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Abstract— Many robust model predictive control (MPC)
schemes are based on min-max optimization, that is, the
future control input trajectory is chosen as the one which
minimizes the performance due to the worst disturbance
realization. In this paper we take a different route to solve
MPC problems under uncertainty. Disturbances are modelled
as random variables and the expected value of the performance
index is minimized. The MPC scheme that can be solved
using Stochastic Programming (SP), for which several efficient
solution techniques are available. We show that this formulation
guarantees robust constraint fulfillment and that the expected
value of the optimum cost function of the closed loop system
decreases at each time step.

Keywords: Stochastic systems, Robust control, Predictive
control for linear systems

I. INTRODUCTION

Model predictive control (MPC) is a popular strategy
originated in the late seventies. The basic idea of MPC is the
explicit use of a model of the process to predict the output
at future time instants and to obtain the control signal by
minimizing a cost function that depends on such predictions.
The control inputs are implemented in accordance with a
receding horizon scheme.

Standard MPC algorithms, however, do not take directly
into account model uncertainties and disturbances. Although
the feedback mechanism itself is able to partially compensate
for them, robust control designs that cope with uncertainties
in an explicit way are of interest in modern MPC theory.

Many robust MPC schemes are based on the min-max
strategy originally proposed in [1], where the performance
index due to the worst possible disturbance realization is
minimized. Several strategies may be found in the literature,
see [2], [3], [4], [5], [6], [7] and the references therein.
In all cases, the resulting min-max optimization problems
are computationally very demanding and, in general, it is
common feeling the control laws are too conservative.

Stochastic MPC takes a different route to solve MPC
problems under uncertainty. Disturbances are modelled as
random variables and the expected value of the cost function
is minimized. As in the min-max case, feedback predictions
are taken into account (see [5]). The stochastic view of
the disturbance in MPC could be traced back to Clarke’s
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bemporad@unisi.it (Alberto Bemporad), alamo@cartuja.us.es
(T. Alamo)

Generalized Predictive Control [8]. Like in many approaches
that follow the same line of thinking, the results are valid
only in the unconstrained case. Recent works in SMPC deal
with input constraints for different classes of models, see
e.g. [9], [10]. However, state constraints are not tackled, and
efficient algorithms for evaluating the control law are not
provided.

In this paper, we formulate robust MPC schemes that
can be solved by Stochastic Programming (SP) techniques
as in [11]. Stochastic programming is a special class of
mathematical programming that involves optimization under
uncertainty (see [12], [13], [14]). The original applications
were agricultural economics, aircraft route planning and
production of heating oil back in the 50’s. Nowadays SP
is becoming a mature theory that is successfully applied in
several other application domains (see the survey [15]). For
other contributions in control theory of SP techniques the
reader is referred to [16], [17], [11]. From the computational
viewpoint specific efficient algorithms for stochastic LP and
QP are available in the literature (see for example [18], [19],
[20], [21]) and commercial solutions to SP were announced
recently [22].

In Section II the problem formulation is presented. In
Section III some properties of the controller are presented.
Some simulation results are given in Section IV.

II. PROBLEM FORMULATION

Consider the following discrete time linear uncertain sys-
tem

xk+1 = A(wk+1)xk + B(wk+1)uk + D(wk+1)
xk+1 = φ(xk, uk, wk+1)

(1)

subject to state and input linear constraints defined by xk ∈
X ⊂ Rnx and uk ∈ U ⊂ Rnu , where xk ∈ Rnx is the state of
the system, uk ∈ Rnu the input vector, and wk+1 ∈ Rnw is
an unknown uncertainty that we model as a random variable
that lies in a bounded set W ⊆ Rnw .

We assume that the predicted state can be always defined
as the convex combination of q vertices θl in the following
way

φ(x, u, w) =
q∑

l=1

µl(w)φ(x, u, θl),

µl(w) ≥ 0,
q∑

l=1

µl(w) = 1.
(2)

The functions µl(w) may not be univocally determined and
a definition criterion must be provided as for example mini-
mizing the norm of the vector µ(w) = [µ1(w), . . . , µl(w)]T .
Typical models that satisfy this assumption are uncertain FIR
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systems [2] and polytopic systems given as the convex hull
of l matrices [4].

The stage cost Lp(x, u) and the terminal cost Fp(x) are
defined as

L∞(x, u) = ‖Qx‖∞ + ‖Ru‖∞,

F∞(x) = ‖Px‖∞,

for p = ∞ and as

L2(x, u) = xT Qx + uT Ru,

F2(x) = xT Px,

for p = 2.
The Stochastic Model Predictive Control (SMPC) problem

proposed in this work is defined as:

J∗(x0) = min
u0,...,uN−1

J(x0)

s.t. xk+1 = φ(xk, uk, wk+1)
xk+1 ∈ X, ∀wk+1 ∈ W

xN ∈ Ω, ∀wk+1 ∈ W

uk ∈ U

k = {0, . . . , N − 1}

(3)

where

J(x0) = Lp(x0, u0) + E1[Lp(x1, u1) + E2[Lp(x2, u2)
+E2[. . . + EN−1[Lp(xN−1, uN−1)
+EN [Fp(xN )]] . . .]]],

and x0 is the current state vector of the system under
control. In (3),

uk ≡ uk(w1, . . . , wk)
xk ≡ xk(x0, u0, . . . , uk−1, w1, . . . , wk)
Ek[ . ] ≡ Ewk|w1,...,wk−1

[ . ].

Note that the expectation evaluated for time step k considers
the previous disturbances w1 . . . wk−1 as known parameters,
and the expectation is evaluated with respect to the future
unknown disturbance wk.

Vector xk is the predicted state at time k. Thus, xk is a
random vector that depends on all inputs and disturbances
trajectories, as well as the initial state x0.

The stochastic model predictive control (SMPC) controller
presented here has an equivalent formulation to that of the
Closed-Loop Constrained Robust Optimal Control problem
(CL-CROC) formulated in [6], [5], [7]. The main difference
is that rather than minimizing the maximum of the cost func-
tion with respect to all the possible disturbance realizations,
we minimize the expected cost over a given horizon N .

Problem (3) is a multi-stage SP problem. Stochastic
programming (SP) is a special class of mathematical pro-
gramming that involves optimization under uncertainty (see
[12]). Such problems occur in various streams of industry
and economical theory. Multi-stage problems are made of
a succession of random events and recourse decisions. Each
decision is a different stage and stages are divided by random
events. In the proposed controller, SMPC, the decisions are
the future control inputs while the random events are the
disturbances acting on the model. This way of structuring
the problem provides the desired “closed-loop prediction” or

“feedback prediction” feature, a highly desirable property for
reducing the conservatism of the control action (for instance,
see examples in [23], [6]).

A. Scenario Generation

In general, uncertainty is best modelled as a continuous
random variable. However, in practice, continuous probabil-
ity distributions are too difficult to handle from a compu-
tational viewpoint. Therefore, discrete probability measures
have a prominent role in approaches based on stochastic
programming. Besides turning integrals into sums, discrete
distributions allow equivalent representations of optimization
models as block-structured large scaled deterministic opti-
mization mathematical programs.

By resorting to sampling of the continuous distribution,
the number q of possible values of the uncertainty at each
time step determines the complexity of the controller.

In this paper is proposed to use a discrete probability
distribution W(w) of the q vertices of W each with a
probability pl defined by

pl =

∫

w∈W

µl(w)W(w)dw. (4)

It is important to note that although only the vertices θl are
taken into account, robust constraint satisfaction can still be
assured.

With wk discretized, the realized values of the uncertainty
give rise to what is called a scenario tree, see Figure 1. The
root node of the tree represents the initial time step k = 0.
Each new level of the tree stands for a new time step and
contains all possible uncertainty trajectories.

Each node has q children, one for each possible realization.
The conditional probability of visiting the nth node in the
kth time step from its parent node is denoted pn

k and is equal
to the probability of the corresponding uncertainty realization
wn

k , this is, if wn
k = θl then pn

k = pl.
Each node represents a possible uncertainty and input

trajectory and is assigned a set of state and input variables
{x̂n

k , un
k}, with k = 0, . . . , N and n ∈ N (k) where N (k)

is the set of nodes at level k of the scenario tree. The
uncertainty wn

k is the uncertainty realization that defines the
node state vector from the Father node, namely,

x̂n
k+1 = φ(x̂n′

k , un′

k , wn
k+1),

Node(k, n′) = Father(Node(k + 1, n)).

Each node has also an unconditional probability of being
visited Pn

k , which is equal to the product of conditional
probabilities along the path to that node. By definition∑
n∈N (k)

Pn
k = 1.

B. Deterministic Model

Problem (3) can be formulated as a (large) mathematical
optimization program if the probability distribution W(w) of
the uncertainty is discrete. As mentioned before, each node
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Fig. 1. Scenario tree with N = 2 and q = 2

of the scenario tree is assigned a set of variables x̂n
k and un

k .

J∗(x0) = min
U

J(x0, U)

s.t. x̂n
k+1 = φ(x̂n′

k , un′

k , wn
k+1),

Node(k, n′) = Father(Node(k + 1, n)),
x̂1

0 = x0, x̂
n
k ∈ X, x̂n

N ∈ Ω, un
k ∈ U

∀k = 0, . . . , N − 1, ∀n ∈ N (k).

(5)

where the optimization vector is given by

U = {un
k : k = 0, . . . , N − 1; n ∈ N (k)},

and the objective function is

J(x0, U) =
N−1∑
k=0

∑
n∈N (k)

Pn
k Lp(x̂

n
k , un

k )

+
∑

n∈N (N)

Pn
NFp(x̂

n
N ).

The objective function is optimized with respect to the
whole set of input variables. Note that the predicted state
vectors are linear functions of the input and disturbance
trajectories of the corresponding node, therefore, the (large
scale) optimization program that defines the SMPC controller
can be formulated either as an LP program, if the ∞-norm
or the 1-norm is used in the cost function, (see, e.g., [24])
or as a QP program, if squared Euclidean norms are used.

While the size of a stochastic program is linear with the
number of scenarios, the number of scenarios is exponential
with the number of stages, which makes the solution of the
deterministic program (5) a difficult task. However, stochas-
tic programs have a very definite structure which can be
exploited to solve the problems in an efficient way. Different
algorithms can be found in the literature for exploiting this
structure, see for example [18], [20], [21]).

It is important to note that as the stochastic programs
have an LP or an QP large scale equivalent, the optimal
cost function J∗(x) is a convex function on x.

III. PROPERTIES OF THE PROPOSED CONTROLLER

In this section some properties of the proposed controller
are presented.

Lemma 1: If the terminal region Ω is chosen to be a robust
admissible invariant set for a given linear feedback law K

then, given a feasible solution for x0, U , for any possible
realization of the uncertainty w1 ∈ W , it is possible to build
a new feasible set of input variables Us(w1) that satisfies the
problem constraints for φ(x0, u

1
0, w1).

Proof: For each vertex θl of W a subtree Sl is defined
as all the nodes with w1 = θl. The nodes of the subtree l at
level k are defined as

Nl(k) = {n ∈ N (k) : Node(k, n) ∈ Sl}

and the control inputs of the nodes on level N are given by
the local control law K, namely

un
N = Kx̂n

N , ∀n ∈ N (N).

For the new leaf nodes, no new variable x̂n
N+1 are added. The

new states are given by the prediction equation depending
on the last state, the known input and a given uncertainty
realization, namely as φ(x̂n

N , Kx̂n
N , θl).

A set of feasible input variables can then be obtained as

Us(θl) = {un
k : k = 1, . . . , N ; n ∈ Nl(k)} (6)

This set of variables are defined for k = 1, . . . , N as we
consider x1 = φ(x0, u

1
0, θl). This change of initial time step

is used in the proof of the next theorem. Figure 2 shows the
two subtrees for the scenario tree of Figure 1.

As Ω is chosen to be a robust admissible invariant set
for K, φ(x̂n

N ,Kx̂n
N , θl) ∈ Ω and Kx̂n

N ∈ U so (5) is
also satisfied for k = N + 1 and Us(θl) satisfies (5) for
φ(x0, u

1
0, θl).

As all the constraints are linear, using (2)

Us(w1) =

q∑
l=1

µl(w1)Us(θl)

satisfies (5) for φ(x0, u
1
0, w1).

It is important to note that in this way, robust constraint
satisfaction is assured.

The value of the cost function for a given vertex of the
uncertainty for the feasible set of variables (6) can be posed
as

J(φ(x0, u
1
0, θj), Us(θj)) =

N−1∑
k=1

∑
n∈Nj(k)

P n
k

pj
Lp(x̂

n
k , un

k )

+
∑

n∈Nj(N)

P n
N

pj
Lp(x̂

n
N ,Kx̂n

N )

+
∑

n∈Nj(N)

q∑
l=1

P n
N

pj
plFp(φ(x̂n

N ,Kx̂n
N , θl)).

(7)
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It is important to note that both the cost function for x0 and
the cost function for the proposed feasible set of inputs, are
defined using the variables of the original scenario tree.

Theorem 1: If the terminal region Ω is chosen to be a
robust admissible invariant set for a given linear feedback
law K and the terminal cost Fp(x) satisfies

Fp(φ(x,Kx,w)) − Fp(x) ≤ −Lp(x,Kx) + γ,∀w ∈ W,

then the following inequality holds

E[J∗(φ(x0, u
1
0, w))] − J∗(x0) ≤ −Lp(x0, u

1
0) + γ,

where u1
0 is the first control input of the optimal solution

U∗(x0).
Proof: Taking into account that J∗(x) is a convex

function, (2) and (4), the following inequalities hold

E[J∗(φ(x0, u
1
0, w))] =

∫
w∈W

J∗(φ(x0, u
1
0, w))W(w)dw

≤
∫

w∈W

q∑
j=1

µj(w)J∗(φ(x0, u
1
0, θj))W(w)dw

≤
q∑

j=1

J∗(φ(x0, u
1
0, θj))

∫
w∈W

µj(w)W(w)dw

≤
q∑

j=1

pjJ
∗(φ(x0, u

1
0, θj))

From the optimum solution U∗(x0), q feasible solution sets
Us(θj) are builded, one for each possible realization of the
uncertainty θj . It is clear to see that because of optimality,

E[J∗(φ(x0, u
1
0, w))] ≤

q∑
j=1

pjJ(φ(x0, u
1
0, θj), Us(θj))

Taking into account this inequality, (5) and (7), and that∑
j∈N (N)

Pn
N = 1, the following inequalities holds

E[J∗(φ(x0, u
1
0, w))] − J∗(x0) + Lp(x0, u

1
0)

≤
∑

n∈N (N)

Pn
NLp(x̂

n
N ,Kx̂n

N ) − Pn
NFp(x̂

n
N )

+
∑

n∈N (N)

q∑
l=1

Pn
NplFp(φ(x̂n

N ,Kx̂n
N , θl))

≤ max
n∈N (N)

[Lp(x̂
n
N ,Kx̂n

N ) − Fp(x̂
n
N )

+
q∑

l=1

plFp(φ(x̂n
N ,Kx̂n

N , θl))]
∑

n∈N(N)

Pn
N

≤ max
n∈N (N)

[Lp(x̂
n
N ,Kx̂n

N ) − Fp(x̂
n
N )

+
q∑

l=1

plFp(φ(x̂n
N ,Kx̂n

N , θl))]

Let us denote Γ(x̂n
N ) = Lp(x̂

n
N ,Kx̂n

N ) − Fp(x̂
n
N ), for all

n ∈ N (N), as
q∑

l=1

pl = 1, the following inequalities are

satisfied

Γ(x̂n
N ) +

q∑
l=1

plFp(φ(x̂n
N ,Kx̂n

N , θl))

≤ Γ(x̂n
N ) + max

l=1...q
Fp(φ(x̂n

N ,Kx̂n
N , θl))

q∑
l=1

pl

= Γ(x̂n
N ) + max

l=1...q
Fp(φ(x̂n

N ,Kx̂n
N , θl))

Taking into account that

Fp(φ(x, Kx, w)) − Fp(x) + Lp(x, Kx) ≤ γ,∀w ∈ W,

is satisfied for any possible state vector, it holds

Γ(x̂n
N ) + max

l=1...q
Fp(φ(x̂n

N ,Kx̂n
N , θl)) ≤ γ,

so

Γ(x̂n
N ) +

q∑
l=1

plFp(φ(x̂n
N ,Kx̂n

N , θl)) ≤ γ,

As this inequality is satisfied for any x̂n
N , then

E[J∗(φ(x0, u
1
0, w))] − J∗(x0) ≤ −Lp(x0, u

1
0) + γ.

Theorem 1 and Lemma 1 guarantee robust constraint
satisfaction, but do not guarantee convergence in a determin-
istic way. However, the expected value of the optimal cost
function is shown to decrease on each step so a certain degree
of convergence is proved. This is related to the definition of
stochastic stability, see [25].

IV. EXAMPLE

Consider the discrete-time equivalent of

G(s) =
−20(s − 10)

(s + 2)(s2 + 5s + 100)
, (8)

for a sampling time Ts = 0.3s. We use a CARIMA model
with integrated uncertainty

∆A(z−1)yk = B(z−1)∆uk−1 + wk,

with |wk| ≤ ε. While no output constraints are present, ∆u

must be in [−0.5 0.5].
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TABLE I

AVERAGE COSTS CUMULATED ALONG ACTUAL TRAJECTORIES.

SMPC Nom FMM
ε = 0.5 40.4 47.0 49.5
ε = 1 56.9 64.6 65.3
ε = 2 79.4 88.8 92.9

TABLE II

COMPUTATIONAL ASPECTS FOR DIFFERENT PREDICTION HORIZONS.

var con FMM(s) SMPC(s)
N = 5 481 +2000 0.04 0.01
N = 6 1153 +5000 0.11 0.02
N = 7 2688 +11000 0.25 0.04
N = 8 6145 +25000 1.05 0.12
N = 9 13825 +60000 2.35 0.35

The stage and terminal costs have the form

L∞(x,∆u) = |Q(Cx − yr)| + |R∆u|
F∞(x) = |P (Cx − yr)|,

respectively, where yr is the desired output set-point, Q =
P = 1 and R = 2. The following controllers are taken into
account:

• SMPC: SMPC controller with N = 5;
• Nom: Nominal MPC controller with N = 5 ;
• FMM: Min-max MPC controller with N = 5;

Different simulations for different values of the distur-
bance amplitude ε were done over 50 time steps and for a
set-point change from yr = 0 to yr = 4. The total cumulated
costs, which are computed by summing up Lp(xk, uk) for
k = 0, . . . , 50 and averaging over a hundred simulations with
different random disturbances, are reported in Table I.

The min-max controller has been evaluated as a single
large scale linear problem. The problem is defined as the
SMPC problem, but instead of minimizing the weighted sums
of the cost of each possible trajectory, the maximum one is
minimized.

A. Computational Aspects

Table II shows the size of the large scale optimization
programs in number of optimization variables (var), and
number of constraints (con). The entry FMM shows the
time required to evaluate the Min-max MPC while using
the MOSEK solver offered in [26]. Entry SMPC shows the
time required to evaluate the SMPC using the MSLiP solver
offered in [26]. This solver implements a nested Benders
decomposition method for the multistage stochastic linear
programming problem [18].

It is important to note that in the case of quadratic cost
criterions, the SMPC optimization problem is a quadratic
program that can be solved by specific methods like nested
Benders decomposition, while the min-max formulation can
not be solved using quadratic programming techniques and
nowadays is regarded as too complex for real implementa-
tion.

V. CONCLUSIONS

In this paper we have investigated a robust MPC formu-
lation that copes with model uncertainties and disturbances
based on stochastic programming ideas. Rather than mini-
mizing the worst case of the cost function for all possible
disturbance realizations, we minimize an approximation of
the expected value. The resulting stochastic MPC control
action is obtained by solving a stochastic programming
problem, for which several efficient solution techniques are
available.

Robust constraint satisfaction is proved and also that the
expected value of the cost function decreases at each time
step. Although this does not assure convergence to the origin,
this is related to the definition of stochastic stability, see [25].
Further works include studies on this issue.
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