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STOCHASTIC PROCESSES WITH SAMPLE PATHS IN
REPRODUCING KERNEL HILBERT SPACES

MILAN N. LUKIĆ AND JAY H. BEDER

Abstract. A theorem of M. F. Driscoll says that, under certain restrictions,
the probability that a given Gaussian process has its sample paths almost
surely in a given reproducing kernel Hilbert space (RKHS) is either 0 or 1.
Driscoll also found a necessary and sufficient condition for that probability to
be 1.

Doing away with Driscoll’s restrictions, R. Fortet generalized his condi-
tion and named it nuclear dominance. He stated a theorem claiming nuclear
dominance to be necessary and sufficient for the existence of a process (not
necessarily Gaussian) having its sample paths in a given RKHS. This theo-
rem – specifically the necessity of the condition – turns out to be incorrect,
as we will show via counterexamples. On the other hand, a weaker sufficient
condition is available.

Using Fortet’s tools along with some new ones, we correct Fortet’s theorem
and then find the generalization of Driscoll’s result. The key idea is that of
a random element in a RKHS whose values are sample paths of a stochastic
process. As in Fortet’s work, we make almost no assumptions about the re-
producing kernels we use, and we demonstrate the extent to which one may
dispense with the Gaussian assumption.

1. Introduction

Consider a Gaussian process {Xt, t ∈ T } on a probability space {Ω,A,P} having
mean and covariance functions m and K, and let R be a positive symmetric kernel
on T×T . Let X· denote the sample path of X , and letH(R) denote the reproducing
kernel Hilbert space with kernel R. Driscoll [3, Theorem 3] proved that, under
appropriate assumptions,

P(X· ∈ H(R)) = 0 or 1,

and that the probability is 1 iff a certain limit τ is finite. We will refer to this result
as Driscoll’s Theorem. Driscoll applied this in [4] to find the Bayes estimator of m
under a Gaussian prior, using the norm of H(R) to define a quadratic loss function.

Driscoll’s assumptions are
1. that T is a separable metric space, that K and R are continuous on T × T ,

and that R is positive definite; and
2. that the sample paths of X are continuous,
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an assumption which Driscoll calls “rather restrictive”. These assumptions allow
him to assert the measurability of H(R) and thus to apply the zero-one law of
Kallianpur [9]. To define the number τ , Driscoll fixes a countable dense subset
T0 = {t1, t2, . . . } of T and defines the matrices Kn and Rn to be the restrictions
of the kernels K and R to {t1, . . . , tn}. Assuming that R is positive definite, τ is
then defined by

τ = sup
n

Tr
(
KnR

−1
n

)
.(1.1)

(In [2] Driscoll also proves his result when T is a countable set, in which case the
measurability of H(R) is easy to show.)

Two key steps in generalizing Driscoll’s Theorem are (1) the recognition that τ
is the trace of an operator (which we will call the dominance operator) on H(R),
and (2) the definition of an intrinsic pseudo-metric dR on the set T and of a Hamel
subset T0 of T (Section 4). The second of these requires no assumptions on R or
K or on the set T , while the first, due to Fortet [6], requires only that R dominate
K (his terminology) in the sense that H(R) ⊃ H(K). The finiteness of τ Fortet
naturally calls nuclear dominance. We will use R ≥ K to denote dominance, and
R� K if the dominance is nuclear.

Thus we may be guided by the following:

Working Conjecture. Let X be a process with covariance K. In order that
P(X· ∈ H(R)) = 1, it is necessary and sufficient that R� K.

In the Gaussian case this turns out to be true, and moreover we are able to extend
Driscoll’s zero-one law to this setting (Theorems 7.4 and 7.5). In the general case,
however, something different emerges. Here we must take necessity and sufficiency
separately.

Necessity turns out to be false, contrary to [6, Theorem 2], as the counterexam-
ples of Section 2 show. On the other hand, sufficiency is correct (in a sense we make
precise in Theorem 5.1) but requires some significant additional machinery to cope
with the lack of a metric on T and with the possibility that R is semi-definite. We
develop this machinery in Section 4. Theorem 5.1 provides the strongest answer we
are able to achieve regarding the sufficiency of nuclear dominance in the Working
Conjecture.

In [6, Theorem 2] Fortet actually makes a slightly different assertion from our
Working Conjecture, in the form of an existence result: Let K and R be two
reproducing kernels such that H(K) and H(R) are separable.

In order that there exist a second-order random process {Xt, t ∈ T } with co-
variance K and with trajectories in H(R) with probability 1, it is necessary and
sufficient that R� K.

Moreover, when R� K, there exists a zero-mean Gaussian process {Xt, t ∈ T }
with trajectories in H(R) almost surely.

Fortet published this result without proof. The necessity assertion is, of course,
identical to that of our Working Conjecture, since assuming the existence of a pro-
cess is the same as being given a process X . We have already pointed out that
this assertion is true in the Gaussian case but not in general. On the other hand,
the sufficiency assertion is weaker than Driscoll’s, since proving the existence of a
process with a certain property is weaker than proving that a given process has
that property. It may not be surprising therefore that a weaker condition, namely
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R ≥ K, is sufficient to guarantee the existence of a non-Gaussian process with co-
variance K and almost all sample paths in H(R) (Theorem 6.1). The existence of a
Gaussian process, however, requires the stronger assumption of nuclear dominance
(Theorem 7.2).

A cornerstone of our analysis is the relation between a random process X (with
sample paths in H(R)) and the random element ξ in H(R) which it defines, and
particularly the role played by the measure induced on H(R). The second order
properties of ξ, which are different from (and stronger than) that of X , turn out to
be exactly what we need. We discuss the random element approach in Section 2.
First we need to make precise some of the concepts we have discussed in this
introduction.

1.1. Notation and background. The set of real numbers will be denoted by R,
and the natural numbers by N. All Hilbert spaces we consider are over R.

A (real-valued) random process on a probability space (Ω,A,P) is a family X =
{Xt, t ∈ T } of random variables on Ω with values in R. That is, for each t, Xt is
a Borel-measurable function on Ω. We denote the trajectory or sample path of X
at ω by X·(ω). Thus X· ∈ B means that the trajectory of X belongs to the set B,
so that {X· ∈ B} corresponds to the set {ω ∈ Ω : X·(ω) ∈ B}. We say that the
process Y is a version of X if P(Xt = Yt) = 1 for every t ∈ T .

The process X has p-th order if E|Xt|p < ∞ for each t ∈ T . A second-order
process X has mean function m defined by m(t) = E(Xt) and covariance function
K defined by K(s, t) = E [(Xs −m(s)) (Xt −m(t))].

Let K be the covariance function of the process X . Then K is symmetric, and
is positive in the sense that

n∑
i=1

n∑
j=1

aiajK(ti, tj) ≥ 0

for all n, all t1, . . . tn ∈ T , and a1, . . . , an ∈ R. A positive symmetric function on
T × T will be referred to as a covariance kernel or a reproducing kernel . By slight
abuse of terminology, we will refer to K as a kernel on T . The kernel K is positive
definite or nonsingular if the inequality above is always strict.

A covariance kernel K gives rise to a unique Hilbert space H(K) whose elements
are real functions on T , and such that

Kt ≡ K(t, ·) ∈ H(K) for all t ∈ T , and

〈f,Kt〉 = f(t) for all f ∈ H(K), and all t ∈ T ,(1.2)

where 〈·, ·〉 denotes the inner product in H(K). The Hilbert space H(K) is called
a reproducing kernel Hilbert space (RKHS) with the reproducing kernel K [1]. The
property (1.2) is referred to as the reproducing property.

If we need to indicate the index set T , we will writeH(K,T ) forH(K). Similarly,
if we need to specify the inner product or norm in H(K) or H(R), we will use the
notation 〈·, ·〉K , ‖·‖R, etc. Further related notation will be introduced in Section 4.

The following lemma illustrates some of the importance of RKHS in the study of
second-order random processes. Let {Xt, t ∈ T } be a second-order process, defined
on a probability space (Ω,A,P). The smallest Hilbert subspace of L2(Ω,A,P) that
contains all the variables Xt, t ∈ T , is called the Hilbert space spanned by the process
X , or simply the Hilbert space of X .
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Lemma 1.1 (Loève [11]). Let H be the Hilbert space of a zero-mean second-order
process X with covariance K. Then H is congruent to the RKHS H(K). The
corresponding isometry Λ : H → H(K) is given by

Λ(Y )(t) = E(Y Xt), t ∈ T.(1.3)

The map Λ defined by (1.3) is referred to as Loève’s isometry.

1.2. Dominance. We say that R dominates K, and write R ≥ K, or K ≤ R, if
H(K) ⊆ H(R) [5]. Note that H(K) is a vector subspace of H(R) but in general
has a different inner product and so is not a Hilbert subspace of H(R).

Theorem 1.1. Let R ≥ K. Then

‖g‖R ≤ ‖g‖K , ∀g ∈ H(K).(1.4)

Moreover, there exists a unique linear operator L : H(R) → H(R) whose range is
contained in H(K), and such that

〈f, g〉R = 〈Lf, g〉K , ∀f ∈ H(R), ∀g ∈ H(K).(1.5)

In particular,

LRt = Kt, for all t ∈ T .(1.6)

As an operator into H(R), L is bounded, positive and symmetric.
Conversely, let L : H(R)→ H(R) be a positive, continuous, selfadjoint operator.

Then K(s, t) = 〈LRs, Rt〉R, s, t ∈ T , defines a reproducing kernel on T such that
K ≤ R.

This theorem gathers together a set of results found in [1, pages 354f, 372f, and
382f]. Part of it is stated as Theorem 1.4 in [5].

We will call the operator L in the theorem the dominance operator of H(R) over
H(K). We say that the dominance is nuclear if L is nuclear [6], in which case we
write R� K.

2. Random elements in RKHS

Our main tool in the treatment of a process X with sample paths in a RKHS
H(R) is the random element ξ whose realizations in H(R) are the sample paths of
X . This section gives a precise description of that relationship.

For a Hilbert space H , let Ĉ(H) denote the cylindrical σ-algebra on H , and for
a topological space X let B(X ) be the Borel σ-algebra on X . When X is a Hilbert
space H , B(H) is defined by the norm topology on H , and we have Ĉ(H) ⊆ B(H).

Finally, we say that a subset D of a topological space X is separable if there
exists a countable subset E ⊂ X such that D ⊆ E, where E denotes the closure of
E. Of course, if D is a separable set, so is D and so is any subset of D.

Definition 2.1. Let (Ω,A,P) be a probability space and let (Ω′,A′) be a measure
space. A random element in (Ω′,A′) is an (A′,A)-measurable function ξ : Ω→ Ω′,
that is, a function such that ξ−1(B) ∈ A for every B ∈ A′.

If Ω′ is a Hilbert space H and A′ = Ĉ(H), then ξ is called a random element in
H .

If Ω′ is a topological space, then ξ is separably valued if ξ(Ω) is a separable subset
of Ω′, and is Borel if A′ = B (Ω′).
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It follows from the definition of the cylindrical σ-algebra Ĉ(H) that a map η :
Ω→ H is a random element in H iff 〈η, h〉 is a random variable for every h ∈ H .

Lemma 2.1. Let H(R) be a RKHS and let X be a stochastic process on (Ω,A,P)
with almost all sample paths in H(R). Then

ξ(ω) = X·(ω), ω ∈ Ω,(2.1)

defines a random element in H(R), and we have

Xt = 〈ξ, Rt〉R, t ∈ T.(2.2)

Conversely, let ξ be a random element in H(R) defined on (Ω,A,P). Then (2.2)
defines a stochastic process on (Ω,A,P), and (2.1) holds.

Every separably valued random element in H(R) is a Borel random element in
H(R).

Proof. Assume first that X is a random process with sample paths in H(R), and
define ξ by (2.1). Let V be the linear span of {Rt, t ∈ T }. An arbitrary h ∈ V
has the form h =

∑n
k=1 akRtk , where n ∈ N, a1, . . . , an ∈ R, t1, . . . , tn ∈ T .

Thus 〈ξ, h〉 =
∑n

k=1 akXtk is a random variable for every h ∈ V . For an arbitrary
h ∈ H(R), Lemma 4.1 below asserts the existence of a sequence (hn) in V such
that lim ‖hn − h‖ = 0. Hence,

lim
n→∞

〈ξ, hn〉 = 〈ξ, h〉,

for all ω ∈ Ω, i.e., 〈ξ, h〉 is a random variable, as a pointwise limit of the sequence
(〈ξ, hn〉) of random variables. Hence, ξ is a random element in H(R).

On the other hand, if ξ is a random element inH(R), then 〈ξ, h〉 defines a random
variable for every h ∈ H(R). In particular, each Xt defined by (2.2) is a random
variable, i.e., X is a random process with sample paths in H(R).

The fact that a separably valued random element in a Hilbert space is necessarily
Borel is contained in [16, Theorem II.1.1].

Let ξ be a random element in a measurable space (X ,B). The measure Pξ given
by

Pξ(B) = P
(
ξ−1(B)

)
, B ∈ B,

is called the (probability) distribution of the random element ξ. Let X be a Banach
space and 0 < p <∞. A measure µ on Ĉ(X ) is said to have weak p-th order if∫

X
|〈y, x?〉|pdµ(y) <∞

for all x? ∈ X ?.
A Borel measure µ on X is said to have strong p-th order if∫

X
‖x‖pdµ(x) <∞.

We require µ to be Borel here so that ‖x‖ be measurable.
A random element ξ has weak (strong) order p if its distribution Pξ has the

corresponding property.
The concept of mathematical expectation extends to random elements via the

notion of the Pettis integral.
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Theorem 2.1. Let (Ω,A,P) be a probability space, H a Hilbert space, and ξ : Ω→
H a random element with weak first order. Then there exists an element Eξ ∈ H
such that ∫

Ω

〈ξ(ω), h〉dPξ(ω) = 〈Eξ, h〉(2.3)

holds for all h ∈ H.

See [16, Proposition II.3.1]. Equation (2.3) may be written as

E〈ξ, h〉 = 〈Eξ, h〉.
The element Eξ defined in Theorem 2.1 is called the Pettis integral, or mathematical
expectation, or mean of the random element ξ.

Theorem 2.2. Let H be a Hilbert space, and let µ be a weak second order proba-
bility measure defined on the cylindrical σ-algebra Ĉ(H). The bilinear form

rµ (f, g) =
∫
H
〈x, f〉 〈x, g〉dµ(x) −

∫
H
〈x, f〉 dµ(x)

∫
H
〈x, g〉 dµ(x)

is defined for all f, g ∈ H, and is continuous with respect to the norm topology of
H.

The operator Θ defined by

〈Θf, g〉 = rµ(f, g)(2.4)

is a continuous symmetric linear operator in H.

The operator Θ defined in (2.4) is referred to as the covariance operator of the
measure µ. The covariance operator of a (necessarily weak second order) random
element ξ is the covariance operator of its distribution Pξ. Thus the defining
equation for the covariance operator of a random element ξ in a Hilbert space H is

〈Θf, g〉 = E〈ξ, f〉 〈ξ, g〉 − 〈Eξ, f〉 〈Eξ, g〉, f, g ∈ H.(2.5)

Theorem 2.2 and the subsequent definitions are based on [16, Sections III.1 and
III.2]. A brief but rather complete account can also be found in [23, pages 11f].

When X is a RKHS, we may connect the order of ξ with the order of the process
it defines:

Theorem 2.3. Let ξ be a random element in H(R), and let X be the process it
defines.

1. If ξ has weak first order, then X has first order, and

E (Xt) = 〈Eξ, Rt〉R, t ∈ T.
In particular, the mean function m of X belongs to H(R), and m = Eξ.

2. If ξ has weak second order, then X has second order. In this case, if Θ is the
covariance operator of ξ and K is the covariance function of X, then

K(s, t) = 〈ΘRs, Rt〉R.(2.6)

In particular, R ≥ K and Θ is the dominance operator.

Proof. (1) Eξ ∈ H(R) exists by Theorem 2.1. Each Xt is integrable because

E|Xt| = E|〈ξ, Rt〉| < ∞,
by the assumption of weak first order of ξ. Moreover, using (2.3),
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m(t) ≡ E[Xt] = E〈ξ, Rt〉 = 〈Eξ, Rt〉 = (Eξ) (t),

for all t ∈ T .
(2) The fact that X is a second-order process follows from

EX2
t = E〈ξ, Rt〉2R <∞,

by the assumption of weak second order. To prove (2.6), note first that ξ has
weak first order as well. Hence m, the mean of the process, lies in H(R) by
part (1). We thus have

K(s, t) = E (XsXt)−m(s)m(t)
= E (〈ξ, Rs〉〈ξ, Rt〉)− 〈Eξ, Rs〉〈Eξ, Rt〉
= 〈ΘRs, Rt〉

for all s, t ∈ T , by Equation (2.5). Theorem 1.1 now implies that R ≥ K and
that Θ is the corresponding dominance operator.

The obvious converses of Theorem 2.3(1) and (2) are false, as the following
examples show. Thus the way in which a random element inherits its “order” from
the corresponding random process is more subtle, and will be taken up in Section 3.
The relation of the Gaussianity of a random element to that of its corresponding
process will discussed in Section 7.

These counterexamples also show that the necessity of the condition R � K of
our Working Conjecture (Section 1) is false.

Example. Assume the index set T to be the set of positive integers, and let the
reproducing kernel R given by

R(s, t) =
1
st
δst, s, t = 1, 2, . . . ,

where δ is the Kronecker delta. The corresponding RKHS H(R) is the set of all
real sequences (an) such that

∞∑
n=1

n2a2
n <∞(2.7)

with scalar product given by

〈a,b〉 =
∞∑
n=1

n2anbn

for arbitrary elements a = (an), b = (bn) of H(R). Addition and multiplication
with a scalar inH(R) are defined coordinatewise. One easily verifies thatRt ∈ H(R)
for all t ∈ T , and that the reproducing property holds.

An orthonormal basis in H(R) is given by fn = 1
nen, where

en = (0, · · · , 1, 0, · · · ), n = 1, 2, . . . ,

are the standard coordinate vectors.
We fix the sample space Ω to be the set of positive integers and the σ-algebra A

to be the power set of Ω. Define a process X on (Ω,A) by

Xt(i) =

{
1, if i = t,

0, if i 6= t,
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where t ∈ T and i ∈ Ω. We generate our counterexamples by varying the probability
measure on (Ω,A), and in particular the mean and covariance of X . A probability
measure P on (Ω,A) is of the form

P(i) = qi, qi > 0,
∞∑
i=1

qi = 1.(2.8)

Clearly, {Xt, t ∈ T } is a second-order random process with trajectories in H(R),
having mean function m given by

m(t) = E[Xt] = P(t) = qt(2.9)

and covariance function K given by

K(s, t) = E[XsXt]−E[Xs]E[Xt] = qtδst − qsqt.(2.10)

The random element ξ in H(R) defined by the process X (Equation (2.1)) is the
map

ξ(n) = en, n = 1, 2, . . . .

The distribution Pξ of ξ will be the probability measure on (H(R), Ĉ), where Ĉ =
Ĉ(H(R)) is the cylindrical σ-algebra, which is concentrated on {en} and such that

Pξ(en) = P(n) = qn, n = 1, 2, . . . .

1. Setting qn = C/n
3
2 , where C is the normalizing constant, we easily see that

m 6∈ H(R). Now Theorem 2.3 implies that ξ cannot have weak first order,
although the process X has first order.

Using Equation (2.10) to check condition (2.7), we similarly verify that
Kt /∈ H(R) for any t ∈ T . Hence H(K) 6⊆ H(R) (i.e., K 6≤ R), as claimed,
even though X has its sample paths in H(R).

2. Let us instead put qn = C/n
5
3 . Then the mean m of X belongs to H(R), as

is easily verified. Let ξ be the random element in H(R) defined by X . We
will show that ξ does not have weak second order, and moreover that K 6≤ R.

Consider the sequence h ∈ H(R) given by hn = n−
19
12 , n ∈ N. We have

E〈ξ,h〉2 =
∫
H(R)

|〈x,h〉|2dPξ(x)

=
∞∑
n=1

〈en,h〉2Pξ(en)

=
∞∑
n=1

n4h2
n

C

n
5
3

= C
∞∑
n=1

1
n

5
6

=∞.

Thus ξ does not have weak second order, althoughX is a second-order process.
A similar argument, using the Cauchy-Schwarz inequality, shows that ξ does
have weak first order.

As in the preceding example, we see that K 6≤ R.

3. Driscoll’s Theorem: necessity

Assume that the trajectories of a random process X belong to given RKHS
H(R). The counterexamples above show that some additional condition is needed
in order to ensure that R ≥ K. We seek that condition in terms of the random
element ξ defined by the process.
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Theorem 3.1. Let H(R) be a RKHS and let {Xt, t ∈ T } be a second-order random
process whose mean function and trajectories lie in H(R). Let K be the covariance
function of X, and let ξ be the random element in H(R) defined by X.

Then R ≥ K if and only if ξ has weak second order, in which case the covariance
operator of ξ and the dominance operator L are the same.

Proof. One direction of this theorem has already been proved in Theorem 2.3.
Assume that R ≥ K. It is easy to show that the processes X and X −EX have

the same covariance function, and that the random elements ξ and ξ−Eξ have the
same covariance operator. Thus, for the sake of simplicity, we will assume that X
has mean zero.

Denote by L the dominance operator of H(R) over H(K). Fix an arbitrary
h ∈ H(R). We want to show that E〈ξ, h〉2 < ∞ and that L is the covariance
operator of ξ. (Here all norms and inner products are in H(R).)

Denote by V the vector space spanned by {Rt, t ∈ T }. Let f, g ∈ V . Then
there exist t1, · · · , tn ∈ T such that f =

∑n
j=1 cjRtj , g =

∑n
k=1 dkRtk , with some

coefficients possibly zero. Then

〈ξ, f〉 =
∑

cj〈ξ, Rtj 〉 =
∑

cjXtj ,

and similarly 〈ξ, g〉 =
∑
dkXtk . Therefore,

E〈ξ, f〉 〈ξ, g〉 = E

 n∑
j=1

cjXtj

n∑
k=1

dkXtk


=

n∑
j=1

n∑
k=1

cjdkK(tj , tk)

=

〈
n∑
j=1

cjKtj ,

n∑
k=1

dkRtk

〉
= 〈Lf, g〉,(3.1)

using the reproducing property and Equation (1.6). In particular,

E〈ξ, f〉2 = 〈Lf, f〉, f ∈ V.
Fix a sequence (hn) in V such that limn→∞ ‖h − hn‖ = 0 (Lemma 4.1), and

consider the random variables Yn = 〈ξ, hn〉. By the above, each Yn is a second-
order random variable with EY 2

n = 〈Lhn, hn〉 and

E [YmYn] = 〈Lhm, hn〉.
Consequently, taking into an account continuity of the dominance operator L, we
have

lim
m→∞

lim
n→∞

E [YmYn] = 〈Lh, h〉.

independent of the way m,n→∞. This, in turn, implies the mean-square conver-
gence of the sequence (Yn) [12, Corollary to Theorem 2.4.5]. That is, there exists
a second-order random variable Y such that EY 2 = 〈Lh, h〉 and Yn → Y in the
mean square sense. Thus, there exists a subsequence, which we again call Yn, such
that Yn → Y a.s.

On the other hand, hn → h in H(R) implies

Yn = 〈ξ, hn〉 → 〈ξ, h〉
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everywhere on Ω. Therefore, Y = 〈ξ, h〉 a.s. In other words,

E〈ξ, h〉2 = 〈Lh, h〉(3.2)

for all h ∈ H(R). This shows that ξ has a weak second order, and thus has a
covariance operator.

Using Equation (3.2) and the parallelogram law, one easily extends Equation (3.1)
to all f, g ∈ H(R). Hence, by Equation (2.5), L is the covariance operator of ξ.

Replacing dominance by nuclear dominance in the conclusion of Theorem 3.1
introduces some further subtleties. Suppose that ξ : Ω → H and η : Ω → H are
two random elements in a Hilbert space H . We say that η is a version of ξ if

P (〈ξ, h〉 = 〈η, h〉) = 1

for all h ∈ H . It is easy to see that if η is a version of ξ then they define the same
mean and the same covariance operator, provided these exist. Separably valued
random elements were introduced in Definition 2.1.

Theorem 3.2. Let H be a Hilbert space, and let µ be a probability measure on
the cylindrical σ-algebra Ĉ(H). Then µ has a unique Radon extension to the Borel
σ-algebra B(H).

Equivalently, every random element ξ in H has a separably valued version.
The probability distribution of a separably valued Borel random element in a

Hilbert space is a Radon probability measure.

Proof. Since every Hilbert space is a reflexive Banach space, the existence of a
Radon extension follows from [16, Corollary 5 to Theorem I.5.3].

The existence of a Radon extension is equivalent to the existence of a separably
valued version of ξ [16, Theorem IV.2.7].

If ξ is separably valued, then ξ is a Borel random element [16, Theorem II.1.1],
so that the closure Y of ξ (Ω) is both Borel and a separable subset of H . Thus,
Pξ(Y ) = P (Ω) = 1, and so Pξ is Radon [16, Corollary to Theorem I.3.1].

We may now restate Theorem 3.1 in the case of nuclear dominance.

Corollary 3.1. Let H(R) be a RKHS, and let {Xt, t ∈ T }, K and ξ be as in
Theorem 3.1.

Then R� K if and only if ξ has a separably valued version η with strong second
order, in which case the covariance operator of ξ and the dominance operator L are
the same.

Proof. It follows from Theorem 3.2 that ξ always has a separably valued version η.
We first assume that η has strong second order and prove that R� K.

The fact that R ≥ K follows from Theorem 3.1 applied to η. The probability
distribution Pη is a Radon measure because η is separably valued (Theorem 3.2).
But covariance operators of strong second order Radon probability measures in
Hilbert space are nuclear [16, Corollary to Proposition III.2.3]. Hence R� K.

Conversely, suppose that R � K, with (nuclear) dominance operator L. Since
R ≥ K, Theorem 3.1 implies that L is the covariance operator of ξ. Let η be a
separably valued version of ξ as established by Theorem 3.2. Since L is also the
covariance operator of η, and since L is nuclear, it follows, again by [16, Corollary
to Proposition III.2.3], that η has strong second order.
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Note that the introduction of the version η would not be necessary if H(R) were
separable.

Remark 3.1. Corollary 3.1 shows that R � K is a necessary condition for sample
paths of X to belong to H(R), provided that the corresponding random element
ξ has strong second order. While Fortet did not include such a hypothesis in [6,
Theorem 2], he did use the strong second order assumption in the actual proof, as
revealed in his unpublished notes [7]. The present results were arrived at indepen-
dently.

Having examined the necessity of nuclear dominance, our next goal is to study
its sufficiency. We first must pause to develop the mathematical machinery we will
need.

4. Some results on RKHS

In this section we will develop most of the properties of reproducing kernel
Hilbert spaces that we will need, culminating in an extension of Driscoll’s trace
formula (1.1) (Proposition 4.5). The properties of the RKHS H(R, T ) depend on
the kernel R and the set T , and in this section we will be allowing both to vary.
As mentioned in the Introduction, we will sometimes index the norm and inner
product of H(R, T ) by R, sometimes by T , and once in a while by both. When T is
understood, we will write H(R) for H(R, T ). Hopefully this will maximize clarity
while minimizing notation.

Lemma 4.1. Let R : T × T 7→ R be a reproducing kernel. The set {Rt , t ∈ T } is
total in H(R), and the vector space V spanned by {Rt, t ∈ T } is dense in H(R).

See [17, Theorem 5B].
The function

dR(s, t) = ‖Rs −Rt‖

defines a pseudo-metric on T . Note that d2
R(s, t) = R(s, s) − 2R(s, t) + R(t, t).

Observing that
∑∑

aiajR(ti, tj) = ‖
∑
aiRti‖

2, we have the following.

Lemma 4.2. R is nonsingular on T iff the set {Rt, t ∈ T } is linearly independent.
If R is nonsingular on T , then dR is a metric on T .

Note that dR may still be metric even if the covariance kernel R is singular. For
example, let T = {1, 2, 3} and let R(s, t) be given by the elements of the matrix1 1 2

1 2 3
2 3 5

 .
It is easy to check that dR(1, 2) = 1, dR(1, 3) =

√
2, and dR(2, 3) = 1. Thus the

converse of the second statement in Lemma 4.2 is false.

Lemma 4.3. Let T be an arbitrary set and R a covariance kernel on T . Assume
that dR is a metric on T . Then

1. every f ∈ H(R) is dR-continuous, and
2. the metric space (T, dR) is separable iff H(R) is separable.
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Proof. The first conclusion follows from the fact that |f(s)−f(t)| = |〈f,Rs−Rt〉| ≤
‖f‖dR(s, t), using the reproducing property and the Cauchy-Schwarz inequality.

Assume (T, dR) is a separable metric space, and let S ⊂ T be countable and
dR-dense in T . Denote by V the linear span of {Rt, t ∈ T }, and by W the linear
span of {Rt, t ∈ S} over the field of rationals. V is dense in H(R) by Lemma 4.1.
Clearly, W is dense in V , hence in H(R), and is countable.

Now assume that H(R) is separable. Then for any ε > 0 there exists a countable
partition {Tj(ε)} of T such that each set Tj(ε) has dR-diameter smaller than ε [5,
Theorem 1.2]. Picking a point in each Tj(ε) for each ε = 1, 1

2 ,
1
3 , . . . , one obtains a

countable, dR-dense subset of T .

Remark 4.1. Borrowing an idea of Dudley, Talagrand [21, pp. 101, 116] defined a
canonical metric on T by

d(s, t) = (E(Xs −Xt)2)1/2, s, t ∈ T,
where {Xt, t ∈ T } is a second-order, zero-mean process. If K is the covariance of
the process, then the Loève isometry gives

d(s, t) = ‖Ks −Kt‖ = dK(s, t).

Independently, Fortet [5] introduced the function ∆(s, t) = R(s, s) − 2R(s, t) +
R(t, t) just before stating his Theorem 1.2, which we have quoted in the preceding
proof. Of course, ∆(s, t) = d2

R(s, t). This definition makes no reference to any
particular stochastic process, which is what makes it useful in our application. For
us the kernel R that defines dR need not be the same as the covariance K of the
process we are given.

In order to deal with singular kernels, we introduce next the notion of an R-
Hamel subset of T . Recall that a set {vα} of linearly independent vectors in a
vector space V is called a Hamel basis (in V ) if {vα} spans V . By the Hausdorff
Maximality Principle, every vector space has a Hamel basis. Each vector v ∈ V has
a unique representation as a finite linear combination of vectors from the Hamel
basis {vα}. It is easily shown that if V is a linear space and W ⊂ V spans V , then
there exists a Hamel basis B of V such that B ⊆W .

Definition 4.1. Let V be the vector space spanned by {Rt, t ∈ T }. A set T0 ⊆ T
such that {Rt, t ∈ T0} is a Hamel basis of V will be called an R-Hamel subset of T ,
or just a Hamel subset of T when it is clear which reproducing kernel is in question.

If H(R) has infinite (orthogonal) dimension, then one can show that a Hamel
subset of T must be infinite (and in fact uncountable).

Example. Consider a standard Wiener process {Wt, t ∈ [0, 1]} and its covariance
K(t, s) = min(t, s). Let n and 0 < t1 < · · · < tn ≤ 1 be arbitrary. Denote by Kn

the matrix obtained by restricting the covariance K to the set {t1, · · · , tn}. It is
not difficult to show that

detKn =
n∏
k=1

(tk − tk−1) ; t0 ≡ 0.

Thus Kn is invertible, so Kt1 , · · · ,Ktn are linearly independent. Since K0 ≡ 0, we
have T0 = (0, 1] in this case.

For arbitrary kernels, we have
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Lemma 4.4. If T0 is a Hamel subset of T , then {Rt, t ∈ T0} is total in H(R, T ),
and (T0, dR) is a metric space.

Fortet [5, Theorem 1.1] gives a useful criterion for membership in a RKHS
H(R, T ). Let F = {S ⊂ T : S is finite}.
Theorem 4.1. Let f : T → R be a function. Then f ∈ H(R, T ) iff

sup
S

sup
ai

|
∑
i aif(ti)|2∑

i

∑
j aiajR(ti, tj)

<∞,(4.1)

where the suprema are taken over all S = {t1, . . . , tn} ∈ F and all real a1, . . . , an,
with n arbitrary, such that the denominator in (4.1) is not zero. When the inequal-
ity (4.1) holds, the left-hand-side is ‖f‖2 in H(R, T ).

If the set T itself is finite, then ‖f‖2 is just the inner supremum of (4.1). An
application of Cauchy-Schwarz and the fact that a symmetric matrix has a square
root yield the following well-known result:

Lemma 4.5. Let T be finite, and let the matrix determined by a reproducing kernel
R be nonsingular. Then, for all f, g ∈ H(R):

‖f‖2R =
∑
t,s∈T

f(t)f(s)R−1(t, s),

〈f, g〉R =
∑
t,s∈T

f(t)g(s)R−1(t, s),

where R−1 is the inverse of the matrix R.

This is a standard result in the theory of RKHS. See, for example, [1, p. 346].
The restriction of a covariance kernel to a subset S of T is still a covariance

kernel, and defines a RKHS H(R,S). Despite the abuse of notation, we will use
‖ · ‖T , etc., when it is important to indicate the underlying index set. We let fS
denote the restriction of a function to S. For simplicity, we will write ‖f‖S for
‖fS‖S . This is justified by the following result.

Proposition 4.1. Let H(R, T ) be a RKHS with kernel R, and S ⊆ T . Then the
restriction of R to S is a covariance kernel. If f ∈ H(R, T ), then fS ∈ H(R,S)
and

‖f‖S ≤ ‖f‖T .(4.2)

The map J : H(R, T )→ H(R,S) given by J(f) = fS has the following properties:
1. J maps H(R, T ) linearly onto H(R,S).
2. The nullspace of J is the subspace

F0 = {h ∈ H(R, T ) : h vanishes on S}.(4.3)

3. Let F1 be the orthocomplement of F0 in H(R, T ). Then F1 is generated by
the family {Rt, t ∈ S}, and J maps F1 isometrically onto H(R,S).

The properties of fS , including inequality (4.2), follow easily from criterion (4.1).
The properties of the map J may be found in [15, Proposition 3.15] or in [1, pp.
351ff].

We say that S ⊆ T is a determining set for H(R, T ) if the only function f ∈
H(R, T ) which vanishes on S is the zero function. For example, a Hamel subset of
T is a determining set (Lemma 4.4).
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From Proposition 4.1 we have the following.

Proposition 4.2. Let S ⊆ T , and let J be the restriction map f 7→ fS. The
following are equivalent:

1. S is a determining set for H(R, T ).
2. J in an isometry between H(R, T ) and H(R,S).
3. Every f ∈ H(R,S) has a unique extension to an element f ∈ H(R, T ), and
‖f‖T = ‖f‖S.

4. The family {Rt, t ∈ S} is total in H(R, T ).
5. The family of linear functionals on H(R, T ) determined by {Rt, t ∈ S} sepa-

rates points of H(R, T ).

The concept of a determining set is due to Fortet [6]. His definition is actually
condition (2).

Proposition 4.3. Suppose H(R, T ) is separable, and let T0 be a Hamel subset of
T . Then (T0, dR) is a separable metric space. If S0 is a countable dR-dense subset
of T0, then S0 is a determining set for H(R, T ).

Proof. Separability of H(R, T ) and Proposition 4.1 imply that H(R, T0) is separa-
ble. Lemma 4.3 now implies that (T0, dR) is a separable metric space.

Let S0 be a countable dR-dense subset of T0, and let f be an element of H(R, T )
which vanishes on S0. As an element of H(R, T0), the restriction fT0 is dR-
continuous and vanishes on S0, so must vanish on T0 as well. But T0 is a determining
set for H(R, T ), so f must vanish on T .

In addition to the notational conventions adopted earlier, we may write ‖f‖S for
an arbitrary function f : T → R, with the understanding that this means ‖fS‖S
and presumes that fS ∈ H(R,S).

Lemma 4.6. Assume H(R, T ) separable, and let S0 = {s1, s2, · · ·} be a countable
dR-dense subset of a Hamel subset T0 in T . Put Sn = {s1, · · · , sn}. Then, for each
f ∈ H(R, T ), ‖f‖Sn is monotone increasing, and

‖f‖T = lim
n→∞

‖f‖Sn.(4.4)

Conversely, if a function f : T 7→ R satisfies

lim
n→∞

‖f‖Sn <∞,(4.5)

then fS0 ∈ H(R,S0) and there exists a unique f1 ∈ H(R, T ) that coincides with f
on S0, and

‖f1‖T = ‖f‖S0 = lim
n→∞

‖f‖Sn.(4.6)

Proof. Let f ∈ H(R, T ). The fact that the sequence ‖f‖Sn is increasing follows
from (4.2). By Proposition 4.3 it suffices to prove (4.4) when T = S0, that is, when
T is countable. But this follows easily from condition (4.1), as we note that any
finite subset S of T is eventually contained in some set Sn.

Conversely, if (4.5) holds, then a similar argument shows that the restriction fS0

belongs to H(R,S0), and by Proposition 4.3 it has a unique extension to a function
f1 ∈ H(R, T ). Now (4.6) follows from Proposition 4.2(3) and (4.4).
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Remark 4.2. If in addition dR is a metric on T and f is dR-continuous, then it is
easy to see that f coincides with f1 on T0. However, unless R is nonsingular, this
is not enough to conclude that f ∈ H(R, T ), since we do not know whether S0 is
necessarily dense in T .

We have discussed the relation between H(R, T ) and the RKHS derived from
it by changing the kernel R to a “smaller” kernel K, or by changing the set T
to a subset S. We now begin to combine these ideas. Define F0 as in (4.3),
with orthocomplement (in H(R, T )) denoted F1, and similarly define H0 = {h ∈
H(K,T ) : h vanishes on S}, with orthocomplement (in H(K,T )) denoted H1.
Assume H(K,T ) ⊆ H(R, T ). Clearly H0 = F0 ∩H(K,T ).

Lemma 4.7. Let H(K,T ) ⊆ H(R, T ), with dominance map L, and let S ⊆ T .
Then

1. H(K,S) ⊆ H(R,S).
2. L maps F1 into H1.

Proof. (1) Let f̂ ∈ H(K,S). By Proposition 4.1(1), f̂ = fS for some f ∈ H(K,T ).
But then f ∈ H(R, T ), so f̂ ∈ H(R,S).

(2) Let f ∈ F1. We claim that Lf ⊥ H0 (with respect to the inner product
in H(K,T )). To this end, let g ∈ H0. Then g ∈ F0, so (using (1.5)) 〈Lf, g〉K =
〈f, g〉R = 0.

Our next goal is to extend Driscoll’s trace formula (1.1) to a much more general
setting. Namely, we consider an arbitrary set T , an arbitrary reproducing kernel
R on T , and an arbitrary (nuclear) dominance operator L on H(R, T ). Part 1 of
Lemma 4.7 leads us to introduce a second dominance map, whose relation to L is
given in the next result. The announced generalization of (1.1) is then achieved by
Proposition 4.5.

Proposition 4.4. Suppose that H(K,T ) ⊆ H(R, T ), with dominance map L, and
S ⊆ T . Let F1 and H1 be as defined above, and let LS be the dominance map of
H(R,S) over H(K,S). Finally, let J−1 be the inverse of the restriction of J to F1.
Then

LS = JLJ−1.(4.7)

If L is nuclear then so is LS, and

Tr(LS) ≤ Tr(L),(4.8)

with equality if S is a determining set for H(R, T ).

The proposition may be visualized with the following diagram:

F1
L−−−−→ H1

J

y J

y
H(R,S) LS−−−−→ H(K,S)

Here LS is the dominance map of H(R,S) over H(K,S), as guaranteed by Lem-
ma 4.7. Invertibility of J when restricted to F1 follows from Proposition 4.1. Equa-
tion (4.7) says in effect that the diagram commutes.

Equation (4.7) appears in Fortet’s unpublished notes [7] as part of his proof
of inequality (4.8), which is announced without proof in [6, Theorem 3(1)]. The
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equation was discovered independently as part of the present research, and the
proof below is a bit different from Fortet’s.

Proof. In the following, we will index inner products by both a kernel (R or K)
and a set (T or S).

Let L̂ = JLJ−1. It is clear that L̂ is a linear map from H(R,S) to H(K,S).
Thus, according to Theorem 1.1, to show that L̂ is the dominance map LS we must
show that 〈L̂f̂ , ĝ〉K,S = 〈f̂ , ĝ〉R,S for all f̂ ∈ H(R,S) and ĝ ∈ H(K,S).

Fixing f̂ and ĝ, there are unique functions f ∈ F1 and g ∈ H1 such that f̂ = Jf
and ĝ = Jg. Now Lf ∈ H1 by Lemma 4.7, and since J acts as an isometry on H1

and F1, and L is a dominance map, we have

〈L̂f̂ , ĝ〉K,S = 〈JLf, Jg〉K,S = 〈Lf, g〉K,T
= 〈f, g〉R,T = 〈Jf, Jg〉R,S = 〈f̂ , ĝ〉R,S ,

as desired. This establishes Equation (4.7).
From (4.7) and the isometric property of J we readily see that we have

〈LSJf, Jg〉R,S = 〈Lf, g〉R,T for all f, g ∈ F1.(4.9)

Now let {êk} (not necessarily countable) be a CON (complete orthonormal) set
in H(R,S). Then the functions ek = J−1êk form a CON set in F1, and from (4.9)
we have 〈LS êk, êk〉R,S = 〈Lek, ek〉R,T for each k. If L is nuclear, then summing over
k gives (4.8). Moreover, when S is a determining set forH(R, T ) thenH(R, T ) = F1

and so we have equality in (4.8).

Proposition 4.5. Let H(R, T ) be separable and let the kernel K be such that R�
K, with dominance operator L. Let T0 be an R-Hamel subset of T and S0 =
{s1, s2, · · ·} be a dR-dense subset of T0. Denote by Kn and Rn the matrices obtained
by restricting the kernels K and R to the set {s1, · · · , sn} ⊂ S0. Then

Tr(L) = lim
n→∞

Tr
(
KnR

−1
n

)
.(4.10)

Proof. S0 is a determining set for H(R, T ) by Proposition 4.3, so Proposition 4.4
implies that Tr(L) = Tr(LS0), where LS0 is the dominance operator for H(R,S0)
over H(K,S0). Thus we are reduced to proving the proposition when T is a count-
able set, which we continue to denote by {s1, s2, . . . }.

First we apply the Gram-Schmidt procedure to the functions Rt, t ∈ T , to get a
CON basis e1, e2, . . . of H(R, T ). Of course, Tr(L) =

∑
i〈Lei, ei〉R,T .

Next, let Sn = {s1, . . . , sn}, let Ln be the dominance operator of H(R,Sn) over
H(K,Sn), and let J : f 7→ fSn be the restriction map (J also depends on n).
Defining the subspace F1 ⊆ H(R, T ) as in Proposition 4.1, we see that F1 is gener-
ated by the functions Rs1 , . . . Rsn , and therefore by e1, . . . , en, and that the images
êi = Jei are an orthonormal basis of H(R,Sn). Thus Tr(Ln) =

∑n
i 〈Lnêi, êi〉R,Sn =∑n

i 〈Lei, ei〉R,T , so

lim
n

Tr(Ln) = Tr(L).(4.11)

Finally, if we view Ln as a linear map between finite-dimensional vector spaces,
then property (1.6) means that for each t ∈ Sn, Ln maps (R(s1, t), . . . , R(sn, t))
to (K(s1, t), . . . ,K(sn, t)). These vectors are columns of the matrices Rn and Kn,
respectively. Therefore Ln, viewed as a matrix, satisfies LnRn = Kn, and since R
is nonsingular, Ln = KnR

−1
n . From this and (4.11) we have Equation (4.10).
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In this proof we have adapted some ideas of Driscoll [3, proof of Theorem 3]. An
alternate, perhaps more elegant approach rests on Fortet’s refinement of inequality
(4.8) in [6, Theorem 3(2)], which asserts that

Tr(L) = sup
S

Tr(LS),(4.12)

the supremum taken over all finite S ⊂ T . After reducing to the case that T is
countable, we may argue as in Lemma 4.6 to replace the right-hand side of (4.12)
by the supremum over the sets Sn, leading immediately to Equation (4.11). We
note the similarity of Equation (4.12) to Fortet’s criterion (4.1).

5. Driscoll’s Theorem: sufficiency

We are ready to address a key problem: Given a second order process X with
covariance K, and a RKHS H(R), when can we say that

P (X· ∈ H(R)) = 1?(5.1)

Driscoll proved (5.1) assuming that nuclear dominance (R � K) holds and that
X is Gaussian, along with certain other conditions (see Section 1). We will show
below that nuclear dominance alone is sufficient for the RKHS H(R) to contain the
sample paths of a version of X almost surely. As our counterexamples in Section 2
show, R� K is not a necessary condition for (5.1), nor is there a hope of achieving
a similar generalization for the necessary condition in terms of ordinary dominance
only.

The present proof is inspired by Driscoll’s [3, p. 313], but is necessarily longer
due to our abandoning any assumptions on the set T or the kernels R and K.
(Driscoll himself does not use the Gaussian assumption in this part of his proof.)

Theorem 5.1. Let X = {Xt, t ∈ T } be a real second-order stochastic process with
covariance K, and let R be another covariance kernel on T such that R � K.
Assume that the mean function of the process belongs to H(R), as well.

Then there exists a version Y of X whose trajectories belong to H(R) almost
surely.

If in addition dR is a metric, H(R) is separable, and the trajectories of X are
dR-continuous, then the trajectories of X belong to H(R) almost surely with respect
to the completion measure.

Proof. It is not hard to show that R� K implies the existence of a kernel R1 such
that R ≥ R1 � K and such that H(R1) is separable [6, Theorem 1]. Therefore,
without loss of generality, we will just assume that H(R) is separable. Similarly,
upon considering the process X − EX , we may assume EX = 0. Finally, we will
denote by (Ω,A,P) the probability space on which the process is defined.

Fix an R-Hamel subset T0, and a countable set S0 = {s1, s2, . . . } which is dR-
dense in T0. The existence of S0 follows from Proposition 4.3. We will prove
first that the process {Xs, s ∈ S0} has trajectories in the RKHS H(R,S0) with
probability one.

Indeed, for each n = 1, 2, . . . , let

Sn = {s1, s2, . . . , sn}.
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Denote the restrictions ofK, R on Sn byKn, Rn, respectively, and using Lemma 4.5,
define

Zn = ‖X‖2Sn =
n∑
i=1

n∑
j=1

XsiXsjR
−1
n (si, sj) , n = 1, 2, . . . .

Clearly, Zn is a random variable. The sequence {Zn} is non-decreasing, by Lem-
ma 4.6, and so defines a random variable

Z = lim
n→∞

Zn

with the possibility that Z can take infinite values. But now, as Driscoll [3] argues,
the Monotone Convergence Theorem implies that

E[Z] = lim
n→∞

E[Zn]

= lim
n→∞

n∑
i=1

n∑
j=1

Kn (si, sj)R−1
n (si, sj)

= lim
n→∞

Tr(KnR
−1
n )

= Tr(L) <∞,
by Proposition 4.5. Hence P(Z <∞) = 1. In other words, there exists a set Ω′ ∈ A
with P(Ω′) = 1 and such that Z(ω) <∞ for all ω ∈ Ω′. Thus, for each ω ∈ Ω′, the
corresponding trajectory X·(ω) of the process {Xs, s ∈ S0} belongs to the RKHS
H(R,S0), and defines a unique function t 7→ f(ω, t) ∈ H(R), by Lemma 4.6. Define

ξ(ω) =

{
f(ω, ·), ω ∈ Ω′,
0, otherwise.

Claim. ξ is a random element in H(R) and has strong second order and mean
zero.

Proof of the claim. First we need to prove that ξ is a Borel random element. In-
deed, H(R) is assumed separable. For every s ∈ S0, 〈ξ, Rs〉 = Xs is a random
variable. Moreover, the family {Rs, s ∈ S0} separates points of H(R) by Proposi-
tion 4.2. Thus ξ is Borel by [16, Theorem II.1.1]. Consequently, ‖ξ‖ is measurable,
and since

‖ξ‖2Sn = ‖X‖2Sn = Zn,

Lemma 4.6 and Proposition 4.5 show that

E‖ξ‖2 = E
[

lim
n→∞

‖ξ‖2Sn
]

= E
[

lim
n→∞

Zn

]
= lim
n→∞

E [Zn]

= Tr(L) < ∞,
which proves that ξ has strong second order.

Of course, strong second order implies weak first order. Hence, by Theorem 2.1,
ξ has expectation Eξ ∈ H(R). Using Equation (2.3), we have

〈Eξ, Rs〉 = E〈ξ, Rs〉 = 0

for all s ∈ S0. Hence, Eξ = 0 by Proposition 4.3. This proves the claim.
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Now let {Yt, t ∈ T } be the process defined by the random element ξ. Then Y is
a zero-mean, second-order process by Theorem 2.3, with trajectories in H(R).

We next show that P(Yt = Xt) = 1, for all t ∈ T . To do so, we will first show
that

‖Yt −Xt‖2L2 ≡ E (Yt −Xt)
2 = 0, ∀t ∈ T0.(5.2)

Note first that (5.2) is true for t ∈ S0, by definition of Y .
Fix arbitrary t ∈ T0 \ S0. Then, for any s ∈ S0,

‖Xt − Yt‖L2 ≤ ‖Xt −Xs‖L2 + ‖Xs − Ys‖L2 + ‖Ys − Yt‖L2

The middle term is zero. As to the first term, Loève’s isometry and Equation (1.5)
yield

‖Xt −Xs‖2L2 = ‖Kt −Ks‖2K
= 〈Kt −Ks,Kt −Ks〉K
= 〈L(Rt −Rs), L(Rt −Rs)〉K
= 〈L(Rt −Rs), Rt −Rs〉R
≤ ‖L‖d2

R(t, s).

The third term above is handled by noting that

‖Ys − Yt‖2L2 = E (Ys − Yt)2

= E〈ξ, Rs −Rt〉2R
≤ E‖ξ‖2Rd2

R(s, t) = Tr(L)d2
R(s, t).

Thus, for t ∈ T0 \ S0 and s ∈ S0,

‖Xt − Yt‖L2 ≤
(√
‖L‖+

√
Tr(L)

)
dR(t, s),

which can be made arbitrary small, and (5.2) holds. Since EXt = EYt for all t, it
follows that Yt = Xt a.s. for all t ∈ T0.

Finally, take t ∈ T \ T0. Then, in a unique way, Rt =
∑n

k=1 akRtk for some tk ∈
T0, ak ∈ R. Thus Kt = LRt =

∑n
1 akKtk , so by Loève’s isometry Xt =

∑n
1 akXtk

a.s. On the other hand,

Yt = 〈ξ, Rt〉R =
n∑
1

ak 〈ξ, Rtk〉R =
n∑
1

akYtk .

Since Xtk = Ytk a.s., we have Xt = Yt a.s.
It remains to prove that under the additional assumptions of separability ofH(R)

and dR-continuity of the sample paths of X , those sample paths belong to H(R)
almost surely, this time with respect to the completion of P.

By Lemma 4.3, the trajectories of Y are dR-continuous and (T, dR) is separable.
Denote by Td ⊂ T a countable dR-dense set. Since Y is a version of X , there exists
a set Ω1 ⊂ Ω, with P(Ω1) = 1, and such that

Xt(ω) = Yt(ω), for all ω ∈ Ω1 and all t ∈ Td.

Both processes X and Y have dR-continuous sample paths that coincide, at least
for ω ∈ Ω1, on a countable dR-dense set Td; hence, they coincide on T . Therefore,
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denoting the completion of P still by P,

P(X· ∈ H(R)) ≥ P(X ≡ Y ) ≥ P(Ω1) = 1.

The theorem is proved.

Remark 5.1. The final part of the proof of Theorem 5.1 required the use of a count-
able dense set Td in T . We already had established that Xt = Yt for all t in the
countable set S0. But we only know that S0 is dense in the Hamel subset T0 of T ,
and as pointed out in Remark 4.2 this approach would only allow us to conclude
that Xt = Yt for all t in T0.

6. Existence: sufficiency

We have just seen that the condition R � K is sufficient for a given process
X of covariance K (or at least a version of X) to have its sample paths in H(R).
As we noted in the Introduction, Fortet asserted (correctly) that this condition is
sufficient for the existence of such a process X . On the other hand, we now know
that this condition is not necessary, and so we may ask whether we may substitute
a weaker sufficient condition for existence of such a process.

Theorem 6.1. Let H(R) and H(K) be two RKHS such that H(K) is a separable
subset of H(R). Then there exists a second-order random process X with covariance
K and with trajectories in H(R). The conclusion holds in particular when R ≥ K
and H(K) is a separable Hilbert space.

Proof. The assumption H(K) ⊆ H(R) implies the existence of the dominance op-
erator L which, as a map into H(R), is continuous, symmetric and positive, and
whose range is a subset of H(K) (Theorem 1.1). Since H(K) is a separable subset
ofH(R), L has separable range. Hence, by [16, Theorem III.2.2], L is the covariance
operator of a weak second order Radon probability measure µ on H(R).

There exists a random element ξ inH(R) whose distribution Pξ is µ; for example,
one can take the probability space to be (H(R), Ĉ(H(R)), µ) and ξ to be the identity
map. The presence of weak second order implies the Pettis integrability of ξ, i.e.,
the existence of the mean Eξ ∈ H(R), by Theorem 2.1.

Let X be the process defined by ξ, so that X has its trajectories in H(R). Then,
according to Theorem 2.3, the mean of the process is given by E[Xt] = (Eξ)(t),
t ∈ T , and its covariance, according to (2.6), is 〈LRs, Rt〉R. But

〈LRs, Rt〉R = 〈Ks, Rt〉R = K(s, t).

In the case that H(K) is a separable Hilbert space, separability of H(K) as a subset
of H(R) follows from Equation (1.4).

Remark 6.1. One can show that a converse of the theorem holds, namely that the
separability condition is necessary for the existence of the process described there.

Theorem 6.1 represents a significant strengthening of one direction of Fortet’s
existence result, replacing the assumption of nuclear dominance by ordinary domi-
nance. A special case is the condition R = K, for which we have this result:

Corollary 6.1. For any covariance kernel K such that the RKHS H(K) is sepa-
rable, there exists a second-order process X with covariance K and sample paths in
H(K).
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Corollary 6.1 is somewhat surprising since it is false for Gaussian processes with
H(K) infinite-dimensional, as has been known for some time (see Corollary 7.1 and
the remarks following it).

7. The Gaussian case

The main result of this section is that a Gaussian process with sample paths in a
RKHS defines a Gaussian random element, from which nuclear dominance follows
automatically (Theorem 7.1). This will suggest a second way to understand the
“necessity” half of the existence result formulated by Fortet, and will lead to the
generalization of Driscoll’s Theorem promised in the Introduction.

We recall that a process {Xt, t ∈ T } is Gaussian if every finite linear combination
of the random variablesXt is normally distributed. A random element ξ in a Hilbert
spaceH is Gaussian if and only if the random variable 〈h, ξ〉 is normally distributed
for every h ∈ H. It is trivial to see that if ξ is a Gaussian random element in the
RKHS H(R), then the process X that it defines is Gaussian. Theorem 7.1 asserts
the converse. Since a random element in H(R) does not necessarily inherit any
second-order properties from the corresponding process (Section 2, Examples), it
may be somewhat surprising that it does inherit a Gaussian distribution!

Theorem 7.1. Let X = {Xt, t ∈ T } be a Gaussian process with mean m and
covariance function K. Let H(R) be a RKHS with m ∈ H(R). If the trajectories
of X belong almost surely to H(R), then the random element defined by the process
X is Gaussian. In particular, R� K.

Proof. The case m 6= 0 can easily be reduced to the zero-mean case by considering
the process X −m. Hence, assume m = 0.

Denote by ξ the random element in H(R) defined by the process X . We will
prove that ξ is Gaussian, i.e., that 〈ξ, f〉R is a Gaussian random variable for every
f ∈ H(R).

Clearly, for f of the form f =
∑n

k=1 akRtk , where ak ∈ R and tk ∈ T ,

〈ξ, f〉R =
n∑
k=1

akXtk ,

which is Gaussian by assumption. The linear span V of {Rt, t ∈ T } is dense in
H(R) by Lemma 4.1. Hence, for every f ∈ H(R) there exists a sequence (fn) in V
such that ‖fn − f‖ → 0 as n→∞. Then, for every ω ∈ Ω,

〈ξ(ω), fn〉R → 〈ξ(ω), f〉R as n→∞.

In other words, the sequence (〈ξ, fn〉R) of Gaussian random variables converges
almost surely to the random variable 〈ξ, f〉R. But then it also converges in proba-
bility, and hence its limit 〈ξ, f〉R is Gaussian as well [15, Lemma 1.5].

We apply Theorem 3.2, if necessary, to obtain a version η whose distribution is
Radon. The covariance operator Θ of a Gauss Radon measure in a Hilbert space is
nuclear by the Mourier-Prokhorov Theorem [16, Theorem IV.2.4]. But Θ is at the
same time the dominance operator of R over K by Theorem 3.1. The theorem is
proved.

A Gaussian random element in a separable Hilbert space has strong second
order, by Mourier’s Theorem [14, p. 239, Theorem 2]. Thus, if we had assumed
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H(R) is separable, then once we showed that 〈ξ, f〉 is Gaussian we could have used
Corollary 3.1 to conclude that R� K.

Our first application of Theorem 7.1 is an existence result, one side of which is
the Gaussian version of Theorem 6.1.

Theorem 7.2. Let K and R be two reproducing kernels. Assume that the RKHS
H(R) is separable.

In order that there exist a Gaussian process with covariance K and mean m ∈
H(R) and with trajectories in H(R) with probability 1, it is necessary and sufficient
that R� K.

Proof. Necessity follows from Theorem 7.1. Assume R � K. Since there exists
a Gaussian process X with given mean m and covariance K [15, Proposition 3.4],
it follows from Theorem 5.1 that there exists a version of X with sample paths in
H(R).

Remark 7.1. We may view Theorem 7.2 as one way to correct [6, Theorem 2] (see
Section 1 and Remark 3.1). It is interesting to note that Piterbarg in [20] did in
fact interpret Fortet’s theorem in this way.

Fortet has a proof of the sufficiency part of Theorem 7.2 in his unpublished notes
[7]. He utilizes the properties of the dominance operator L (our Theorem 1.1) and
the given nuclearity (R � K) to infer the existence of a Gaussian measure µ on
H(R) with covariance operator L. Here he is essentially applying the theorem of
Mourier-Prokhorov [16, Theorem IV.2.4]. He concludes his proof essentially the
way we proved Theorem 6.1. The present results were obtained independently [13].

Our next goal is the generalization of Driscoll’s Theorem. The following result
yields the “zero” part of his zero-one law.

Theorem 7.3. Let {Xt, t ∈ T } be a Gaussian process on (Ω,A) with mean m and
covariance K. Let H(R) be an infinite-dimensional RKHS such that m ∈ H(R). If
R 6� K, then

P(X· ∈ H(R)) = 0,

where P denotes the completion measure on (Ω,A).

Proof. Let S be a countable subset of T such that H(R,S) is infinite-dimensional
(for example, a countably infinite subset of an R-Hamel subset of T ), and let Y
denote the process X restricted to S. Then X· ∈ H(R, T ) implies Y· ∈ H(R,S),
by Proposition 4.1, so

{X· ∈ H(R, T )} ⊂ {Y· ∈ H(R,S)},
and it suffices to show that the set {Y· ∈ H(R,S)} is an event of probability zero.
Thus we are reduced to proving the theorem when T is countably infinite.

In this case, enumerate T as {t1, t2, . . . }. Let

F = {S ⊂ T : S is finite};
then F is countable. Now f ∈ H(R) if and only if f ∈ RT and Fortet’s condi-
tion (4.1) holds. Clearly we may replace the supremum over a1, . . . , an ∈ R by that
over a1, . . . , an ∈ Q (the rationals). Thus, adapting an argument of Driscoll [3], we
have

H(R) =
∞⋃
k=1

⋂
S

⋂
ai

{f ∈ RT :
|
∑
i aif(si)|2∑

i

∑
j aiajR(si, sj)

∈ [0, k]}.
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Both intersections are countable, and for fixed S and ai’s, the innermost set is
a Borel subset of RT . Thus H(R) is measurable, and so the Kallianpur zero-one
law [9] implies that {X· ∈ H(R)} is an event of probability zero or one. Now if
the probability is one, then by Theorem 7.1 we have R � K, contradicting our
assumption. Thus the probability is zero, as claimed.

We pause to apply Theorem 7.3 when R = K. In this case R dominates K
and the dominance map is just the identity map I. But when H(R) is infinite-
dimensional, Tr(I) =∞, so that we have the following well-known result:

Corollary 7.1. If {Xt, t ∈ T } is a Gaussian process with covariance K and mean
m ∈ H(K), H(K) infinite-dimensional, then

P(X· ∈ H(K)) = 0.

The probability measure P is assumed to be complete.

Corollary 7.1 was stated by Parzen [18, Equation (34)], and proved under sepa-
rability and continuity assumptions by Kallianpur [8, Theorem 5.1] and in general
by LePage [10].

Combining Theorems 5.1 and 7.3, we arrive at last at the generalization of
Driscoll’s Theorem. We actually have two generalizations, depending on which
part of Theorem 5.1 we use. Theorem 7.4 takes us as close as we can come to his
zero-one law without further assumptions on the kernel R.

Theorem 7.4. Let {Xt, t ∈ T } be a Gaussian process such that m ∈ H(R). Then
either

P(X· ∈ H(R)) = 0,(7.1)

or there exists a version Y of X such that

P(Y· ∈ H(R)) = 1,(7.2)

depending on whether R 6� K or R� K, respectively. P is assumed to be complete.

Theorem 7.5. Let {Xt, t ∈ T } be a Gaussian process such that m ∈ H(R). As-
sume that dR is a metric, that H(R) is separable, and that the trajectories of X are
dR-continuous functions on T . Then

P(X· ∈ H(R)) = 0 or 1,

and equals 1 if and only if R� K. P is assumed to be complete.

8. Concluding remarks

As mentioned in the Introduction, Driscoll applied his theorem to find the Bayes
estimator of a mean function m under a Gaussian prior, using the norm of H(R)
to define a quadratic loss function. This problem may be viewed as a prediction
problem for a random signal in H(R). Having generalized his theorem, we are in
a position to solve the corresponding prediction problem in a more general setting.
This will appear in a future paper.

Theorem 7.1 shows that a Gaussian process with sample paths in a RKHS defines
a Gaussian random element in that space. It is well known that the even-order
moments of a zero-mean, normally distributed random variable may be expressed
explicitly in terms of its variance. It turns out that for a zero-mean Gaussian
random element ξ in a RKHS one can similarly compute the even-order moments
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of ‖ξ‖ in terms of the trace of the covariance operator. This will also be described
elsewhere.

In the present paper we have been able to remove Driscoll’s assumption that T
be a separable metric space and that the kernel R be continuous by introducing a
“natural” metric on T defined solely by the kernel R. From the results of Section 5
it is natural to ask whether one may measure the probability that a given process
X has trajectories which are dR-continuous. The answer is unknown at this time.

It would also be of interest to know whether a process X with covariance K and
sample paths in H(R) automatically has its mean function in H(R) when R ≥ K.
Under these conditions we may certainly define a random element ξ in H(R), but
it is not known, for example, whether ξ has weak first order. A positive answer to
this question would allow us to strengthen Theorem 3.1 by deleting the assumption
that the mean of X is in H(R).

9. Acknowledgments

We would like to thank the editor for his expeditious handling of this paper,
and the referee for an insightful and helpful review. We would also like to thank
Professor Bernard Bru for kindly providing Fortet’s unpublished notes [7] to us.

A question raised by Professor Thomas Kurtz during a UW-Madison Probability
Seminar on this material led to Corollary 6.1.

References

[1] N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical
Society 68 (1950), 337–404. MR 14:479c

[2] Michael F. Driscoll, Estimation of the mean value function of a Gaussian process, Ph.D.
thesis, University of Arizona, 1971.

[3] , The reproducing kernel Hilbert space structure of the sample paths of a Gaussian
process, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 26 (1973), 309–316.
MR 51:6949

[4] , The signal-noise problem – a solution for the case that signal and noise are Gaussian
and independent, Journal of Applied Probability 12 (1974), 183–187. MR 51:2222
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