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Abstract In this paper we discuss computational complexity and risk averse approaches to two and
multistage stochastic programming problems. We argue that two stage (say linear) stochastic pro-
gramming problems can be solved with a reasonable accuracy by Monte Carlo sampling techniques
while there are indications that complexity of multistage programs grows fast with increase of the
number of stages. We discuss an extension of coherent risk measures to a multistage setting and, in
particular, dynamic programming equations for such problems.

Keywords two and multistage stochastic programming, complexity, Monte Carlo sampling, sample
average approximation method, coherent risk measures, dynamic programming, conditional risk
mappings.

1 Introduction

In many situations there is a need to make, hopefully an optimal, decision under conditions of
uncertainty. Everybody would agree with this statement. There is a disagreement, however, with
how to deal with such situations. Uncertainty can come in many different forms, and hence there
are various ways how it can be modelled. In a mathematical approach one formulates an objective
function f : R

n → R which should be optimized (say minimized) subject to specified constraints.
That is, one formulates a mathematical programming problem:

Min
x∈X

f(x), (1.1)

where the feasible set X ⊂ R
n is typically defined by a (finite or even infinite) number of constraints,

say X := {x ∈ R
n : gi(x) ≤ 0, i ∈ I} (the notation “ := ” means “equal by definition”). Inevitably

the objective and constraint functions depend on parameters, which we denote by vector ξ ∈ R
d.

That is, f(x, ξ) and gi(x, ξ), i ∈ I, can be viewed as functions of the decision vector x ∈ R
n and

parameter vector ξ ∈ R
d.

Typically the parameter vector ξ is subject to an error (say a round-off error) or, even worse, is
uncertain. In such cases fixing parameters to a nominal value ξ = ξ∗ and then solving the correspond-
ing optimization problem, could lead to a poor solution. Let us note at this point that it is possible
to reformulate problem (1.1) as an unconstrained problem by introducing penalties for violating
the constraints. For example, we can define the extended real valued function f̄(x, ξ) := f(x, ξ)
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if x ∈ {x : gi(x, ξ) ≤ 0, i ∈ I} and f̄(x, ξ) := +∞ otherwise, and then rewrite the corresponding
optimization problem as the unconstrained problem:

Min
x∈Rn

f̄(x, ξ). (1.2)

The reader should be warned that, although convenient from a mathematical point of view, such
reformulation may disguise an essential difference between the objective and constraint functions.
In some cases even small perturbations of the nominal values of the parameters may result in a
severe infeasibility of an optimal solution x∗ of the nominal problem. When satisfying the feasibility
constraints is important, and often this is the case, such “nonrobustness” with respect to constraint
violations can make the nominal solution useless, or even worse, misleading. This observation could
be considered as a starting point for the robust approach to mathematical programming where the
nominal problem is replaced by a “worst case” problem. We refer to Nemirovski [5] for a thorough
discussion of the robust approach.

In this paper we consider an alternative approach of stochastic optimization. We view the un-
certain parameter vector ξ as a random vector having probability distribution P supported on a
(closed) set Ξ ⊂ R

d. We then formulate the following stochastic programming problem:

Min
x∈X

E[f(x, ξ)], (1.3)

where the expectation E[f(x, ξ)] =
∫

Ξ
f(x, ξ)dP (ξ) is taken with respect to the probability distri-

bution P . For the moment we assume that the feasible set X is a well defined (deterministic) set.
While making modelling in the form of optimization problem (1.3), we need to answer two basic
questions:

(i) Whether the optimization problem (1.3) makes sense?
(ii) Could it be solved (numerically)?

These two questions cannot be separated since even if we are satisfied with the modelling part of
the procedure, but the resulting optimization problem cannot be solved in a reasonable time with a
reasonable accuracy, usefulness of such model could be questionable.

An answer to both questions is not obvious, and of course should depend on a class of considered
problems. With respect to the question (i), two additional questions come to mind, namely:

(i′) How do we know the probability distribution P?
(i′′) Why do we optimize the expected value of the objective function, i.e., why do we optimize on

average?

Without specifying the probability distribution P , we even cannot formulate the problem mathe-
matically. In some cases the relevant probability distribution can be estimated with a reasonable
accuracy from an available historical data. However, in many cases it either could change with time
or is based on a subjective judgement. The optimization of the expected value could be justified by
an application of the Law of Large Numbers (LLN). That is, if we are supposed to solve the same
problem, under the same probability distribution, many times, then formulation (1.3) gives a best
possible solution on average. If, however, in the process we lose our investment and are forced out
of business, it wouldn’t help that our decisions were optimal on average.

With respect to the second question (ii) of solving problem (1.3) numerically, let us observe that
just evaluation of the objective function of that problem, at a considered point x ∈ X, requires
calculation of the corresponding integral

∫

Ξ
f(x, ξ)dP (ξ). Only in rather simple cases this integral

can be written in a closed form. For continuous distributions, typically, this integral cannot be
evaluated numerically by deterministic methods already, say, for the number of random variables
d > 4.

The above discussion raises the question of whether the stochastic programming is a viable
technique, moreover so in view of competing alternative approaches. In the remainder of this paper
we will try to address the above questions. The reader could make his/her own conclusions whether
the suggested answers are satisfactory.
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2 Two-stage stochastic programming

In this section we discuss the two-stage stochastic programming approach. That is, it is assumed
that two types of decision vectors x ∈ R

n1 and y ∈ R
n2 are involved. A decision about vector x

has to be made “here-and-now” before a realization1 of the corresponding random data vector ξ
becomes known. After a realization of ξ is available, an optimal decision about y is made by solving
the corresponding optimization problem:

Min
y∈G(x,ξ)

g(x, y, ξ), (2.1)

where G : R
n1 × Ξ ⇒ R

n2 is a multifunction defining the corresponding feasible set and g : R
n1 ×

R
n2 × Ξ → R. The second stage optimization problem (2.1) depends on the first stage decision

vector x and data (parameter) vector ξ. At the first stage, one is supposed to optimize the expected
value of the second stage problem, i.e., to solve the optimization problem:

Min
x∈X

{

f(x) := E[F (x, ξ)]
}

, (2.2)

where X is a subset of R
n1 and F (x, ξ) denotes the optimal value of problem (2.1). (We assume

that the set X is nonempty and closed.) For example2, the above problem (2.1)–(2.2) becomes a
two-stage stochastic linear program (with recourse) if

X := {x : Ax+ b ≤ 0} , g(x, y, ξ) := 〈c, x〉 + 〈q, y〉 and G(x, ξ) := {y : Tx+Wy + h ≤ 0} , (2.3)

and the data vector ξ is formed from some (all) elements of vectors q and h and matrices T and W .
The concept of two-stage stochastic programming was introduced in Beale [4] and Dantzig [11], and
was discussed in numerous publications (see, e.g., monographs [6,26,45,53]).

Let us remark that there is an additional difficulty here as compared with formulation (1.3).
That is, the function F (x, ξ) is not given explicitly and might be not finite valued. If for some x ∈ X
and ξ ∈ Ξ the optimization problem (2.1) is unbounded from below, then F (x, ξ) := −∞. This is a
somewhat pathological situation meaning that for some feasible x and a possible realization of the
data, one can improve the value of the second stage problem indefinitely. We assume that at the
modelling stage, one makes sure that this does not happen, i.e., F (x, ξ) > −∞ for all (x, ξ) ∈ X×Ξ.
It also might happen that the second stage problem is infeasible, i.e., G(x, ξ) = ∅. In that case we
define F (x, ξ) := +∞. We have that if, for some x ∈ X, the second stage problem is infeasible
with positive probability, then E[F (x, ξ)] = +∞ and such x cannot be a solution of the first stage
problem. Therefore, de-facto the first stage problem (2.2) should be solved over such x ∈ X that
F (x, ξ) < +∞ with probability one (w.p.1). It is said the two-stage problem has relatively complete
recourse if for every x ∈ X the feasible set G(x, ξ), of the second-stage problem, is nonempty w.p.1,
i.e., for almost every (a.e.) ξ ∈ Ξ. Of course, even in the case of relatively complete recourse it might
happen that E[F (x, ξ)] = +∞, for some x ∈ X, if the probability distribution of ξ has sufficiently
heavy tails.

A standard approach to solving the two stage problem (2.1)-(2.2) is by constructing scenarios.
That is, one generates a finite number of points ξk ∈ Ξ, k = 1, ...,K, called scenarios, and assigns

to each ξk a positive weight pk such that
∑K

k=1 pk = 1. The generated set {ξ1, ..., ξK} of scenarios,
with the corresponding probabilities p1, ..., pK , can be viewed as a representation of the underlying
probability distribution. With respect to this distribution we can write the expected value function

f(x) = E[F (x, ξ)] as the finite summation f(x) =
∑K

k=1 pkF (x, ξk). By making one copy yk of the
second stage decision vector for every scenario ξk, i.e., by considering yk = y(ξk), k = 1, ...,K, as

1 We denote by the same symbol ξ random vector and its particular realization, which one of these two
meanings will be used in a particular situation will be clear from the context

2 By 〈c, x〉 we denote the standard scalar product of two vectors.
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a function of scenarios, we can write the two-stage problem (2.1)-(2.2) as one large optimization
problem:

Min
x,y1,...,yK

∑K
k=1 pkg(x, yk, ξk)

s.t. x ∈ X, yk ∈ G(x, ξk), k = 1, ...,K.
(2.4)

In particular, in the linear case (2.3) this becomes the linear programming problem:

Min
x,y1,...,yK

〈c, x〉 +
∑K

k=1 pk〈qk, yk〉
s.t. Ax+ b ≤ 0, Tkx+Wkyk + hk ≤ 0, k = 1, ...,K,

(2.5)

where ξk = (qk, Tk,Wk, hk), k = 1, ...,K, are the corresponding scenarios. Over the years a consid-
erable effort went into developing algorithms exploiting a specific structure of problems of the type
(2.4), and especially linear problems (2.5) (see, e.g., [54] for a recent survey of such decomposition
type algorithms).

If we view the generated scenarios (together with the corresponding weights/probabilities) as
an approximation of the “true” probability distribution of the random data vector ξ, the natural
question is whether by solving the corresponding problem (2.4) we can solve the “true” two-stage
problem with a reasonable accuracy in a reasonable time. Modern computers coupled with good
algorithms can solve linear programming problems of the form (2.5) with millions of variables and
constraints. Yet, the number of scenarios needed to approximate the underlying probability dis-
tribution with a reasonable accuracy typically grows exponentially with increase of the number of
random parameters. This poses serious doubts whether an answer to the question (ii), formulated
in the Introduction, could be positive even for moderate size two stage linear stochastic programs.
This is what we are going to discuss next.

3 Complexity of two-stage stochastic programs

Suppose for the moment that components ξi, i = 1, ..., d, of the random data vector ξ ∈ R
d are

independently distributed. Suppose, further, that we use r points for discretization of the (marginal)
probability distribution of each component ξi. Then the resulting number of scenarios is K = rd, i.e.,
it grows exponentially with increase of the number of random parameters. Already with, say, r = 4
and d = 20 we will have an astronomically large number of scenarios 420 ≈ 1012. In such situations
it seems hopeless just to calculate with a high accuracy the value f(x) = E[F (x, ξ)] of the objective
function at a given point x ∈ X, much less to solve the corresponding optimization problem3.
And, indeed, it is shown in Dyer and Stougie [15] that, under the assumption that the stochastic
parameters are independently distributed, two-stage linear stochastic programming problems are
♯P-hard.

Quite often in applications it does not make much sense to try to solve the corresponding stochas-
tic problem with a high accuracy, say of order 10−3 or 10−4, since the involved inaccuracies resulting
from inexact modelling, distribution approximations etc. could be far bigger. Therefore, we ap-
proach now the problem from the point of view of Monte Carlo sampling techniques. Suppose that
we can generate a random sample ξ1, ..., ξN of N realizations of the random vector ξ, i.e., each
ξj , j = 1, ..., N , has the same probability distribution as ξ. While making the following theoreti-
cal analysis we assume that ξj , j = 1, ..., N , are distributed independently4, i.e., the sample is iid.

Consider the corresponding so-called sample average function f̂N (x) := N−1
∑N

j=1 F (x, ξj). The

3 Of course, in some very specific situations it is possible to calculate E[F (x, ξ)] in a closed form. Also

if F (x, ξ) is decomposable into the sum
Pd

i=1
Fi(x, ξi), then E[F (x, ξ)] =

Pd

i=1
E[Fi(x, ξi)] and hence the

problem is reduced to calculations of one dimensional integrals. This happens in the case of the so-called
simple recourse.

4 In practical applications, in order to speed up the convergence, it is often advantageous to use Quasi-
Monte Carlo techniques where the generated ξj are not independently distributed (cf., [24,28,42]).
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function f̂N (x) depends on the generated random sample and therefore is random. For any fixed

x ∈ X, we have that f̂N (x) is an unbiased estimator of the expectation f(x), i.e., E
[

f̂N (x)
]

= f(x),

and by the LLN that f̂N (x) converges to f(x) w.p.1 as N → ∞. This motivates to introduce the
following, so-called sample average approximation (SAA), problem:

Min
x∈X

{

f̂N (x) := N−1
∑N

j=1 F (x, ξj)
}

. (3.1)

Note that once the sample is generated, problem (3.1) becomes a problem of the form (2.4) with
scenarios ξj , j = 1, ..., N , each taken with equal probability pj = N−1, j = 1, ..., N . Note also that
the sample average approximation method is not an algorithm, one still has to solve the obtained
optimization problem (3.1) by applying an appropriate numerical procedure. It is difficult to point
out who was the first to suggest the SAA approach to solving stochastic problems. The idea of this
method is quite simple and it was discovered and rediscovered by several authors under different
names in different contexts.

It is possible to show that, under mild regularity conditions, the optimal value v̂N and an optimal
solution x̂N of the SAA problem (3.1) converge w.p.1 as N → ∞ to their counterparts5 v∗ and S∗ of
the “true” problem (2.2). However, the convergence could be slow. By the Central Limit Theorem

(CLT), for a fixed point x ∈ X, we have that N1/2
[

f̂N (x)−f(x)
]

converges in distribution to normal

N (0, σ2(x)), where σ2(x) := Var[F (x, ξ)]. That is, f̂N (x) converges to f(x) at a rate of Op(N
−1/2).

It is possible to show that

v̂N = minx∈S∗ f̂N (x) + op(N
−1/2), (3.2)

provided that the set X is compact, [60]. In particular, if S∗ = {x∗} is singleton, then v̂N converges

to v∗ at the same rate as f̂N (x∗) converges to f(x∗). It is also not difficult to verify that v∗ ≥ E[v̂N ],
i.e., v̂N is a downward biased estimator of v∗. If S∗ = {x∗} is singleton, then the (negative) bias
E[v̂N ]− v∗ tends to zero typically at a rate of O(N−1), while if the true problem has more than one
optimal solution, then this bias is typically of order O(N−1/2) (see, e.g., [64] for a further discussion
of statistical properties of the SAA estimators).

Although the rate of convergence of the SAA estimators can be enhanced, sometimes significantly,
by various variance reduction techniques, the Monte Carlo approach does not allow to estimate the
expectation f(x) with a high accuracy. Therefore, it is somewhat surprising that the SAA approach
could be quite efficient in solving a certain class of stochastic programming problems.

For ε ≥ 0 we say that a point x̄ ∈ X is an ε-optimal solution of problem (2.2) if f(x̄) ≤ v∗ + ε,
i.e., x̄ ∈ X∗

ε , where

X∗
ε := {x ∈ X : f(x) ≤ v∗ + ε} and v∗ := infx∈X f(x). (3.3)

Note that the level set X∗
ε is nonempty for any ε > 0. Suppose that we solve the SAA problem

(3.1) with an accuracy δ ∈ [0, ε). We ask now the question of how large should be the sample size
N in order for a δ-optimal solution x̂N of the SAA problem (3.1) to be an ε-optimal solution of the
true problem (2.2). Since the sample is random, we could answer this question only with a certain
confidence, say with probability at least 1 − α, where α ∈ (0, 1) is a chosen significance level.

Let us make the following assumptions.

(A1) The expected value function f(x) is well defined and finite valued for all x ∈ X.
(A2) There is a constant σ > 0 such that for any x, x′ ∈ X, the moment generating function6

Mx,x′(t) of the random variable Yx,x′ − E[Yx,x′ ], where Yx,x′ := F (x, ξ) − F (x′, ξ), satisfies:

Mx,x′(t) ≤ exp
(

1

2
σ2t2

)

, ∀t ∈ R. (3.4)

5 We denote by S∗ the set of optimal solutions of the true problem (2.2). If S∗ = {x∗} is a singleton, then
x̂N converges to x∗ w.p.1 under mild regularity conditions.

6 The moment generating function of a random variable Y is MY (t) := E[exp(tY )].
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(A3) There exists a (measurable) function κ : Ξ → R+ such that its moment generating function
Mκ(t) is finite valued for all t in a neighborhood of 0, and

∣

∣F (x, ξ) − F (x′, ξ)
∣

∣ ≤ κ(ξ)‖x− x′‖, ∀x, x′ ∈ X, ∀ξ ∈ Ξ. (3.5)

The above assumption (A3) implies that the expectation E[κ(ξ)] is finite and the function f(x) is
Lipschitz continuous on X with Lipschitz constant L = E[κ(ξ)]. It follows that the optimal value v∗

of the true problem (2.2) is finite, provided the set X is bounded (recall that it was assumed that
X is nonempty and closed). Moreover, by Cramér’s Large Deviation Theorem we have that for any
L′ > E[κ(ξ)] there exists a positive constant β = β(L′) such that

Prob
(

N−1
∑N

j=1 κ(ξ
j) > L′

)

≤ exp(−Nβ). (3.6)

By using theory of Large Deviations it is possible to prove the following result (cf., [27,64,68]).

Theorem 1 Suppose that assumptions (A1)–(A3) hold, the set X has a finite diameter D :=
supx,x′∈X ‖x − x′‖ and let ε > 0, δ ∈ [0, ε), α ∈ (0, 1), L′ > E[κ(ξ)] and β = β(L′) be the cor-

responding constants. Then for the sample size N satisfying 7

N ≥ 4σ2

(ε− δ)2

[

n log

(

2LD

ε− δ

)

+ log

(

O(1)

α

)]

∨

[

β−1 log

(

2

α

)]

, (3.7)

we have with probability at least 1 − α that the following holds: “any δ-optimal solution of the SAA
problem (3.1) is an ε-optimal solution of the true problem (2.2)”.

Remark 1 If the set X is finite, then, under assumptions (A1) and (A2), an estimate of the required
sample size can be written as

N ≥ 2σ2

(ε− δ)2
log

( |X|
α

)

, (3.8)

where |X| denotes the cardinality (number of elements) of the set X.

Remark 2 If the Lipschitz constant κ(ξ) in (3.5) can be taken independent of ξ, i.e., κ(ξ) ≡ L, then
|F (x, ξ) − F (x′, ξ)| ≤ LD for any x, x′ ∈ X and ξ ∈ Ξ. We have then that the assumption (A2)
holds automatically and an estimate of the required sample size takes the form:

N ≥
(

O(1)LD

ε− δ

)2 [

n log

(

O(1)LD

ε− δ

)

+ log

(

1

α

)]

. (3.9)

If, for ξ ∈ Ξ, the function F (·, ξ) is Lipschitz continuous, then it is differentiable at every x except for
x in a set Υξ of Lebesgue measure zero and if, moreover, the set X is convex, the Lipschitz constant
κ(ξ) can be estimated by the maximum of ‖∇xF (x, ξ)‖ taken over x ∈ X \Υξ. Consequently, we can
take L := supx∈X\Υξ, ξ∈Ξ ‖∇xF (x, ξ)‖, provided that this constant is finite.

Remark 3 It was assumed in Theorem 1 that the set X has a finite diameter, i.e., that X is bounded.
For convex problems this assumption can be relaxed. We say that the problem is convex if the set
X is convex and the function F (·, ξ) is convex for every ξ ∈ Ξ and real valued on a neighborhood
of X. It then follows that the expected value function f(x) is also convex. Assume that the optimal
value v∗ of the true problem (2.2) is finite and for some a > ε the level set X∗

a , defined in (3.3),
has a finite diameter D∗

a. Note that the set X∗
ε , of ε-optimal solutions of the true problem (2.2),

remains the same if the feasible set X is replaced by its subset X∗
a . Let N∗ be an integer satisfying

the inequality (3.7) with D replaced by D∗
a. Then by Theorem 1 we have that with probability at

least 1 − α all δ-optimal solutions of the reduced SAA problem, where the set X is replaced by
X∗

a , are ε-optimal solutions of the problem (2.2). Let us observe now that in this case the set of

7 By O(1) we denote a generic constant independent of the data, and a ∨ b := max{a, b}.



Stochastic Programming 7

δ-optimal solutions of the reduced SAA problem coincides with the set of δ-optimal solutions of
the original SAA problem. Indeed, suppose that the original SAA problem has a δ-optimal solution

x∗ ∈ X \X∗
a . Let x̄ ∈ arg minx∈X∗

a
f̂N (x), such a minimizer does exist since X∗

a is compact and f̂N (x)

is real valued convex and hence continuous. Then x̄ ∈ X∗
ε and f̂N (x∗) ≤ f̂N (x̄) + δ. By convexity of

f̂N (x) it follows that f̂N (x) ≤ max
{

f̂N (x̄), f̂N (x∗)
}

for all x on the segment joining x̄ and x∗. This
segment has a common point x̂ with the set X∗

a \X∗
ε . We obtain that x̂ ∈ X∗

a \X∗
ε is a δ-optimal

solutions of the reduced SAA problem, a contradiction.
That is, with such sample size N∗ we are guaranteed with probability at least 1 − α that any

δ-optimal solution of the SAA problem (3.1) is an ε-optimal solution of the true problem (2.2). Also
assumptions (A2) and (A3) could be verified for x, x′ in the set X∗

a only.

Remark 4 Suppose that the set S∗, of optimal solutions of the true problem, is nonempty and closed.
Then it suffices in the assumption (A2) to verify condition (3.4) only for every x ∈ X \X∗

ε and some
x′ ∈ S∗, which may depend on x (cf., [64, p. 372]). For example, it suffices to verify (3.4) for every
x ∈ X \X∗

ε and x′ ∈ arg minz∈S∗ ‖x− z‖. (Of course, if the set X \X∗
ε is empty, i.e., X ⊂ X∗

ε , then
any point of X is an ε-optimal solution of the true problem.) If, moreover, κ(ξ) ≡ L, then for such
x and x′ we have |F (x, ξ) − F (x′, ξ)| ≤ LD̄, where D̄ := supx∈X\X∗

ε
dist(x, S∗). Suppose, further,

that the problem is convex. Then (see Remark 3), for any a > ε, we can use X∗
a instead of X and

to write the following estimate of the required sample size:

N ≥
(

O(1)LD̄a,ε

ε− δ

)2 [

n log

(

O(1)LD∗
a

ε− δ

)

+ log

(

1

α

)]

, (3.10)

where D∗
a is the diameter of X∗

a and D̄a,ε := supx∈X∗

a\X∗

ε
dist(x, S∗).

Remark 5 In some cases the convergence of optimal solutions of SAA problems is finite in the sense
that w.p.1 for N large enough every optimal solution x̂N of the SAA problem is an exact optimal
solution of the true problem and, moreover, the probability of this event tends to one exponentially
fast. This happens if the problem is convex and the true problem has sharp optimal solution x∗ ∈ X,
i.e., f(x) ≥ f(x∗) + c‖x− x∗‖ for some c > 0 and all x ∈ X (cf., [61,62,70]).

Remark 6 Suppose that κ(ξ) ≡ L, the problem is convex and the set S∗, of optimal solutions of
the true problem, is nonempty. Then for any a > 0 and ε ∈ (0, a), we can use the estimate (3.10).
Suppose further that for some γ ≥ 1, c > 0 and ā > 0, the following growth condition holds

f(x) ≥ v∗ + c [dist(x, S∗)]γ , ∀x ∈ X∗
ā . (3.11)

It follows from (3.11) that for any a ≤ ā and x ∈ X∗
a , the inequality dist(x, S∗) ≤ (a/c)1/γ holds.

Consequently, for any ε ∈ (0, ā), by taking a := min{2ε, ā} and δ ∈ [0, ε/2] we obtain from (3.10)
the following estimate of the required sample size

N ≥
(

O(1)L

c1/γε(γ−1)/γ

)2 [

n log

(

O(1)LD∗
a

ε

)

+ log

(

1

α

)]

. (3.12)

Note that if S∗ = {x∗} is a singleton, then it follows from (3.11) that D∗
a ≤ 2(a/c)1/γ . In particular,

if γ = 1 and S∗ = {x∗} is a singleton, then D∗
a can be bounded by 4c−1ε and hence we obtain the

following estimate

N ≥ O(1)c−2L2
[

n log
(

O(1)c−1L
)

+ log
(

α−1
)]

, (3.13)

which does not depend on ε. This, of course, is in accordance with Remark 5. For γ = 2 condition
(3.11) is called the “second-order” or “quadratic” growth condition. Under the quadratic growth
condition the first term in the right hand side of (3.12) becomes of order c−1ε−1L2.

Similar analysis can be performed without the condition κ(ξ) ≡ L, if instead we assume that the
estimate (3.4) holds with σ2 being proportional to ‖x− x′‖2. For example, if F (x, ξ) − F (x′, ξ) has
a normal distribution, then σ2 is equal to the variance of F (x, ξ) − F (x′, ξ), and hence by (3.5) we
have that σ2 ≤ Var[κ(ξ)]‖x− x′‖2.
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In a sense the above estimate (3.7) of the sample size gives an estimate of complexity of the
corresponding two-stage problem. For decomposition type algorithms the total number of iterations,
required to solve the SAA problem, typically is independent of the sample size N (this is an empirical
observation) and the computational effort at every iteration is proportional to N . Anyway size of the
SAA problem (3.1), formulated in the form (2.4), grows linearly with increase of N . Let us discuss
now implications of the estimate (3.7), where we take, for example, δ ∈ [0, ε/2].

The right hand side of (3.7) is proportional to σ2/ε2. Assumption (A2) requires for the probability
distribution of the random variable Yx,x′ := F (x, ξ) − F (x′, ξ) to have sufficiently light tails. In
particular, if Yx,x′ has a normal distribution, then actually equality in (3.4) holds with σ2 being the
variance of Yx,x′ . In a sense, the constant σ2 in (3.4) can be viewed as a bound reflecting variability
of the random variables Yx,x′ , for x, x′ ∈ X. Naturally, larger variability of the data should result in
more difficulty in solving the problem. In order to see that consider a simple case when the feasible
set X consists of just two elements, i.e., X = {x1, x2} with f(x2) − f(x1) > ε > 0. By solving
the corresponding SAA problem we make the (correct) decision that x1 is the ε-optimal solution if

f̂N (x2)− f̂N (x1) > 0. If the random variable F (x2, ξ)−F (x1, ξ) has a normal distribution with mean

µ := f(x2)− f(x1) and variance σ2, then f̂N (x2)− f̂N (x1) ∼ N (µ, σ2/N) and the probability of the

event “f̂N (x2)−f̂N (x1) > 0” (i.e., of the correct decision) is Φ(µ
√
N/σ), where Φ(z) is the cumulative

distribution function of N (0, 1). We have that Φ(ε
√
N/σ) < Φ(µ

√
N/σ), and in order to make the

probability of the incorrect decision less than α we have to take the sample size N > z2
ασ

2/ε2, where
zα := Φ−1(1 − α). Even if F (x2, ξ) − F (x1, ξ) is not normally distributed, the sample size of order
σ2/ε2 could be justified asymptotically, say by applying the CLT. It also could be mentioned that
if F (x2, ξ) − F (x1, ξ) has a normal distribution (with known variance), then the uniformly most

powerful test for testing H0 : µ ≤ 0 versus Ha : µ > 0 is of the form: “reject H0 if f̂N (x2) − f̂N (x1)
is bigger than a specified critical value” (this is a consequence of the Neyman-Pearson Lemma, see,
e.g., [8, section 8.3]). In other words, in such situations if we only have an access to a random sample,
then solving the corresponding SAA problem is in a sense a best way to proceed.

The estimate (3.7) suggests complexity of order σ2/ε2 with respect to the desirable accuracy.
This is in a sharp contrast with deterministic (convex) optimization where complexity usually is
bounded in terms of log(ε−1). In view of the above discussion it should be not surprising that (even
linear) two stage stochastic programs usually cannot be solved with a high accuracy. On the other
hand, the estimate (3.7) depends linearly on the dimension n of the first stage decision vector. It also
depends linearly on log(α−1). This means that by increasing confidence, say, from 99% to 99.99%
we need to increase the sample size by the factor of log 100 ≈ 4.6 at most.

This suggests that by using Monte Carlo sampling techniques one can solve two-stage stochastic
programs with a reasonable accuracy, say with relative accuracy of 1% or 2%, in a reasonable time,
provided that: (a) its variability is not too large, (b) it has relatively complete recourse, and (c) the
corresponding SAA problem can be solved efficiently. And, indeed, this was verified in numerical
experiments with two-stage problems having a linear second stage recourse (cf., [30,31,44,58,72]).
Of course, the estimate (3.7) of the sample size is far too conservative for actual calculations. For
practical applications there are techniques which allow to estimate (statistically) the error of a
considered feasible solution x̄ for a chosen sample size N (see [31,37]). Also it was demonstrated in
theoretical studies and numerical experiments that Quasi-Monte Carlo techniques could significantly
improve the accuracy of the SAA method (see, e.g., [36] for a general discussion of Quasi-Monte Carlo
methods and [24,28,42] for stochastic programming applications).

The following example (taken from [67]) shows that the estimate (3.7) of the sample size cannot
be significantly improved for the class of convex stochastic programs.

Example 1 Consider problem (2.2) with F (x, ξ) := ‖x‖2m − 2m〈ξ, x〉, where m is a positive integer,
andX := {x ∈ R

n : ‖x‖ ≤ 1}. Suppose, further, that the random vector ξ has the normal distribution
N (0, σ2In), where σ2 is a positive constant and In is the n × n identity matrix, i.e., components
ξi of ξ are independent and ξi ∼ N (0, σ2), i = 1, ..., n. It follows that f(x) = ‖x‖2m, and hence
for ε ∈ [0, 1] the set of ε-optimal solutions of the true problem (2.2) is {x : ‖x‖2m ≤ ε}. Now let
ξ1, ..., ξN be an iid random sample of ξ and ξ̄N := (ξ1 + ... + ξN )/N . The corresponding sample
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average function is

f̂N (x) = ‖x‖2m − 2m〈ξ̄N , x〉, (3.14)

and the optimal solution x̂N of the SAA problem is x̂N = ‖ξ̄N‖−r ξ̄N , where r := 2m−2
2m−1 if ‖ξ̄N‖ ≤ 1,

and r = 1 if ‖ξ̄N‖ > 1. It follows that, for ε ∈ (0, 1), the optimal solution of the corresponding SAA
problem is an ε-optimal solution of the true problem iff ‖ξ̄N‖ν ≤ ε, where ν := 2m

2m−1 . We have that

ξ̄N ∼ N (0, σ2N−1In), and hence N‖ξ̄N‖2/σ2 has a chi-square distribution with n degrees of freedom.
Consequently, the probability that ‖ξ̄N‖ν > ε is equal to the probability Prob

(

χ2
n > Nε2/ν/σ2

)

.

Moreover, E[χ2
n] = n and the probability Prob(χ2

n > n) increases and tends to 1/2 as n increases.
Consequently, for α ∈ (0, 0.3) and ε ∈ (0, 1), for example, the sample size N should satisfy

N >
nσ2

ε2/ν
(3.15)

in order to have the property: “with probability 1 − α an (exact) optimal solution of the SAA
problem is an ε-optimal solution of the true problem”. Compared with (3.7), the lower bound (3.15)
also grows linearly in n and is proportional to σ2/ε2/ν . It remains to note that the constant ν
decreases to one as m increases.

Note that in this example the growth condition (3.11) holds with γ = 2m, and the power constant
of ε in the estimate (3.15) is in accordance with the estimate (3.12).

Of course, in this example the “true” optimal solution is x̄ = 0, and one does not need sampling

in order to solve this problem. Note, however, that the sample average function f̂N (x) here depends
on the random sample only through the data average vector ξ̄N . Therefore, any numerical procedure
based on averaging a generated random sample, will need a sample of size N satisfying the estimate
(3.15) in order to produce an ε-optimal solution. �

It follows from assumption (A1) that for any x ∈ X the optimal value F (x, ξ) of the second stage
problem is finite for a.e. ξ ∈ Ξ, i.e., that the considered two-stage problem has relatively complete
recourse. This assumption was essential in the above analysis. Of course, one can make sure at the
modelling stage that the relatively complete recourse holds. For example, suppose that the feasible
set of the second stage problem is given in the form

G(x, ξ) := {y ∈ R
n2 : G(x, y, ξ) ∈ C} , (3.16)

where G : R
n1 ×R

n2 ×Ξ → R
m and C ⊂ R

m is a closed convex cone with a nonempty interior. Let
e be an interior point of C and π > 0 be a constant, and consider the following modification of the
second stage problem (2.1):

Min
y∈Rn2 , t∈R

g(x, y, ξ) + πt

s.t G(x, y, ξ) + te ∈ C, t ≥ 0.
(3.17)

This modification makes the second stage problem always feasible (just take t > 0 large enough
such that e+ t−1G(x, y, ξ) ∈ C). By taking the penalty parameter π sufficiently large, one may hope
that solving the modified two-stage problem, with the second stage problem (2.1) replaced by (3.17),
will lead to “nearly feasible and nearly optimal” solution of the original two-stage problem (2.1)–
(2.2). Note, however, that the variance of the optimal value Fπ(x, ξ) of the second stage problem
(3.17) grows with increase of π in a way more or less proportional8 to π. Therefore, for large values
of the penalty parameter π one may need an unrealistically large sample size N in order to solve
the corresponding modified problem with a reasonable accuracy.

In general, the considered approach of two-stage stochastic programming with recourse is not
suitable to handle situations where certain events can happen with very small probabilities but with
huge costs. It does not make much sense to mix such catastrophic events with regular events trying
to optimize the cost on average.

8 If a random variable Y can take two values, say a and b with respective probabilities 1 − p and p, then
for small p > 0 and large b such that the expected value E[Y ] = (1− p)a+ pb remains constant, the variance
of Y grows asymptotically proportionally to b.



10 Alexander Shapiro

4 Risk averse approach

In this section we discuss questions (i′) and (i′′) posed in the Introduction. Suppose that we do
not know the corresponding probability distribution P exactly, but we could reasonably identify a
relevant family A of probability distributions. Then we can reformulate problem (2.2) as the following
minimax stochastic program:

Min
x∈X

{

f(x) := sup
P∈A

EP [F (x, ξ)]

}

, (4.1)

by hedging against a worst possible distribution (e.g., [13,19,22,63,75]). For example, it could be
easier to evaluate some moments EP [ψi(ξ)], i = 1, ...,m, of ξ, than its complete distribution. This
corresponds to the so-called Problem of Moments, where the set A is defined by specifying equality
and/or inequality type constraints on these moments. Usually such moment constraints lead to
extreme (worst case) distributions having a finite support of at mostm+1 points, and from a practical
point of view could be too loose. For some other approaches to minimax stochastic programming
see, e.g., [66,69].

As far as question (i′′) is concerned one can try to reach a compromise between optimizing the
objective on average and at the same time reducing its variability. That is, consider the following
mean-risk averse problem:

Min
x∈X

{f(x) := ρ[F (x, ξ)]} , (4.2)

where ρ[Z] := E[Z] + λD[Z], λ ≥ 0 is a weight parameter and D[Z] is a measure of dispersion
(variability) of random variable Z = Z(ξ) (cf., [38]). It seems natural to use variance Var[Z] or

standard deviation
√

Var[Z] as the dispersion measure D[Z]. Such choice of the dispersion measure
was suggested by Markowitz [32], more than 50 years ago, and was extensively used for portfolio
selections. As we shall see, however, there are several problems with using the corresponding risk
measure for stochastic programming.

It turns our that there is a duality relation between the minimax (4.1) and risk averse (4.2)
formulations of stochastic programs. We view now risk measure ρ[Z] as a mapping assigning to a
(measurable) function Z : Ξ → R a real number. For technical reasons we need to define a space of
functions Z(ξ) for which ρ[Z] is defined. We assume that there is a reference probability measure
(distribution) P on Ξ and for p ∈ [1,+∞) consider the space Z := Lp(Ξ,F , P ) of random variables
Z(ξ) having finite p-th order moments9. Consider the following conditions (axioms) associated with
a risk measure (function) ρ : Z → R.

(C1) Convexity:

ρ(αZ1 + (1 − α)Z2) ≤ αρ(Z1) + (1 − α)ρ(Z2) for all Z1, Z2 ∈ Z and α ∈ [0, 1].

(C2) Monotonicity10 : If Z1, Z2 ∈ Z and Z2 � Z1, then ρ(Z2) ≥ ρ(Z1).
(C3) Translation Equivariance: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a.
(C4) Positive homogeneity: If α > 0 and Z ∈ Z, then ρ(αZ) = αρ(Z).

The above axioms were introduced and risk measures satisfying these axioms were called coherent
risk measures in the pioneering paper by Artzner et al [2] (for a discussion of a relation between
axiomatics of risk and dispersion measures see [50,51]).

9 Here (Ξ,F , P ) is viewed as a probability space. If Ξ is a subset of R
d, then we assume that the sigma

algebra F is formed by Borel subsets of Ξ. The space Lp(Ξ,F , P ) consists from classes of F-measurable
functions Z : Ξ → R such that EP |Z|p < +∞, which can differ from each other on a set of P -measure zero.
10 The notation Z2 � Z1 means that Z2(ξ) ≥ Z1(ξ) for all ξ ∈ Ξ. Since we deal here with Z1(ξ) and
Z2(ξ) viewed as random variables defined on the probability space (Ξ,F , P ), we can relax this to requiring
Z2(ξ) ≥ Z1(ξ) to hold for a.e. ξ ∈ Ξ.
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Recall that with Banach space Z := Lp(Ξ,F , P ) is associated its dual space Z∗ := Lq(Ξ,F , P ),
where q ∈ (1,+∞] is such that 1/p+ 1/q = 1, with the corresponding scalar product

〈ζ, Z〉 :=
∫

Ξ
Z(ξ)ζ(ξ)dP (ξ), Z ∈ Z, ζ ∈ Z∗.

Note that ζ(ξ)dP (ξ) can be considered as a probability measure (distribution) on (Ξ,F), provided
that ζ(·) is a probability density function, i.e., ζ(ξ) ≥ 0 for all ξ ∈ Ξ and

∫

Ξ
ζdP = 1. In that case

we write 〈ζ, Z〉 = Eζ [Z], viewing this scalar product as the expectation of Z with respect to the
probability density ζ. The following duality result is a consequence of the Fenchel-Moreau Theorem.
With various degrees of generality it was obtained in [2,10,12,21,43,50,56].

Theorem 2 Let Z := Lp(Ξ,F , P ), Z∗ := Lq(Ξ,F , P ), with p ∈ [1,+∞), and ρ : Z → R be a risk
measure. Then ρ is a coherent risk measure (i.e., satisfy conditions (C1)–(C4)) if and only if there
exists a convex set A ⊂ Z∗ of probability density functions such that

ρ[Z] = sup
ζ∈A

Eζ [Z], ∀Z ∈ Z. (4.3)

The representation (4.3) shows that for coherent risk measures, in a sense, formulations (4.1) and
(4.2) are dual to each other.

Let us make the following observations. It is possible to show that convexity assumption (C1)
and monotonicity assumption (C2) imply that the (real valued) function ρ is continuous in the norm
topology of Lp(Ξ,F , P ) (cf., [56]). The monotonicity assumption (condition (C2)) is important in
several respects. If it does not hold, then we may end up, while solving (4.2), in a situation where
F (x2, ξ) ≥ F (x1, ξ) for all possible realizations of ξ, and yet we prefer decision x2 to x1. Also,
conditions (C1) and (C2) imply that if F (·, ξ) is convex for every ξ ∈ Ξ, then the corresponding
composite function f(x) = ρ[F (x, ξ)] is also convex. For this convexity preserving property to hold
the condition of monotonicity is essential.

Remark 7 We can define the space Z to be the space of all bounded measurable functions Z :
Ξ → R, and to pair this space with the space Z∗ of all signed finite Borel measures on Ξ with the
corresponding scalar product 〈µ,Z〉 :=

∫

Ξ
Z(ξ)dµ(ξ), µ ∈ Z∗, Z ∈ Z. Then the result of Theorem 2

holds with A ⊂ Z∗ being a (convex) set of probability measures and the expectation Eµ[Z], in the
right hand side of (4.3), is taken with respect to probability measure µ ∈ A. Suppose, further, that
the set Ξ ⊂ R

d is compact and let us take A to be the set of all probability measures on Ξ. Then
the maximum of Eµ[Z], over µ ∈ A, is attained at a measure of mass one at a point a ∈ Ξ. That is,
in that case the representation (4.3) takes the form ρ[Z] = supa∈Ξ Z(a), and problem (4.2) can be
written as the min-max optimization problem:

Min
x∈X

{

f(x) := sup
a∈Ξ

[F (x, a)]

}

, (4.4)

If the set Ξ := {ξ1, ..., ξK} is finite, then we can view a function Z : Ξ → R as a vector
(Z(ξ1), ..., Z(ξK)) ∈ R

K . Moreover, if Ξ is equipped with sigma algebra F of all subsets of Ξ, then
we can identify Lp(Ξ,F , P ) with R

K , equipped with the corresponding ℓp-norm. Let F (x, ξ) be the
optimal value of the second stage problem (2.1). Suppose that F (x, ξ) is finite for every x ∈ X and
ξ ∈ Ξ, i.e., the problem has relatively complete recourse. Then the function ρ[F (x, ξ)] is well defined
and problem (4.2) can be considered as a two-stage risk averse stochastic problem. By making one
copy of the second stage decision vector for every scenario ξk (compare with (2.4)), we can write
this two-stage problem in the form:

Min
x,y1,...,yK

ρ
[(

g(x, y1, ξ1), ..., g(x, yK , ξK)
)]

s.t. x ∈ X, yk ∈ G(x, ξk), k = 1, ...,K.
(4.5)

In particular, in the case of linear second stage problem (2.3), the above formulation of two-stage
risk averse problem takes the form:

Min
x,y1,...,yK

〈c, x〉 + ρ
[(

〈q1, y1〉, ..., 〈qK , yK〉
)]

s.t. Ax+ b ≤ 0, Tkx+Wkyk + hk ≤ 0, , k = 1, ...,K.
(4.6)
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We would like to emphasize that the monotonicity condition (C2) is essential in verification of the
equivalence of formulations (4.2) and (4.5) of the corresponding two-stage problem.

Consider the mean-deviation risk function ρ[Z] := E[Z] + λ
√

Var[Z]. Here λ ≥ 0 is a weight
parameter and all expectations are taken with respect to the reference distribution P . It is natural
to assume here existence of second order moments, i.e., that Z ∈ L2(Ξ,F , P ). It turns out that
this risk measure satisfies conditions (C1),C(3) and (C4), but for λ > 0 not condition (C2). This
in turn may result in suboptimality of solutions of the associated two-stage programs and that
the corresponding formulation (4.5) is not equivalent (even in the linear case (4.6)) to the original
problem (4.2) (cf., Takriti and Ahmed [71]).

A class of coherent risk measures is given by mean-semideviation risk functions:

ρ[Z] := E[Z] + λ
(

E

{

[

Z − E(Z)
]p

+

})1/p

, (4.7)

where p ∈ [1,+∞), [z]p+ := (max{z, 0})p and all expectations are taken with respect to the reference
distribution P . For any λ ≥ 0 these risk functions satisfy conditions (C1),C(3),C(4), and for λ ∈ [0, 1]
also the monotonicity condition (C2), i.e., for λ ∈ [0, 1] these are coherent risk measures. Another
important class of coherent risk measures is

ρ[Z] := E[Z] + inf
t∈R

E {a1[t− Z]+ + a2[Z − t]+} , (4.8)

where a1 ∈ [0, 1] and a2 ≥ 0 are constants. It is natural to use for these risk measures the space
Z := L1(Ξ,F , P ) together with its dual space Z∗ = L∞(Ξ,F , P ). The dual representation (4.3)
then holds and the corresponding set A ⊂ Z∗ can be written in the form:

A =
{

ζ ∈ Z∗ : 1 − a1 ≤ ζ(ξ) ≤ 1 + a2, a.e. ξ ∈ Ξ, E[ζ] = 1
}

(4.9)

(again all expectations here are taken with respect to the reference measure P ). For a1 ∈ [0, 1] and
a2 ≥ 0 all densities in the right hand side of (4.9) are nonnegative, and the risk function defined in
(4.8) is a coherent risk measure. We can write this risk measure in the form

ρ[Z] = (1 − a1)E[Z] + a1CV@Rκ[Z],

where κ := a2/(a1 + a2) and

CV@Rκ[Z] := inf
t∈R

{

t+
1

1 − κ
E

(

[Z − t]+
)

}

(4.10)

is the so-called Conditional Value at Risk function (see Rockafellar and Uryasev [49]). For many
other examples of risk functions satisfying some/all conditions (C1)–(C4), their dual representations
and their subdifferentials we may refer to [55].

Now the question is how the computational complexity of the risk averse problem (4.2) is com-
pared with complexity of the expected value problem (2.2). For risk functions of the form (4.7) or
(4.8) the SAA method can be applied to problem (4.2) in a straightforward way with similar sample
size estimates. That is, for a generated sample ξ1, ..., ξN ∼ P , replace the reference distribution P

by its empirical (sample) approximation11 P̂N := N−1
∑N

j=1∆(ξj), i.e., replace the corresponding

expectations by their sample averages. In that respect the risk measure (4.8) is especially convenient.
For this risk measure the corresponding problem (4.2) takes the form:

Min
x∈X,t∈R

{

f(x) := E
[

F (x, ξ) + a1[t− F (x, ξ)]+ + a2[F (x, ξ) − t]+
]}

, (4.11)

and for a finite (not too large) number of scenarios can be numerically solved by decomposition
techniques (see, e.g., [66] for details and numerical experiments).

11 By ∆(ξ) we denote probability measure (distribution) of mass one at the point ξ.
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Example 2 (Newsvendor Problem) A newsvendor has to decide about quantity x of newspapers
which he purchases from a distributor at the beginning of a day at the cost of c per unit. He can
sell a newspaper at the price s per unit and unsold newspapers can be returned to the vendor at
the price of r per unit. It is assumed that 0 ≤ r < c < s. If the demand D for the newspapers, at a
particular day, turns out to be greater than or equal to the order quantity x, then he makes the profit
sx− cx = (s− c)x, while if D is less than x, his profit is sD+ r(x−D)− cx = (r− c)x+ (s− r)D.
Thus the profit is a function of x and D and is given by

F (x,D) = [(s− c)x] δ(D − x) + [(r − c)x+ (s− r)D] δ(x−D),

where δ(t) = 0 if t < 0, and δ(t) = 1 if t ≥ 0. The objective of the newsvendor is to maximize his
profit. Viewing the demand D as uncertain, the risk averse formulation (4.2) of the corresponding
optimization problem can be written here as follows:

Min
x≥0

{

f(x) := ρ[−F (x,D)]
}

. (4.12)

Note that in order to formulate this as a minimization, rather than maximization, problem we
used negative of the profit function. Let G be a reference distribution of the demand D supported
on Ξ := R+. We can view G as a cumulative distribution function (cdf) supported on R+, i.e.,
G(t) = 0 for any t < 0. Note that F (x,D) is piecewise linear in D. Therefore we can use the space
Z := L1(R+,F , G). Furthermore, assuming that ρ : Z → R is a coherent risk measure, we have by
Theorem 2 that there is a set A ⊂ Z∗ = L∞(R+,F , G) such that the representation (4.3) holds.

Using integration by parts it is not difficult to verify that

EG[−F (x,D)] = (c− s)x+ (s− r)

∫ x

0

G(t)dt.

It is also possible to show that with every coherent risk measure ρ : Z → R is associated a cdf Ḡ(t),
supported on R+ and independent of the parameters r, c, s, such that

ρ[−F (x,D)] = (c− s)x+ (s− r)

∫ x

0

Ḡ(t)dt (4.13)

(cf., [1,63]). In particular, for the (coherent) risk measure (4.8) it is possible to show, by using its dual
representation with the set A given in (4.9), that Ḡ(t) = min {(1 + a2)G(t), 1} . Consequently, for
this risk measure an optimal solution of problem (4.12) is given by the quantile x̄ = G−1 (γ/(1 + a2)),
where γ := (s−c)/(s−r). Naturally, with increase of the uncertainty parameter a2, the corresponding
(conservative) decision x̄ is monotonically decreasing. �

5 Multistage stochastic programming

We discuss now stochastic programming in a dynamic setting when decisions are made in several,
say T , stages depending on information available at a current stage t = 1, ..., T . In a generic form a
T -stage stochastic programming problem can be written in the following nested formulation:

Min
x1∈G1

F1(x1) + E

[

inf
x2∈G2(x1,ξ2)

F2(x2, ξ2) + E

[

· · · + E
[

inf
xT ∈GT (xT−1,ξT )

FT (xT , ξT )
]

]

]

(5.1)

driven by the random data process ξ2, ..., ξT . Here xt ∈ R
nt , t = 1, ..., T , are decision variables,

Ft : R
nt ×R

dt → R are continuous functions and Gt : R
nt−1 ×R

dt ⇒ R
nt , t = 2, ..., T , are measurable

closed valued multifunctions, the function F1 : R
n1 → R and the set G1 ⊂ R

n1 are deterministic. For
example, in the linear case: Ft(xt, ξt) := 〈ct, xt〉, G1 := {x1 : A1x1 = b1, x1 ≥ 0},

Gt(xt−1, ξt) := {xt : Btxt−1 +Atxt = bt, xt ≥ 0} , t = 2, ..., T,
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ξ1 := (c1, A1, b1) is known at the first stage (and hence is nonrandom), and ξt := (ct, Bt, At, bt) ∈ R
dt ,

t = 2, ..., T , are data vectors some (all) elements of which can be random.
There are several equivalent ways how this formulation can be made precise. One approach is

to consider decision variables xt = xt(ξ[t]), t = 1, ..., T , as functions of the data process ξ[t] :=
(ξ1, ..., ξt) up to time t. Such a sequence of (measurable) mappings xt(ξ[t]), t = 1, ..., T , is called an
implementable policy (recall that ξ1 is deterministic). An implementable policy is said to be feasible
if it satisfies the feasibility constraints, i.e.,

xt(ξ[t]) ∈ Gt(xt−1(ξ[t−1]), ξt), t = 2, ..., T, w.p.1. (5.2)

We can formulate the multistage problem (5.1) in the form

Min
x1,x2(·),...,xT (·)

E
[

F1(x1) + F2(x2(ξ[2]), ξ2) + ...+ FT

(

xT (ξ[T ]), ξT
) ]

s.t. x1 ∈ G1, xt(ξ[t]) ∈ Gt(xt−1(ξ[t−1]), ξt), t = 2, ..., T.
(5.3)

Note that optimization in (5.3) is performed over implementable and feasible policies.
Another possible way is to write the corresponding dynamic programming equations. That is,

consider the last stage problem

Min
xT ∈GT (xT−1,ξT )

FT (xT , ξT ). (5.4)

The optimal value of this problem, denoted QT (xT−1, ξT ), depends on the decision vector xT−1 and
data ξT . At stage t = 2, ..., T − 1, we write the problem:

Min
xt

Ft(xt, ξt) + E
{

Qt+1

(

xt, ξ[t+1]

)
∣

∣ξ[t]
}

s.t. xt ∈ Gt(xt−1, ξt),
(5.5)

where E
[

· |ξ[t]
]

denotes conditional expectation. Its optimal value depends on the decision xt−1 at

the previous stage and realization of the data process ξ[t], and denoted Qt

(

xt−1, ξ[t]
)

. The idea is to

calculate the (so-called cost-to-go or value) functions Qt

(

xt−1, ξ[t])
)

, recursively, going backward in
time. At the first stage we finally need to solve the problem:

Min
x1∈G1

F1(x1) + E [Q2 (x1, ξ2)] . (5.6)

The corresponding dynamic programming equations are

Qt

(

xt−1, ξ[t]
)

= inf
xt∈Gt(xt−1,ξt)

{

Ft(xt, ξt) + Qt+1

(

xt, ξ[t]
) }

, (5.7)

where Qt+1

(

xt, ξ[t]
)

:= E
{

Qt+1

(

xt, ξ[t+1]

) ∣

∣ξ[t]
}

. We have that an implementable policy x̄t(ξ[t]) is
optimal iff

x̄t(ξ[t]) ∈ arg min
xt∈Gt(xt−1,ξt)

{

Ft(xt, ξt) + Qt+1

(

xt, ξ[t]
) }

, t = 1, ..., T, w.p.1. (5.8)

If the random process is Markovian (i.e., the conditional distribution of ξt+1 given ξ[t] = (ξ1, ..., ξt)
is the same as the conditional distribution of ξt+1 given ξt), then Qt (xt−1, ξt) is a function of xt−1

and ξt. We say that the process ξ1, ..., ξT is between stages independent if ξt+1 is independent of ξ[t]
for t = 1, ..., T − 1. In that case E

[

Qt+1 (xt, ξt+1)
∣

∣ξt
]

= Qt+1(xt) does not depend on ξt.
In some specific cases it is possible to solve these dynamic programming equations either analyt-

ically or numerically. However, more often than not it is quite impossible to solve these equations as
they are. This is the so-called “curse of dimensionality”, the term coined by Bellman. Let us consider
the following example of portfolio selection. This example is sufficiently simple so to some extent
it can be analyzed analytically. We will also use this example later to demonstrate some ideas and
difficulties associated with multistage stochastic programming.
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Example 3 (Portfolio Selection) Suppose that we want to invest an amount of W0 in n assets, xi,
i = 1, ..., n, in each. Suppose, further, that we can rebalance our portfolio at several, say T , periods
of time. That is, at the beginning we choose values xi0 ≥ 0 of our assets subject to the budget
constraint

∑n
i=1 xi0 = W0. At the period t = 1, ..., T , our wealth is Wt =

∑n
i=1 ξitxi,t−1, where

ξit = (1 + Rit) and Rit is the return of the i-th asset at the period t. Our objective is to maximize
the expected utility

Max E [U(WT )] (5.9)

at the end of the considered period, subject to the balance constraints
∑n

i=1 xit = Wt and xt ≥ 0, t = 0, ..., T − 1. (5.10)

We use notation xt := (x1t, ..., xnt) and ξt := (ξ1t, ..., ξnt), and as before ξ[t] := (ξ1, .., ξt) for the
history of the data process up to time t. The values of the decision vector xt, chosen at stage t,
may depend on the information ξ[t] available up to time t, but not on the future observations. The
decision process has the form

decision(x0) observation(ξ1) decision(x1) ... observation(ξT ) decision(xT ).

In order to derive dynamic programming equations consider the last stage t = T − 1. At that
stage we have to solve the problem

Max
xT−1≥0

E
[

U
(
∑n

i=1 ξi,Txi,T−1

)∣

∣ ξ[T−1]

]

s.t.
∑n

i=1 xi,T−1 = WT−1.
(5.11)

Its optimal value QT−1

(

WT−1, ξ[T−1]

)

is a function of WT−1 and ξ[T−1]. At stage t = T − 2, ..., 0 we
need to solve

Max
xt≥0

E
[

Qt+1

(
∑n

i=1 ξi,t+1xit, ξ[t+1]

)∣

∣ ξ[t]
]

s.t.
∑n

i=1 xit = Wt.
(5.12)

Its optimal value is Qt

(

Wt, ξ[t]
)

. Note that if the process ξt is between stages independent, then the
value function Qt(Wt) is independent of ξ[t] and is a function of one variable Wt.

Consider the logarithmic utility function U(z) := log z. Then, for WT−1 > 0,

QT−1

(

WT−1, ξ[T−1]

)

= logWT−1 +QT−1

(

1, ξ[T−1]

)

,

and by induction

Q1 (W1, ξ1) = logW1 + E [Q1 (1, ξ1)] +
∑T−1

t=2 E
[

Qt

(

1, ξ[t]
) ∣

∣ ξ[t−1]

]

. (5.13)

Consequently, the first stage optimal solution is obtained by solving the problem:

Max
x0≥0

E
[

log
(
∑n

i=1 ξi1xi0

)]

s.t.
∑n

i=1 xi0 = W0. (5.14)

That is, the first stage optimal solution can be obtained in a myopic way by solving the (static)
problem (5.14). The optimal value v∗ of the corresponding multistage problem is

v∗ = Q0(W0) + E [Q1 (1, ξ1)] +
∑T−1

t=2 E
[

Qt

(

1, ξ[t]
) ∣

∣ ξ[t−1]

]

. (5.15)

Consider now the power utility function U(z) := zγ , where γ ≤ 1, and suppose that the random
process ξt is between stages independent. Then QT−1 (WT−1) = W γ

T−1QT−1 (1) , and by induction

Q1 (W1) = W γ
1

∏T−1
t=1 Qt (1) . Consequently, the first stage optimal solution is obtained in a myopic

way by solving the problem:

Max
x0≥0

E
[(

∑n
i=1 ξi1xi0

)γ]

s.t.
∑n

i=1 xi0 = W0. (5.16)
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The optimal value of the corresponding multistage problem is

v∗ = W γ
0

∏T−1
t=0 Qt (1) . (5.17)

We see that in the above cases one needs to solve just a (static) one-stage stochastic program in
order to find the first stage optimal solutions. Of course, such myopic behavior of multistage programs
is rather exceptional. For instance, introduction of transaction costs into this model destroys this
myopic property. �

6 Complexity of multistage stochastic programs

A standard approach to solving multistage stochastic programs is by a discretization formulated
in a form of scenario tree. That is, at period t = 1 we have one root node associated with the
(deterministic) value of ξ1. At period t = 2 we have as many nodes as many different realizations of
ξ2 are considered. Each of them is connected with the root node by an arc. For each node i at period
t = 2 (which corresponds to a particular realization ξi

2 of ξ2) we create as many nodes at period
t = 3 as different values of ξ3 may follow ξi

2, and we connect them with the node i, etc. Generally,
nodes at period t correspond to possible values of ξt that may occur. Each node ξi

t at period t is
connected to a unique node at period t− 1, called its ancestor node, and is also connected to several
nodes at period t + 1, called its children. With every arc of the tree, connecting a node ξi

t with its

child node ξij
t+1, is associated (conditional) probability pij > 0 such that

∑

j pij = 1. A scenario
is a path starting at the root node and ending at a node of the last period T , i.e., each scenario
represents a particular realization ξ[T ] = (ξ1, ..., ξT ) of the considered process. The probability of a
scenario is given by the product of the conditional probabilities pij corresponding to the arcs of its
path. Once such a scenario tree is constructed, the obtained multistage stochastic program can be
written as a one large (deterministic) optimization problem of the form (5.3) with a finite number
of decision variables xt(ξ[t]).

If one views a constructed scenario tree (with a manageable number of scenarios) as an accurate
representation of reality, then there is no principle difference between the numerical complexity of
two and multi-stage stochastic programming. Yes, it is more difficult to solve multi than two-stage
(say linear) stochastic programs with a comparable number of scenarios, but the difference is not
that dramatic. A considerable effort went into development of efficient algorithms for solving (mainly
linear) multistage stochastic programs by utilizing their particular (decomposable) structure (see,
e.g., [54] for a recent survey).

On the other hand, if the number of scenarios is astronomically large, then in both two and
multi-stage cases the corresponding deterministic optimization problems are unsolvable. However,
we argued in section 3 that some classes of two-stage stochastic programs can be solved with a
reasonable accuracy by Monte Carlo sampling techniques. The corresponding estimate (3.7) of the
required sample size does not depend on the number of scenarios which can be even infinite. The SAA
method can be also applied to multistage stochastic programs. That is, a scenario tree is constructed
by sampling in the following way. First, a random sample ξi

2, i = 1, ..., N1, of N1 realizations of the
random vector ξ2 is generated. These realizations are viewed as nodes at the second period, each taken
with probability 1/N1. For each realization ξi

2, i = 1, ..., N1, a random sample ξij
3 , j = 1, ..., N2, of N2

realizations12 of the random vector ξ3 are generated in accordance with the conditional distribution
of ξ3 given ξ2 = ξi

2. And so on for the later stages. In that way a scenario tree is generated with the

total number of scenarios N =
∏T−1

t=1 Nt, each with equal probability 1/N . We refer to this process
of generating scenario trees as conditional sampling.

After a (random) scenario tree is generated by conditional sampling, the obtained multistage
problem is solved by an appropriate algorithm. It is possible to show that, under mild regularity
conditions, the optimal value and a first stage optimal solution of such SAA problem converge to

12 It is also possible to consider a sampling scheme where a different number, say N i
2, of random realizations

of ξ3, conditional on ξ2 = ξi
2, is generated. We use the same sample size N2 in order to simplify the

presentation.
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their true counterparts w.p.1 as the sample sizes Nt, t = 1, ..., T−1, tend (simultaneously) to infinity
(cf., [39,41,65]). Note, however, that although is a step in a right direction, such consistency result
by itself does not justify this method since a scenario tree required to solve the corresponding “true”
problem with a reasonable accuracy could be far too large to handle numerically.

It is possible to show that an analogue of the estimate (3.9) of the sample size holds for 3-stage
problems. That is, under certain regularity conditions, for T = 3, ε > 0, α ∈ (0, 1) and appropriate
constants L1, L2, L3, D1, D2, σ

2
1 , σ

2
2 , analogous to constants used in the estimate (3.7) for two stage

programs, and the sample sizes N1 and N2 satisfying

O(1)
[(

L1D1

ε

)n1

exp
{

− O(1)N1ε2

σ2
1

}

+
(

L3D1

ε

)n1
(

L2D2

ε

)n2

exp
{

− O(1)N2ε2

σ2
2

}]

≤ α, (6.1)

we have that any first stage ε/2-optimal solution of the SAA problem is an ε-optimal solution of
the corresponding true problem with probability at least 1 − α (see [67] for details). In particular,
suppose that N1 = N2 and take L := max{L1, L2, L3}, D := max{D1, D2} and σ2 := max{σ2

1 , σ
2
2}.

Then the above estimate of the required sample size N1 = N2 takes the form:

N1 ≥ O(1)σ2

ε2

[

(n1 + n2) log

(

O(1)LD

ε

)

+ log

(

1

α

)]

. (6.2)

Note that, similar to the analysis of two stage programming in section 3, the above sample size
estimates were derived under the assumption of relatively complete recourse (it was also assumed in
[67] that the random process ξt is between stages independent).

The sample size estimate (6.2) looks similar to the estimate (3.9) for two stage programs. Note,
however, that the total number of scenarios of the corresponding SAA tree (generated by conditional
sampling) is N1N2 = N2

1 . This analysis can be extended to T -stage stochastic programming with a
conclusion that the corresponding number of scenarios is growing exponentially with increase of the
number of stages. Consequently, the deterministic formulation of the constructed (by conditional
sampling) SAA problem becomes far too large for a numerical solution with increase of the number
of stages. Therefore, one is forced to take progressively smaller sample sizes Nt for later stages hoping
that it will have a little effect on the first stage solution.

The above analysis indicates a dramatic difference between complexity of two and multi-stage
stochastic programming. It should be clearly stated, however, that this does not prove in a rigorous
way that multistage (even linear) stochastic programming problems are computationally intractable
for large, say T ≥ 5, number of stages. Little is known about complexity of multistage stochastic
programming and the topic requires a further investigation. An essential difference between two and
multi-stage programs was also observed, e.g., in stability analysis of stochastic programs (see [23]).

Example 4 (Portfolio Selection continued) Consider the problem of portfolio selection discussed in
Example 3. Suppose that the random process ξ1, ..., ξT is between stages independent and we use
power utility function U(z) := zγ . It was shown in Example 3 that in this case the problem is
myopic, and hence in order to find an optimal first stage solution we only need to solve the one-stage
stochastic problem (5.16). But suppose that we don’t know this and would like to estimate the
optimal value v∗ of the corresponding T -stage problem by using the SAA method. To this end we
employ conditional sampling with the corresponding sample sizes Nt at stages t = 1, ..., T .

In accordance with (5.17) we have that the optimal value v̂N of this SAA problem can be written
in the form

v̂N = W γ
0

∏T−1
t=0 Q̂Nt+1

(1), (6.3)

where Q̂Nt+1
(Wt) is the optimal value of the SAA counterpart of the corresponding “true” problem.

Note that since the conditional sample is generated here in the “between stages independent way”,
the random variables Q̂Nt+1

(1) are mutually independent. Therefore

E [v̂N ] = W γ
0

∏T−1
t=0 E

[

Q̂Nt+1
(1)

]

= v∗
∏T−1

t=0 (1 + βt), (6.4)
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where βt :=
E[Q̂Nt+1

(1)]−Qt(1)

Qt(1)
is the relative bias of the optimal value of the corresponding t-th

stage SAA problem. This indicates that in this example the bias of the optimal value of the SAA
problem grows exponentially with increase of the number of stages, and hence the SAA estimate v̂N

could be considerably bigger than v∗, and hence far too optimistic, for large number of stages. Some
numerical experiments seem to confirm that the bias in this problem grows fast with increase of the
number of stages (cf., [7]). �

7 Risk averse multistage programming

In this section we discuss possible extensions of the coherent risk measures, discussed in section 4, to
multistage programming. Several approached were suggested in the recent literature for extending
risk averse approach to a dynamical setting (e.g., [3,10,17,25,48]). We follow below the approach
of conditional risk mappings developed in Ruszczyński and Shapiro [57]. For the sake of simplicity
and in order to avoid technical complications, we assume that the underlying process has a discrete
distribution with a finite support and can be represented by a (finite) scenario tree. Note that at
this moment we do not assume any probability distribution on the considered scenario tree.

Let us denote by Ωt the set of all nodes at stage t = 1, ..., T , and Kt := |Ωt| be the cardinality of
Ωt. With the set ΩT we associate sigma algebra FT of all its subsets. The set ΩT can be represented
as union of disjoint sets C1, ..., CKT−1

, with each Ck being the set of children of a node at stage
T − 1. Let FT−1 be the subalgebra of FT generated by sets C1, ..., CKT−1

, i.e., these sets form the
set of elementary events of FT−1. By this construction there is a one-to-one correspondence between
elementary events of FT−1 and the set ΩT−1 of nodes at stage T − 1. By continuing this process we
construct a sequence of sigma algebras (called filtration) F1 ⊂ · · · ⊂ FT . Note that F1 corresponds
to the unique root node and hence F1 = {∅, ΩT }.

Consider a node a ∈ Ωt. We denote by Ca ⊂ Ωt+1 the set of all children nodes of a. Since there
is a one-to-one correspondence between nodes of Ωt and elementary events of the sigma algebra Ft,
we can identify a with an elementary event of Ft. We have that the sets Ca, a ∈ Ωt, are disjoint
and Ωt+1 = ∪a∈Ωt

Ca. By taking all children of every node of Ca at later stages, we eventually can
identify with Ca a subset of ΩT . With every node a at stage t we associate a risk function:

ρa : R
|Ca| → R, a ∈ Ωt. (7.1)

For example, we can use (coherent) risk functions of the form (4.7) or (4.8), say

ρa[Z] := E[Z] + λaE
[

Z − E[Z]
]

+
, Z ∈ R

|Ca|, (7.2)

where13 λa ∈ [0, 1] and the expectations are taken with respect to a chosen probability distribution
pa on the set Ca.

We can write R
Kt+1 as the Cartesian product of the spaces R

|Ca|, a ∈ Ωt. That is, R
Kt+1 =

R
|Ca1

| × · · · × R
|CaKt

|
, where {a1, ..., aKt

} = Ωt. Define the mappings

ρt+1 := (ρa1 , ..., ρaKt ) : R
Kt+1 → R

Kt , t = 1, ..., T − 1, (7.3)

associated with risk functions ρa. Recall that the set Ωt+1 of nodes at stage t+ 1 is identified with
the set of elementary events of sigma algebra Ft+1, and its sigma subalgebra Ft is generated by sets
Ca, a ∈ Ωt.

We denote by ZT the set of all functions Z : ΩT → R. We can identify every such function with
a vector of the space R

KT , i.e., the set ZT can be identified with the space R
KT . We have that a

function Z : ΩT → R is FT−1-measurable iff it is constant on every set Ca, a ∈ ΩT−1. We denote by
ZT−1 the subset of ZT formed by FT−1-measurable functions. The set ZT−1 can be identified with
R

KT−1 . And so on, we can construct a sequence Zt, t = 1, ..., T , of spaces of Ft-measurable functions

13 Note that we don’t have here measurability problems since all considered sets are finite, and use the
space Z := R

|Ca| which can be viewed as the space of all functions Z : Ca → R.
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Z : ΩT → R such that Z1 ⊂ · · · ⊂ ZT and each Zt can be identified with the space R
Kt . Recall

that K1 = 1, and hence Z1 = R. We view the mapping ρt+1, defined in (7.3), as a mapping from
the space Zt+1 into the space Zt. Conversely, with any mapping ρt+1 : Zt+1 → Zt we can associate
a set of risk functions of the form (7.1).

We say that a mapping ρt+1 : Zt+1 → Zt is a conditional risk mapping if it satisfies the following
conditions (cf., [57]):

(C*1) Convexity:

ρt+1(αZ1 + (1 − α)Z2) ≤ αρt+1(Z1) + (1 − α)ρt+1(Z2), ∀Z1, Z2 ∈ Zt+1, ∀α ∈ [0, 1].

(C*2) Monotonicity: If Z1, Z2 ∈ Zt+1 and Z2 ≥ Z1, then ρt+1(Z2) ≥ ρt+1(Z1).
(C*3) Translation Equivariance: If Z ′ ∈ Zt and Z ∈ Zt+1, then ρt+1(Z + Z ′) = ρt+1(Z) + Z ′.
(C*4) Positive homogeneity: If α > 0 and Z ∈ Zt+1, then ρt+1(αZ) = αρt+1(Z).

It is straightforward to see that conditions (C*1), (C*2) and (C*4) hold iff the corresponding con-
ditions (C1), (C2) and (C4), defined in section 4, hold for every risk function ρa associated with
ρt+1. Also by construction (7.3) of ρt+1, we have that condition (C*3) holds iff condition (C3) holds
for all ρa. That is, ρt+1 is a conditional risk mapping iff every corresponding risk function ρa is a
coherent risk measure.

By Theorem 2 with each coherent risk function ρa, a ∈ Ωt, is associated a set A(a) of probability
measures (vectors) such that

ρa(Z) = max
p∈A(a)

Ep[Z]. (7.4)

Here Z ∈ R
Kt+1 is a vector corresponding to function Z : Ωt+1 → R,

Ep[Z] = 〈p, Z〉 =
∑Kt+1

k=1 pkZk

and A(a) = At+1(a) is a closed convex set of probability vectors14 p ∈ R
Kt+1 such that pk = 0 if

k ∈ Ωt+1 \ Ca, i.e., all probability measures of At+1(a) are supported on the set Ca. We can now
represent the corresponding conditional risk mapping ρt+1 as a maximum of conditional expectations
as follows. For an arbitrary probability distribution ν = (νa)a∈Ωt

on Ωt, define:

Dt+1 :=
{

µ =
∑

a∈Ωt
νap

a : pa ∈ At+1(a)
}

. (7.5)

It is not difficult to see that Dt+1 ⊂ R
Kt+1 is a convex set of probability vectors. Moreover, since each

At+1(a) is compact, the set Dt+1 is also compact and hence is closed. For any µ =
∑

a∈Ωt
νap

a ∈ Dt+1

and Z ∈ R
Kt+1 we have15

Eµ [Z|Ft] (a) = 〈pa, Z〉 = Epa [Z], a ∈ Ωt. (7.6)

It follows then by (7.4) that

ρt+1(Z) = max
µ∈Dt+1

Eµ [Z|Ft] , (7.7)

where the maximum in the right hand side of (7.7) is taken pointwise in a ∈ Ωt. Note also that any
distribution of Dt+1 agrees with the distribution ν on Ωt (for an extension of the representation (7.7)
of conditional risk mappings to general, not necessarily finitely supported, distributions see [57]).

14 A vector p ∈ R
Kt is said to be a probability vector if all its components pk, k = 1, ..., Kt, are nonnegative

and
PKt

k=1
pk = 1. Such a probability vector can be considered as a probability distribution on Ωt.

15 Recall that the space Zt+1 can be identified with R
Kt+1 .
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For a sequence ρt+1 : Zt+1 → Zt, t = 1, ..., T − 1, of conditional risk mappings consider the
following risk averse analogue formulation of the multistage program (5.1):

Min
x1∈G1

F1(x1)+ ρ2

[

inf
x2∈G2(x1,ω)

F2(x2, ω) + ...

+ρT−1

[

inf
xT−1∈GT (xT−2,ω)

{

FT−1(xT−1, ω) + ρT

[

inf
xT ∈GT (xT−1,ω)

FT (xT , ω)
]

}]]

.
(7.8)

Here Ω := ΩT , the objective functions Ft : R
nt−1 × Ω → R are real valued functions and Gt :

R
nt−1×Ω ⇒ R

nt , t = 2, ..., T , are multifunctions such that Ft(xt, ·) and Gt(xt−1, ·) are Ft-measurable
for all xt and xt−1.

There are several ways how the above nested formulation (7.8) can be formalized, we proceed as
follows (see [57] for details). In a ways similar to (5.3) we can write problem (7.8) in the form

Min
x1,x2(·),...,xT (·)

ρ̃
[

F1(x1) + F2(x2(ω), ω) + ...+ FT (xT (ω), ω)
]

s.t. x1 ∈ G1, xt(ω) ∈ Gt(xt−1(ω), ω), t = 2, ..., T.
(7.9)

Here ρ̃ := ρ2 ◦ · · ·ρT is the composite risk function, i.e., for Zt ∈ Zt, t = 1, ..., T ,

ρ̃(Z1 + ...+ ZT ) = Z1 + ρ2

[

Z2 + ...+ ρT−1

[

ZT−1 + ρT [ZT ]
]

]

. (7.10)

Recall that Z1 = R, and hence Z1 is a real number. The optimization in (7.9) is performed over
functions xt : Ω → R, t = 1, ..., T , satisfying the corresponding constraints, which imply that each
xt(ω) is Ft-measurable and hence each Ft(xt(ω), ω) is Ft-measurable.

An alternative approach to formalizing nested formulation (7.8) is to write dynamic programming
equations. That is, for the last period T we have

QT (xT−1, ω) := inf
xT ∈GT (xT−1,ω)

FT (xT , ω), (7.11)

QT (xT−1, ω) := ρT [QT (xT−1, ω)], (7.12)

and for t = T − 1, ..., 2,

Qt(xt−1, ω) := ρt [Qt(xt−1, ω)] , (7.13)

where

Qt(xt−1, ω) := inf
xt∈Gt(xt−1,ω)

{

Ft(xt, ω) + Qt+1(xt, ω)
}

. (7.14)

Of course, equations (7.13) and (7.14) can be combined into one equation16:

Qt(xt−1, ω) = inf
xt∈Gt(xt−1,ω)

{

Ft(xt, ω) + ρt+1 [Qt+1(xt, ω)]
}

. (7.15)

Finally, at the first stage we solve the problem

Min
x1∈G1

ρ2[Q2(x1, ω)]. (7.16)

It is important to emphasize that in the above development of the dynamic programming equa-
tions the monotonicity condition (C∗2) plays a crucial role, because only then we can move the
optimization under the risk operation.

16 With some abuse of the notation we write Qt+1(xt, ω) for the value of Qt+1(xt) at ω ∈ Ω, and
ρt+1 [Qt+1(xt, ω)] for ρt+1 [Qt+1(xt)] (ω).
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Remark 8 By using representation (7.7), we can write the dynamic programming equations (7.15)
in the form

Qt(xt−1, ω) = inf
xt∈Gt(xt−1,ω)

{

Ft(xt, ω) + sup
µ∈Dt+1

Eµ

[

Qt+1(xt)
∣

∣Ft

]

(ω)
}

. (7.17)

Note that the left and right hand side functions in (7.17) are Ft-measurable, and hence this equation
can be written in terms of a ∈ Ωt instead of ω ∈ Ω. Recall that every µ ∈ Dt+1 is representable in
the form µ =

∑

a∈Ωt
νap

a (see (7.5)) and that

Eµ

[

Qt+1(xt)
∣

∣Ft

]

(a) = Epa [Qt+1(xt)], a ∈ Ωt. (7.18)

We say that the problem is convex if the functions Ft(·, ω), Qt(·, ω) and the sets Gt(xt−1, ω) are
convex. If the problem is convex, then (since the set Dt+1 is convex compact) the ‘inf’ and ‘sup’ op-
erators in the right hand side of (7.17) can be interchanged to obtain a dual problem, and for a given
xt−1 and every a ∈ Ωt the dual problem has an optimal solution p̄a ∈ At+1(a). Consequently, for
µ̄t+1 :=

∑

a∈Ωt
νap̄

a we have that an optimal solution of the original problem and the corresponding
cost-to-go functions satisfy the following dynamic programming equations:

Qt(xt−1, ω) = inf
xt∈Gt(xt−1,ω)

{

Ft(xt, ω) + Eµ̄t+1

[

Qt+1(xt)|Ft

]

(ω)
}

. (7.19)

Moreover, it is possible to choose the “worst case” distributions µ̄t+1 in a consistent way, i.e., such
that each µ̄t+1 coincides with µ̄t on Ft (cf., [57]). That is, consider the first-stage problem (7.16).
We have that (recall that at the first stage there is only one node, F1 = {∅, Ω} and D2 = A2)

ρ2[Q2(x1)] = sup
µ∈D2

Eµ[Q2(x1)|F1] = sup
µ∈D2

Eµ[Q2(x1)]. (7.20)

By convexity and since D2 is compact, we have that there is µ̄2 ∈ D2 (an optimal solution of the
dual problem) such that the optimal value of the first stage problem is equal to the optimal value
and the set of optimal solutions of the first stage problem is contained in the set of optimal solutions
of the problem

Min
x1∈G1

Eµ̄2
[Q2(x1)]. (7.21)

Let x̄1 be an optimal solution of the first stage problem. Then we can choose µ̄3 ∈ D3, of the form
µ̄3 :=

∑

a∈Ω2
νap̄

a, such that equation (7.19) holds with t = 2 and x1 = x̄1. Moreover, we can take
the probability measure ν = (νa)a∈Ω2

to be the same as µ̄2, and hence to ensure that µ̄3 coincides
with µ̄2 on F2. Next, for every node a ∈ Ω2 choose a corresponding (second-stage) optimal solution
and repeat the construction to produce an appropriate µ̄4 ∈ D4, and so on for later stages. In that
way, assuming existence of optimal solutions, we can construct a probability distribution µ̄2, ..., µ̄T

on the considered scenario tree such that the obtained multistage problem, of the regular form
(5.1), has the same cost-to-go (value) functions as the original problem (7.8) and has an optimal
solution which also is an optimal solution of the problem (7.8) (in that sense the obtained multistage
problem, driven by dynamic programming equations (7.19), is “almost equivalent” to the original
problem). In particular, it may happen (see Remark 10) that each distribution µ̄t is degenerate, i.e.,
is a distribution of mass one at a point āt ∈ Ωt (in that case consistency of these distributions means
that āt+1 is a child node of āt, t = 2, ..., T − 1). If this happens, then the corresponding probability
distribution on the considered scenario tree degenerates into distribution of mass one at the sample
(scenario) path ā2, ..., āT , and the obtained multistage problem becomes deterministic. In that case
the original problem (7.8) has a constant (i.e., independent of realizations of the uncertain data)
optimal policy. Of course, this may happen only in rather specific cases.
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If the risk mappings ρt+1 are taken to be conditional expectations, i.e., for t = 1, ..., T − 1 the
set Dt+1 = {µ̄t+1} in (7.7) is a singleton, then the composite function ρ̃ becomes an expectation
operator. In that case problems (7.8) and (7.9) are equivalent to respective problems (5.1) and (5.3)
discussed in section 5, and (7.11)–(7.15) become standard dynamic programming equations (of the
form (7.19)). For general conditional risk mappings the corresponding composite risk function ρ̃ can
be quite complicated.

A natural way for constructing risk averse multistage programs is the following. Consider a
multistage stochastic program of the form (5.1) driven by random process ξt, t = 2, ..., T . Assume
that this process has a discrete distribution with a finite support and hence can be represented
by a scenario tree. We refer to the probability distribution on this tree defined by the considered
process as the reference distribution. At each node a ∈ Ωt of this scenario tree we can define a risk
function of the form (4.7) or (4.8) with respect to the reference distribution, for example we can
use mean-absolute semideviation risk measures (7.2). For such constructions the analysis simplifies
considerably if we assume the between stages independence condition, i.e., that random vectors ξt,
t = 2, ..., T , are independently distributed. Under this condition of between stages independence we
have that the functions Qt(xt−1) are independent of the random data and the objective function in
(7.9) can be written as

F1(x1) + ρ2 [F2(x2(ξ2), ξ2)] + ...+ ρT [FT (xT (ξT ), ξT )] . (7.22)

The condition of between stages independence can be formalized as follows.
Consider a sequence ρt+1 of conditional risk mappings and a sequence Zt+1 ∈ Zt+1, t = 1, ..., T−1.

We say that the between stages independence condition holds if:

(i1) For t = 1, ..., T − 1 the corresponding risk functions ρa, in (7.1), do not depend on the node

a ∈ Ωt, i.e., ρa = ρa′

for any a, a′ ∈ Ωt.
(i2) Each Zt+1 (viewed as a function Zt+1 : Ωt+1 → R) restricted to Ca does not depend on the

node a ∈ Ωt.

The above condition (i1) can be equivalently formulated as that the corresponding sets At+1(a) ≡
At+1 do not depend on a ∈ Ωt. Of course, this implies that each set Ca has the same cardinality
for every a ∈ Ωt. For example, risk functions defined in (7.2) satisfy condition (i1) if for every
t = 1, ..., T −1, probability vectors pa and coefficients λa are the same for every a ∈ Ωt. If, moreover,
the sequence Z1, ..., ZT , considered as a sequence of random variables with respect to the prob-
ability distribution imposed by vectors pa, is independently distributed, then the between stages
independence condition follows.

If the between stages independence condition holds, then ρt+1[Zt+1] is constant for every Zt+1,
t = 1, ..., T − 1. Consequently, under the between stages independence condition we have (compare
with (7.10)):

ρ̃(Z1 + ...+ ZT ) = Z1 + ρ2[Z2] + ...+ ρT [ZT ]. (7.23)

We say that the between stages independence condition holds for the multistage problem (7.8) if
the corresponding conditional risk mappings ρt+1, and Zt+1(ω) := Qt+1(xt, ω), t = 1, ..., T − 1,
satisfy the conditions (i1) and (i2) for any xt ∈ R

nt . For example, this holds if ξt, t = 2, ..., T , is
an independently distributed sequence of random vectors (i.e., this process satisfies the condition
of between stages independence), Ft(xt, ξt) and Gt(xt−1, ξt) are functions of this process and the
corresponding risk functions ρa are defined in a form based on expectations taken with respect
to the considered distribution of the process ξt, e.g., in the form (7.2). Under the between stages
independence condition we have that the functions Qt(xt−1), defined in (7.12), are independent of
ω, and the problem (7.9) can be written in the form

Min
x1,x2(·),...,xT (·)

F1(x1) + ρ2 [F2(x2(ω), ω)] + ...+ ρT [FT (xT (ω), ω)]

s.t. x1 ∈ G1, xt(ω) ∈ Gt(xt−1(ω), ω), t = 2, ..., T.
(7.24)
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Remark 9 It should be noted that the constructions of this section are made under the implicit
assumption that the cost-to-go functions Qt(xt, ω) are finite valued, and in particular under the
assumption of relatively complete recourse.

Remark 10 Let us define, for every node a ∈ Ωt, t = 1, ..., T − 1, the corresponding set A(a) =
At+1(a) to be the set of all probability measures (vectors) on the set Ca (recall that Ca ⊂ Ωt+1 is
the set of children nodes of a, and that all probability measures of At+1(a) are supported on Ca).
Then the maximum in the right hand side of (7.4) is attained at a measure of mass one at a point of
the set Ca (compare with Remark 7). Consequently (see (7.18)), for such choice of the sets At+1(a),
the dynamic programming equations (7.17) can be written as

Qt(xt−1, a) = inf
xt∈Gt(xt−1,a)

{

Ft(xt, a) + max
ω∈Ca

Qt+1(xt, ω)
}

, a ∈ Ωt. (7.25)

It is interesting to note (see Remark 8) that if the problem is convex, then it is possible to
construct a probability distribution (on the considered scenario tree), defined by a sequence µ̄t,
t = 2, ..., T , of consistent probability distributions, such that the obtained multistage program, of
the regular form (5.1), is “almost equivalent” to the “min-max” formulation (7.25). In some cases
the corresponding distribution can be degenerate in the sense that each µ̄t is a distribution of mass
one at a point āt ∈ Ωt, i.e., µ̄t = ∆(āt), and that āt+1 is a child node of node āt. In order to see when
this can happen let us consider the construction of Remark 8. Arguing by induction, suppose that we
already have a sequence of nodes āτ ∈ Ωτ , τ = 2, ..., t, such that each āτ+1 is a child node of āτ and
µ̄τ = ∆(āτ ). Suppose that for a = āt the right hand side of (7.25) has an optimal solution x̄t. Then
for a = āt, the dual of the min-max problem in the right hand side of (7.25), which is obtained by
interchanging the ‘min’ and ‘max’ operators, has the same optimal value iff this min-max problem
has a saddle point (x̄t, āt+1) ∈ Gt(xt−1, āt) × Cāt

. Only in that case we can take µ̄t+1 := ∆(āt+1)
and continue the process of constructing the corresponding sample path.

In the present setting the between stages independent condition can be formulated as that for
t = 1, ..., T − 1, the set of children nodes of every a ∈ Ωt is the same (i.e., does not depend on
a ∈ Ωt). That is, in the between stages independent case we can view the corresponding scenario
tree as defined by a sequence Ct, t = 2, ..., T , of (finite) sets such that the set of nodes at stage t can
be identified with Ct, and the set of children nodes of every node a ∈ Ct−1 coincides with Ct. Then
dynamic programming equations (7.25) can be written as

Qt(xt−1, a) = inf
xt∈Gt(xt−1,a)

{

Ft(xt, a) + max
ω∈Ct+1

Qt+1(xt, ω)
}

, a ∈ Ct. (7.26)

Example 5 (Portfolio Selection continued) Consider again the portfolio selection problem discussed
in Example 3. Suppose that the process ξt is between stages independent, and our objective now

is to maximize
∑T

t=1 ρt(Wt) subject to the balance constraints, where −ρt, t = 1, ..., T , are chosen
coherent risk measures. (Note that here we have to solve a maximization, rather than minimiza-
tion, problem. Therefore, we use coherent risk measures with negative sign.) Then we have that
QT (WT−1) = QT (1)WT−1, QT−1(WT−2) = QT (1)QT−1(1)WT−2, etc, where Qt(Wt−1) is the opti-
mal value of:

Max
W, xt−1

ρt(W )

s.t. W =
∑n

i=1 ξitxi,t−1,
∑n

i=1 xi,t−1 = Wt−1, xi,t−1 ≥ 0, i = 1, ..., n.

(7.27)

At the first stage the optimal solution is obtained by solving the above problem (7.27) for t = 1.
That is, under the assumption of between stages independence, the optimal policy is myopic in the
sense that it involves solutions of single-stage models.

It is interesting to note that, in this example, at each stage t risk aversion is controlled by
the corresponding risk measure (function) ρt alone. In particular, first stage optimal solutions are
obtained by solving an optimization problem based on risk function ρ1, and are independent of a
choice of the following risk functions ρt, t ≥ 2. �
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8 Concluding remarks

In the previous sections we discussed some recent advances in our understanding of stochastic pro-
gramming. Of course, there are many questions open for discussion which require a further investi-
gation. It was already mentioned at the end of section 3 that the considered approach of stochastic
programming with recourse is not well suited to handle catastrophic events. How can one evaluate
a cost of a collapsing bridge or a power blackout in a big city? It does not seem to be a good idea
to satisfy an electricity demand on average. Ideally one would like to make sure that catastrophic
events never happen. This, however, could be impossible to maintain under all possible circumstances
or the involved costs could be unrealistically large. Therefore, it could be reasonable to approach
this problem by enforcing constraints which make probability of catastrophic events to happen very
small. This leads to the concept of chance or probabilistic constraints. Chance constraints were in-
troduced in Charnes et al [9] (see Prékopa [45,46] for a thorough discussion of chance constraints
in stochastic optimization). Chance constraints are difficult to handle, both numerically and from
the modelling point of view (see, e.g., [18] for a worst case (minimax) type approach to chance
constraints). In that respect we would like to mention a tractable convex approximations approach
initiated by Nemirovski [33], and developed further in [34,35].

It was assumed so far that the involved probability distributions are independent of our decisions.
In principle, it is also possible to make the corresponding probability distribution Px dependent on
the decision vector x. In that case the objective function, say of the problem (2.2), takes the form

f(x) := EPx
[F (x, ξ)] =

∫

Ξ

F (x, ξ)dPx(ξ). (8.1)

By choosing a reference distribution P̄ , it is possible to rewrite this objective function as

f(x) = EP̄ [F (x, ξ)L(x, ξ)] =

∫

Ξ

F (x, ξ)L(x, ξ)dP̄ (ξ), (8.2)

where L(x, ξ) := (dPx/dP̄ )(ξ) is the so-called Likelihood Ratio (LR) function. Here dPx/dP̄ is
the Radon-Nikodym derivative, i.e., Lx(·) = L(x, ·) is the density of Px with respect to P̄ , as-
suming of course that such density exists. For example, if the space Ξ = {ξ1, ..., ξK} is finite and
Px = (px,1, ..., px,K) and P̄ = (p̄1, ..., p̄K) are respective probability distributions on Ξ, then the
corresponding LR function is L(x, ξk) = px,k/p̄k, k = 1, ...,K.

By making “change-of-variables” (8.2), we represent the objective function f(x) as expectation
of R(x, ξ) := F (x, ξ)L(x, ξ) with respect to a fixed (independent of x) distribution, and consequently
can apply the standard methodology. There are several problems with this approach, however. The
obtained objective function R(·, ξ) often is nonconvex, irrespective whether F (·, ξ) is convex or not.
Another serious problem is that this method is very sensitive to a choice of the reference measure P̄ .
Note that although the expected value function remains the same, the variance of R(x, ξ) depends
on the distribution P̄ . Unless the reference distribution is carefully controlled, this variance could
become very large making Monte Carlo sampling calculations based on representation (8.2) infeasible
(cf., [52]). This should be not surprising since, for example in the case of finite support, the LR is
given by the ratio px,k/p̄k of two small numbers and could be numerically very unstable. One can
try to turn this into an advantage by choosing the reference distribution in such a way as to reduce
the corresponding variance, this is the basic idea of the so-called importance sampling method. Note,
however, that a good choice of the reference distribution for one value of x could be disastrous for
other values, and it is difficult to control this process in an iterative optimization routine.

It was assumed in section 2 that the second stage problem (2.1) is an optimization problem
subject to constraints defining the feasible set G(x, ξ). It is possible to consider situations where this
feasible set is defined by equilibrium constraints, say of the form

G(x, ξ) :=
{

y ∈ R
n2 : 0 ∈ H(x, y, ξ) + NC(y)

}

, (8.3)

where H : R
n1 ×R

n2 ×Ξ → R
n2 , C is a convex closed subset of R

n2 and NC(y) denotes the normal
cone to C at y ∈ R

n2 (by definition NC(y) = ∅ if y 6∈ C). For such defined set G(x, ξ), problem (2.1)
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belongs to the class of so-called Mathematical Programming with Equilibrium Constraints (MPEC)
problems. In that case the corresponding two-stage program (2.1)–(2.2) can be viewed as a (two-
stage) Stochastic MPEC (SMPEC) problem. Such two-stage SMPEC problems were considered by
Patriksson and Wynter [40] (see also [16,29,74]). It is also possible, at least theoretically, to extend
the SMPEC to a multistage setting. From theoretical point of view it is more or less straightforward
to apply the SAA method to SMPEC problems with similar estimates of required sample sizes (cf.,
[70]). Note, however, that MPEC problems typically are nonconvex and nonsmooth and difficult
to solve. Although some significant progress was made recently in understanding of theoretical and
numerical properties of MPEC problems (cf., [20,47,59]), it remains to be shown that, say, the SAA
method is numerically viable for solving realistic SMPEC problems.
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