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A�������. Stochastic programming offers handy instruments to analyze

exchange of goods and risks. Absent efficient markets for some of those items,

such programming may imitate or synthesize market-like transfers among con-

cerned parties. Specifically, using shadow prices (Lagrange multipliers) on ag-

gregate endowments, one may identify side-payments that yield core solutions

to cooperative production games.

1. I�����������

Economics depends on - and amply demonstrates - theoretical and practical advan-

tages stemming from exchange of private goods. Similarly, insurance thrives and

builds on mutual benefits derived from pooling and sharing private risks. Sometimes

however, appropriate markets or institutions are not there to mediate desirable trans-

actions. Then, as is well known, optimization methods, and notably duality theory,

may help in assessing the value of potential exchanges. Less known is that opti-

mization can also single out price-based transfers (or side-payments), these serving

as surrogates for reasonable market-like deals.

The following example, first studied by Owen [14], illustrates such issues well:

Suppose each agent i, belonging to a finite society I, faces a linear program

v
i
:= max

{
c · x

∣∣ x ≥ 0, b
i
−Ax ≥ 0

}
, (1)

assumed feasible, with finite value v
i. Here A is construed as a m × n activity

matrix; the vector bi ∈ Rm denotes i’s bundle of m different resources; and finally,

c ∈ R
n
accounts for unit contributions created by activity plans x ∈ R

n

+
. Most often

the said resources come in non-desirable proportions, causing shortages, excesses, or

bottlenecks. Flexibility and gains can then be had by pooling the privately held

endowments. Specifically, a coalition S ⊆ I, whose members altogether control the

resource bundle b
S
:=

∑
i∈S

b
i
, could achieve an optimal value

v
S
:= max

{
c · x

∣
∣ x ≥ 0, b

S
−Ax ≥ 0

}
(2)

which exceeds the individually assembled revenue: v
S
≥

∑

i∈S
v
i
. So, given advan-

tages in aggregation, it is fitting to ask: How can potential gains of cooperation be

secured and split? For a quick and motivating answer, suppose there is an optimal
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dual solution (a so-called Lagrange multiplier) ȳ to problem (2) when S = I. That

price vector ȳ evaluates (marginal) resources for the grand coalition S = I. Therefore,

quite naturally, let i be offered payment ui
:= ȳ · bi for handing his holding over to

the cooperative enterprise. Will he accept that offer? Yes, most likely! In fact, as it

turns out, since
∑

i∈I
u
i
= v

I
, this payment scheme covers the bill. Moreover, since∑

i∈S
u
i ≥ v

S for all S ⊂ I, nobody has economic incentives to object.

While following Evstigneev, Flåm [4], and Sandsmark [17], Owen’s model will be

extended here to accommodate uncertainty, nonlinearity, and several stages.1 That

much generality notwithstanding, it happens, under convexity assumptions, that

rather similar results remain valid. Intuitively, and as already noticed, resource pool-

ing facilitates substitutions andmitigates bottlenecks. Present uncertainty, that oper-

ation becomes even more important: It reduces environmental vagaries; it smoothens

the effects of individual ups and downs. Put differently: Pooling allows not only

reallocation over activities (or production lines) but also across events (or states of

the world). Granted convexity and strict feasibility of the aggregate program, I shall

show that total payoff may efficiently be split to the rational protest of nobody. In-

deed, a so-called core cooperative solution is then easily synthesized by means of a

Lagrange multiplier.

Building blocks and arguments for that result are organized below as follows.

Section 2 begins by reviewing that part of stochastic programming which comes into

play. Section 3 goes on to define an underlying, transferable-utility, cooperative game

in its reduced, characteristic form. Section 4 exhibits core solutions, and section 5

concludes with a brief look at cooperation over time.

Some motivation for this note stems from the fact that economists and program-

mers often seem opposed (or rather ambivalent) about what sorts of decision-making

constitute proper domains to explore. A narrow view holds that economics mainly

reduces to the study of markets, whereas optimization primarily concerns single-

agent planning. A broader view, exemplified below, encompasses collective action,

self-interested agents, optimization, and market-inspired contracts.

2. S��������� P�������

Planning under uncertainty is always construed here as an optimization problem of

the following generic form [5], [11], [15], [16]:

Maximize a real-valued, transferable (monetary) payoff f0(x) = f0(x(·)) over suit-
able, finite trajectories x = x(·) = (x1(·), . . . , xT (·)) of random vectors xt(ω) ∈ Rnt.

These vectors represent constrained choices - made sequentially, one at each stage or

time t = 1, 2, . . . , T (< ∞) - under imperfect knowledge about the scenario or state
ω ∈ Ω of the world. Although ω cannot be fully identified a priori, its probability
distribution P is here presumed known; it is given exogenously and defined on some
sigma-field FT+1 in Ω. Identification of ω improves over time. Specifically, there is

an expanding family F1 ⊆ . . . ⊆ FT ⊆ FT+1 of sigma-fields - or an unfolding scenario

1Related studies include [7], [8], [9], [10], [18].
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tree - which describes the information flow. At time t one may ascertain for any event

in Ft - and such events only - whether it has happened or not. In particular, a finite

Ft would partition Ω into minimal events (atoms, information sets, decision nodes)

pertaining to time t. The inclusion Ft ⊆ Ft+1, t ≤ T, which reflects progressive

acquisition of knowledge, says that the said partition becomes finer as time evolves.

At time t the decision-maker implements the part xt of his overall plan x =

(x1, . . . , xT ). That part is supposed to be a Ft-measurable strategy (policy, behavioral

rule) xt : Ω → R
nt. This means that only available information is used at any

stage; decisions must be based on observable, realized events. If so, the process x =

(x1, . . . , xT ) is declared adapted to the filtration (Ft)
T

t=1
. For example, let θ1, . . . , θT

be a stochastic process, defined on Ω, and let Ft be generated by θ1, . . . , θt. Then

Ft-measurability of xt means that it depends on no more than θ1, . . . , θt. Henceforth

only adapted processes are considered.

A mathematical issue crops up here, namely: Where does item xt reside? Can-

didate addresses would be in spaces L
pt(Ft, P ;Rnt) for suitable pt ∈ [1,+∞]. Be-

ing concerned below with modelling, and motivated by computation, I shall shy

away from these technicalities and simply assume that Ω be finite. Then all spaces

Lpt(Ft, P ;Rnt), pt ∈ [1,+∞], are topologically equal, and each is regarded as finite-
dimensional Euclidean. (Nonetheless, the presentation below opens for extensions to
infinite Ω.)

Besides informational limitations, and the insistence on adaptive processes, there
are other restrictions, one being that

xt(ω) ∈ Xt(ω) almost surely for each t. (3)

Here ω � Xt(ω) ⊆ R
nt is a nonempty closed Ft-measurable random set; see e.g.

[1]. (For notational simplicity all inclusions that involve random objects are hence-

forth tacitly understood to hold almost surely. Similarly, all equalities or inequalities

between random vectors, mentioned below, hold with probability one and componen-

twise.) Added to set-constraint (3) comes a family of explicit, functional constraints:

f1t(ω, x) := f1t(ω, x1(ω), . . . , xt(ω)) ∈ R
mt

+
for all t, (4)

this inclusion featuring a vector-valued function f1t which is Ft×Borel-measurable.

For short I write x ∈ X and f1(x) ≥ 0 to indicate satisfaction of (3) and (4), respec-

tively. Planning under uncertainty is now formalized succinctly as problem

(P ): sup {f0(x) | x ∈ X and f1(x) ≥ 0} ,

assumed feasible with finite optimal value, denoted sup(P ). To open up for duality

let

R1 := {r1 = (r1t) | r1t : Ω → R
mt is Ft-measurable, ∀t}

denote the (canonical) space of additive right-hand-side perturbations in f1(x) ≥ 0.
Any member r1 of R1 transforms the latter inequality into f1(x) ≥ r1. Correspond-

ingly, define

Y :=
{
y = (yt)

∣∣ yt : Ω→ R
mt

+
is Ft-measurable, ∀t

}
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as the non-negative cone of adapted multipliers. Since a special sort, called Lagrange

multipliers, will be crucial in the sequel, an existence result (Theorem 1) is provided

shortly. For the statement let E denote the expectation operator with respect to

probability measure P.

Proposition 1 (A Fritz John multiplier rule). Suppose problem (P ) has finite opti-

mal value sup(P ). Suppose also that the convex hull of the set

C := {(r0, r1) ∈ R×R1 : f0(x)− sup(P ) ≥ r0, f1(x) ≥ r1 for some x ∈ X}

has (0,0) at its boundary. Then there exists a nonzero (r∗
0
, r

∗

1
) ∈ R+ × Y such that

sup {r
∗

0
f0(x) + E [r∗

1
· f1(x)] : x ∈ X} = r

∗

0
sup(P ). (5)

Proof. Through the boundary point (0,0) of C there passes, by assumption, a closed
supporting hyperplane. Hence some nonzero (r∗

0
, r

∗

1
) ∈ R×Y defines a continuous

linear functional (r0, r1) �→ r
∗

0
r0 + E [r∗

1
· r1] which is ≤ 0 on C. (Were not Ω finite,

then additional assumptions might be needed to justify these claims.) Clearly,

(r0, r1) ∈ C & (r0, r1) ≥ (r
′

0
, r

′

1
) ∈ R×R1 ⇒ (r′

0
, r

′

1
) ∈ C.

Therefore, (r∗
0
, r

∗

1
) � 0. Since [f0(x)− sup(P ), f1(x)] ∈ C whenever x ∈ X, it follows

that r
∗

0
[f0(x)− sup(P )] + E [r∗

1
· f1(x)] ≤ 0 for all x ∈ X, this inequality implying

sup {r
∗

0
f0(x) + E [r∗

1
· f1(x)] : x ∈ X} ≤ r

∗

0
sup(P ).

The reverse inequality follows from r
∗

1
· f1(x) ≥ 0 whenever x is feasible. �

Convexity played a key role in Proposition 1. So, some arguments in support of

that property are called for. To that end, suppose f := (f0, f1) is concave-like on

X. This means that for any two points x
′
, x

′′
∈ X and any number ρ ∈ (0, 1), there

should exist a third point x ∈ X such that f(x) ≥ ρf(x′) + (1 − ρ)f(x′′). Under that
assumption C becomes convex, and then (0,0) belongs to its boundary. This obser-

vation shows that (5) is rather well motivated - and especially so for convex instances.

Associate now to problem (P ) its ”ordinary” Lagrangian

(x, y) ∈ X × Y �→ L(x, y) := f0(x) + E [y · f1(x)] .

Theorem 1 (Normal Lagrange multipliers). Assume (5) and the following strict fea-

sibility condition: for any right-hand-side perturbation r1 ∈ R1 that belongs to some

open set containing 0, one can find x ∈ X satisfying f1(x) ≥ r1. Then then there

exists a multiplier vector y ∈ Y such that sup(P ) = sup
x∈X

L(x, y).

Proof. Let V denote a vicinity of 0 such that for any r1 ∈ V some x ∈ X sat-

isfies f1(x) ≥ r1. Suppose r
∗

0
= 0. Then r

∗

1
� 0, and we may choose a positive real
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number r1 so large that r1 := r
∗

1
/r1 ∈ V. By assumption there exists x ∈ X such that

f1(x) ≥ r1 � 0, whence

0 < sup {E [r
∗

1
· f1(x)] : x ∈ X} = r

∗

0
sup(P ) = 0.

This contradiction proves r
∗

0
strictly positive. So, in (5) divide through by r

∗

0
and let

y := r
∗

1
/r∗

0
to have the desired conclusion. �

The following case is commonly known: If X is convex, and f1 is concave, then

the Slater condition (that some adapted x ∈ X yields strict feasibility: f1(x) > 0)
implies r0 > 0.

3. C���������� ��� R��� E ������

There is a circumscribed, fixed, finite set I of individual agents, each more or less

plagued by resource scarcity, risk, and technological hurdles. Specifically, individual

i ∈ I faces a stochastic program

v
i
:= sup

{
f i

0
(xi) : xi

∈ Xi
and f

i

1
(xi) ≥ 0

}

of the sort (P i) described in Section 2. As there, the objective f
i

0
(xi) denotes a

monetary amount, perfectly divisible and transferable. It must be stressed that many

items mentioned in Section 2 are common and publicly known, namely: the time

horizon T, the information flow (Ft), and the probability space (Ω,FT+1, P ).
Quite as above individual i is constrained in two important ways: At each time

t = 1, . . . , T his decisions must satisfy

x
i

t
(ω) ∈ X

i

t
(ω) ⊆ Rn

i
t and f i

1t
(ω, xi

1
(ω), . . . , xi

t
(ω)) ∈ Rmt

+
.

These constraints involve sets ω � X
i

t
(ω) and functions (ω, xi) �→ f

i

1t
(ω, xi

1
(ω), . . . , xi

t
(ω))

that are Ft-measurable. Note that the basic decision spacesR
n
i

t can vary across agents

(and time), but most important: all functions f i

1t
, i ∈ I, have the same image space

R
mt. In this setting a coalition S ⊆ I could achieve stand-alone value

v
S
:= sup

{∑
i∈S

f i

0
(xi

) : xi
∈ X

i
,∀i ∈ S, and

∑

i∈S

f
i

1
(xi) ≥ 0

}
.

Whether that optimal value is computed or not, I tacitly assume, somewhat heroically,

that no agent i misrepresents privately held data to own advantage. (Market games

with differential information have been considered in [2], [3], [19].)

For cooperation to comprise everybody it should leave no individual - and no

coalition - worse off than alone. In other words: the concerting of actions, and the

joining of forces, requires satisfaction of numerous participation constraints. To that

end money transfers (compensations or ”bribes”) may certainly help. These should

reasonably produce a payoff allocation u = (ui) ∈ R
I
that entails

Pareto efficiency:
∑

i∈I
u
i
= v

I
,

and stability:
∑

i∈S
u
i ≥ v

S for all coalitions S ⊂ I.
(6)
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Stability means here that no singleton or set S ⊂ I of several players could improve

their outcome by splitting away from the society.
2
Note that mere stability is easy to

achieve: Simply let the numbers u
i
be so large that

∑
i∈S

u
i ≥ v

S
,∀S ⊆ I. Therefore,

the essential difficulty resides in the efficiency requirement. I ask: Can (6) be solved?

If so, how? These questions fit the frames of a (payoff-sharing) cooperative game with

player set I, characteristic function I ⊇ S �→ v
S ∈ R∪{−∞} , and side payments.

Any solution u = (u
i) ∈ RI to (6) is said to be an element in the core.

4. C��� S�
������

Write x = (x
i
) = (x

i

t
) and consider the Lagrangian

L
S
(x, y) :=

{ ∑
i∈S

{f i

0
(xi) + E [y · f

i

1
(xi)]} if xi ∈ X

i for all i ∈ S,

−∞ otherwise

associated to coalition S. As customary, vS = sup
x
infy∈Y L

S(x, y) ≤ sup
x
L
S(x, y) for

all y ∈ Y. Therefore I declare ȳ ∈ Y a Lagrange multiplier for the grand coalition iff

the reverse inequality hold when S = I, i.e. if sup
x
LI

(x, ȳ) ≤ vI . Existence of such

a multiplier is guaranteed under conditions stated in Theorem 1. The next result

shows that any Lagrange multiplier may incite cooperation:

Theorem 2 (Lagrange multipliers yield core solutions). For any Lagrange multi-

plier ȳ of the grand coalition the payoff allocation

u
i
:= sup

{
f i

0
(xi

) + E
[
ȳ · f

i

1
(xi)

]
: x

i
∈ X

i
}
, i ∈ I,

belongs to the core.

Proof. Stability obtains because any coalition S ⊆ I receives

∑

i∈S

u
i
= sup

x

L
S
(x, ȳ) ≥ inf

y∈Y

sup

x

L
S
(x, y) ≥ sup

x

inf
y∈Y

L
S
(x, y) = v

S
, (7)

the very last inequality often being referred to as weak duality. The hypothesis con-

cerning ȳ ensures strong duality. Indeed, that hypothesis yields
∑

i∈I
u
i
= sup

x
L

I
(x, ȳ) ≤

v
I
. The upshot is that Pareto efficiency also prevails. �

A slightly different approach helps to understand and supplement Theorem 2. In

view of (1) and (4) let the function

f i

1t
(ω, xi

1
, . . . , xi

t
) = bi

t
(ω)−A

i

t
(ω,xi

1
, . . . , x

i

t
) ∈ Rmt

+
,

explicitly incorporate random resources bi
t
(ω) ∈ R

mt as well as an operator Ai :

Ω× R
n
i

1
+···+n

i

t → R
mt

. Define then

π
i(bi) := sup

{
f

i

0
(xi)

∣∣ xi

t
∈ X

i

t
and b

i

t
−A

i

t
(xi

1
, . . . , x

i

t
) ≥ 0 for all t

}
,

2
Coalitions are here orthogonal in the sense that members of S can jointly obtain v

S
regardless

of what the outsiders i ∈ I�S undertake.
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and consider the program sup
{∑

i∈I
π

i(zi)
∣∣ ∑

i∈I
z
i =

∑
i∈I

b
i
}
. Let ȳ be a La-

grange multiplier of the latter. Then the allocation

u
i
:= E

[
ȳ · bi

]
+ sup

{
πi
(zi

)− E
[
ȳ · zi

] ∣
∣ zi

adapted
}

(8)

belongs to the core. Evidently, formula (8) generalizes Owen’s result, introduced

in Section 1. More precisely: if the resource bundles b
i mentioned there are ran-

dom, then such endowment commands core payment ui
= E [ȳ · b

i] to its owner. The

much studied instance of two-stage linear programs is particularly informative. That

instance posits sure resource availability b
i

1
∈ R

m1 right now and random supply

ω �→ b
i

2
(ω) ∈ Rm2 next period. Consequently, it furnishes cooperative payoff

u
i
= ȳ1 · b

i

1
+ E

[
ȳ2 · bi

2

]
(9)

to agent i. Formula (9) brings out several noteworthy features: First, if second-stage
endowments are correlated across agents, then most likely E [ȳ2 · b

i

2
] �= Eȳ2 · Ebi

2
.

Thus, as in finance - and notably within the capital asset pricing model - covariance

between a ”paper” or ”security” b
i and the aggregate (entire market portfolio) b

I

becomes decisive for its pricing [11]. Intuitively, the expected second-period payment

E [ȳ2 · b
i

2
] to agent i depends then on two things: partly, on his average contribution

Eb
i

2
, and partly, on how his realized contribution b

i

2
(ω) co-varies with the total second-

stage endowment b
I

2
(ω). To see this fact most simply, suppose a single resource comes

into play at the second stage. Then E [ȳ2 · b
i

2
] = Eȳ2 ·Eb

i

2
+ cov(ȳ2, b

i

2
). Thus an agent

who brings much of a resource when it is scarce, will insure his co-players and thereby

receive handsome compensation.

Another speaking property of (9) is the step-wise, separable nature of payment.

The next section concludes with a more general view at this property.

5. C���������� �#�� ����

It is fitting to elaborate on the dynamics of cooperation. For that purpose write

x
i

[1,t] := (xi

1, . . . , x
i

t
) and assume here time-separable, expected payoff in the form

f
i

0(x
i) := E

∑
T

t=1
f i

0t
(ω, xi

t
(ω)). Correspondingly, coalition S ⊆ I would now deal with

the Lagrangian

L
S(x, y) :=

∑

i∈S

T∑

t=1

E
[
f i

0t
(ω, xi

t
(ω)) + yt(ω) · f

i

1t
(ω, xi

[1,t]
(ω))

]
.

Theorem 3 (Multistage core elements). Suppose ȳ is a Lagrange multiplier for the

grand coalition. Then the payoff allocation

u
i
:= sup

xi∈Xi

T∑

t=0

E
[
f i

0t
(ω, xi

t
(ω)) + ȳt(ω) · f i

1t
(ω, xi

[1,t]
(ω))

]
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belongs to the core. Moreover, for any interim time t < T , featuring sunk but optimal

decisions x[1,t] = (x
i

[1,t])i∈I , the remaining cooperative enterprise admits a conditional

core allocation

u
i

t
(x[1,t]) := sup

xi
τ∈X

i
τ ,τ>t

∑

τ>t

E
[
f i

0τ
(ω, xi

τ
(ω)) + ȳτ (ω) · f

i

1τ
(ω, xi

[1,τ]
(ω))

∣
∣Ft, x[1,t]

]
. �

(10)
This result points to the sequential consistency of allocation along the realized path.
That is, the payment scheme u, when stated in terms of contingent transfers (10),
will resist re-negotiation over time and events. Can contracts of that sort come into
existence? Extensive fieldwork often see agents who voluntarily organize themselves
to secure the benefits of trade and mutual risk protection [13]. We stress though
that endowments were private here; the issue was not provision of public goods [12].
Potential application to trade in greenhouse gases is outlined in [6].
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