors using
the Mantel test and variation partitioning analysis [3, 20].
Further, given the difference of occurrence frequency and
relative abundance among above, within, and below the
neutral model predictions, we separated the microeukar-
yotic taxa into neutral and non-neutral (above and below)
fractions, and we expected that these two fractions could
show different community compositions with contrasting
responses to environmental change. We also hypothesized
that the migration rate is a key factor in differentiating

neutral and non-neutral fractions. This study aimed
to answer the following key questions: (1) Do micro-
eukaryotic communities in wet and dry seasons ex-
hibit similar or different spatiotemporal patterns? (2)
Are the total, dominant, always rare, and conditionally
rare microeukaryotic taxa assembled via different
community assembly mechanisms? (3) How well do
neutral processes explain the microeukaryotic assem-
bly across different seasons in the subtropical river?
(4) To what extent do species’ migration rate and en-
vironmental factors affect neutral and non-neutral
community compositions?

Results
Comparison of environmental factors between wet and

dry seasons

The environmental factors are summarized in
Additional file 2: Table S1. Half of the 24 environmental

Fig. 1 Sketch map of Tingjiang River showing the sampling sites in wet and dry seasons. A total of 60 surface water samples were collected in
July and November 2015. The map of Tingjiang River sampling sites was performed using ArcGIS 10.1 (ESRI, Redlands, CA, USA)
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factors showed a significant difference between wet and
dry seasons (Additional file 2: Table S2). In general, the
mean values of temperature, turbidity, suspended solids,
electrical conductivity (EC), TOC, NO3-N, and arsenic
(As) were significantly higher in the wet season than
those of the dry season. On the contrary, pH, dissolved
oxygen (DO), total phosphorus (TP), PO4-P, and cad-
mium (Cd) showed higher mean values in the dry
season.

Comparison of microeukaryotic community alpha

diversity between wet and dry seasons

Rarefaction curves for individual and combined set of 60
samples showed that most samples from either wet or dry
seasons tended to approach saturation, and wet microeu-
karyotic communities showed higher species richness with
the same sequencing effort (Additional file 1: Figure S1).
Good’s coverage ranged from 97.68 to 99.31% in the indi-
vidual samples, and the index of all 60 samples combined
was 99.98% (Additional file 2: Table S3). The rarefaction
curves, extrapolated species richness indices (ACE and
Chao 1), and Good’s coverage indices indicated that the
majority of the microeukaryotic taxa had been recovered
from the studied metacommunity (Additional file 1:
Figure S1 and Additional file 2: Table S3). In general, the
microeukaryotic metacommunity in the wet season
showed higher alpha diversity compared with those in the
dry season.
A total of 17,416 microeukaryotic OTUs were identi-

fied from 6,623,640 high-quality sequences at 97% simi-
larity level for the 60 samples, and all microeukaryotic
taxa were divided into five categories (conditionally
abundant taxa, moderate taxa, always rare taxa, condi-
tionally rare taxa, and conditionally rare and abundant
taxa) since no OTU was detected as always abundant
taxa (Additional file 2: Table S4).

Comparison of microeukaryotic community composition

between wet and dry seasons

Overall, most diverse OTUs in both wet and dry seasons
were assigned to the groups of Stramenopiles, Alveolata,
and Fungi, and the OTUs of Stramenopiles were signifi-
cantly more diverse in the wet than in the dry seasons.
In addition, most abundant OTUs were assigned to
Alveolata, Animalia, other eukaryota (incertae sedis
eukaryota), and Stramenopiles. The proportions of se-
quences of Alveolata, Animalia, Discoba, Holozoa, and
Stramenopiles were significantly higher in wet than in
dry seasons, whereas Chloroplastida, other eukaryota,
and Fungi showed higher relative abundance in dry than
in wet seasons (Additional file 1: Figure S2A).
Our PCoA ordinations and ANOSIM tests showed

that the microeukaryotic community compositions (in-
cluding total, dominant, always rare, and conditionally

rare taxa) from wet and dry seasons exhibited a clear
separation (R > 0.423, P = 0.001; Fig. 2). Venn diagrams
indicated that most OTUs obtained were shared be-
tween the two seasons (71.72% for total, 100% for dom-
inant, 64.99% for always rare, and 98.88% for
conditionally rare taxa; Additional file 1: Figure S2B).
Taken together, there were significant differences in
microeukaryotic community composition between wet
and dry seasons, although a large proportion of taxa
were shared with both seasons in the Tingjiang River.

Environmental and spatial factors related with

microeukaryotic community composition

The Mantel tests indicated that turbidity, electrical con-
ductivity (EC), total carbon (TC), nitrogen (TN and
NH4-N), phosphorus (TP and PO4-P), and arsenic (As)
were significantly associated with the microeukaryotic
communities (including total, dominant, always rare,
and conditionally rare taxa; P < 0.05, Additional file 2:
Table S5) in the wet season, while water temperature,
turbidity, suspended solids, carbon (TOC), nitrogen
(TN, NH4-N, NO2-N, and NO3-N), total phosphorus
(TP), zinc (Zn), and arsenic (As) were significantly corre-
lated to the microeukaryotic communities in the dry sea-
son (P < 0.05, Additional file 2: Table S5).
The two different spatial predictors (dendritic distance

and Euclidian distance between sampling sites) of microeu-
karyotic community compositions showed similar results
(Fig. 3, Additional file 1: Figure S3, and Additional file 1:
Figure S4). There were significant and negative relation-
ships between the geographical distance and Bray-Curtis
similarity of microeukaryotic communities (including total,
dominant, always rare, conditionally rare taxa) in both wet
and dry seasons (P < 0.01; Fig. 3, Additional file 1: Figure
S3). Further, the biogeography of both the always rare taxa
and conditionally rare taxa was similar to that of the dom-
inant and total microeukaryotic communities. Additionally,
Spearman’s rank correlations between the Bray-Curtis simi-
larity of river microeukaryotes (from genus to kingdom
levels) and two types of spatial distances (dendritic and Eu-
clidian distances) also showed a significant distance-decay
relationship (Additional file 1: Figure S4). All of the micro-
eukaryotic subcommunities exhibited a robust distance-
decay pattern, whereby community dissimilarity increased
with geographical distance, indicating that these distinct
microeukaryotic taxa under different hydrologic regimes
(i.e., wet and dry seasons) exhibited general similar spatial
pattern. Further, among the correlations between spatial
distances (either dendritic or Euclidian) and microeukaryo-
tic communities, all of the microeukaryotic communities
exhibited a stronger distance-decay pattern in the dry sea-
son than in the wet season (Fig. 3, Additional file 1: Figure
S3, and Additional file 1: Figure S4).
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Fig. 2 Microeukaryotic community beta-diversity visualized using PCoA ordination based on the Bray-Curtis similarity. Dominant represents taxa
including AAT, CAT, and CRAT. AAT, always abundant taxa; CAT, conditionally abundant taxa; CRAT, conditionally rare and abundant taxa; ART,
always rare taxa; CRT, conditionally rare taxa

Fig. 3 Distance-decay patterns based on the Bray-Curtis similarity of microeukaryotic community composition and cumulative dendritic distance
in wet and dry seasons, respectively (n = 435). Dominant represents taxa including AAT, CAT, and CRAT. AAT, always abundant taxa; CAT,
conditionally abundant taxa; CRAT, conditionally rare and abundant taxa; ART, always rare taxa; CRT, conditionally rare taxa. The shaded area
around the lines covers 95% confidence interval of the correlations
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Relative contribution of environmental and spatial factors

on microeukaryotic distribution

The variance partitioning analyses (VPA) results showed
that only a small proportion of microeukaryotic commu-
nity variation was explained by environmental and spatial
factors (Additional file 2: Table S6, Additional file 2: Table
S7, and Additional file 2: Table S8). Both variance parti-
tioning analyses (VPA) using environmental vs. principal
coordinates of neighboring matrices (PCNM), and envir-
onmental vs. asymmetric eigenvector map (AEM) vari-
ables revealed similar results in both the wet and dry
seasons. The principal coordinates of neighboring matri-
ces (PCNM) analysis, represents the geographical distance
matrix as Euclidean distance between each pair of sam-
pling sites, while the asymmetric eigenvector map (AEM)
analysis represents the network distance matrix between
two sites along the river.
Our VPA performed on environmental model and dir-

ectional spatial model (AEM) showed that over the four
communities (total, dominant, always rare, and condi-
tionally rare taxa) in the wet season, the pure environ-
mental variables (e.g., temperature, pH, As), the pure
spatial processes (the spatial structuring of the microeu-
karyotic community characterized by AEM variables),
and their shared effect explained mean 5.6%, 11.7%, and
8.2% of the community variations, respectively. For dry
season, the pure environmental, the pure spatial vari-
ables, and the shared effect explained mean 7.9%, 18.2%,
and 2.6% of the community variations, respectively.
Consequently, a large amount of the variance (on
average 74.5% for wet season and 71.3% for dry sea-
son, respectively) remained unexplained by the

environmental and spatial variables (Additional file 2:
Table S6). The VPA based on environmental and PCNM
variables (Additional file 2: Table S7 and Additional file 2:
Table S8) revealed similar results with VPA based on en-
vironmental and AEM variables. The high proportion of
unexplained variation in microeukaryotic taxa in wet and
dry seasons indicated the potential importance of neutral
or stochastic processes for community assembly, especially
in wet season.

Fit to the neutral model of community assembly

The neutral community model (NCM) successfully esti-
mated a large fraction of the relationship between the
occurrence frequency of OTUs and their relative abun-
dance variations (Fig. 4), with 89.9%, 88.5%, and 89.6%
of explained community variance for wet, dry, and both
seasons, respectively. Further, the NCM of microeukar-
yotic community at supergroup levels showed large ex-
plained community variance for wet (ranged from 78.8
to 99.3%, with mean value 91.3%) and dry seasons (var-
ied from 67.5 to 97.0%, with mean value 88.8%), respect-
ively (Additional file 1: Figure S5).
More importantly, the explained variation of NCM

tended to remain relatively large and constant along
taxonomic ranks from genus to kingdom taxonomic res-
olutions (all of the R2 over than 88.8% with mean value
92.7%), indicating that taxa within the same phylogeneti-
cal lineages generally show similar responses to stochas-
tic processes (Additional file 1: Figure S6). These results
indicated that stochastic processes were very important
in shaping the microeukaryotic community assembly in
both seasons. The Nm-value was higher for

Fig. 4 Fit of the neutral community model (NCM) of community assembly. The predicted occurrence frequencies for wet, dry, and all
representing microeukaryotic communities from wet, dry, and both seasons, respectively. The solid blue lines indicate the best fit to the NCM as
in Sloan et al. [7], and the dashed blue lines represent 95% confidence intervals around the model prediction. OTUs that occur more or less
frequently than predicted by the NCM are shown in different colors. Nm indicates the metacommunity size times immigration, R2 indicates the fit
to this model
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microeukaryotic taxa in the wet season (Nm = 53,309)
than the dry season (Nm = 49,567). Since the number of
sequences in both samples was 110,394, the m value was
estimated to be 0.483 in wet season and 0.449 in dry sea-
son, respectively. These results indicated that species
dispersal of planktonic microeukaryotes was higher in
the wet than dry seasons.

Neutral and non-neutral partitions are ecologically

distinct

For any season, there were a number of microeukaryotic
taxa that occurred more or less (above or below neutral

prediction) frequently than predicted by NCM given their
overall abundance in the metacommunity (Fig. 5). We
would consider the taxa that differ significantly from the
neutral prediction were due to their different migration or
dispersal ability. Points above the prediction represent
taxa that are found more frequently than expected, sug-
gesting that they have higher migration ability and can
disperse to more locations. Points below the prediction
represent taxa found less frequently than expected,
suggesting their lower dispersal ability in the river
(Additional file 2: Table S9). Another possibility is that
this could be due to taxa responding more strongly to

Fig. 5 Neutral and non-neutral partitions of the metacommunity showed distinct community composition, diversity, and abundance. For each
season group, communities were pooled and OTUs were then divided into separate partitions based on whether they were consistent within (in
black) or deviated above (in light blue) or below (in dark red) the neutral prediction (color coding is consistent for all panels). a Non-metric
multidimensional scaling ordination based on the Bray-Curtis similarity. b The distinct fitting proportions of microeukaryotic communities’ OTU
and sequence numbers by the Sloan neutral model. c The distinct fitting proportions of richness (OTU number) and abundance (sequence
number) of wet and dry seasons’ microeukaryotic supergroups. The other eukaryota represent incertae sedis eukaryota. The wet, dry, and all
representing microeukaryotic communities from wet, dry, and both seasons, respectively
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local environmental conditions (Additional file 2: Table
S10). Partition fractions above the neutral prediction were
mainly composed of Centrohelida, other eukaryota, and
Holozoa (the estimated migration rate over than 0.6),
while the main supergroups of below partition were Ani-
malia, Discoba, and Rhodophyceae (the estimated migra-
tion rate less than 0.3, Additional file 2: Table S11).
Taxa from neutral and non-neutral fractions (above

and below neutral prediction) showed contrasting com-
munity composition, diversity, and abundance (Fig. 5).
For wet, dry, and both seasons, we separated the meta-
community into three fractions comprising those OTUs
found above, below, and neutral partitions, and analyzed
the non-metric multidimensional scaling ordination
(NMDS) based on the Bray-Curtis similarity among par-
titions. The results clearly demonstrated that above,
below, and neutral partitions of taxa showed significantly
different compositions among wet (global R = 0.891), dry
(global R = 0.895), and both (global R = 0.976) seasons at
P < 0.01 (Fig. 5a). Further, non-neutral fractions of the
metacommunity were also much more heterogenous than
the neutral fractions. In addition, the proportions of micro-
eukaryotic OTUs and sequence numbers at supergroup
level showed that the neutral fraction accounted for much
higher richness and abundance proportions than above and
below fractions in both wet and dry seasons (Fig. 5b, c).
Neutral and non-neutral partitions’ microeukaryotic

community compositions showed different responses to
environmental and spatial factor change. The Mantel
test between environmental factors and three microeu-
karyotic community partitions predicted by the NCM
showed that neutral and non-neutral partitions of the
metacommunity were significantly associated with both
common and different environmental variables in wet
and dry seasons. For example, EC and As in the wet sea-
son and nitrogen (NH4-N, NO3-N, and NO2-N) and As
in the dry season were significantly correlated to both
the neutral and non-neutral partitions’ microeukaryotic
communities. However, other environmental factors
such as water temperature, suspended solids, current
velocity, TN, NO2-N, TP and Cd in the wet season, and
water temperature, PO4-P and Zn in the dry season were
only significantly associated with the non-neutral parti-
tion. Further, turbidity was only significantly correlated
to neutral partition in the dry seasons (P < 0.05,
Additional file 2: Table S10). The neutral and non-
neutral partitions’ microeukaryotic taxa also showed dis-
tinct degrees of distance-decay patterns, although all of
the relationships between microeukaryotic community
and geographical distance were significant. And the rela-
tionship was stronger in the dry than wet seasons (the
absolute r value of Mantel tests between microeukaryo-
tic community and geographical distance was higher in
the dry than wet seasons; Additional file 2: Table S10).

Discussion
Spatiotemporal patterns of microeukaryotic communities

in river ecosystem

The biogeography of microeukaryotic plankton across
different hydrographic regimes has received little atten-
tion so far in river ecosystems [24]. Our study contrib-
utes to understanding the spatiotemporal patterns of
microeukaryotic plankton and sheds light into the
underlying processes and mechanisms. As expected, the
PCoA analysis illustrated that microeukaryotic plankton
communities from the same season clustered together
(Fig. 2), indicating that microeukaryotes from wet and
dry seasons exhibited distinct community compositions.
Several reasons may explain this phenomenon. First, this
result might be because of the variation in environmen-
tal and hydrographic conditions between the two sea-
sons [3]. The difference in certain environmental factors
(e.g., temperature, turbidity, and pH) between the two
seasons was significant in this study (Additional file 2:
Table S2). Second, the seasonal succession of freshwater
plankton including microbes is an annually repeated
process due to various external factors and internal in-
teractions, such as physicochemical factors and species
interactions [31]. Third, the distinct community distribu-
tion from different studied stations suggests that sto-
chastic processes (e.g., dispersal and drift) influenced
microeukaryotic community assembly [2, 15]. More im-
portantly, downstream flow of the river can cause high
level of microbial dispersal, especially in the wet season,
which leads to much lower beta diversity (i.e.,
homogenization of the plankton communities, as shown
in the PCoA) in wet than dry seasons (Fig. 2). Further,
the lotic systems have an unusually large boundary with
other ecosystems, such as surrounding soil and leaves in
the watershed. The rain events might wash the microbes
from surrounding systems, which also lead to distinct
community diversity, compositions, and increase micro-
bial community variations in wet season. Therefore, the
interaction among different environmental, biotic, and
spatial conditions could shape the distinct community
composition along the Tingjiang River [15, 31, 32].

Similar biogeography of dominant, always rare, and

conditionally rare microeukaryotes

Previous study has showed that some rare taxa were
metabolically active in the environment, and they may
be keystone species in regulating the functioning of
aquatic habitat [28]. So the “rare biosphere” is of great
importance to metabolic and ecological functions of
aquatic ecosystems [25, 27, 28]. Conditionally rare taxa
(CRT, the taxa expected to be usually rare under certain
environments and occasionally achieve prevalence when
conditions become adequate) have been reported that
they can explain large temporal shifts in the microbial
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communities structure [29]. However, our knowledge of
many ecosystems is mostly based on the dominant and
entire communities, with the role of always rare taxa
(ART) and CRT remaining unaddressed. For example,
what mechanism is underlying the assembly of always
rare and conditionally rare microeukaryotic taxa across
hydrographic regimes in subtropical river? How does the
biogeography of always rare and conditionally rare
microeukaryotic community differ from that of domin-
ant and entire taxa?
Our data indicated that the ART and CRT exhibited

similar biogeography with dominant and entire commu-
nities in both wet and dry seasons (Fig. 3). The biogeo-
graphical patterns for the rare biosphere clearly showed
that the dictum “everything is everywhere” does not
apply here [30]. It therefore suggested that river micro-
eukaryotes were not cosmopolitan distribution as
previously thought, and so barriers for dispersal existed
on the rare biosphere. This could be because rivers close
to each other tend to have similar environmental condi-
tion. It also suggested that these groups have compar-
able environmental and spatial sensitivity, and they
responded to environmental and spatial change in a
similar manner [32]. The observation of similar biogeo-
graphic patterns of rare and dominant taxa was consist-
ent with previous study from the bacterioplankton
communities in coastal Antarctic lakes [32], but con-
trasted to the study focused on bacterial taxa in an acti-
vated sludge bioreactor [27]. These differences might
have resulted from different environmental settings and
spatial gradients in these studies. The first two studies
were carried out in natural environments (river and lake)
across space, while later one was operated in artificial
environment across time. Rare taxa in natural environ-
ments might more likely exhibit a similar biogeography
to dominant taxa.
As expected, the distance-decay pattern was stronger

during the dry than wet seasons in Tingjiang River
(Fig. 3; Additional file 1: Figure S3 and Additional file 1:
Figure S4; Additional file 2: Table S10). This was not
surprising because microeukaryotic planktons face less
dispersal limitation in wet season. In contrast to macro-
organisms, microbes are dispersed more easily due to
their smaller size and they are unable to counteract uni-
directional movement of the water flow. Rainfall always
concentrates in the summer (wet season) in the subtrop-
ical rivers of China [24] and can cause high water level
and high river flow. The increase of river flow can en-
hance habitat homogeneity and river connectivity [3,
20], and the microbes can more easily and passively dis-
perse with water flow to distant locations in wet season.
On the contrary, rain events are very rare in the dry sea-
son, leading to a lower river flow and higher dispersal
limitation of microbes (Fig. 1). Further, the dams might

result in decreases of flow rate, which are particular
noteworthy in dry season [20]. The dams can lead to the
shortage of water in the lower reaches of the river and
decrease river connectivity in the dry season, therefore
promoting the heterogeneity in microhabitats of micro-
eukaryotic communities.

Minor influence of environmental and spatial factors on

the microeukaryotic community

Although several environmental variables were identified
as having a significant effect on the microeukaryotic
community compositions, our VPA results indicated that
environmental and spatial factors play a minor role in
shaping the communities, as revealed by a small propor-
tion of community variation explained by these two fac-
tors. Especially for the ART, > 90% of community
variation remained unexplained by space and the envir-
onment in wet and/or dry seasons (Additional file 2: Ta-
bles S6–S8). Several previous studies also found large
proportion of unexplained rare bacterioplankton and
microeukaryotic community variations in different habi-
tats and sampling areas using VPA [5, 13, 33]. Although
VPA is widely used in ecological research to determine
the relative importance of environmental selection and
spatial effects on microbial community structure, some
studies have shown that it is not a valid method to infer
the influences of ecological processes [34, 35]. Several
reasons could account for this result. First, the large un-
explained community variation in this study could be ex-
plained by the absence of important factors taken into
account in the VPA [36–38]. Second, other studies
showed that the co-occurrence correlations among mi-
crobes can influence the community distribution, which
cannot be quantificated by VPA [9, 11]. Third, the VPA
tends to undervalue the contribution explained by envir-
onmental variables [34], which might also be a possible
reason for the low contribution of deterministic or se-
lective processes in shaping the microeukaryotic com-
munity variation. Therefore, great caution is needed
when using VPA to partition community variation, and
it should be used as an exploratory tool together with
other approaches to develop hypotheses and determine
the relative importance of environmental and spatial var-
iables. In this study, we used neutral community model
to estimate the relative importance of stochastic pro-
cesses. This method does not relate community compos-
ition to environmental and spatial variables and
therefore can overcome the shortcoming of VPA.

Microeukaryoic community assembly mainly shaped by

stochastic processes

Our results clearly support the prominent role of sto-
chastic processes in shaping the microeukaryotic com-
munity assembly (Fig. 4, Additional file 1: Figure S5, and
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Additional file 1: Figure S6). The neutral community
model (NCM) is a neutral-based process model, which is
a valid approach for inferring stochastic processes acting
on community assembly, and has been successfully ap-
plied to a wide range of ecological phenomena [4, 39].
This model allows researchers to quantify the import-
ance of processes which are difficult to observe directly
but can have large influence on microbial communities
(i.e., dispersal and ecological drift) [40]. The NCM esti-
mated a major part of the community variation (includ-
ing different supergroup levels’ and taxonomic
resolutions’ taxa) suggesting that stochastic balance be-
tween the loss and gain of microeukaryotes (such as sto-
chastic births, deaths, and immigration) were critical in
shaping their community assembly (Fig. 4; Add-
itional file 1: Figure S5 and Additional file 1: Figure S6)
[1, 6, 7]. The significantly strong distance-decay pattern
of plankton communities during wet and dry seasons
further confirmed the importance of stochastic processes
(Additional file 1: Figure S3 and Additional file 1: Figure
S4), since according to Hubbell’s neutral theory [6],
community similarity was predicted to decrease along
spatial (distance) gradients due to dispersal limitation
[41]. Several key observations also revealed similar re-
sults to our finding. For example, Roguet et al. [15] in-
vestigated the bacterial community in 49 lakes of Paris
area, France, and showed that bacterial community
structure was mainly driven by stochastic processes
(R2 = 0.76 explained by NCM). In addition, Östman et al.
[14] revealed that the NCM explained about 85% of de-
tection frequency for aquatic bacteria from the lakes,
streams, or rock pools. The stochastic processes are
powerful enough to generate a large amount of commu-
nity diversity both within and among different seasons
along the river.
The value of NCM parameter R2 was slightly higher in

the wet than dry seasons, and according to the calcu-
lated Nm values, plankton dispersal between the sam-
pling sites in wet season is likely higher than dry
counterparts (assuming similar metacommunity sizes,
Fig. 4), indicating that the influence of stochastic pro-
cesses was stronger for the microeukaryotes in the wet
season [7]. Further, regarding the microeukaryotic com-
munity immigration rate, the m values in wet season
were higher compared with dry season (Fig. 4; Additional
file 2: Table S11), indicating the dispersal ability of most
microeukaryotic taxa in wet season was higher than dry
season counterparts. These results might be attributed to
the higher habitat homogeneity and river connectivity in
wet season compared with dry season, as showed by the
weaker distance-decay relationship in wet season (Fig. 3).
The rainfall events and high river connectivity can increase
the possibility of the movement and successful establish-
ment of microorganisms across space, leading to higher

microeukaryotes’ immigration rate in wet season. High dis-
persal rate can partly overwhelm both environmental selec-
tions and ecological drift. Together with the relatively
minor spatial influence on communities, the wide distribu-
tion range of plankton suggests that dispersal limitation
has only a weak effect on spatial turnover in microeukaryo-
tic communities during wet season.
Although the NCM had a good fit to microeukaryotic

data, it is difficult to infer the absence of the influence of
environmental and spatial variables on microeukaryotic
community composition [42], especially as the large pro-
portion of unexplained variance revealed by VPA, which
could be ascribed to drift, unmeasured environmental
variables and species interactions [4, 16]. Some of key
environmental variables can change in a stochastic man-
ner, because river ecosystems are extremely dynamic,
and snapshot sampling normally includes a large fraction
of noise, which may mask the main ecological patterns.
Moreover, in our study, we did not identify any other
important mechanisms except the stochastic processes
that could explain the microeukaryotic community
distribution, such as mass effect (which assumes that
massive immigration can rescue microbes from competi-
tive exclusion, thus relaxing the connection between
community composition and local environmental condi-
tions), which cannot be clearly identified by either VPA
or NCM [36], but appears to have a strong effect on
microeukaryotic community composition in oligotrophic
lakes [43]. Further, the co-occurrence correlations
among microbes should also be responsible for the com-
munity structure [9, 11]. Microbial communities of dif-
ferent taxonomic and functional groups may be
structured by contrasting underlying factors [8]. To fully
understand the mechanisms of microeukaryotic commu-
nity assembly in subtropical rivers, we need further ex-
perimental consideration and more effective statistical
analyses through space and time.

Difference between neutral and non-neutral partitions

The NCM did not explain 100% of the microbial com-
munity variation, indicating that other community as-
sembly mechanisms might be existing at the same time,
which caused the non-neutral distribution. These other
mechanisms include environmental selection and species
interactions [4, 44], which remain difficult to quantify
their relative contribution on microeukaryotes. The
NCM separated taxa into neutral and non-neutral parti-
tions, and these two fractions were formed of different
richness and abundance, leading to different community
compositions (Fig. 5). It is possible that non-neutral be-
havior in these communities is due to the different dis-
persal rates among taxa (Additional file 2: Table S9).
The above partitions’ taxa (e.g., some species of Holo-
zoa) had higher immigration abilities than neutral and
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below partitions, leading to higher occurrence frequency
(Fig. 4; Additional file 2: Table S11). Therefore, parti-
tioning the communities according to the different im-
migration rates would likely improve neutral predictions.
The migration rate reflects the dispersal ability of taxa,
and it can represent an important indicator of NCM. A
previous study using NCM predicted the community as-
sembly of microbiota associated with the intestine of the
zebrafish over host developmental time, and they found
that estimated migration rates decreased over host de-
velopment, which showed consistent variation tendency
with the fit of NCM [39]. These results indicated that
higher dispersal rate caused better fit of this model in
wet season. Further, another study showed that stochas-
tic forces were important in driving the skin fungal com-
munity assembly, and also found that taxa in the above-
neutral, below-neutral, and neutral partitions formed
three distinct clusters across four seasons (winter,
spring, summer, and autumn in a calendar year) [40].
The differences between clusters were driven by a small
number of taxa which possessed distinct physiological
functions [40]. Additionally, except for migration rate
(the dispersal of stochastic processes), other factors such
as environmental factors (deterministic processes) also
can separate the taxa into neutral and non-neutral parti-
tions in this study. Our Mantel test showed that neutral
and non-neutral partitions of the metacommunity were
significantly associated with some distinct environment
factors during wet and dry seasons, respectively (Add-
itional file 2: Table S10). The environmental factors (i.e.,
water temperature, nutrient concentrations, and heavy
metal) have been previously demonstrated to have sig-
nificant influence on the microbial community compos-
ition [5, 21, 24, 32], then affecting the relative
abundance and occurrence frequency of planktonic mi-
croorganisms, thereby resulting in the neutral and non-
neutral distribution. Other factors which also can separ-
ate the taxa into neutral and non-neutral partitions need
further study in the future.

Conclusions and implications
This study provides a better understanding of spatiotem-
poral patterns, processes, and mechanisms underlying
the microeukaryotic community and reveals the import-
ance of the stochastic processes on the microeukaryotic
metacommunity assembly in a subtropical river across
different hydrographic regimes. It demonstrated that dif-
ferent seasons had distinct microeukaryotic community
compositions (including total, dominant, always rare,
and conditionally rare taxa). Some environmental and
spatial factors could significantly influence microeukar-
yotic distribution, but they only played a minor role in
shaping the microeukaryotic communities. The always
rare and conditionally rare taxa exhibited similar

biogeography with dominant and entire microeukaryotic
communities in wet and dry seasons, suggesting the
biogeography of the rare biosphere argued against a
cosmopolitan distribution, and rather inferring eco-
logical controls of limited dispersal potentials. Further,
the distance-decay relationship was stronger during the
dry than wet season as expected. For both wet and dry
of microeukaryotic groups, stochastic processes strongly
shaped microeukaryotic community compositions,
whereas deterministic factors played a minor role in in-
fluencing community distribution during either wet or
dry seasons. Our NCM prediction indicated that neutral
and non-neutral partitions (above and below neutral
prediction) showed contrasting community composition,
diversity, and abundance, and perhaps, migration rate
was an important indicator to separate these two parti-
tions. Although the NCM successfully predicted the mi-
crobial community distribution, it is difficult to infer the
large proportion of unexplained variance revealed by
VPA. To fully understand the microeukaryotic commu-
nity assembly mechanisms, it is suggested that future
microbial community ecology researches should con-
sider the sampling scale effects (spatial extent and time
scale), more important explanatory deterministic factors
(e.g., unmeasured environmental factors and species in-
teractions), and other possible stochastic factors.

Materials
Study area, sampling, and environmental factors

This study was carried out in 30 stations along the
Tingjiang River (116° 19′–116° 37′ E, 24° 59′–25° 24′
N) in Shanghang county, Fujian province, southeast
China (Fig. 1). Given the variable nature of river plank-
tonic communities, a comprehensive investigation of the
role of stochastic processes in shaping the communities
requires a high degree of replication and control. A total
of 30 surface water samples (0.5 m depth) were collected
in July and November 2015, representing the wet and
dry seasons, respectively. The samples were collected
within a 5-day period in both seasons. After collection,
these samples were transported to the laboratory and
processed immediately. For microeukaryotic community
analyses, water samples were pre-filtered through a 200-
μm pore-size sieve to remove debris, mesoplankton, and
macroplankton, and then, each water sample (~ 500ml)
with microeukaryotes (smaller than 200 μm) was subse-
quently filtered through a 0.22-μm pore-size polycarbon-
ate membrane (47 mm diameter, Millipore, Billerica,
MA, USA). The membranes were stored at − 80 °C until
DNA extraction.
The latitude and longitude for the studied sites were

determined by a portable global positioning system (GPS
Jisibao G330, Bejing, China). All physicochemical ana-
lyses were measured according to methods used in our
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previous study [24]. Briefly, a Hydrolab DS5 multiparam-
eter water quality meter (Hach Company, Loveland, CO,
USA) was used to measure water temperature, dissolved
oxygen (DO), electrical conductivity (EC), salinity, pH,
oxidation reduction potential (ORP), chlorophyll-a (Chl-
a), and turbidity in situ. The current velocity was mea-
sured with a SonTek flowtracker (YSI, San Diego, CA,
USA). Suspended solids were gravimetrically measured
by filtering 100 ml water samples through pre-weighed
0.45-μm pore-size filters; these filters were reweighed
again after evaporation at 105 °C. Total carbon (TC),
total organic carbon (TOC), and total nitrogen (TN)
were analyzed with a TOC/TN-VCPH analyzer (Shi-
madzu, Tokyo, Japan), and total phosphorus (TP) was
determined using spectrophotometry according to the
standard methods. The concentrations of ammonium
nitrogen (NH4-N), nitrite and nitrate nitrogen (NOx-
N), and phosphate phosphorus (PO4-P) were deter-
mined following our previous study [24]. Further, ar-
senic (As) and heavy metals (Cr, Cu, Zn, Cd, Hg, and
Pb) were determined using an inductively coupled
plasma mass spectrometry (Agilent Technologies Inc.,
Bellevue, WA, USA), as previously reported [45]. In
total, 24 environmental variables were measured in this
study.

DNA extraction, PCR and Illumina sequencing

The DNA of microeukaryotic plankton was extracted
directly from the membrane using a FastDNA spin kit
(MP, Biomedicals, Santa Ana, CA, USA) following the
manufacturer’s instructions. The hypervariable V9 re-
gion of eukaryotic 18S rRNA gene was amplified using
the forward primer 1380F and reverse primer 1510R
[46]. The 30-μl PCR mixture contained 15 μl of Phusion
Master Mix (New England Biolabs, Beverly, MA, USA),
0.2 μM of forward and reverse primers, and 10 ng of the
sample DNA. PCR reactions included an initial de-
naturation at 98 °C for 1 min, followed by 30 cycles of
10 s at 98 °C, 30 s at 50 °C, and 60 s at 72 °C. Finally, the
amplicons were subjected to final 10 min extension at
72 °C.
Triplicate PCR products for each of 60 samples were

conducted and purified using GeneJET Gel Extraction Kit
(Thermo Scientific, Hudson, NH, USA). Both negative
and positive controls were used through the experiment.
Sequencing libraries were generated using the NEB Next
Ultra DNA Library Prep Kit for Illumina (New England
Biolabs, Beverly, MA, USA) according to manufacturer’s
instructions, and index codes were added. The library
quality was evaluated using the Agilent Bioanalyzer 2100
system (Agilent Technologies Inc., Bellevue, WA, USA)
and Qubit 2.0 Fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA). Finally, the bar-coded amplicons
from each of samples were mixed in equimolar amounts

and then were sequenced using an Illumina Miseq plat-
form (Illumina Inc., San Diego, CA, USA) following the
manufacturer’s protocols [47].

Bioinformatics

Sequenced paired-end reads were merged with FLASH
[48]. Raw data were processed and analyzed using
QIIME v.1.8.0 to remove low-quality reads [49]. Se-
quences were quality controlled with the following set-
tings: maximum number of consecutive low-quality
base = 3, minimum of continuous high-quality base =
75% of total read length, ambiguous bases > 0 were re-
moved, and last quality score = 3 [26]. Chimeras were
identified and removed using UCHIME before the
downstream analyses [50]. After that, sequences were
clustered into OTUs using UPARSE [51] with the 97%
sequence similarity cutoff. Representative sequence from
each OTU was aligned against the SILVA (Release 123)
reference alignment using the RDP classifier [52]. To
avoid mistake in the taxonomic assignments, the taxo-
nomic classifications were checked and followed the ref-
erence of eukaryotes [53]. Because of high abundance of
unidentified taxa in public databases, some OTUs were
treated as unclassified microeukaryotes. Unassigned
OTUs (sequence similarity to a reference sequence is <
80%) and singletons (OTUs with only one sequence)
were discarded prior to further analysis. Finally, to
minimize biases associated with sequencing coverage
and allow for comparison of community pattern among
60 samples, the sequence data were normalized to 110,
394 sequences per sample.

Definition of abundant and rare taxa

In this study, we defined relative abundance thresholds as
0.01% for rare taxa and 1% for abundant taxa and classi-
fied all OTUs into six categories (AAT, CAT, MT, ART,
CRT, CRAT) according to the recent publications [10, 13,
54]. The following exclusive categories were shown in
Additional file 1: Figure S7: (1) always abundant taxa
(AAT) were defined as the OTUs with abundance ≥ 1% in
all samples; (2) always rare taxa (ART) were defined as the
OTUs with abundance < 0.01% in all samples; (3) moder-
ate taxa (MT) were defined as OTUs with abundance be-
tween 0.01 and 1% in all samples; (4) conditionally rare
taxa (CRT) were defined as with abundance below 1% in
all samples and < 0.01% in some samples; (5) conditionally
abundant taxa (CAT) were defined as taxa with abun-
dance ≥ 0.01% in all samples and ≥ 1% in some samples
but never rare (< 0.01%); and (6) conditionally rare and
abundant taxa (CRAT) were defined as OTUs with abun-
dance varying from rare (< 0.01%) to abundant (≥ 1%). In
this study, we artificially combined abundant taxa (AAT),
conditionally abundant taxa (CAT), and conditionally rare
and abundant taxa (CRAT) as abundant taxa to perform
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further analyses, and these three pooled categories (AAT,
CAT, and CRAT) were called “dominant taxa” to avoid
confusion [13].

Statistical analyses
Alpha-diversity analysis

Venn diagrams and alpha diversity indices including
OTU richness, ACE (abundance based coverage estima-
tor), Chao 1, Shannon-Wiener, Pielou’s evenness, and
Simpson’s index were calculated for each sample in vegan
2.4-1 with R software (version 3.2.3). Rarefaction curve
and Good’s coverage were performed in MOTHUR
v.1.33.3 [55]. One-way analysis of variance (ANOVA) and
Student’s t test were used to compare alpha-diversity by
SPSS 22.0 (IBM Corp., Armonk, NY, USA).

Beta-diversity analysis

The Bray-Curtis similarity matrix is considered to be
one of the most robust similarity coefficients for eco-
logical studies [56] and was applied to our microeukar-
yotic community datasets. In this study, the principal
coordinate analysis (PCoA) was employed using the
Bray-Curtis similarity matrices for detecting differences
in wet and dry seasons’ microeukaryotic communities.
The non-metric multidimensional scaling analysis

(NMDS) was used to evaluate changes in microeukaryo-
tic composition between neutral and non-neutral (above
and below) partitions using PRIMER v.7.0 (PRIMER-E,
Plymouth, UK) [57]. Analysis of similarities (ANOSIM)
was used to evaluate the significant differences between
groups. The statistic global R represents the separation
degree of between-group and within-group mean rank
similarities. R = 0 indicates no separation, whereas R = 1
indicates complete separation [57].

Correlation of microbial communities with environmental

factors and geographical distance

To explore the potential controlling factors for the micro-
eukaryotic community composition, we used the Mantel
tests to reveal the correlations between the community
similarity and environmental factors. The environmental
factors except pH were square root transformed, and Eu-
clidean distances between sampling sites were calculated.
To explore the spatial predictor of microeukaryotic com-
munity composition, two contrasting measurements that
represented site location were used (Additional file 1: Fig-
ure S8). These were (1) the dendritic network length (km),
which is a measure of the cumulative length of the
branching river network (watercourse) of two sampling
sites, and (2) the Euclidian distance (km) based on the lon-
gitude and latitude coordinates of each sampling site,
which is simply the straight line distance between sam-
pling points. All geographical measures were calculated
using ArcGIS (ESRI, Redlands, CA, USA). Spearman’s

rank correlations were used to determine the relationships
between the Bray-Curtis similarity of microeukaryotic
community, the Euclidean distance of environmental fac-
tors, and the geographical distance of sampling sites,
respectively.

The relative contribution of environmental and spatial

factors in microbial assembly processes

We further used variation partitioning analysis (VPA)
with adjusted R2 coefficients based on redundancy ana-
lysis (RDA) and partial Mantel test to quantify the rela-
tive effects of environmental and spatial factors in
shaping community composition [10, 13]. To explore
the better spatial predictor of microeukaryotic commu-
nity composition, two types of distance matrices were
calculated: (a) the geographical distance matrix as Eu-
clidean distance between each pair of sampling sites,
which was a set of spatial variables that were generated
through the method of principal coordinates of neigh-
boring matrices (PCNM) analysis based on the longitude
and latitude coordinates of sampling sites, and (b) the
network distance matrix, which was calculated to model
the least-cost dispersal route between two sites along the
river network. We applied asymmetric eigenvector map
(AEM) analysis, which was specifically designed to
model directional patterns [58], to generate spatial vari-
ables along directional flow. A site-by-edge binary
matrix was constructed based on coordinates of the sites
and the directional links (edges) among sites using the
build.binary function in R package AEM. Thereafter, the
following weighting function were applied: weight = 1
− (d/dmax)

2, where d is the network distance between
linked sites and dmax was the maximum distances among
value d [59] and was assigned to each edge. Finally, the
aem function in R package AEM was used to create ei-
genvectors [58].
Subsequently, variance inflation factors (VIFs) were

calculated to check the collinearities among environ-
mental vs. PCNM (based on partial RDA and partial
Mantel test) and environmental vs. AEM (based on par-
tial RDA) variables using the “vegan” package, and vari-
ables with VIF > 20 were removed to avoid the impact of
collinearity. Further, to provide unbiased estimates of
the VPA, microeukaryotic data were Hellinger trans-
formed prior to the analyses [60]. Forward selection pro-
cedure was used to select environmental and spatial
factors [61]. Finally, VPA was performed using the var-

part function of the package “vegan” with R (http://
www.r-project.org) [20]. It is worth mentioning that al-
though VPA is widely used as a tool to distinguish be-
tween niche-based and neutral-based processes for
community assembly, several studies based on simula-
tion models revealed that VPA failed to correctly infer
the deterministic and stochastic processes on
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community variation [34, 35, 62]. Therefore, it is difficult
to determine the ecological processes totally based on
VPA [63], and we employed the Mantel test and neutral
community model together with VPA to assess the rela-
tive importance of deterministic and stochastic processes
in this study.

Neutral community model for microeukaryotes

To determine the potential importance of stochastic
processes on community assembly, we used a neutral
community model (NCM) to predict the relationship be-
tween OTU detection frequency and their relative abun-
dance across the wider metacommunity [7]. The model
used here is an adaptation of the neutral theory [6] ad-
justed to large microbial populations. In general, the
model predicts that taxa that are abundant in the meta-
community will be widespread, since they are more
likely to disperse by chance among different sampling
sites, whereas rare taxa are more likely to be lost in dif-
ferent sites due to ecological drift (i.e., the stochastic loss
and replacement of individuals). In this model, Nm is an
estimate of dispersal between communities. The param-
eter Nm determines the correlation between occurrence
frequency and regional relative abundance, with N de-
scribing the metacommunity size and m being the immi-
gration rate. The parameter R2 represents the overall fit
to the neutral model [7]. Calculation of 95% confidence
intervals around all fitting statistics was done by boot-
strapping with 1000 bootstrap replicates.
In this study, we separately used the datasets from

wet, dry, and both seasons combined. The OTUs from
each dataset were subsequently separated into three par-
titions depending on whether they occurred more fre-
quently than (above partition), less frequently than
(below partition), or within (neutral partition) the 95%
confidence interval of the NCM predictions. To analyze
deviations from the NCM predictions, we compared the
composition, diversity, and calculated estimated migra-
tion rate (m) of neutral and non-neutral (above and
below) partitions of microeukaryotes. All computations
were performed in R (version 3.2.3) [64].
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