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Preface

This thesis presents the results of my work in stochastic programming during my
time as a Ph.D. student at Department of Operations Research at the University
of Aarhus. The primary focus of my studies has been applications to power sys-
tems, including the development and analysis of electricity models to approach
the problems that emerged with the incipient restructuring of the power sector in
the last decade.

In the course of a three months visit at the University in Duisburg-Essen, I
began working on a theoretical problem under the supervision of Prof. Dr. Rüdiger
Schultz. The problem was motivated by the needs of incorporating risk manage-
ment into stochastic programming and considered the inclusion of certain risk
measures that were shown to preserve a number of properties and allow for algo-
rithmic treatment in two-stage stochastic linear programming. The work, entitled
Deviation measures in linear two-stage stochastic programming, was subsequently
published in Mathematical Methods of Operations Research, Vol. 62, No. 2, 2005.

By Prof. Schultz I was briefly introduced to the potential of stochastic pro-
gramming in energy. Later, I started a collaboration with Associate Professor
Stein-Erik Fleten, who is working in the field, and became the very interested in
electricity applications, which therefore provided a basis for the rest of my work.
As a natural consequence of Stein-Erik Fleten’s location in Tronheim, my work
with him involved the major electricity source of Norway, hydro-power.

The starting point of our work was a planning problem presented by the hydro-
power company, TrønderEnergi, near Trondheim. In the liberalized power market,
a power producer faces the problem of bidding into the day-ahead market with
only limited information on the market price. Thus, we proposed a stochastic pro-
gramming model that sought to reflect the Nordic market conditions as closely as
possible, including market price uncertainty and, contrary to the existing literature
on the subject, both so-called hourly bids and block bids. The computational re-
sults offered valuable insight into the advantages of using a stochastic approach for
optimizing bidding strategies. A presentation can be found in the paper Stochastic
programming for optimizing bidding strategies of a Nordic hydro-power producer
published in European Journal of Operational Research, Vol. 181, 2007.
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ii Preface

The short-term hydro rescheduling problem, that has not previously been ad-
dressed in the literature, came about from same collaboration with Stein-Erik
Fleten and TrønderEnergi. Following the completion of the day-ahead bidding,
the model establishes a daily production plan that complies with the day-ahead
commitments. Uncertainties in both reservoir inflows and market prices were in-
vestigated and special effort was made to generate the scenarios that serve as
input to the stochastic programming problem. The paper Short-term hydro-power
production planning by stochastic programming is in press for Computers and Op-
erations Research.

In contrast to the planning problems of a small power producer, the Danish
power system operator, Energinet.dk, introduced a problem of a price-taker. In
order for the system operator to determine the amount of reserves necessary for
balancing supply and demand, we established a stochastic programming model
that was able to include the price determination process and account for supply
and demand uncertainty. The resulting paper Power reserve management by two-
stage stochastic programming is joint work with Camilla Schaumbug-Müller and
is submitted to an operations research journal.

Finally, the survey The development in stochastic programming models for
power production and trading must be considered work in progress.

Århus, April 2007
Trine Krogh Kristoffersen
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Summary

The field of stochastic programming is concerned with the study of mathemati-
cal programming problems subjected to uncertainty. During the past 50 years,
stochastic programming problems have encouraged a significant amount of re-
search into structural properties such as continuity, differentiability, convexity
and stability, mainly to facilitate the development of efficient solution approaches.
In their linear versions, stochastic programming problems have proved particu-
larly suited for decomposition. Mixed-integer formulations, however, are generally
found to be computational challenging and the contributions within the literature
are fewer. Instead, the area of applications have appeared to attract an increasing
attention.

At the same time, with the decentralization of the electricity generation and the
deregulation of the power markets, many previous procedures have changed and
new planning and operating problems have emerged, making advances in power
optimization highly relevant. Furthermore, the presence of uncertainty have been
widely acknowledged, motivating applications of stochastic optimization.

Backed up by several studies, applications to power systems successfully illus-
trate the strengths of stochastic programming. By virtue of the sequential decision
process, the stochastic programming models incorporate the information flow of
prices, costs, resources etc. and the ability of production and trading decisions to
“hedge” against future uncertainty, the result being increases in profit or decreases
in risk.

In Chapter 1 of the thesis, we begin with an introduction to the most basic
and widely applied stochastic programming problems, two-stage and multi-stage
stochastic recourse problems, and state the approximations that allow for com-
putational tractability. We present some of the general solution approaches for
linear and mixed-integer two-stage and multi-stage programs, which are applica-
ble to the problems of this thesis and from which some of the suggested solution
methods originate.

Chapter 2 continues with two-stage linear recourse problems and in particular
the inclusion of the risk measures known as deviation measures. In line with the
presentation in Kristoffersen (2005), we show that the resulting mean-risk models

ix



x Summary

inherit the properties of continuity, differentiability, convexity and stability from
the traditional model and can be handled algorithmically by a modification of
the L-shaped method. The capability of deviation measures to comply with a
linear formulation is utilized in the power optimization models of the following
chapters, in which the downside measures, semideviation and expected excess of
target, come into play.

The remainder of the thesis is dedicated to power optimization problems within
the area of stochastic programming applications. Chapter 3 provides an overview
of stochastic programming models in short-term power production and trading
with special emphasis on the development prompted by the restructuring of the
power sector. The contents of the chapter is work in progress, which at its current
stage can be found in Kristoffersen (2007). The subsequent Chapters 4-6 each
present a power optimization problem within the most important short-term ac-
tivities, day-ahead bidding, rescheduling and intra-day balancing, that has become
relevant with the restructuring.

Chapter 4 concerns the problem of bidding into the day-ahead electricity mar-
ket from the perspective of a price-taking Nordic hydro-power producer that is
subjected to market price uncertainty. With a time horizon of an operation day,
market prices are revealed at once, and we therefore present a two-stage stochastic
programming model. The model includes the main features of the Nordic power
market by including both so-called hourly bids and block bids, which allows us
to analyze the impact of uncertainty on the structure of the bids. The work is a
slightly modified version of that by Fleten and Kristoffersen (2007).

In extension of the problem in Chapter 4, Chapter 5 addresses the problem of
determining a daily hydro-power production plan that complies with the day-ahead
commitments of the previous day, which is a way of rescheduling. Basically, the
problem becomes a matter of spatial distribution of water between the reservoirs
when market prices and reservoir inflows are uncertain. To fully capture the
future effects of current water releases from the reservoirs, we propose a multi-
stage stochastic programming model. The model was first presented in Fleten and
Kristoffersen (2006).

In spite of rescheduling, actual production may not match the day-ahead mar-
ket commitments completely and intra-day balancing is necessary. To ensure suf-
ficiency of balancing resources, however, reserves must be purchased in advance.
Chapter 6 presents an application of stochastic programming to the problem of
managing such reserves when the imbalances are uncertain at the time of purchas-
ing the reserves. Since this task is the responsibility of the power system operator,
the price determination process was included in the model. Still, the model main-
tains a structure that allows for a solution approach close to common practice.
The chapter is a modification of Kristoffersen and Schaumburg-Müller (2007).

Being an important part of modeling, we have dedicated the remainder of the
thesis to scenario generation. Chapter 7 gives a selected overview on scenario
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generation and reduction methods potentially suitable for applications to power
systems. The chapter serves to justify the approach of Chapters 4 and 5 and
explains the method used into details. In short, scenario generation starts from a
statistical model, from which sampling is possible, and is combined with a scenario
reduction method.

A specific description of the statistical models can be found in Chapter 8. The
models that determine the distribution of the uncertain data are derived from time
series analysis. The univariate distributions describe market prices and reservoir
inflows as autoregressive moving average processes, which is also the case for the
multivariate distribution.

The main contributions of this thesis are found in Chapters 2, 4 and 5. The con-
tributions of Chapter 2 are within theoretical aspects of stochastic programming,
whereas Chapters 4, 5 and 6 contribute within the area of stochastic programming
models and applications. The overview of this topic in Chapter 3 is intended to
provide a basis for future work and cannot be considered complete. The same
applies to Chapter 8 that is ongoing work in scenario generation.

When going through the chapters, we assume the reader is familiar with the
basics of probability and measure theory such as probability spaces, random vari-
ables and expectations. We further assume some prior knowledge of convex anal-
ysis, linear programming as well as mixed-integer linear programming. Finally, an
acquaintance with classical statistics is an advantage.

The intension is to maintain a consistent notation throughout the thesis. A list
of notation can be found in the back. We include the most important symbols used.
Still, since additional notation is sometimes necessary and for ease of exposition,
we have explained the notation when used. In cases of ambiguity, the proper use
should therefore be clear from the context.
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Stochastic recourse problems
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Chapter 1

An introduction to stochastic

programming

In this chapter we give a short introduction to the field of stochastic program-
ming, the most commonly known classes of stochastic programming problems and
the corresponding terminology and notation. To keep the exposition in line with
the rest of the thesis, we restrict the discussion to stochastic mixed-integer linear
programming problems. As the of major part of the thesis is devoted to applica-
tions, we will not present the structural properties of the stochastic programming
problems except for the those of the most basic class. It is worth noting, though,
that many results are basically generalizations and follow in rather similar ways.
However, we present the most fundamental solution approaches to such problems
and include some of the major findings in the development of algorithms.

The field of stochastic programming is concerned with optimization under un-
certainty. As the name suggests, its modeling approaches and algorithmic tech-
niques are inherited from mathematical programming, which separates it from
the related fields of decision analysis, stochastic control theory and Markov de-
cision processes. Although, mathematical programming is highly recognized and
widely used, uncertainty can only be handled by sensitivity or parametric anal-
ysis. Stochastic programming overcomes this drawback by including uncertainty
explicitly into mathematical programming. Essentially, a stochastic program is a
mathematical program in which uncertain data is represented by random variables
and an appropriate optimization criterion is selected.

In the following we will confine ourselves to the class of stochastic programming
problems referred to as stochastic recourse problems and present the two-stage and
multi-stage versions. For other stochastic programming problems such as chance
constrained programs, we refer the reader to Prekopa (1995).

3



4 An introduction to stochastic programming

1.1 Random optimization

The starting point of stochastic programming is random optimization. We for-
malize the analysis by the following random mixed-integer linear programming
problem, where uncertainty is reflected in data being represented by random vari-
ables.

min{cx | Ax = b, T (ω)x = h(ω), x ∈ X}. (1.1.1)

As is also the case in the remainder of the thesis, transposes have been elimi-
nated. We consider a costs minimization framework and let all components have
conformable dimensions. X ⊆ R

n1
+ has the property that its convex hull is poly-

hedral, which allows for integrality restrictions on some of the variables x ∈ R
n1
+ .

In a mixed-integer framework the set can thus, without loss of generality, itself be
assumed to be polyhedral. We let R

n be the space of real n-vectors and R
m×n

the space of real m × n-matrices. c ∈ R
n1 and b ∈ R

m1 are known vectors
and A ∈ R

m1×n1 is a known matrix. h : Ω → R
m2 is a random vector and

T : Ω → R
m2×n1 is a random matrix on some probability space (Ω,F ,P) . As ω

denotes an element of Ω, realization of h and T are denoted h(ω) and T (ω).
On one hand, the problem (1.1.1) may represent a distribution problem that

serves to determine the distributional characteristics of the optimal solutions and
objective function values. In a distribution problem, decisions are made after
uncertainty is observed, as is the case in sensitivity and parametric analysis. On
the other hand, the problem (1.1.1) may be regarded as a so-called anticipatory
problem, a category into which stochastic recourse problems fall. The challenge of
anticipatory problems is to make decisions without anticipating future realizations
of the random variables. With these restrictions, however, problem (1.1.1) is
not well-defined. To redefine the problem, it is crucial to select an optimization
criterion that values future realizations of the random variables and at the same
time reflects the preferences of the decision-maker.

Stochastic recourse problems incorporate corrective actions in response to the
non-anticipative decisions and employ an optimization criterion that includes the
costs of both decision types. Early attempts to formulate the recourse problems
were found already in Danzig (1955). We proceed with the presentation of the
two-stage and multi-stage stochastic programs with recourse.

1.2 Two-stage stochastic programs with recourse

The most basic stochastic recourse problem is the two-stage stochastic program
with recourse. To state the problem, assume that non-anticipative decisions rep-
resent the main decisions that have already been made and that a temporary
violation of the random constraints is allowed. Feasibility is restored through re-
course actions that are deferred until the realization of uncertainty is observed. In
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this fashion, the decisions are partitioned into two stages according to the informa-
tion flow and we therefore refer to them as first-stage and second-stage decisions.
It should be remarked that the partitioning of decisions need not actually re-
flect the separation of main decisions and recourse actions but may simply reflect
the timing of the decisions such that first-stage decisions are to be made imme-
diately, whereas second-stage decisions can be deferred. Still, we use the terms
recourse actions and second-stage decisions interchangeably. Assume further that
the decision-maker seeks to minimize direct and expected future costs. Then the
two-stage stochastic recourse problem with recourse can be stated as

min{cx+ E[q(ω)y(ω)] | Ax = b,Wy(ω) + T (ω)x = h(ω)

x ∈ X, y(ω) ∈ Y P.a.a.ω}. (1.2.1)

We denote the expectation operator by E[·]. Y ⊆ R
n2
+ is a non-empty polyhedron

that may contain integrality restrictions on some of the variables y ∈ R
n2
+ . The

dependency of y on ω reflects the fact that the decisions differ for different realiza-
tions of the random variables. W ∈ R

m2×n2 is a known matrix and q : Ω → R
n2

is a random vector on the probability space (Ω,F ,P). We refer to x and y as
first-stage and second-stage decisions, respectively. c and q are called first-stage
and second-stage costs. The first-stage constraints are defined by A and b and
the second-stage constraints by the recourse matrix W , the technology matrix T
and the right-hand side h. The second-stage constraints are assumed to hold for
P-almost all ω, i.e. for ω ∈ Ω\Ω′, where P(Ω′) = 0. The assumption of a known
recourse matrix is referred to as fixed recourse. Occasionally, we use the following
notation for the expected value of a random variable or vector ξ

E[ξ(ω)] =

∫

Ω

ξ(ω)P(dω).

Moreover, we let ξ : Ω → R
N be the random vector whose components constitute

the uncertain data, i.e. ξ = (q, h, T1, . . . , Tm2), where , T1, . . . , Tm2 denote the rows
of T andN = n2+m2+m2×n1. To ease notation, we introduce the image measure
µ = P ◦ ξ−1 on R

N and change variables, so that for instance
∫

Ω

ξ(ω)P(dω) =

∫

RN

ξ µ(dξ).

To fully illustrate the dynamics of the two-stage decision process, consider the
following scheme

decide on x → observe q, h, T → decide on y.

As mentioned above, first-stage decisions must be made with limited information
on the future realization of the random data and such as to minimize direct first-
stage costs and expected second-stage costs. As the realization of the random
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data is revealed, the second-stage decisions can be based on the actual realization
and the second stage costs are determined. The dynamics can be demonstrated
by formulating of the stochastic recourse program (1.2.1) in terms of dynamic
programming. The two-stage stochastic program with recourse is

min{Q(x) | Ax = b, x ∈ X}, (1.2.2)

with the recourse function

Q(x) := cx+ E[Φ(q, h− Tx)] (1.2.3)

and the second-stage value function

Φ(q, h− Tx) := min{qy |Wy = h− Tx, y ∈ Y }. (1.2.4)

The dynamic programming formulation (1.2.2)-(1.2.4) illustrates the difficul-
ties in solving the two-stage stochastic program with recourse. Due to the recourse
function (1.2.3), (1.2.2) is a non-linear programming problem that involves the
evaluation of an integral. Even for an absolutely continuous distribution of the
random variables, the problem is non-convex. Most solution approaches therefore
rely on an approximation by a discrete distribution with finite support. We as-
sume the approximation of ξ = (q, h, T ) is given by a set of scenarios {1, . . . , S}
that corresponds to the realizations ξs = (qs, hs, T s), s = 1, . . . , S and probabili-
ties πs, s = 1 . . . , S. The resulting two-stage stochastic program is often referred
to as the deterministic equivalent .

z = min cx+
S

∑

s=1

πsqsys (1.2.5)

s.t. Wys + T sx = hs, Ax = b, x ∈ X, ys ∈ Y. (1.2.6)

For an illustration of two-stage stochastic programming scenarios, see Fig. 1.1.
The nodes represent decisions points; the node to right first-stage decisions and
those to the left scenario-dependent second-stage decisions.

Remark 1.2.1 Stochastic programming is founded on the assumption of a known
probability distribution of the random data, which may seem as a rather strong
assumption. Mostly, the distribution is approximated by some discrete distribution
with finite support. Nevertheless, mathematical programming assumes the data to
be known and specified in advance, which can be seen as specifying a distribution
of only one mass point and hence is most likely outperformed by a distribution
with a number of mass points. The finite number of mass points that determines
the random stochastic programming data define the set of scenarios. Throughout
the thesis, we refer to the set of scenarios interchangeably as {1, . . . , S} or S. For
different approaches to approximating the probability distribution, see Chapter 7.
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Figure 1.1: Two-stage scenario paths.

So far, we have implicitly assumed a risk neutral decision-maker, who seeks to
minimize an expectation-based objective. In the case of other preferences and in
particular another attitude towards risk, the objective takes a different form. For
simplicity, however, we will in general state the stochastic program as

min{Q(x) | Ax = b, x ∈ X}.

To further simplify the notation, we will sometimes suppress the representation of
the constraints.

Structural properties such as continuity, differentiability, convexity and stabil-
ity of the two-stage stochastic programs with linear recourse are given in Chapter
2. The results contain the cases of both expectation-based and risk-adjusted ob-
jectives. For mixed-integer recourse, see Louveaux and Schultz (2003) for the
expectation-based and Märkert and Schultz (2005) for the risk-adjusted case.

For a more general and exhaustive introduction to two-stage stochastic pro-
gramming, we refer the reader to Birge and Louveaux (1997), Kall and Wallace
(1994) and Prekopa (1995).

1.3 Multi-stage stochastic programs with recourse

The multi-stage stochastic program with recourse relies on the same ideas as the
two-stage version. Decisions are made without anticipating future realizations of
uncertain data, which forces a partitioning of decisions into stages according to
the information flow. The realization of uncertain data is, however, only gradually
revealed and decisions are therefore made dynamically. Since non-anticipativity
allows a temporary violation of the random constraints at a stage, feasibility is
restored through recourse actions at the following stages at the expense of recourse
costs. We assume that the overall aim is to minimize expected future costs.

Initially we formulate the problem by introducing measurability conditions to
state the fact that decisions at a stage depend only on the available information
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at this point in time.

min
{

E[c(ω)x1(ω) + · · · + cT (ω)xT (ω)]
∣

∣

∣

∑

t′≤t

Wtt′(ω)xt′ (ω) = ht(ω),

t = 2, . . . , T, At(ω)xt(ω) = bt(ω), xt(ω) ∈ Xt,

t = 1, . . . , T P.a.a.ω, xt measurable w.r.t Ft

}

. (1.3.1)

We consider a finite time horizon indexed by {1, . . . , T}. Occasionally, we also
refer to the set of time points as T . For now, we let the time points index the
stages. The stages represent points in time at which new information arrives and
should not be confused with points of decision-making. However, to avoid highly
complex notation throughout the rest of the thesis, we use only a single set of
indices and leave it to the reader to extract the meaning from the context. Xt

are non-empty polyhedra that may contain integrality restrictions on some of the
variables xt ∈ R

nt , t = 1, . . . , T . We let the variables xt at time t depend on the
realization ω of the random data and set xt = (x1, . . . , xt). For t = 1, . . . , T ,
ct : Ω → R

nt and ht : Ω → R
mt , bt : Ω → R

m′

t are random vectors and Wtt′ : Ω →
R

mt×nt′ , t′ ≤ t, At : Ω → R
m′

t×nt are random matrices on the probability space
(Ω,F ,P). We refer to the constraints determined by Wtt′ , t

′ ≤ t, ht, t = 1, . . . , T
as coupling constraints and those determined by Xt, At, bt, t = 1, . . . , T as stage-
specific constraints. If a solution satisfies both the coupling and stage-specific
constraints, it is called admissible. For t = 1, . . . , T , we let ξt : Ω → R

Nt be the
random vector ξt = (ct, ht, bt,Wt1, . . . ,Wtt, At) where, as in the remainder of the
thesis, the matrices are to be read as listed in rows and where Nt = nt +mt +m

′
t +

mt×n1+· · ·+mt×nt+m
′
t×nt. Information is described by the stochastic process

{ξt}T
t=1, and specifically information available at time t by ξt = (ξ1, . . . , ξt). We

denote by Ft ⊆ F the σ-algebra generated by ξt and assume that the σ-algebras
form a filtration such that Ft ⊆ Ft+1, t = 1, . . . , T − 1 and F1 = {∅,Ω} and
FT = F . Non-anticipativity is expressed as measurability of xt with respect
to Ft which can also be expressed as xt = E[xt|Ft], where E[·|·] denotes the
condition expectation. Solutions that comply with the non-anticipativity are called
implementable. Letting PFt−1 be a regular conditional probability measure on
Ft−1×Ω, we introduce the image measure µt = PFt−1 ◦(ξt)−1 on R

Nt , t = 1, . . . , T
and change variables.

The alternating decision process of decisions and observations of the random
data, can be summarized in the scheme

decide on x1 → · · · → observe ct, ht, bt,Wt1, . . . ,Wtt, At →

decide on xt → · · · → decide on xT .
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The dynamics are made clear in the formulation of the stochastic recourse program
by the use of dynamic programming. To write problem (1.3.1) as a dynamic
program, the multi-stage stochastic program with recourse is

min{Q2(x
1, ξ1) | A1x1 = b1, x1 ∈ X1}, (1.3.2)

with the recourse function

Qt(x
t−1, ξt−1) := ct−1xt−1 + E[Φt(x

t−1, ξt)|Ft−1], t = 2, . . . , T (1.3.3)

QT+1(x
T , ξT ) := cTxT (1.3.4)

and the value function

Φt(x
t−1, ξt) := min

{

Qt+1(x
t, ξt)

∣

∣

∣

t
∑

t′=1

Wtt′xt′ = ht,

Atxt = bt, xt ∈ Xt

}

, t = 2, . . . , T. (1.3.5)

Due to the computational difficulties in (1.3.2)-(1.3.5), the probability distri-
bution is mostly approximated by a discrete distribution with finite support. The
approximation may result in a scenario formulation or a scenario tree formulation
of the multi-stage stochastic program.

As concerns the scenario formulation, we assume the approximate distribution
of the stochastic process {ξt}T

t=1 = {(ct, ht, bt,Wt1, . . . ,Wtt, At)}T
t=1 is given by the

scenario paths {ξs
t }

T
t=1 = {(cst , h

s
t , b

s
t ,W

s
t1, . . . ,W

s
tt, A

s
t )}

T
t=1, s = 1, . . . , S and the

scenario probabilities πs, s = 1, . . . , S. Non-anticipativity is explicitly expressed
as linear constraints that force decision variables to have the same value if they
are based on the same information. This can be formulated by means of so-called
scenario bundles. At each stage, non-anticipativity induces a partitioning of the
scenarios. Two scenarios are said to be members of the same bundle B at time t
if the scenarios contain the same information up to time t. In this fashion, every
scenario s is a member of exactly one bundle B(s, t) at time t. Based on this, the
scenario formulation takes the form

z = min
S

∑

s=1

T
∑

t=1

πscstx
s
t (1.3.6)

s.t.

t
∑

t′=1

W s
tt′x

s
t′ = hs

t , t = 2, . . . , T, s = 1 . . . , S (1.3.7)

As
tx

s
t = bst , x

s
t ∈ Xt, t = 1, . . . , T, s = 1 . . . , S (1.3.8)

if B(s1, t
′) = B(s2, t

′), t′ ≤ t, t′, t = 1, . . . , T, s1, s2 = 1 . . . , S
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Figure 1.2: Multi-stage scenario
paths.

then xs1
t = xs2

t , t = 1, . . . , T, s1, s2 = 1 . . . , S. (1.3.9)

Unbundled scenario paths are shown in Fig. 1.2, in which the nodes again represent
points of decison-making.

The scenario tree formulation arises when clustering the scenario paths to a sce-
nario tree, so that branching occurs with the arrival of new information. In other
words, decision variables at a stage are aggregated according to the available infor-
mation. Decision variables that are based on the same information are replaced by
a single variable and thereby automatically have the same values. Since informa-
tion reveals only gradually, the aggregation of variables induces a tree structure.
The non-anticipativity is implicitly given in this tree structure. The scenario tree
is built of a set of nodes N . We assume branching occurs at t = 1, . . . , T , although,
as already mentioned, the arrival of new information may not occur as often as
decision-making. The root node corresponds to time interval t = 1. The remaining
nodes all have an ascendant node and a set of descendant nodes. For node n, the
immediate ascending node is termed n−1 with the transition probability πn/n−1 ,
i.e. the probability that n is the descendant of n−1. The probabilities of the nodes
are given recursively by π1 = 1 and πn = πn/n−1πn−1 , n > 1. The immediate
descendants of node n are N+1(n) and nodes with N+1(n) = ∅ are called leaves.
Moreover, the path from the root node to node n is denoted by path(n) and t(n)
is its length. Nt is the set {n ∈ N : t(n) = t} and nodes of NT constitute the
leaves. Each path from the root node to a leaf represents a scenario and hence the
scenario probabilities are πn, n ∈ NT . Conversely, given the scenario probabilities,
the remaining node and transition probabilities are given by πn =

∑

n+∈N+(n) π
n+

and πn+/n = πn+/πn, n+ ∈ N+(n). The ascendant node of node n at t > 1 time
intervals back in time is n−t with t(n−t) = t(n) − t. Finally, for t = 1, . . . , T
the realizations of the uncertain data {ξt} = {(ct, ht, bt,Wt1, . . . ,Wtt, At)} are de-
noted {ξn}n∈Nt

= {(cn, hn, bn,Wn1, . . . ,Wnn, An)}n∈Nt
. Now the scenario tree

formulation reads

z = min
∑

n∈N

πncnxn (1.3.10)
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Figure 1.3: Multi-stage scenario tree.

s.t.
∑

0≤t′≤t(n)−1

Wnn
−t′xn

−t′ = hn, n ∈ N , (1.3.11)

Anxn = bn, xn ∈ Xt(n). (1.3.12)

A scenario tree is illustrated in Fig. 1.3. The nodes represent points of decison-
making and arrival of new information.

We extend the general formulation of the two-stage stochastic program to the
multi-stage version so that the problem

min{Q(x) | Ax = b, x ∈ X}

in general refers to a stochastic program. As previously, the constraints may not
be explicitly displayed.

For an introduction to multi-stage stochastic programming, we again refer
to the general textbooks on stochastic programming Birge and Louveaux (1997),
Kall and Wallace (1994) and Prekopa (1995) as well as the specific paper on multi-
stage stochastic mixed-integer linear programming terminology by Römisch and
Schultz (2001). The last paper also provide a number of references on structural
properties.

1.4 Solution approaches

Solution approaches to stochastic programming problems often divide into primal
and dual decomposition methods. Primal methods aim at decomposing a problem
according to stages, whereas dual methods decompose with respect to scenarios.
We discuss some major contributions within solution approaches to linear and
mixed-integer two-stage and multi-stage stochastic programs.

1.4.1 Two-stage linear programs

The starting point for many stochastic programming solution approaches is the L-
shaped method introduced by Slyke and Wets (1969) and based on the principles
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Figure 1.4: Constraint ma-
trix of the deterministic
equivalent to the two-stage
problem.

of Benders’ decomposition, cf. Benders (1962). In its basic form it applies to
two-stage stochastic programs with linear recourse, i.e. with X ⊆ R

n1
+ and Y =

R
n2
+ , and assumes a discrete distribution with finite support, the result being

a large-scale mathematical program of the form (1.2.5)-(1.2.6). The L-shaped
method inherits its name from the structure of this problem or in particular its
constraint matrix. Fig. 1.4 illustrates, that for fixed first-stage decisions, the
second stage divides into a number of independent subproblems. Due to the stage-
wise decomposition, the L-shaped method classifies as a primal decomposition
approach.

Consulting (1.2.2)-(1.2.4), the two-stage stochastic program with recourse can
be restated as

min cx+ θ (1.4.1)

s.t. Φ(x, ξs) < +∞, s = 1, . . . , S (1.4.2)

S
∑

s=1

πsΦ(x, ξs) ≤ θ (1.4.3)

Ax = b, x ∈ X (1.4.4)

θ ∈ R. (1.4.5)

The L-shaped method fixes the first-stage decisions in a master problem that is
constructed by relaxing the second-stage feasibility constraints (1.4.2) and the
optimality constraint (1.4.3) and restoring the constraints by valid cuts.
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Consider some iteration i of the algorithm and solve the master problem. If
the problem is infeasible, so is the original problem and the algorithm terminates.
A slight modification of the following analysis will suffice if the problem is un-
bounded. Finally, if neither infeasible nor unbounded, an optimal solution xi of
the master problem is found.

Feasibility cuts are derived from a number of linear subproblems defined for
s = 1, . . . , S and x ∈ R

n1 by

Φ̄(x, ξs) := min{es1 + es2 |Wy + Is1 − Is2 = hs − T sx,

y ∈ R
n2
+ , s1, s2 ∈ R

m2
+ }, (1.4.6)

where e = (1, . . . , 1), I is the m2 ×m2 identity matrix and s1, s2 ∈ R
m2
+ are slack

variables. Evidently, the subproblems can be solved separately. If the solution xi

causes the second-stage problem Φ(xi, ξs) to be infeasible for some s ∈ {1, . . . , S},
then 0 < Φ̄(xi, ξs) = σi,s(hs − T sxi) for a dual optimal solution σi,s to Φ̄(xi, ξs).
Thus, xi will be cut off by adding the feasibility cut

σi,s(hs − T sx) ≤ 0. (1.4.7)

Feasibility cuts of the form (1.4.7) are added until Φ(xi, ξs) are feasible for all
s = 1, . . . , S. By duality, (1.4.7) is a valid inequality for (1.4.1) − (1.4.5) for all
x ∈ R

n1 that do not violate second-stage feasibility.
Having restored second-stage feasibility, the algorithm proceeds by solving the

subproblems. If for some s ∈ {1, . . . , S}, Φ(xi, ξs) is unbounded, so is the original
problem and the algorithm terminates. Otherwise, for s = 1, . . . , S let σi,s be
a dual optimal solution to Φ(xi, ξs). If xi is such that θi <

∑S
s=1 π

sΦ(xi, ξs) =
∑S

s=1 π
sσi,s(hs − T sxi) for some s ∈ {1, . . . , S}, then xi is not optimal in the

original problem. Hence, (xi, θi) will be cut off by adding the optimality cut

S
∑

s=1

πsσi,s(hs − T sx) ≤ θ (1.4.8)

Again, by duality, the optimality cut is a valid inequality to (1.4.1) − (1.4.5).
Having restored both feasibility and optimality, the algorithm terminates with an
optimal solution to the original problem.

The algorithm can be stated as follows

Algorithm 1.4.1

Step 0 (Initialization). Set i = 0 and let the current master problem be

min cx+ θ

s.t. θ ∈ R
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Step 1 (Solve master problem). Set i = i + 1. Solve the current master problem
and let (xi, θi,1, . . . , θi,S) be an optimal solution (If θs = −∞ for some
s ∈ {1, . . . , S} the variable is ignored in the computation.)

Step 2 (Add feasibility cuts). For s = 1, . . . , S, solve problem (1.4.6) with x = xi

and let σi,s be a corresponding dual solution. If σi,s(hs − T sxi) > 0 for
some s = 1, . . . , S, add a feasibility cut (1.4.7) to the master problem and
return to step 2.

Step 3 (Add optimality cuts). For s = 1, . . . , S, solve the problem (1.2.4) with

x = xi and let σi,s be a corresponding dual solution. If
∑S

s=1 π
sσi,s(hs −

T sxi) > θi, add an optimality cut (1.4.8) to the master problem and return
to step 2.

Step 4 (Termination). Stop. The current solution is optimal.

If it exists, Algorithm 1.4.1 terminates with an optimal solution in a finite num-
ber of iterations. Otherwise, the algorithm proves unboundedness or infeasibility
of the problem.

There is a different way of considering the use of cutting planes. Duality
arguments may prove the recourse function (1.2.3) to be piecewise linear and
convex. It is thus possible to build an outer linearization of the function and the
optimality cuts can be regarded as supporting hyperplanes in this respect.

In contrast to the optimality cuts (1.4.8) that rely on aggregated information,
Wets (1983) and Birge and Louveaux (1988) suggested the use of disaggregated
cuts. The idea was to replace the single cut by a number of cuts derived from
separate subproblems or so-called bunches of subproblems. Cuts derived from
separate subproblems have the form

σi,s(hs − T sx) ≤ θs.

Since the disaggregated cuts contain more information, it is expected that the use
of the so-called multi-cut method involves less iterations and often outperforms the
traditional L-shaped method, which is supported by the numerical tests of Birge
and Louveaux (1988). Further improvements to the L-shaped method in this di-
rection include regularized decomposition proposed by Ruszczyńsky (1986). The
method combines the multi-cut version of L-shaped decomposition with the in-
clusion of a quadratic regularizing objective function term, the resulting objective
being

cx+

S
∑

s=1

πsθs + 0.5α‖x− xi−1‖2,
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where α > 0. This prevents initial solutions from oscillating and allows for cut
removal in order to avoid final degeneracy in the master problem. The quadratic
objective function term ensures strict convexity which provides for finite conver-
gence of the algorithm.

Among other methods that emanate from the L-shaped method is stochastic
decomposition by Higle and Sen (1991). The authors use an internal sampling pro-
cedure for approximating the probability distribution, and solve the subproblems
at only one sample point. The cuts provided by the internal sampling procedure
are statistical estimates that converge to the supporting hyperplanes of the original
objective function. Finally, the most direct alternative decomposition approach is
the method of Dantzig and Wolfe (1960). Dantzig-Wolfe decomposition can be re-
garded as solving the dual to the L-shaped master problem and uses, in contrast to
outer linearization and cut generation, inner linearization and column generation.
In most cases, the L-shaped method outperforms Dantzig-Wolfe decomposition
due to smaller bases of the master problem.

1.4.2 Two-stage mixed-integer programs

We next discuss solution approaches to two-stage stochastic programs with mixed-
integer recourse, i.e. problems on the form (1.2.5)-(1.2.6) with X ⊆ R

n1
+ and

Y ⊆ R
n2
+ that may contain integrality restrictions on some variables. By virtue

of the integrality, the convexity properties that apply to stochastic linear pro-
grams are lost, which makes stochastic mixed-integer program challenging from a
computational point of view.

Independent of convexity, any mixed-integer linear stochastic program can
be stated as its deterministic equivalent, the result being a large-scale problem
amenable to LP-based branch and bound . The branch and bound may then be
conducted by commercial software such as the CPLEX callable library, cf. Cplex
Optimization Inc. (2006).

A number of attempts were made at adapting the L-shaped method to two-
stage stochastic mixed-integer programs, which lead to a branch and cut proce-
dure known as the integer L-shaped method . Laporte and Louveaux (1993) first
proposed the derivation of cuts for two-stage programs with purely binary first
stage. Based on general duality theory, Carøe and Tind (1998) later provided
a full characterization of the integer L-shaped method and derived cuts for two-
stage programs with integer first and second stage. Finally, Norkin, Pflug, and
Ruszczyński (1998) and Norkin, Ermoliev, and Ruszczyński (1998) suggested the
stochastic branch and bound principles using statistical estimates of the recourse
function instead of ordinary evaluation.

As a contrast to the primal approaches, we present a dual solution approach.
The approach is due to Carøe and Schultz (1999) and rests on an idea of variable
splitting and Lagrangian relaxation that has won great attention. To present the
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Figure 1.5: Constraint matrix
of the two-stage problem with
explicit non-anticipativity con-
straints.

so-called dual decomposition, we proceed as follows.
Defining for s = 1, . . . , S the sets

χs = {(x, ys) | Ax = b, x ∈ X,Wys + T sx = hs, ys ∈ Y s},

the deterministic equivalent (1.2.5)-(1.2.6) can be restated as

z = min
{

cx+

S
∑

s=1

πsqsys
∣

∣

∣
(x, ys) ∈ χs, s = 1, . . . , S

}

. (1.4.9)

We assume the problem is feasible and bounded. The variable splitting applies to
the first-stage variables x and consists in the introduction of copies xs, s = 1, . . . , S.
With such copies, non-anticipativity can be explicitly expressed and (1.4.9) is
equivalent to

z = min
{

S
∑

s=1

πs(cxs + qsys)
∣

∣

∣
(xs, ys) ∈ χs, s = 1, . . . , S, x1 = · · · = xS

}

. (1.4.10)

We further assume that the non-anticipativity constraints are represented by the
equality

∑S
s=1M

sxs = 0, where = (M1, . . . ,MS) is a suitable l × n1S matrix. It
should be remarked that except for the non-anticipativity constraints, the problem
(1.4.10) decomposes according to scenarios. For an illustration of the structure
of the constraint matrix and its decomposition potential, see Fig. 1.5. We relax
the non-anticipativity constraints using Lagrangian relaxation. The Lagrangian
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function is

L(x, y;λ) :=

S
∑

s=1

(

πs(cxs + qsys) + λM sxs
)

,

with the corresponding dual function

D(λ) := min{L(x, y;λ) | (xs, ys) ∈ χs, s = 1, . . . , S}. (1.4.11)

The Lagrangian dual is therefore

max{D(λ) | λ ∈ R
l}.

The Lagrangian relaxation decomposes into scenario subproblems, such that the
dual function (1.4.11) is

D(λ) =

S
∑

s=1

Ds(λ),

with

Ds(λ) = min{πs(cxs + qsys) + λM sxs | (xs, ys) ∈ χs}.

For now, we leave out further details on Lagrangian relaxation and state the
branch and cut procedure.

Algorithm 1.4.2

Step 0 (Initialization). Set z̄ = ∞ and let the L consist of

min Q(x)

s.t. Ax = b, x ∈ X

Step 1 (Termination). If L = ∅, then stop. The solution x̄ with z̄ = Q(x̄) is
optimal.

Step 2 (Node selection). Select and delete a problem P from L. If P is infeasible,
go to step 1. Otherwise, solve the Lagrangian dual to obtain the lower
bound z(P ) and go step 3.

Step 3 (Bounding). If z(P ) ≥ z̄, then go to step 1. Otherwise,

(i) if the scenario solutions xs, s = 1, . . . , S are identical, let z̄ = mins{z̄,
Q(xs)}, delete from L all P ′ with z(P ′) ≥ z̄ and go to step 1.
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(ii) if the scenario solutions xs, s = 1, . . . , S differ, then compute the av-
erage x̄ and round it. If x̄ is feasible, let z̄ = min{z̄, Q(x̄)}, delete
from L all P ′ with z(P ′) ≥ z̄ and go to step 4.

Step 4 (Branching). Select a component xj of x and add two new problems to
L obtained from P by adding the constraints xj ≤ ⌊x̄j⌋ and xj ≥ ⌈x̄j⌉,
respectively (integer component) or xj ≤ x̄j−ε and xj ≥ x̄j +ε, respectively
(continuous component), where x̄ is the average and ε > 0.

1.4.3 Multi-stage linear programs

The primal solution approach to two-stage linear programs, Benders’ decomposi-
tion or the L-shaped method, extends to multi-stage linear programs. The nested
Benders decomposition was suggested by Birge (1985) and applies to multi-stage
stochastic programs with Xt = R

nt

+ , t = 1, . . . , T and a discrete distribution with
finite support, stated using the scenario tree formulation (1.3.10)-(1.3.12).

The algorithm relies on the dynamic programming formulation (1.3.2)-(1.3.4)
and especially the definition of subproblems for every node n ∈ N of the scenario
tree

min cnxn + θn (1.4.12)

s.t. Φn+(xn, ξn+) < +∞, n+ ∈ N+(n) (1.4.13)

∑

n+∈N+(n)

πn+/nΦn+(xn, ξn+) ≤ θn (1.4.14)

∑

0≤t′≤t(n)−1

Wnn
−t′xn

−t′ = hn (1.4.15)

Anxn = bn, xn ∈ Xt(n) (1.4.16)

θn ∈ R. (1.4.17)

A master problem is obtained for every node by relaxing the feasibility constraints
(1.4.13) and the optimality constraint (1.4.14) and restoring the constraints by
valid cuts derived from the descendant nodes. Both feasibility and optimality
cuts are derived in the same fashion as for the two-stage case. The extension
to multi-stage stochastic programs lies in determining the order of solving the
subproblems and deriving the cuts. This order is determined by the directions,
forward DIR = FORE and backward DIR = BACK, in which the scenario
tree is traversed. We state the algorithm as a so-called “fast-forward-fast-back”
procedure
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Algorithm 1.4.3

Step 0 (Initialization). Set n = 1 and DIR = FORE. Let the master problem of
node 1 be

min c1x1 + θ1

s.t. A1x1 = b1, x1 ∈ Xt(1)

θ1 ∈ R+

Step 1 (Solve master problem and add feasibility cuts). Solve the master problem
of node n.

(i) If infeasible and n = 1, stop. The problem (1.3.2)-(1.3.4) is infeasible.

(ii) If infeasible and n > 1, use the current node to derive a feasibility cut
that is added to the master problem of the ascendant node n−1. Set
DIR = BACK, n = n−1 and return to step 1.

(iii) If feasible, let (xn, θn) be an optimal solution (if θn = ∞, the variable
is ignored in the computation). If not all n ∈ Nt have been visited,
then select a node that has not been visited and return to step 1. If
all n ∈ Nt have been visited, DIR = FORE and t(n) < T , then
set t = t + 1 and return to step 1. If all n ∈ Nt have been visited,
DIR = BACK and t(n) < T , then go to step 2. If all n ∈ Nt have
been visited and t(n) = T , then DIR = BACK and go to step 2.

Step 2 (Add feasibility cuts). For all n ∈ Nt−1 do the following. Use the ascendant
nodes N+(n) to derive an optimality cut.

(i) If necessary, add the optimality cut to the master problem of node n,
let t = t− 1 and go to step 1.

(ii) If unnecessary to add an optimality cut and t > 1, then set t = t− 1
and select an n ∈ Nt. If t = 1, then DIR = FORE. Return to step
1.

(iii) If unnecessary to add an optimality cut and t = 1, then stop. The
solution x1 is optimal.

With only few additional assumptions, the algorithm converges finitely. As for
the two-stage L-shaped method, the speed of convergence may improve with the
use of multi-cuts and regularization.

Like as traditional Benders’ decomposition, nested Benders’ decomposition re-
lies on an outer linearization. Although this is generally preferred in the literature,
inner linearizations have also been suggested. Other approaches to multi-stage lin-
ear programs are Lagrangian relaxation procedures such as progressive hedging and
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augmented Lagrangian decomposition. For linear stochastic programs, both algo-
rithms converge. The augmented Lagrangian decomposition approach by Mulvey
and Ruszczyński (1995) rests on a diagonal quadratic approximation of the La-
grangian and a proposal to solve the resulting subproblems by an interior point
method. In contrast to the progressive hedging algorithm, the non-anticipativity
to be relaxed is determined by scenario branching. Since the progressive hedg-
ing applies more generally to multi-stage mixed-integer programs, we defer the
discussion of this approach to the next section.

1.4.4 Multi-stage mixed-integer programs

To address mixed-integer recourse problems, i.e. problems with Xt ⊆ R
nt

+ , t =
1, . . . , T , where integrality restrictions may apply to some variables, we consider
the scenario formulation (1.3.6)-(1.3.9).

To some extent, the dual decomposition approach is similar in spirit to the
progressive hedging algorithm suggested by Rockafellar and Wets (1991). Both
approaches are motivated by relaxation of the non-anticipativity constraints. The
dual decomposition approach, however, automatically produces admissible solu-
tions and resolves implementability by branch and bound, whereas progressive
hedging iterates between admissible and implementable solutions. We briefly state
the components of the progressive hedging approach.

Introduce the copies (xs
1, . . . , x

s
T ), s ∈ S and divide the scenarios into bundles.

For every bundle B, set

x̄Bt =
∑

s:B(s,t)=B

πsxs
t

/

∑

s:B(s,t)=B

πs

and let the non-anticipativity constraints be expressed as

if B(s, t) = B then xs
t = x̄Bt .

Making non-anticipative decisions may be regarded as a means of “hedging”
against uncertainty, thus the name progressive hedging.

Define for s = 1, . . . , S the sets

χs =
{

(xs
1, . . . , x

s
T )

∣

∣

∣

t
∑

t′=1

W s
tt′x

s
t′ = hs

t , t = 2, . . . , T,

As
tx

s
t = bst , x

s
t ∈ Xt, t = 2, . . . , T

}

and, motivated by the augmented Lagrangian relaxation, let

L(x;λ) :=

S
∑

s=1

T
∑

t=1

πs
(

cstx
s
t + λs

tx
s
t + 0.5α(xs

t − x̄
B(s,t)
t )2

)

.
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Then the algorithm seeks to solve the quadratic problem

min{L(x;λ) | (xs
1, . . . , x

s
T ) ∈ χs, s = 1, . . . , S}

by decomposition it into the scenario subproblems given by

min
{

T
∑

t=1

(

cstx
s
t + λs

tx
s
t + 0.5α(xs

t − x̄
B(s,t)
t )2

)

∣

∣

∣
(xs

1, . . . , x
s
T ) ∈ χs

}

.

Now the progressive hedging algorithm reads

Algorithm 1.4.4

Step 0 (Initialization). Set i = 0. Let (λ0,s
1 , . . . , λ0,s

T ) = 0, s = 1, . . . , S. Solve the

scenario subproblems without the augmenting term and let

(xs
1, . . . , x

s
T ), s = 1, . . . , S be an optimal solution. Compute the solution

(x̄
0,B(s,1)
1 , . . . , x̄

0,B(s,T )
T ), s = 1, . . . , S. Let the current problem be

min

S
∑

s=1

T
∑

t=1

πs
(

cstx
s
t + λi−1,s

t xs
t + 0.5α(xs

t − x̄
i−1,B(s,t)
t )2

)

s.t. (xs
1, . . . , x

s
T ) ∈ χs, s = 1, . . . , S

Step 1 (Admissibility). Set i = i+ 1. Solve the current problem and let
(xi,s

1 , . . . , xi,s
T ), s = 1, . . . , S be an optimal solution. The solution is admis-

sible but not necessarily implementable.

Step 2 (Implementability). Compute the solution (x̄
i,B(s,1)
1 , . . . , x̄

i,B(s,T )
T ), s =

1, . . . , S. The solution is implementable but not necessarily admissible.

Step 3 (Termination). If some termination criteria are met, stop. Otherwise, go
step 4.

Step 4 (Multiplier update). Let λi,s
t = λi−1,s

t + α(xi,s
t − x̄

i,B(s,t)
t ), t = 1, . . . , T, s =

1, . . . , S and return to step 1.

The progressive hedging algorithm ensures implementable solutions in all it-
erations and potentially convergence towards admissibility. As for possible ter-
mination criteria, iterations may be continued until a predefined limit is reached,
implementable solutions remain nearly unchanged or the integer components of
the solutions do not change from iteration to iteration.

Løkketangen and Woodruff (1996) have tested the performance of the pro-
gressive hedging algorithm and use tabu search for solving the quadratic scenario
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subproblems close to optimality. The results are found to be very encouraging and
indicate convergence in practice.

The authors of the related Lagrangian relaxation approach, dual decomposi-
tion, state the extension from two-stage problems to multi-stage problems, al-
though they admit the extension may suffer from dimensionality problems. La-
grangian relaxation also finds its use in relation to certain coupling constraints.
For suitable applications and further discussion, see Chapter 3.



Chapter 2

Deviation measures in two-stage

stochastic linear programming

The present chapter addresses the inclusion of risk measures in two-stage stochastic
recourse programs and the its impact on structural properties and algorithmic
treatment.

As a starting point we consider a two-stage stochastic program with linear
recourse. Whereas optimization in the traditional setting is based solely on expec-
tation, we include risk measures that reflect dispersions of the random objective.
Presenting the resulting mean-risk models, we aim to extend existing results for
the expectation-based model. In particular, we discuss structural properties such
as continuity, differentiability and convexity and address stability issues. Further-
more, we propose algorithmic treatment with a slight variation of the L-shaped
method.

2.1 Introduction

Stochastic programming deals with optimization under uncertainty. Starting from
a random optimization problem, the corresponding stochastic program depends
heavily on the criteria for selecting an optimal solution. Traditionally, optimality
rests on the expectation of the random objective. In many respects, however, it is
appropriate to take risk into consideration. Combining expectation and risk, the
model is referred to as a mean-risk model.

Risk measures treated in the literature encompass probabilities, dispersions
and conditional expectations. Still, given the variety, no risk measure is unam-
biguously recommendable. For recent overviews on the topic, see e.g. Schultz
(2003) on the probability of exceeding target, semideviation and conditional value
at risk and Eichhorn and Römisch (2005) on risk measures within the class of

23
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so-called polyhedral risk measures. A wide range of issues are covered, among
these smoothness and convexity properties, compatibility with asymptotic results
as well as algorithmic potential.

In this chapter we employ three dispersion measures; central deviation, semide-
viation and expected excess of target, all referred to as deviation measures. The
motivation behind deviation measures is their consistency with stochastic domi-
nance principles, an attractive behavior of the mean-risk models as well as their
practical tractability. The above dispersion measures were already investigated in
Märkert and Schultz (2005) in the case of mixed-integer linear programs and in
Ahmed (2004) in the case of linear programs, the latter with emphasis on compu-
tational issues.

The idea is to extend existing results from the expectation-based framework
to the mean-risk models considered here. Thus, we will aim at confirming that
the models are well-posed, posses a number of useful analytical properties and are
indeed in tune with stability results. As the deviation measures are based on piece-
wise linear operations they enable algorithmic treatment when the distribution of
the random variables is discrete. Although the mean-risk models do not imme-
diately possess the usual decomposable structure, computational accessibility by
simple modifications of standard solution approaches is possible.

The chapter is organized as follows. In section 2.2 we extend the traditional
linear two-stage stochastic recourse program to mean-risk models and put these
into perspective with stochastic dominance. Section 2.3 contains prerequisites
known from the expectation-based case and in section 2.4 and 2.5 similar structure
and stability properties for the mean-risk models are analyzed. Algorithmic issues
are presented in section 2.6.

2.2 The two-stage linear stochastic program

As should be clear from Chapter 1, a stochastic recourse program reflects a way of
including uncertainty into optimization, the two-stage version being the most basic
one. As the name indicates, decisions are made stage-wise. By non-anticipativity,
first-stage decisions are to be taken independently of uncertain data, whereas
the second stage allows for recourse actions when uncertainty has been disclosed.
The aim of the stochastic program is to select first-stage decisions in an optimal
way, optimality depending on which criterion is applied. To formalize this, as in
Chapter 1, we are given the random linear program

min{cx+ q(ω)y | T (ω)x+Wy = h(ω), Ax = b, x ∈ X, y ∈ R
n2
+ }. (2.2.1)

As before, X ⊆ R
n1
+ is a polyhedron, which we further assume is nonempty. More-

over, the costs q : Ω → R
n2 and the right-hand side h : Ω → R

m2 are random
vectors and the technology matrix T : Ω → R

m2×n1 is a random matrix on some
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probability space (Ω,A,P) as previously defined. The value function

Φ(t1, t2) = min{t1y |Wy = t2, y ∈ R
n2
+ } (2.2.2)

is essential in the formulation of the corresponding stochastic program. According
to the two-stage framework, the variables x and y of (2.2.1) are to be fixed before
and after observing h(ω), q(ω), T (ω), respectively, and, therefore, the total costs
of the sequential decision process compute as cx+Φ(q(ω), h(ω)−T (ω)x). Finding
an optimal x ∈ {x ∈ X | Ax = b} may be understood as selecting the “best”
random objective from the indexed family (cx+ Φ(q(·), h(·) − T (·)x))x∈X:Ax=b.

Considering the expectation-based criterion

QE(x) :=

∫

Ω

(cx+ Φ(q(ω), h(ω) − T (ω)x))P(dω), (2.2.3)

the traditional stochastic program is the optimization problem

min{QE(x) | Ax = b, x ∈ X}. (2.2.4)

From a stochastic viewpoint, optimizing an expectation tacitly implies repeat-
ing the decision process several times and safety issues are addressed only inade-
quately. This has lead to the concept of mean-risk models. Here, we measure risk
by quantitative deviations of the random objectives from either the mean or some
preselected target. We introduce the central deviation

QD(x) :=

∫

Ω

∣

∣cx+ Φ(q(ω), h(ω) − T (ω)x) −QE(x)
∣

∣P(dω), (2.2.5)

the semideviation

QD+(x) :=

∫

Ω

max
{

cx+ Φ(q(ω), h(ω) − T (ω)x) −QE(x), 0
}

P(dω) (2.2.6)

and the expected excess of a given target η ∈ R

QDη(x) :=

∫

Ω

max
{

cx+ Φ(q(ω), h(ω) − T (ω)x) − η, 0
}

P(dω). (2.2.7)

Accordingly, problem (2.2.4) extends into the mean-risk model

min{QE(x) + ̺QR(x) | Ax = b, x ∈ X}, (2.2.8)

where ̺ ∈ R+ is a suitable weight factor and QR is the risk term, i.e. R = D,
R = D+ or R = Dη.

In having to select the “best” of a family of random variables, the stochas-
tic dominance approach deserves attention. Although allowing a simple trade-off
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analysis, mean-risk models are unable to capture the entire gamut of risk-averse
preferences. Nevertheless, for the above deviation measures, the mean-risk ap-
proach is consistent with second order stochastic dominance (provided that certain
conditions on ̺ are met). For some aspects of stochastic dominance, see Ogryczak
and Ruszczyński (1999) and Ogryczak and Ruszczyński (2001).

We briefly outline stochastic dominance results for the deviation measures
(2.2.5)–(2.2.7). Considering the random variables f(x, ·) = cx + Φ(q(·), h(·) −
T (·)x), x ∈ {x ∈ X | Ax = b}, stochastic dominance suggests a partial ordering by
point-wise comparisons of performance functions constructed from the distribution
functions. Relevant performance functions are

F (1)
x (z) := P({ω ∈ Ω | f(x, ω) ≤ z}), z ∈ R,

F (2)
x (z) :=

∫ +∞

z

(1 − F (1)
x (z′))dz′, z ∈ R.

As smaller outcomes are preferred over larger, the relation of second degree stochas-
tic dominance is defined as follows

f(x1, ·) ≻(2) f(x2, ·) ⇐⇒ F (2)
x1

(z) ≤ F (2)
x2

(z), ∀z ∈ R.

Recall that QE(x) and QR(x) denote the mean and the risk of f(x, ·). Now the
mean-risk model is said to be consistent with second degree stochastic dominance
if

f(x1, ·) ≻(2) f(x2, ·) ⇒ QE(x1) + ̺QR(x1) ≤ QE(x2) + ̺QR(x2),

i.e. if the mean-risk model inherits a ranking already existing with respect to
stochastic dominance. Provided the random variables f(x, ·), x ∈ {x ∈ X | Ax =
b} have finite first moments, the mean-risk models resulting from R = D, R = D+

and R = Dη are indeed consistent with second degree stochastic dominance when
̺ ∈ [0, 1/2], ̺ ∈ [0, 1] and for all ̺ ≥ 0, respectively, cf. Ogryczak and Ruszczyński
(1999), proposition 7.

2.3 Prerequisites

Again, as previously, let ξ : Ω → R
N be the random vector whose components

constitute the random data, i.e. ξ = (q, h, T1, . . . , Tm2), where T1, . . . , Tm2 denote
the rows of T and N = n2 +m2 +m2 ×n1. Moreover, let P(RN ) represent the set
of all probability measures on R

N and introduce from this set the image measure
µ = P ◦ ξ−1. Changing variables in (2.2.3),

QE(x, µ) =

∫

RN

f(x, ξ)µ(dξ) (2.3.1)
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and similarly for (2.2.5)–(2.2.7), where f(x, ξ) = cx+ Φ(q, h− Tx) for x ∈ R
n1 .

As the results below concern continuity of the objective function with respect
to x alone, µ alone and (x, µ) jointly, dependence of both x and µ is marked
explicitly.

We will impose the assumptions

(A1) (Complete recourse) For all t ∈ R
m2 , there exists a y ∈ R

n2
+ such that

Wy = t.

(A2) (Dual feasibility) For µ-almost all ξ ∈ R
N , there exists a σ ∈ R

m2 such that
σW ≤ q.

(A3) (Finite second moment)
∫

RN ‖ξ‖2µ(dξ) < +∞.

The assumptions (A1) and (A2) ensure feasibility and boundedness of problem
Φ(q, h−Tx) for all x ∈ R

n1 and µ-almost all ξ ∈ R
N and are sufficient to establish

certain properties of the value function Φ.
The following basis decomposition theorem applies, cf. Walkup (1969),

Proposition 2.3.1 Let posW := {t ∈ R
m2 | ∃y ∈ R

n2
+ : Wy = t} and D := {t ∈

R
n2 | ∃σ ∈ R

m2 : σW ≤ t}. Then Φ : D × posW → R is a real-valued continuous
function. In addition, there exist R

m2 × R
n2 matrices Bj , j = 1, . . . , J and full

dimensional cones Kj , j = 1, . . . , J such that

∪J
j=1Kj = D × posW, intKi ∩ intKj = ∅, i 6= j,

and

Φ(t1, t2) = t1B
−1
j t2 ∀(t1, t2) ∈ Kj .

For fixed t1 ∈ R
n2 , the function Φ(t1, ·) is convex. For fixed t2 ∈ R

m2 , the function
Φ(·, t2) is concave.

Prerequisites comprise results on the expectation-based model (2.2.4). Lips-
chitz estimates of the integrand of (2.3.1) can be derived from Proposition 2.3.1
and are found in Römisch (2003).

Proposition 2.3.2 Assume (A1)–(A2). Then there exist constants L1, L2,K1 >
0 such that for all x, x1, x2 ∈ R

n1 and µ-almost all ξ, ξ1, ξ2 ∈ R
N

(i) |f(x, ξ1) − f(x, ξ2)| ≤ L1‖x‖max{1, ‖ξ1‖, ‖ξ2‖}‖ξ1 − ξ2‖,

(ii) |f(x1, ξ) − f(x2, ξ)| ≤ L2 max{1, ‖ξ‖2}‖x1 − x2‖,

(iii) |f(x, ξ)| ≤ K1‖x‖max{1, ‖ξ‖2}.
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From Wets (1974) and Kall (1976), we get

Proposition 2.3.3 Assume (A1)–(A3).

(i) Then QE(·, µ) : R
n1 → R is a real-valued, convex and Lipschitzian function.

(ii) Suppose further that µ is absolutely continuous with respect to the Lebesgue
measure on R

N . Then QE(·, µ) : R
n1 → R is continuously differentiable.

Remark 2.3.1 In the case where only the right-hand side is random, results on
strong and strict convexity appear in Schultz (1994). Let q ∈ R

n2 be a known
vector, h : Ω → R

m2 be a random vector with the corresponding image measure
µ = P ◦ h−1. Moreover, let Q̄E(χ, µ) :=

∫

Rm2
Φ(q, h − χ)µ(dh) be a function of

the tender variable χ. (i) Assume (A1) and that µ has finite first moment and
is absolutely continuous with respect to the Lebesgue measure on R

m2 . Suppose
further that there exists a σ ∈ R

m2 such that σW < q component-wise. Then
Q̄E(·, µ) is strictly convex on any open convex subset V ⊆ R

m2 of the support of
µ. (ii) Assume further that there exist a convex open set V ⊆ R

m2 , constants
c1 > 0, c2 > 0 and a density g of µ such that g(z) ≥ c1 for all z ∈ R

m2 with
dist(z, V ) := inf{‖z − v‖ | v ∈ V } ≤ c2. Then Q̄E(·, µ) is strongly convex on V .

The remaining continuity properties are relevant to stability results of the
stochastic programs. Such results divide into qualitative and quantitative results.
When qualitative stability is brought into focus, joint continuity is of crucial im-
portance. A notion of convergence of probability measures is required, and weak
convergence will prove sufficiently general while it still allows for substantial state-
ments. A sequence {µn} ⊆ P(RN ) is said to converge weakly to µ ∈ P(RN), i.e.

µn
w
−→ µ, if for any bounded continuous function h : R

N → R, it holds that

∫

RN

h(ξ)µn(dξ) →

∫

RN

h(ξ)µ(dξ),

cf. Billingsley (1968). Restricting measures to the set

∆r,K(RN ) :=
{

ν ∈ P(RN )
∣

∣

∣

∫

RN

‖ξ‖rν(dξ) ≤ K
}

,

we get the following, cf. Kall (1987) and Robinson and Wets (1987),

Proposition 2.3.4 Assume (A1)–(A2) and let µ ∈ ∆r,K(RN ) for some r > 2,
K > 0. Then QE : R

n1 × ∆r,K(RN ) → R is jointly continuous at (x, µ).

To arrive at quantitative stability results, we consider a so-called distance with
d-structure, given as a uniform distance between expectations of functions from
a class of measurable functions. Working with functions that share analytical
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properties with the integrand of (2.3.1), we obtain an ideal metric, optimally
adjusted to the model, cf. Römisch (2003). Let F2(R

N ) := {F : R
N → R |

|F (ξ1) − F (ξ2)| ≤ c2(ξ1, ξ2)‖ξ1 − ξ2‖ ∀ξ1, ξ2 ∈ R
N} denote the class of locally

Lipschitz continuous functions with constant c2(ξ1, ξ2) := max{1, ‖ξ1‖, ‖ξ2‖} and
P2(R

N ) := {ν ∈ P(RN ) |
∫

RN ‖ξ‖2ν(dξ) < +∞} the set of measures having finite
second moments. For µ, ν ∈ P2(R

N ) define the pseudo-metric

d2(µ, ν) := supF∈F2(RN )

∣

∣

∣

∫

RN

F (ξ1)µ(dξ1) −

∫

RN

F (ξ2)ν(dξ2)
∣

∣

∣
.

The pseudo-metric is referred to as the Fortet-Mourier metric of second order. The
Lipschitz estimates of QE(x, ·) for all x ∈ R

n1 can be found in Römisch (2003).

Proposition 2.3.5 Assume (A1)–(A2) and let {x ∈ X | Ax = b} be nonempty
and bounded. Then there exists a constant L > 0 such that the estimate

supx∈X:Ax=b|QE(x, µ) −QE(x, ν)| ≤ Ld2(µ, ν)

is valid whenever µ, ν ∈ P2(R
N ).

2.4 Structure

The following identities are obtained by straightforward computation, cf. Märkert
and Schultz (2005),

QE(x, µ) + ̺QD(x, µ) = E[f(x, ξ)] + ̺E[|f(x, ξ) − E[f(x, ξ)]|]

= (1 − 2̺)E[f(x, ξ)] + 2̺E[max{f(x, ξ),E[f(x, ξ)]}], (2.4.1)

QE(x, µ) + ̺QD+(x, µ) = E[f(x, ξ)] + ̺E[max{f(x, ξ) − E[f(x, ξ)], 0}]

= (1 − ̺)E[f(x, ξ)] + ̺E[max{f(x, ξ),E[f(x, ξ)]}], (2.4.2)

QE(x, µ) + ̺QDη(x, µ) = E[f(x, ξ)] + ̺E[max{f(x, ξ) − η, 0}]

= E[f(x, ξ)] + ̺E[max{f(x, ξ), η}] − ̺η. (2.4.3)

Evidently, the mean-risk objective functions are linear combinations of QE(x, µ)
and either

Qmax(x, µ) :=

∫

RN

max{f(x, ξ), QE(x, µ)}µ(dξ) (2.4.4)

or the more simple version

Qmax,η(x, µ) :=

∫

RN

max{f(x, ξ), η}µ(dξ). (2.4.5)
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Remark 2.4.1 The integrals (2.4.4) and (2.4.5) make sense for measurable func-
tions only. Let therefore x ∈ R

n1 . Since Φ(t1, t2) is continuous in (t1, t2) and
(q, h − Tx) is linear in ξ, f(x, ξ) = cx + Φ(q, h − Tx) is continuous in ξ. By
another continuity argument, max{f(x, ·), QE(x, µ)} and max{f(x, ·), η} are mea-
surable.

The purpose of this section is to obtain continuity, differentiability and con-
vexity properties of the mean-risk objective functions. Keeping the reformulations
(2.4.1)–(2.4.3) in mind and having examined the behavior of Qmax, Qmax,η and
QE, the desired results will follow immediately. The following investigations con-
cern Qmax only, since the results carry over to Qmax,η in a similar fashion and the
structural properties of QE were already given in Section 2.3

We start by giving Lipschitz estimates of the integrand.

Proposition 2.4.1 Assume (A1)–(A3). Then for the constants L1, L2,K1 > 0
of Proposition 2.3.2 and for all x, x1, x2 ∈ R

n1 and µ-almost all ξ, ξ1, ξ2 ∈ R
N

(i) |max{f(x, ξ1), QE(x, µ)} − max{f(x, ξ2), QE(x, µ)}| ≤

L1‖x‖max{1, ‖ξ1‖, ‖ξ2‖}‖ξ1 − ξ2‖,

(ii) |max{f(x1, ξ), QE(x1, µ)} − max{f(x2, ξ), QE(x2, µ)}| ≤

max{L2 max{1, ‖ξ‖2}, LE}‖x1 − x2‖,

where LE denotes the Lipschitz constant of QE(·, µ),

(iii) |max{f(x, ξ), QE(x, µ)}| ≤ K1‖x‖max{1, ‖ξ‖2} + |QE(x, µ)|.

Proof. Apply Proposition 2.3.2 and the following lemma from Donchev (1986):
Let gi, i = 1, . . . , I be Lipschitzian functions with constants Li, i = 1, . . . , I and
let g be defined as some continuous selection of {gi}I

i=1. Then g is a Lipschitzian
function with constant L = maxi=1,...,I{Li}. �

Proposition 2.4.2 Assume (A1)–(A3). Then Qmax(·, µ) : R
n1 → R is a real-

valued, convex and Lipschitzian function.

Proof. Throughout the proof we apply proposition 2.4.1. For x ∈ R
n1 ,

|Qmax(x, µ)| ≤ E[|max{f(x, ξ), QE(x, µ)}|]

≤ K1‖x‖(1 + E[‖ξ‖2]) + |QE(x, µ)| < +∞,

which verifies that Qmax(·, µ) is real-valued.
Since Φ(t1, ·) is convex for all t1 ∈ R

n2 and h−Tx is linear in x, f(x, ξ) := cx+
Φ(q, h−Tx) is convex in x. Moreover, as both the maximum and the expectation
operators preserve convexity, Qmax(·, µ) is convex.
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Denote the Lipschitz constant of QE(·, µ) by LE. For x1, x2 ∈ R
n1 ,

|Qmax(x1, µ) −Qmax(x2, µ)|

≤ E[|max{f(x1, ξ), QE(x1, µ)} − max{f(x2, ξ), QE(x2, µ)}|]

≤ E[max{L2 max{1, ‖ξ‖2}, LE}]‖x1 − x2‖,

where E[max{L2 max{1, ‖ξ‖2}, LE}] ≤ L2(1 + E[‖ξ‖2]) + LE < +∞, and we have
established Lipschitz continuity of Qmax(·, µ). �

Remark 2.4.2 Together, continuity of QE(·, µ) + ̺QR(·, µ) and compactness of
{x ∈ X | Ax = b} ensure that the minimum in (2.2.8) is attained.

Remark 2.4.3 For R = D, let ̺ ∈ [0, 1/2), for R = D+, let ̺ ∈ [0, 1) and for
R = Dη let ̺ ≥ 0. Consider the reformulations (2.4.1)–(2.4.3). Then QE(·, µ) +
̺QR(·, µ) is seen to be convex. In the case of only a random right-hand side,
both strict and strong convexity is inherited, cf. Remark 2.3.1. To see this, define
QE(χ, µ) as above and define the risk measures QR(χ, µ) similarly. Provided that
the assumptions of the expectation-based case are fulfilled, the mean-risk objective
QE(·, µ) + ̺QR(·, µ) is strictly and strongly convex.

Example 1 The following example demonstrates that the function QE(·, µ) +
̺QD+(·, µ) is in general nonconvex for ̺ > 1. Let Φ(h − x) = min{y | y ≥
h − x, y ≥ 0} = max{h− x, 0} and f(x, h) = x + max{h − x, 0}. Assume µ(h =
2) = 1/2, µ(h = 3) = 1/2 and ̺ = 3. Now QE(x, µ) + ̺QD+(x, µ) = x −
1
4 max{2 − x, 0} + 5

4 max{3 − x, 0}. Consider the points x1 = −1, x2 = 3 and
a convex combination of the two, x = 1

2x1 + 1
2x2 = 1. The relation QE(x, µ) +

̺QD+(x, µ) = 13
4 > 25

8 = 1
2 (QE(x1, µ)+̺QD+(x1, µ))+ 1

2 (QE(x2, µ)+̺QD+(x2, µ))
shows that QE(·, µ)+̺QD+(·, µ) fails to be convex. The same data refute convexity
of QE(·, µ) + ̺QD(·, µ) for ̺ > 1/2.

Proposition 2.4.3 Assume (A1)–(A3) and that µ is absolutely continuous with
respect to the Lebesgue measure on R

N . Then Qmax(·, µ) : R
n1 → R is continu-

ously differentiable.

Proof. Let x ∈ R
n1 and denote by E(x) the set of points (q, h, T ) in which

Φ(q, h−Tx) is non-differentiable in x. It is shown by Kall (1976) that µ(E(x)) = 0.
Hence, Φ(q, h − Tx) is differentiable in x for µ-almost all ξ ∈ R

N and the same
holds for f(x, ξ). Moreover, by Proposition 2.3.3, Q(x, µ) is differentiable. Define
the sets

E>(x) := {ξ ∈ R
N | f(x, ξ) > QE(x, µ)},
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E<(x) := {ξ ∈ R
N | f(x, ξ) < QE(x, µ)},

E=(x) := {ξ ∈ R
N | f(x, ξ) = QE(x, µ)}.

Then, if ▽x denotes the gradient in x,

▽x max{f(x, ξ), QE(x, µ)} =







▽xf(x, ξ), if ξ ∈ E>(x)\E(x)

▽xQE(x, µ), if ξ ∈ E<(x).
(2.4.6)

Observe that, according to Proposition 2.3.1,

Φ(q, h− Tx) =

J
∑

j=1

qB−1
j (h− Tx)1Kj(x)(q, h, T ),

since ∪J
j=1Kj(x) = R

N and Ki(x) ∩ Kj(x) = ∅, i 6= j, where Kj(x) := {(q, h, T ) |

(q, h− Tx) ∈ Kj\ ∪
j−1
i=1 Ki}. Hence, the following inclusion applies

E=(x) : =
{

(q, h, T )
∣

∣

∣
cx+

J
∑

j=1

qB−1
j (h− Tx)1Kj(x)(q, h, T ) = QE(x, µ)

}

⊆ ∪J
j=1Hj(x),

where

Hj(x) := {(q, h, T ) | cx+ qB−1
j (h− Tx) = QE(x, µ)}, j = 1, . . . , J.

For j = 1, . . . , J , we aim to show that Hj(x) has Lebesgue measure zero. Note
that

Hj(x) = H1
j (x) ∪H2

j (x),

where

H1
j (x) := {(q, h, T ) | q 6= 0, cx+ qB−1

j (h− Tx) = QE(x, µ)}

and

H2
j (x) := {(0, h, T ) | cx = QE(x, µ)}.

Letting

H1
j (x, q, T ) : = {h | (q, h, T ) ∈ H1

j (x)}

= {h | q 6= 0, qB−1
j h = qB−1

j Tx− cx+QE(x, µ)},
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it is clear that this is a hyperplane and, thus, has Lebesgue measure zero. Now as
H1

j (x, q, T ) is a section of H1
j (x), H1

j (x) has Lebesgue measure zero, cf. Theorem
0.25 by Kall (1976). Also, either

H2
j (x) = ∅ or H2

j (x) = {0} ∪ R
m2+m2×n1 .

In both cases, H2
j (x) has a dimension lower than N = n2 + m2 + m2 × n1 and,

therefore, has Lebesgue measure zero. Brought together, Hj(x) has Lebesgue
measure zero and since µ is absolute continuous with respect to the Lebesgue
measure, µ(Hj(x)) = 0. As a consequence, max{f(x, ξ), QE(x, µ)} is differentiable
with gradient (2.4.6) for all ξ ∈ R

N\(E(x)∪E=(x)), where µ(E(x) ∪E=(x)) = 0.
From Proposition 2.4.1,

|max{f(x1, ξ), QE(x1, µ)} − max{f(x2, ξ), QE(x2, µ)}|/‖x1 − x2‖

is dominated by an integrable constant and Lebesgue dominated convergence im-
plies existence of the gradient

▽xE[max{f(x, ξ), QE(x, µ)}] = E[▽x max{f(x, ξ), QE(x, µ)}].

Finally, as Qmax(x, µ) is convex and differentiable, it is continuously differentiable,
cf. Theorem 25.5 Rockafellar (1997). �

As in Section 2.3, we restrict measures to the set

∆r,K(RN ) :=
{

ν ∈ P(RN )
∣

∣

∣

∫

RN

‖ξ‖rν(dξ) ≤ K
}

.

Proposition 2.4.4 Assume (A1)–(A2) and let µ ∈ ∆r,K(RN ) for some r > 2,
K > 0. Then Qmax : R

n1 × ∆p,K(RN ) → R is jointly continuous w.r.t. (x, µ).

Proof. Let x, xn ∈ R
n1 , xn → x and µn, µ ∈ ∆r,K(RN ), µn

w
−→ µ. We intent to

show

Qmax(xn, µn) → Qmax(x, µ), n→ ∞.

Defining g(ξ) := max{f(x, ξ), QE(x, µ)} and gn(ξ) := max{f(xn, ξ), QE(xn, µn)},
this is equivalent to

∫

RN

gn(ξ)µn(dξ) →

∫

RN

g(ξ)µ(dξ), n→ ∞. (2.4.7)

Initially, we aim to show

µn ◦ g−1
n

w
−→ µ ◦ g−1 (2.4.8)
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or, equivalently,

∫

RN

h(ξ)µn ◦ g−1
n (dξ) →

∫

RN

h(ξ)µ ◦ g−1(dξ), n→ ∞

for any bounded continuous function h : R
N → R. Changing variables,

∫

RN

h(gn(ξ))µn(dξ) →

∫

RN

h(g(ξ))µ(dξ), n→ ∞,

this follows directly from µn
w
−→ µ, since h ◦ gn and h ◦ g are bounded continuous

functions. The proof is completed by applying Theorem 5.4 by Billingsley (1968)
according to which (2.4.8) and uniform integrability imply (2.4.7). A sufficient
condition for uniform integrability is the moment condition

supn

∫

RN

|gn(ξ)|qµn(dξ) < +∞ (2.4.9)

for some q > 1. Now, from Proposition 2.4.1, there exists a constant K1 > 0, such
that

|gn(ξ)|q = |max{f(xn, ξ), QE(xn, µn)}|q

≤ (K1‖xn‖max{1, ‖ξ‖2} + |QE(xn, µn)|)q.

The sequence {‖xn‖} has an upper bound, κ1. Likewise, joint continuity of QE(·, ·)
ensures an upper bound, κ2, of {|QE(xn, µn)|}. Consequently, we continue the
estimate

|gn(ξ)|q ≤ ((K1κ1)(1 + ‖ξ‖2) + κ2)
q ≤ (4K1κ1)

q(1 + ‖ξ‖2q) + 2qκq
2. (2.4.10)

Recall that µ ∈ ∆r,K(RN ) for some r > 2. Letting q = 1
2r, (2.4.10) finally gives

us
∫

RN

|gn(ξ)|qµn(dξ) ≤ (4K1κ1)
q(1 +K) + 2qκq

2 < +∞.

Thus, (2.4.9) is verified. �

Proposition 2.4.5 Assume (A1)–(A2) and let {x ∈ X : Ax = b} be nonempty
and bounded. Then there exists a constant L > 0 such that the estimate

supx∈X:Ax=b|Qmax(x, µ) −Qmax(x, ν)| ≤ Ld2(µ, ν)

is valid whenever µ, ν ∈ P2(R
N ).
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Proof. Let x ∈ R
n1 and µ, ν ∈ P2(R

N ). The following evaluations hold

|Qmax(x, µ) −Qmax(x, ν)| (2.4.11)

=
∣

∣

∣

∫

RN

max{f(x, ξ), QE(x, µ)}µ(dξ) −

∫

RN

max{f(x, ξ), QE(x, ν)}ν(dξ)
∣

∣

∣

≤
∣

∣

∣

∫

RN

max{f(x, ξ), QE(x, µ)}µ(dξ) −

∫

RN

max{f(x, ξ), QE(x, µ)}ν(dξ)
∣

∣

∣

+
∣

∣

∣

∫

RN

max{f(x, ξ), QE(x, µ)}ν(dξ) −

∫

RN

max{f(x, ξ), QE(x, ν)}ν(dξ)
∣

∣

∣
.

Consider the first term of (2.4.11). Recall the definition of c2(ξ1, ξ2). According
to Proposition 2.4.1, for some constant L1 > 0,

|max{f(x, ξ1), QE(x, µ)} − max{f(x, ξ2), QE(x, µ)}|

≤ L1‖x‖max{1, ‖ξ1‖, ‖ξ2‖}‖ξ1 − ξ2‖

≤ L1(supx∈X:Ax=b‖x‖)c2(ξ1, ξ2)‖ξ1 − ξ2‖

for µ-almost all ξ1, ξ2 ∈ R
N and hence, there exists a constant L2 > 0 such that the

function (1/L2)max{f(x, ξ), QE(x, µ)} belongs to the set F2(R
N ). Consequently,

∣

∣

∣

∫

RN

max{f(x, ξ), QE(x, µ)}µ(dξ) −

∫

RN

max{f(x, ξ), QE(x, µ)}ν(dξ)
∣

∣

∣

≤ L2supF∈F2(RN )

∣

∣

∣

∫

RN

F (ξ)µ(dξ) −

∫

RN

F (ξ)ν(dξ)
∣

∣

∣
= L2d2(µ, ν). (2.4.12)

For the second term of (2.4.11), we have
∣

∣

∣

∫

RN

max{f(x, ξ), QE(x, µ)}ν(dξ) −

∫

RN

max{f(x, ξ), QE(x, ν)}ν(dξ)
∣

∣

∣

≤

∫

RN

∣

∣

∣
max{f(x, ξ), QE(x, µ)} − max{f(x, ξ), QE(x, ν)}

∣

∣

∣
ν(dξ)

and applying the inequality |max{a, b} − max{a, c}| ≤ |b− c|,
∫

RN

|max{f(x, ξ), QE(x, µ)} − max{f(x, ξ), QE(x, ν)}|ν(dξ)

≤

∫

RN

|QE(x, µ) −QE(x, ν)|ν(dξ) = |QE(x, µ) −QE(x, ν)|.

From Proposition 2.3.5, we have some constant L3 > 0 such that

|QE(x, µ) −QE(x, ν)| ≤ L3d2(µ, ν). (2.4.13)

The final result now follows from (2.4.12) and (2.4.13). �
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Remark 2.4.4 Propositions 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.5 are valid for Qmax,η,
also. In fact, with minor modifications, the proofs still hold, replacing QE(x, µ) by
the constant η.

Corollary 2.4.1 For R = D, let ̺ ∈ [0, 1/2]; for R = D+, let ̺ ∈ [0, 1] and for
R = Dη, let ̺ ≥ 0. Then the statements of propositions 2.4.2, 2.4.3, 2.4.4, 2.4.5
are valid for the mean-risk objective QE(x, µ) + ̺QR(x, µ).

2.5 Stability

In many practical applications of stochastic programming, the probability distri-
bution is not fully known. In such cases, the true measure has to be replaced
by some suitable estimate, e.g. an empirical measure. Even if the true distribu-
tion is indeed fully known, an approximate measure may be required to facilitate
computations. This justifies the examination of stability issues in stochastic pro-
gramming. More specifically, we analyze the situation in which the underlying
probability measure is subjected to perturbations. For recent surveys on stability
in two-stage stochastic programming, see Römisch (2003) and Schultz (2000).

Considering the problem

P (µ) : min{QE(x, µ) + ̺QR(x, µ) | Ax = b, x ∈ X},

stability results take the form of continuity properties of the optimal value function
and the solution set mapping defined as

φ(µ) := inf{QE(x, µ) + ̺QR(x, µ) | Ax = b, x ∈ X},

ϕ(µ) := {x ∈ X | Ax = b,QE(x, µ) + ̺QR(x, µ) = φ(µ)}.

The primary result of qualitative stability follows directly from Corrolary 2.4.1 and
parametric optimization, cf. Berge (1963), Theorem 1.1, 1.2 and the Maximum
Theorem,

Proposition 2.5.1 Assume (A1)–(A2) and µ ∈ ∆r,K(RN ) for some r > 2, K >
0. Suppose further that {x ∈ X | Ax = b} is nonempty and bounded. For R = D,
let ̺ ∈ [0, 1/2]; for R = D+, let ̺ ∈ [0, 1] and for R = Dη, let ̺ ≥ 0. Then

(i) φ : ∆r,K(RN ) → R is continuous where ∆r,K(RN ) is equipped with weak
convergence of probability measures.

(ii) ϕ : ∆r,K(RN ) → 2R
n1

is Berge upper semicontinuous, i.e. for any µ ∈
∆r,K(RN ) and any open set V ⊂ R

n1 with V ⊇ ϕ(µ), there exists a neigh-
borhood V of µ in ∆r,K(RN ) such that ϕ(ν) ⊆ V for all ν in V.
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Remark 2.5.1 From Proposition 2.5.1 stability results involving discrete approx-
imations of the true probability measure can be derived in the same way as applies
to the expectation-based case. Such approximations include empirical measures or
measures that are close to the true one with respect to some (pseudo) metric. The
latter is associated with optimal scenario generation and optimal scenario reduc-
tion, cf. Römisch (2003), Pflug (2004) and Heitsch and Römisch (2006b). For
further reference on scenario generation and reduction, see Chapter 7.

Example 2 The example shows that the uniform integrability assumption in
Proposition 2.4.4 is indispensable for qualitative stability. Let Φ(h−x) = min{y |
y ≥ h− x, y ≥ 0} = max{h− x, 0}, f(x, h) = max{h− x, 0} and {x ∈ X | Ax =
b} = [0, 1]. Denote by δǫ the measure that places unit mass at ǫ ∈ R. Let µ = δ0
and µn = (1 − 1

n )δ0 + 1
nδn, n ∈ N. Then µn

w
−→ µ. Consider R = D+ and define

the optimal value function φ(µ) := inf{QE(x, µ) + ̺QR(x, µ) | x ∈ X,Ax = b}.
Whereas φ(µ) = 0, φ(µn) = 1− 1

n +̺(1− 2
n + 1

n2 ). But then φ(µn) 9 φ(µ), n → ∞.
Considering the same data, sufficiency of uniform integrability in the case R = D
is clear. �

In consequence of the continuity results, quantitative stability is based on the
Fortet-Mourier metric of second order.

Proposition 2.5.2 Assume (A1)–(A2) and let {x ∈ X | Ax = b} be nonempty
and bounded. Then there exists a constant L > 0 such that the estimate

|φ(µ) − φ(ν)| ≤ Ld2(µ, ν)

is valid whenever µ, ν ∈ P2(R
N ).

Proof. Let µ, ν ∈ P2(R
N ). Since QE(x, µ)+ ̺QR(x, µ) and QE(x, ν)+ ̺QR(x, ν)

are continuous in x and {x ∈ X | Ax = b} is nonempty and compact, ϕ(µ) 6= ∅
and ϕ(ν) 6= ∅. Therefore, we can choose xµ ∈ ϕ(µ) and xν ∈ ϕ(ν). Together,

φ(µ) ≤ QE(xν , µ) + ̺QR(xν , µ)

≤ φ(ν) + |(QE(xν , µ) + ̺QR(xν , µ)) − (QE(xν , ν) + ̺QR(xν , ν))|

and

φ(ν) ≤ QE(xµ, ν) + ̺QR(xµ, ν)

≤ φ(µ) + |(QE(xµ, ν) + ̺QR(xµ, ν)) − (QE(xµ, µ) + ̺QR(xµ, µ))|

imply

|φ(µ) − φ(ν)| ≤ supx∈X:Ax=b|(QE(x, µ) − ̺QR(x, µ)) − (QE(x, ν) + ̺QR(x, ν))|.

We get the desired result from Corollary 2.4.1. �
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Remark 2.5.2 Under suitable conditions weak convergence of probability mea-
sures implies convergence with respect to the Fortet-Mourier metric. For instance,
if the set FK

2 (RN ) := {max{−K,min{F (·), K}} | F ∈ F2(R
N )} of truncated func-

tions is a µ-uniformity class for large K > 0 and F2(R
N ) is uniformly integrable

with respect to {µn}, then µn, µ ∈ P2(R
N ), µn

w
−→ µ implies d2(µn, µ) → 0. In

Römisch (2003), this is utilized to show qualitative stability. Hence, Propositions
2.4.5 and 2.5.2 may be seen as quantifications of Propositions 2.4.4 and 2.5.1.

2.6 Algorithm

Motivated by the stability results of the previous section, we make the following
assumption about the distribution

(A4) The probability measure µ is discrete and has finite support {ξ1, . . . , ξS}
with corresponding probabilities π1, . . . , πS .

The assumption (A3) follows automatically. The algorithmic analysis can easily
be modified to work without the assumptions (A1) and (A2). In line with the rest
of the chapter, however, we assume (A1) and (A2). We refer to a realization of the
random data as a scenario and denote it by ξs = (qs, hs, T s), s = 1, . . . , S. With
a discrete distribution, the problems (2.4.1), (2.4.2) and (2.4.3) have the following
deterministic equivalents

min
{

cx+ (1 − 2̺)

S
∑

s=1

πsΦ(x, ξs)+

2̺

S
∑

s=1

πs max{Φ(x, ξs),

S
∑

s′=1

πs′

Φ(x, ξs′

)}
∣

∣

∣
x ∈ X,Ax = b

}

(2.6.1)

in the case of the central deviation,

min
{

cx+ (1 − ̺)

S
∑

s=1

πsΦ(x, ξs)+

̺

S
∑

s=1

πs max{Φ(x, ξs),

S
∑

s′=1

πs′

Φ(x, ξs′

)}
∣

∣

∣
x ∈ X,Ax = b

}

(2.6.2)

in the case of the semideviation and
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min
{

cx+

S
∑

s=1

πsΦ(x, ξs)+

̺

S
∑

s=1

πs max{Φ(x, ξs), η}
∣

∣

∣
x ∈ X,Ax = b

}

− ̺η (2.6.3)

in the case of expected excess of target.
Observe that problem (2.6.1) is equivalent to

min cx+ (1 − 2̺)

S
∑

s=1

πsθs + 2̺

S
∑

s=1

πsvs (2.6.4)

s.t. Φ(x, ξs) ≤ θs,
S

∑

s′=1

πs′

θs′

≤ vs, θs ≤ vs, x ∈ X, Ax = b,

vs, θs ∈ R, s = 1, . . . , S,

problem (2.6.2) to

min cx+ (1 − ̺)

S
∑

s=1

πsθs + ̺

S
∑

s=1

πsvs (2.6.5)

s.t. Φ(x, ξs) ≤ θs,
S

∑

s′=1

πs′

θs′

≤ vs, θs ≤ vs, x ∈ X, Ax = b

vs, θs ∈ R, s = 1, . . . , S

and problem (2.6.3) to

min cx+

S
∑

s=1

πsθs + ̺

S
∑

s=1

πsvs − ̺η

s.t. Φ(x, ξs) ≤ θs, η ≤ vs, θs ≤ vs, x ∈ X, Ax = b

vs, θs ∈ R, s = 1, . . . , S

The block structure of the problems (2.6.4) and (2.6.5) does not fit into exist-
ing schemes of stochastic programming. In contrast to the traditional two-stage
stochastic program, the mean-risk problems contain explicit coupling between the
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scenario-dependent variables which prevents most well-known algorithms from
working. Nevertheless, by regarding some of the scenario-dependent variables
as first-stage variables, we are able to restore a certain degree of separability. It is
possible to decompose the problems with respect to stages and work scenario-wise
by means of a cutting plane algorithm.

Another cutting plane algorithm is proposed by Ahmed (2004), who derives
cuts in a fashion inspired by subgradient methods from convex optimization. Using
parametric analysis with respect to the objective coefficients, the efficient frontier
can be constructed by varying the trade-off coefficient, ̺, in the appropriate range.
It should be clear from the following that this feature also applies to the present
algorithm. The main difference between the two algorithms is the number of cuts
added in an iteration and the information within each cuts.

For simplicity, we state the algorithm for central deviation. It works in a
similar fashion for semideviation and expected excess of target. The idea is to
relax the constraints Φ(x, ξs) ≤ θs, s = 1, . . . , S and iteratively reinforce them by
means of optimality cuts. Consider some iteration i of the algorithm and let the
corresponding solution be xi. Then Φ(xi, ξs), s = 1, . . . , S is feasible and bounded.
For s = 1, . . . , S let σi,s be a dual optimal solution of Φ(xi, ξs). If xi is such that
θi,s < Φ(xi, ξs) = σi,s(hs − T sxi) for some s ∈ {1, . . . , S}, then (xi, θi,1, . . . , θi,S)
is cut off by adding the optimality cut

σi,s(hs − T sx) ≤ θs. (2.6.6)

By duality, Φ(x, ξs) ≥ σi,s(hs − T sx) for all x ∈ R
n1 , showing that the optimality

cut is a valid inequality to (2.6.4). The algorithm proceeds as follows

Algorithm 2.6.1

Step 0 (Initialization). Set i = 0 and let the current master problem be

min cx+ (1 − 2̺)

S
∑

s=1

πsθs + 2̺

S
∑

s=1

πsvs

s.t.
S

∑

s=1

πsθs ≤ vs, θs ≤ vs, x ∈ X, Ax = b

vs, θs ∈ R, s = 1, . . . , S.

Step 1 (Solve master problem). Set i = i + 1. Solve the current master problem
and let (xi, vi,1, . . . , vi,S , θi,1, . . . , θi,S) be an optimal solution (If θs = −∞
or vs = −∞ for some s ∈ {1, . . . , S} the variable is ignored in the compu-
tation.)
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Step 2 (Add optimality cuts). For each s = 1, . . . , S, solve the second-stage prob-
lem with x = xi and let σi,s be a corresponding dual solution. If σi,s(hs −
T sxi) > θi,s for some s ∈ {1, . . . , S}, add an optimality cut (2.6.6) to the
master problem and return to step 2.

Step 3 (Termination). Stop. The current solution is optimal.

We obtain a lower bound to the mean-risk problem by means of the relaxation
provided by the master problem and eventually also an upper bound by a feasible
solution. In that the bounds coincide, the master problem in this fashion produces
an optimal solution to the mean-risk problem. Indeed, we have the following,

Proposition 2.6.1 Assume (A1)-(A2), (A4) and that {x ∈ X | Ax = b} is
nonempty and bounded. Then Algorithm 2.6.1 terminates with an optimal solution
to the mean-risk problem in a finite number of iterations.

Proof. By remark 2.4.2, an optimal solution to the mean-risk problem (2.6.4)
exists. Let x∗ be a such solution and let z∗ be the optimal value. Since the master
problem is a relaxation of (2.6.4), the optimal value zi of the master problem in
iteration i is a lower bound on z∗, i.e.

zi ≤ z∗. (2.6.7)

Now if in iteration i for some s ∈ {1, . . . , S}, σi,s(hs − T sxi) > θs, an optimality
cut will be added and the algorithm proceeds. Only a finite number of cuts can be
generated since the number of dual extreme points of (2.2.2) is finite. Moreover,
no cut will be generated twice as a cut already present would not cut off a current
solution. Eventually, for some iteration i′, Φ(xi′ , ξs) ≤ θi′,s, s = 1, . . . , S and the
algorithm terminates. Upon termination in iteration i′, we have

zi′ = cxi′ + (1 − 2̺)

S
∑

s=1

πsθi′,s + 2̺

S
∑

s=1

πsvi′,s ≥ (2.6.8)

cxi′ + (1 − 2̺)

S
∑

s=1

πsθi′,s + 2̺

S
∑

s=1

πs max
{

θi′,s,

S
∑

s′=1

πs′

θi′,s′

}

≥

cxi′ + (1 − 2̺)
S

∑

s=1

πsΦ(xi′ , ξs) + 2̺
S

∑

s=1

πs max
{

Φ(xi′ , ξs),
S

∑

s′=1

πs′

Φ(xi′ , ξs′

)
}

≥

cx∗ + (1 − 2̺)

S
∑

s=1

πsΦ(x∗, ξs) + 2̺

S
∑

s=1

πs max
{

Φ(x∗, ξs),

S
∑

s′=1

πs′

Φ(x∗, ξs′

)
}

= z∗
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since xi′ is feasible to (2.6.1). From (2.6.7) and (2.6.8), zi′ = z∗ and xi′ is opti-
mal. �

Note that the above algorithm shows strong resemblance to the ordinary L-
shaped method, and, therefore, may suffer from some of the same drawbacks.
Of particular importance is the tendency of the solutions to oscillate heavily in
early iterations, resulting in slow convergence towards an optimal solution. This
drawback is circumvented by regularized decomposition . The basic idea is, in
iteration i, to add a regularizing term α‖x−xi−1‖2 with α > 0 to the objective in
order to penalize divergence from the current solution, xi−1. For further details
on the expectation-based case, see Ruszczyńsky (1986) and Birge and Louveaux
(1997). To avoid a nonlinear formulation, we implemented a modified version
of regularized decomposition and replaced the quadratic term by 0.5α

∑n1

j=1 |xj −

xi−1
j |. Moreover, we used regularization only in the first iterations of the algorithm.

To examine the practicability, Algorithm 2.6.1 was implemented in C++ uti-
lizing procedures from the callable library of CPLEX 9.0, cf. Cplex Optimization
Inc. (2006). For testing, we used the linear relaxation of a mixed-integer schedul-
ing problem in chemical production. The problem contains 12 variables and no
constraints in the first stage and 204 variables and 182 constraints in the second
stage. We ran the algorithm with a varying number of scenarios; 50, 100, 200,
500 and 1000, and with the three different deviation measures, abbreviated CD
(central deviation), SD (semideviation) and EE (expected excess). Each of the
resulting test problems was run with two versions of the algorithm, one stated
exactly as above and one augmented with regularization, referred to as ALG2.6.1
and ALG2.6.1REG, respectively. Results are reported in Tables 2.1, 2.2 and 2.3.
For every run we recorded the optimal value, the number of iterations performed,
the number of cuts generated and the CPU time spent by the algorithm. All
computations were carried out on a Intel Xeon 2.67 GHz processor with 4 GB
RAM.

The effect of regularization is moderate in the case of central deviation and
semideviation. In general, the number of cuts is reduced, which however does
not seem to cohere with fewer iterations and lower computing times. In the case
of expected excess of target, the results show small time savings in most runs.
Moreover, in all runs the number of iterations and cuts is reduced by the use of
regularization.

As a final remark, the mean-risk model can be seen as a scalarization of the
bi-criteria optimization problem

min{(QE(x), QR(x)) | x ∈ X,Ax = b}.

Optimality in multi-criteria optimization is captured in the concept of efficiency.
A point x∗ ∈ {x ∈ X | Ax = b} is said to be efficient if there is no other
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Table 2.1: Computational results for CD (̺ = 1/4).

ALG2.6.1 ALG2.6.1REG

S Opt. val. Ite. Cuts CPU/s Ite. Cuts CPU/s

50 156.58 33 2103 6.91 35 2050 6.86
100 125.55 32 4202 14.42 30 3600 12.50
200 218.81 28 7534 30.93 28 6341 27.62
500 147.78 28 18677 159.62 33 18942 206.22

1000 326.67 31 41321 594.91 32 39543 635.88

Table 2.2: Computational results for SD (̺ = 1).

ALG2.6.1 ALG2.6.1REG

S Opt. val. Ite. Cuts CPU/s Ite. Cuts CPU/s

50 158.59 32 1956 6.44 33 1847 6.17
100 126.79 31 4044 13.81 30 3398 11.70
200 224.08 28 7105 30.02 26 6958 29.27
500 149.82 28 18445 155.25 30 16905 159.48

1000 335.97 33 38319 618.17 26 35033 609.18

Table 2.3: Computational results for EE (̺ = 1, η = 150).

ALG2.6.1 ALG2.6.1REG

S Opt. val. Ite. Cuts CPU/s Ite. Cuts CPU/s

50 161.58 33 2050 6.02 31 1702 5.06
100 124.30 34 4025 12.26 30 3307 9.98
200 277.08 28 7331 21.05 26 6551 18.71
500 147.90 33 20897 143.14 30 19306 96.01

1000 484.70 31 40492 204.94 31 36504 207.11

x ∈ {x ∈ X | Ax = b} that fulfills QE(x) ≤ QE(x∗) and QR(x) ≤ QR(x∗) with at
least one inequality strict. The mean-risk model emerges when using a weighting
method to generate the efficient frontier. Given ̺ ∈ R+, every optimal solution to

min{QE(x) + ̺QR(x) | x ∈ X,Ax = b} (2.6.9)

is efficient. Varying ̺ ∈ R+ enables computation of efficient points by solving a
family of mean-risk models. Fig. 2.1 shows an example of a mean-risk efficient
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frontier, generated by this approach. However, in order to arrive at the entire
efficiency set, certain convexity conditions must be met. As QR may be non-
convex, generally, only a subset of the efficient frontier, the so-called supported
part, may be reached when solving (2.6.9) for ̺ ∈ R+.
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Figure 2.1: Mean-SD efficient frontier for the instance with 50 scenarios.

Example 3 The following example indicates that we cannot be certain that all
efficient points are generated by solving (2.6.9) with R = D+ for all ̺ ∈ R+.
Let {x ∈ X | Ax = b} = R

n1
+ , Φ(h − x) = min{y | y ≥ h − x, y ≥ 0} =

max{h − x, 0} and f(x, h) = 2x + max{h − x, 0}. Assume µ(h = 2) = 1/2,
µ(h = 3) = 1/2 and ̺ = 4. Hence, QE(x) = 2x + 1

2 (3 − x)+ + 1
2 (2 − x)+ and

QD+(x) = 1
2 max{ 1

2 (3 − x)+ − 1
2 (2 − x)+, 0} + 1

2 max{ 1
2 (2 − x)+ − 1

2 (3 − x)+, 0}.
All points of the interval [2, 3] are efficient points. However, the point 2.5 never
appears as a solution to (2.6.9) for any ̺ ∈ R+. The same data provides a
counterexample in the case R = D.



Part II

Stochastic programming in power

systems

45





Chapter 3

The development in stochastic

recourse models for power

production and trading

3.1 Introduction to the power system

This chapter considers the deregulation in the power sector, consisting in the
reduction or removal of the government regulations on the industry. To fully
understand the subsequent chapters on stochastic programming applications to
power systems, we begin this chapter by listing some of the main components
of a deregulated power system, including a physical transmission system and a
system operator, power producers and consumers, and several markets covering a
day-ahead and an intra-day market as well as financial markets.

Transmission system

The transmission system, which is also referred to as the grid, is established for
the transferring of electric power from place to place, often from a power plant to
a smaller station before distributed to the consumers. Electricity is usually trans-
mitted through overhead power transmission lines although occasionally they may
be underground. As power transmission lines come with certain capacities, grid
congestion is possible. Nowadays, transmission and generation are separated and,
most places, transmission is the responsibility of an independent, though state-
approved, power system operator. The system operator maintains the grid, pro-
vides access to the suppliers, distributors and consumers and collects transmission
tariffs. Moreover, the system operator ensures security of supply by balancing the
physical delivery of power and the actual consumption.

47
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Producers

Production includes thermal power , hydro-power and other kinds of renewable
power such as wind power. In a thermal power plant, power is produced by units
that transform thermal energy, most often by burning fuel, into electrical energy.
Thermal power plants are classified according to the type of fuel and generating
units. Examples are fossil-fuel powered plants using coal-fired and gas-burning
thermal units, nuclear power plants and renewable energy plants. A hydro-power
plant consists of a number of water reservoirs, possibly connected in cascade or in
a more complex network, and corresponding power stations that contain turbines,
also referred to as hydro-power units. As water is released from the reservoirs, it
flows to the turbines, in which electricity is generated by converting the potential
energy of the water into electrical energy. To some extent, hydro-power genera-
tion provides a possibility to “store” energy in the sense that water releases can
be put on hold. In many respects, it is beneficial to coordinate thermal power pro-
duction and hydro-power generation, exploiting the flexibility of hydro-power and
stability thermal power. Hydro-thermal production refers to the cooperation of
thermal power plants and hydro-power plants, either of the type described above
or so-called pumped storage hydro-power plants. In pumped storage plants the
units serve to store excess energy by utilizing electricity to pump up water into a
reservoir and save it for future hydro-power generation.

In general, producers range from small local stations to large plants covering
wide areas. The producers can dispose of power through direct trading or through
organized wholesale markets, in which they either act as price-takers or are able
to influence market prices.

Consumers

End-users of electricity are industrial or household consumers who buy the com-
modity directly from power producers, wholesale markets or retailers. Retailers
engage in physical trading directly with producers or in wholesale markets.

Markets

Direct physical trading between two parties is done by means of bilateral contracts.
However, physical trading is also possible through organized markets that serve
different purposes. The spot market is a wholesale market, established for the im-
mediate delivery of power from producer to consumer and is, due to the practice
of bidding and committing a day in advance, also referred to as the day-ahead
market. A market operator collects the supply and demand bids and calculates
prices of the following day and the corresponding quantities to be dispatched by
both producers and consumers. When organizing a power market with a central-
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ized dispatching and pricing mechanism, the power market is also referred to as
an electricity pool.

Unlike the spot market, the regulating or the balancing market is an intra-day
market that handles supply and demand imbalances by means of so-called regula-
tion. Producers and consumers bid on the supply and demand side, respectively,
while the balancing is generally handled by the system operator. Less organized
markets may comprise markets for investments, reserve markets and markets for
other ancillary services.

As a contrast to the markets that imply immediate delivery of the physical com-
modity, the financial markets for derivatives, such as forwards, futures, contracts
of differences and options, serve as instruments for hedging risk. Furthermore,
there may be markets for trade in environmental products, the market contracts
being electricity certificates.

3.2 From regulated to deregulated markets

We continue this chapter with an overview of stochastic programming models in
short-term power production and trading, where special emphasis is placed on the
development prompted by the restructuring of the power sector.

Traditional applications of stochastic programming to power systems represent
a well-developed research area. The setting is motivated by the wish to control
system reliability and is based on centralized operation and regulated markets in
which many local producers enjoy monopoly. Since the earlier applications, the
markets have been reformed and operating procedures have changed. The area of
applications within the new environment of decentralized operation, deregulated
markets, and competition is therefore a developing field of stochastic programming.

The present chapter aims at illustrating the impacts of the restructuring on
stochastic power optimization problems. We confine ourselves mainly to short-
term problems and restrict attention to power production and physical trading.
The idea is to explain how traditional models can be adopted to the new envi-
ronment and newer novel models become highly relevant. To discuss such models
from a practical point of view, we include a number of applications, consider com-
putational aspects such as problem sizes and decomposition potential, introduce
the most common solution approaches and present some numerical results.

As already indicated, the main field from which the models of this chapter
are derived is stochastic programming. Since, however, stochastic programming
is closely related to decision analysis, stochastic control theory, Markov decision
processes, dynamic programming and optimization of discrete event simulations,
the models may stem from any of these fields.

The outline of the remainder of the chapter is as follows. Sections 3.4 and 3.5
are confined to power production and contain the models that are valid before and
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after the transition from regulated to deregulated markets, respectively. Section
3.6 investigates the ability of the models to decompose and state the most basic
solution approaches. The models for physical power trading, that have mainly
arisen with liberalization, are presented in Section 3.7, which also includes the
individual solution approaches.

3.3 Stochastic programming electricity models

Muckstadt and Koenig (1977) were among the first to address the unit commit-
ment problem by mathematical programming, and to solve it by Lagrangian de-
composition. Reflecting the continuing interest in this problem, Fahd and Sheble
(1994) provided an overview of the following solution methods, ranging from enu-
meration and priority lists over dynamic, linear and mixed-integer programming
as well as branch and bound to Lagrangian relaxation.

Given the progress in stochastic programming, the stochastic extension of the
deterministic unit commitment problem began to take form with Birge et al. (1994)
being the first to formulate the problem in terms of stochastic mixed-integer
programming. As part of a larger information system the authors presented a
multi-stage model for dynamic unit commitment under uncertainty with respect
to electricity load and unit failures.

Early attempts to formulate and solve stochastic versions of short-term power
optimization problems further included Bunn and Paschentis (1986), who devel-
oped a two-stage recourse model for economic dispatch by allowing under- and
over-dispatching in the second stage and Terry et al. (1986), who described the
implementation of stochastic dynamic programming for coordinating operation in
a large real-world hydro-power system.

The development in stochastic programming electricity models continued
throughout the remainder of the century and into the beginning of the next. At
present it has become of major interest due to the restructuring of the power
sector in the last decades and the following liberalization of the markets that has
encouraged efficient operation of the system and competitiveness of the industry.

In general, stochastic power optimization problems are categorized according
to their time horizons. Long-term problems usually have a time horizon of up to
several years, medium-term problems of a few months to a few years and short-term
problems of a day to a week.

Concerning the longer term, most problems involve technology investment and
capacity expansion matters, cf. Bienstock and Shapiro (1988) and Gorenstin and
Campodonico (1993), and some include environmental planning issues such as
pollutant emission control. Formulated as stochastic programs, such problems
may contain various sources of uncertainty. The category covers the building of
thermal units, the construction of hydro reservoirs and turbines and multi-year
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hydro-thermal scheduling, cf. Sherkat et al. (1985). Due to their aggregation level,
the long-term problems often allow for the application of the classical solution
approaches, Benders’ decomposition and dynamic programming.

Problems of the medium-term embrace hydro-thermal coordination problems,
cf. Dentcheva and Römisch (1998), and reservoir management problems, cf. Jacobs
et al. (1995), the complexity of which calls for more advanced solution methods.
In this context, the most significant sources of uncertainty stem from electricity
demand and reservoir inflows. As explained by Fosso et al. (1999), the medium-
term problems are relevant in their own right, but at the same time provide input
data to the short-term models through reservoir storage boundaries, values of
stored water etc.

Well-known traditional short-term planning and operation problems include
thermal unit commitment and economic dispatch. Short-term hydro-thermal and
pure hydro scheduling are often handled as dynamic operation problems on a
daily or weekly basis, which may also be the case for hydro unit commitment.
Uncertainty in the traditional problems covers electricity demand, unit failures,
fuel costs and potentially reservoir inflows. Newer short-term planning problems
consist in the day-ahead physical trading and the trading of ancillary services and
add market prices uncertainty to the problems.

For an excellent yet more general survey on stochastic programming problems
in energy, see Wallace and Fleten (2003), who consider both electricity, oil and gas.
The authors present long-term, medium-term and short-term problems and discuss
their development with the transition from regulated to deregulated markets. Both
physical and financial markets are considered and much of the survey is devoted
to risk management. The emphasis is placed on modeling alone and so solution
approaches and other computational aspects are only briefly addressed.

3.4 Short-term power production

Due to the previous regulation by legal restrictions, decision-making was usually
effected on a centralized level for several producers voluntarily or legally coordi-
nated and obligated to satisfy demand within their areas. Contracts were predom-
inantly bilateral contracts of which the terms were set by administrative decrees,
the result being that cost minimization was pursued.

In line with this, the models of this section are traditional short-term power
production models that rest on costs minimization subject to demand constraints.
The multi-stage stochastic programs are presented in their scenario tree formula-
tions. For further reference on the notation, see Chapter 1.
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Thermal unit commitment and hydro-thermal scheduling

As a starting point, we address the thermal unit commitment problem from the
perspective of a regulated utility. The problem consists in the scheduling of start-
ups and shut-downs of the thermal units and the determination of corresponding
operation levels such as to minimize the associated costs and meet the electricity
demand over some finite time horizon. To formalize this, we let I index the ther-
mal units. We denote the on/off-decisions of the units un

i , i ∈ I ∈ {0, 1}, n ∈ N
and let the pn

i ∈ R+, i ∈ I, n ∈ N represent the corresponding operating levels.
Total costs account for operational fuel costs and start-up costs and are modeled
by the functions FCi(·), i ∈ I and SCi(·), i ∈ I in (3.4.1). The functions are
occasionally approximated by piecewise linear functions in order for the problem
to comply with a linear formulation. According to (3.4.2), generation is subject
to lower and upper bounds, pmin

i , pmax
i , i ∈ I, resulting from the capacities of the

thermal units. To prevent thermal stress and high maintenance costs of the units,
minimum up- and down-time constraints apply. These are given by (3.4.3), and
(3.4.4), where τup

i , τdo
i , i ∈ I denote the minimum up- and down-times. Although

not included, must-on/-off constraints can easily be included. A regulated util-
ity is forced to satisfy demand by means of generation only, which leads to the
constraints (3.4.5), where the demand is denoted by dn, n ∈ N . Finally, the fact
that reserves are the responsibility of the utility induces the constraints (3.4.6),
where the reserve requirements are denoted by rn, n ∈ N . The reserves are so-
called spinning reserves that ensure excess system capacity in the case of failure.
Uncertainty may relate to both demand and reserve requirements. With this nota-
tion, the thermal unit commitment problem formulated as a multi-stage stochastic
program takes the form of

min
∑

n∈N

∑

i∈I

πn
(

FCi(p
n
i , u

n
i ) + SCi(u

n
i , u

n−1

i )
)

(3.4.1)

s.t. un
i p

min
i ≤ pn

i ≤ un
i p

max
i , i ∈ I, n ∈ N (3.4.2)

u
n−τ

i − u
n−(τ+1)

i ≤ un
i , τ = 1, . . . , τup

i − 1, i ∈ I, n ∈ N (3.4.3)

u
n−(τ+1)

i − u
n−τ

i ≤ 1 − un
i , τ = 1, . . . , τdo

i − 1, i ∈ I, n ∈ N (3.4.4)

∑

i∈I

pn
i ≥ dn, n ∈ N (3.4.5)

∑

i∈I

(un
i p

max
i − pn

i ) ≥ rn, n ∈ N (3.4.6)

pn
i ≥ 0, un

i ∈ {0, 1}, i ∈ I, n ∈ N (3.4.7)
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The stochastic problem is a direct extension of the deterministic unit commit-
ment problem and can be found in a very similar version by Takriti et al. (1996).
The authors only consider demand uncertainty and leave out reserve requirements.
Whether reserve constraints should be included in a stochastic model depends on
whether failures are explicitly incorporated in the scenarios as decreased capacity
or increased demand corresponding to the capacities of disrupted units.

With a fixed configuration of the units, the problem becomes that of distribut-
ing the production among them and is known as the economic dispatch problem.
Both Bunn and Paschentis (1986) and Gröwe et al. (1995) formulate the prob-
lem as a two-stage simple recourse problem, where the second stage penalizes
deviations between scheduled production and uncertain demand. In solving the
problem, both rely on separability of the recourse function and the possibility to
evaluate only a one-dimensional integral. However, whereas Bunn and Paschentis
(1986) assume normal demand distributions and use discretization of the distri-
bution to solve the economic dispatch problem, Gröwe et al. (1995) approximate
the distributions by certain kernel estimators that allow explicit calculation of the
integrals.

The thermal unit commitment problem can be extended to the hydro-thermal
scheduling problem that involves cooperation of thermal power and hydro-power
pumped storage plants. Like the thermal unit commitment problem, the problem
consists in the scheduling of thermal power production. However, there is a pos-
sibility of using electricity to store water in the reservoirs for future hydro-power
generation. The objective is therefore to minimize the thermal operational costs
as well as the opportunity costs of hydro-power generation that arise since water
could be saved for future use. We let J index the pumped storage plants. The
opportunity costs are measured as the future value of stored water, captured by
the functions Vj(·), j ∈ J , as in (3.4.8). Including water values is an attempt to
avoid end effects such as the tendency of the multi-stage stochastic programming
problem to empty the system in the final stage. We let the notation be the same
as before. Moreover, we let the variables vn

j , s
n
j , l

n
j ∈ R+, j ∈ J , n ∈ N represent

the reservoir discharge levels, pumping levels and storage levels. Apart from the
thermal constraints, hydro-thermal scheduling involves bounds on these variables,
(3.4.10)-(3.4.12), enforced by vmin

j , vmax
j , smin

j , smax
j , lmin

j , lmax
j , j ∈ J . Reservoir

discharges, pumping levels and storage levels are related through the reservoir bal-
ance equations, (3.4.13), where νn

j , j ∈ J , n ∈ N denote reservoir inflows. Finally,
demand can be satisfied from thermal generation and hydro-power generation
that is not used for pumping. This gives rise to the constraints (3.4.14) in which
ηj , γj , j ∈ J denote the hydro-power generation and pumping efficiencies, respec-
tively. To simplify the modeling, water discharges and hydro-power generation are
often assumed to be proportional. As should be clear from the notation, uncer-
tainty may concern demand and reserve requirements as well as reservoir inflows.
Formulated as a stochastic programming problem, the hydro-thermal scheduling
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problem of a regulated utility is therefore

min
∑

n∈N

∑

i∈I

πn
(

FCi(p
n
i , u

n
i ) + SCi(u

n
i , u

n−1

i )
)

−
∑

n∈NT

∑

j∈J

πnVj(l
n
j ) (3.4.8)

s.t. un
i p

min
i ≤ pn

i ≤ un
i p

max
i , i ∈ I, n ∈ N (3.4.9)

vmin
j ≤ vn

j ≤ vmax
j , j ∈ J , n ∈ N (3.4.10)

smin
j ≤ sn

j ≤ smax
j , j ∈ J , n ∈ N (3.4.11)

lmin
j ≤ lnj ≤ lmax

j , j ∈ J , n ∈ N (3.4.12)

lnj − l
n−1

j + vn
j − sn

j = νn
j , j ∈ J , n ∈ N (3.4.13)
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i∈I
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n
j − γjs
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j ) ≥ dn, n ∈ N (3.4.14)

∑

i∈I

(un
i p
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i − pn

i ) ≥ rn, n ∈ N (3.4.15)

pn
i , v

n
j , s

n
j , l

n
j ≥ 0, un

i ∈ {0, 1}, i ∈ I, j ∈ J , n ∈ N . (3.4.16)

Short-term hydro-thermal scheduling models in stochastic programming are
found several places in the literature. Dentcheva and Römisch (1998), Gröwe-
Kuska et al. (2000), Gröwe-Kuska et al. (2002) and Nowak and Römisch (2000)
all suggest models that take the form of the above with a time horizon of a week.
Their studies represent different options in modeling. The authors propose to
model the operational costs as linear, piecewise linear, piecewise linear convex or
convex quadratic, whereas start-up costs can be fixed or down-time dependent.
Furthermore, the authors include either minimum down-time constraints or both
up- and down-time constraints. None of the studies include a water value func-
tion. Instead, to avoid undesired end effects due to a finite time horizon, the
final storage levels are constrained. The models are all validated on data from a
German utility and solved by the use of stochastic Lagrangian relaxation of the
unit coupling constraints, which will be further discussed in the subsequent sec-
tions. As a representative example of the model sizes in this section, the model
contains 4200 binary variables, 6652 continuous variables and 13441 constraints
as a deterministic problem. With 10 scenarios and 756 nodes in the scenario tree
formulation of the stochastic problem, the numbers are 18900, 34776 and 60490
and with 100 scenarios and 4200 nodes, the numbers mount to 105000, 193200
and 336100, making decomposition of the stochastic problem highly relevant.
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Similar in spirit to the hydro-thermal scheduling models, are the two-stage
unit commitment models of Carøe and Schultz (1998) and Gollmer et al. (2000),
that are also validated on the German data. Like the above, the models seek
to find a unit commitment schedule for thermal units in a hydro-thermal utility.
However, since coal-fired units have longer start-up times than gas-burning units,
the on-/off-decisions of the coal-fired units are assigned to the first stage, whereas
corresponding decisions of the gas-burning units are set aside for the second stage.
For other two-stage hydro-thermal planning problems, see also Dentcheva and
Römisch (1998) and Nowak et al. (2000), who assign a full schedule in the first
stage and a compensation schedule in the second stage.

Hydro scheduling and unit commitment

When hydro scheduling is addressed from the point of view of a regulated utility,
the problem consists in the spatial distribution of water releases between different
hydro reservoirs in order to satisfy electricity demand. Since direct operating
costs of hydro-power generation are negligible, the determining of water releases
is a matter of striking a balance between the immediate and future value of the
remaining reservoir contents. Hence, the overall objective of hydro scheduling is
to maximize the value of water stored in the reservoirs (3.4.17) subject to the
demand constraints (3.4.23). The challenge is that, when reservoirs are connected
by a network, upstream releases contribute to the downstream inflows with some
time delay. For simplicity, we assume that the hydro reservoirs are connected
in cascade, although more complex networks also exist. We proceed with the
same notation as before and let J index the hydro reservoirs. We model the
relation between reservoir discharges and turbine generation in more detail than
above and, thus, introduce the variables wn

j ∈ R+, j ∈ J , n ∈ N to represent
generation explicitly. If ignoring head variation effects on the generation, the
relation is usually given by concave functions Gj(·), j ∈ J as in (3.4.22), such
functions often being approximated by piecewise linear functions to support a
linear formulation. The turbine generation is subjected to the bounds (3.4.18)
induced by the generation capacities wmin

j , wmax
j , j ∈ J . In the reservoir balance

equations we include spills rn
j , j ∈ J , n ∈ N , and like other releases, upstream

spills contribute to the downstream inflows. Uncertainty may arise with respect
to reservoir inflow and electricity demand, which makes the multi-stage stochastic
programming formulation of the hydro scheduling problem take the form

min −
∑

n∈NT

∑

j∈J

πnVj(l
n
j ) (3.4.17)

s.t. wmin
j ≤ wn

j ≤ wmax
j , j ∈ J , n ∈ N (3.4.18)

vmin
j ≤ vn

j ≤ vmax
j , j ∈ J , n ∈ N (3.4.19)



56 The development in stochastic recourse models for power

lmin
j ≤ lnj ≤ lmax

j , j ∈ J , n ∈ N (3.4.20)

lnj − l
n−1

j + vn
j + rn

j = v
n−1

j−1 + r
n−1

j−1 + νn
j , j ∈ J , n ∈ N (3.4.21)

wj = Gj(vj), j ∈ J , n ∈ N (3.4.22)

∑

j∈J

wn
j ≥ dn, n ∈ N (3.4.23)

wn
j , v

n
j , r

n
j , l

n
j ≥ 0 j ∈ J , n ∈ N . (3.4.24)

Although formulated as medium-term hydro scheduling, Jacobs et al. (1995)
present a model similar to the above. The model facilitates the development of
a stochastic hydro scheduling module of a larger system in an American gas and
electricity company. To fully describe the system and the operating restrictions in
practice, the model includes an entire network of lakes, reservoirs, water courses,
tunnels, junctions and power houses. The company also operates a thermal system,
which is why the major costs concern those of avoiding thermal generation. Even
for the deterministic model, the number of variables and constraints are in the
range of 4650–8686 and 1180–2230, respectively. With as few as 45 scenarios and
64–66 nodes in the scenario tree formulation of the stochastic model, the numbers
become 140284–265242 and 35736–68012, which obviously motivates the need for
decomposition.

For a general overview of reservoir operation models within stochastic pro-
gramming and related areas, see Reznicek and Cheng (1991), who include Markov
chains, dynamic programming, stochastic programming with recourse and chance
constrained stochastic programming.

The hydro unit commitment problem introduces individual units and their
start-ups and shut-downs into the hydro scheduling problem. It follows that the
problem consists in determining on/off-schedules and corresponding generation
levels of the units so as to balance current costs and future water values. Most
direct operating costs can be ignored such that current costs account for start-up
costs alone. Still, hydro start-up costs are much lower than thermal start-up costs.
We again consider hydro reservoirs in cascade. We let J index the hydro reservoirs
and stations and let Ij , j ∈ J index the associated turbines. The start-up costs,
SCi(·), i ∈ I are added to the objective function (3.4.25). We denote the on/off-
decisions of the hydro units un

i ∈ {0, 1}, i ∈ Ij , j ∈ J , n ∈ N and the generation
levels wn

i , n ∈ N . Generation must submit to the bounds wmin
i , wmax

i , i ∈ I in
(3.4.26). We define the discharges vn

i , n ∈ N on a unit basis and modify the
bounds as in (3.4.27) accordingly. The balance equations must be modified in a
similar fashion as shown in (3.4.29). The hydro unit commitment problem now
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reads

min
∑

n∈N

∑

j∈J

∑

i∈Ij

πnSCi(u
n
i , u

n−1

i ) −
∑

n∈NT

∑

j∈J

πnVj(l
n
j ) (3.4.25)

s.t. un
i w

min
i ≤ wn

i ≤ un
i w

max
i , i ∈ Ij , j ∈ J , n ∈ N (3.4.26)

vmin
j ≤

∑

i∈Ij

vn
i ≤ vmax

j , j ∈ J , n ∈ N (3.4.27)

lmin
j ≤ lnj ≤ lmax

j , j ∈ J , n ∈ N (3.4.28)

lnj − l
n−1

j +
∑

i∈Ij

vn
i + rn

j =
∑

i∈Ij−1

v
n−1

i + r
n−1

j−1 + νn
j , j ∈ J , n ∈ N (3.4.29)

wi = Gi(vi), i ∈ Ij , j ∈ J , n ∈ N (3.4.30)

∑

j∈J

∑

i∈Ij

wi ≥ dn, n ∈ N (3.4.31)

wn
i , v

n
i , r

n
j , l

n
j ≥ 0, un

i ∈ {0, 1} i ∈ Ij , j ∈ J , n ∈ N . (3.4.32)

To our knowledge, hydro unit commitment has been addressed only few times
in the literature. The authors of Hreinsson (1988) and Tufegdzic et al. (1996)
present a short-term operation problem of a hydro-power system modeled as a
deterministic problem, whereas Philpott et al. (2000) consider the problem subject
to uncertain demand and formulates a multi-stage stochastic program. Hreinsson
(1988) argues that if the hydro reservoirs are almost unaffected by short-term
operations, water scheduling and hydro-power generation can be separated. By
addressing only hydro power generation, the problem reduces to something very
similar to the thermal unit commitment problem. Tufegdzic et al. (1996) on
the other hand describe a full hydro-power generation problem involving unit
commitment and water scheduling. The problem arose with the development of
an energy management system for the Tasmanian hydro electric commission and
the corresponding model is therefore rather detailed, including a hydro network
of reservoirs, stations, tunnels and canals and piecewise linear approximations of
some constraints and costs. Finally, Philpott et al. (2000) present a hydro unit
commitment model similar to the above and illustrates it with a case study from
New Zealand. The relations between reservoir discharges and turbine generation
are given by concave functions that are combined and approximated by piecewise
linear functions.
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3.5 Production on market conditions

The lack of organized markets during regulation was argued to make power trading
rather inflexible. To achieve economic efficiency, the markets began to reform and
a new regulatory administration was introduced for the purpose of promoting
competition. Prices were left to be determined by the market conditions through
the establishment of a power exchange. Moreover, previous obligations to satisfy
demand were replaced by the opportunity of power producers to buy and sell their
production at this power exchange. Producers reacted by reorganizing operations
to facilitate decentralized decision-making and began maximizing profit, while
experiencing an increasing price uncertainty. For a general overview of the changes
in the power sector in response to the restructuring, see Hobbs (1995), who includes
the growing uncertainty and increased competition.

The models of this section represent the adaption of the traditional power
production models to the new environment in terms of profit maximization without
demand constraints. As before, the multi-stage stochastic programs are presented
using the scenario tree formulation and the corresponding notation is found in
Chapter 1.

Thermal unit commitment and hydro-thermal scheduling

We will explain how the traditional models of Section 3.4 can be adapted to
the new environment using the thermal unit commitment model for illustration.
Changes to the hydro-thermal scheduling model will follow in a similar fashion.

We apply the ideas of Wallace and Fleten (2003). With the possibility of
trading in the physical and financial markets, the electricity production can be
disposed of through traditional bilateral contracts and through newer market con-
tracts. Furthermore, power producers can purchase electricity from the same
markets. We denote by dn, n ∈ N the bilateral contracts and let the variables
y+,n, y−,n ∈ R+, n ∈ N represent the market contracts for selling and buying,
respectively. With no constraints on the market contracts, these provide the flex-
ibility necessary for production, purchases and disposals to match, which leads to
the equality constraints

∑

i∈I

pn
i = dn + y+,n − y−,n, n ∈ N . (3.5.1)

The revenues of market disposals amount to
∑

n∈N

πnρn(y+,n − y−,n), (3.5.2)

where ρn, n ∈ N denote the market prices. By substitution of y+,n, y−,n, n ∈ N
in (3.5.2), the demand constraints (3.5.1) are eliminated. After substitution, the
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constant term of the objective function can be ignored, which corresponds to an
assumption of no bilateral trades and pure market disposals. Reserve constraints
can also be eliminated from the model, the reason being that reserves market are
beginning to appear. As an effect of eliminating demand and reserve constraints,
the model decouples with respect to thermal units and, thus, decision-making can
be conducted on a single-unit basis. With the introduction of revenues from market
disposals, the objective shifts from cost minimization to profit maximization and
market price uncertainty comes into play. The thermal single-unit problem is the
multi-stage stochastic program

max
∑

n∈N

πn
(

ρnpn − FC(pn, un) − SC(un, un−1)
)

s.t. (3.4.2) − (3.4.4)

pn ≥ 0, un ∈ {0, 1}, n ∈ N .

Takriti et al. (2000) addresses the multi-stage stochastic thermal unit commit-
ment problem and include both buying and selling of electricity to a power pool
that serves as a spot market. The spot market is modeled as two additional units;
one unit representing buying and one unit representing selling. If the utility buys
power, demand decreases, and if it sells power, demand increases as shown above.
The bounds on the buying and selling units are automatically imposed, which
allows for the substitution. However, the model decoupling is not carried out.

As already stated, the hydro-thermal scheduling problem is modified in the
same way as the thermal unit commitment problem. However, when the demand
and reserve constraints are eliminated, the model separates thermal power produc-
tion from hydro-power generation and decouples further with respect to pumped
hydro storage plants.

Hydro scheduling and unit commitment

To illustrate how the traditional models of Section 3.4 can be modified, we consider
the hydro scheduling problem. Similar modifications apply to the hydro unit
commitment problem.

Since also hydro-power generation can be disposed of by bilateral contracts of
a fixed volume and market contracts of a variable volume, the traditional demand
constraints are replaced by the equality constraints

∑

j∈J

wn
j = dn + y+,n − y−,n, n ∈ N ,
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and the revenues of market disposals,
∑

n∈N

πnρn(y+,n − y−,n),

are added to the traditional objective function, which is then based on profit
maximization and includes market prices uncertainty. For the same reasons as
previously, the demand constraints can be eliminated. If, however, the reservoirs
are connected, the balance equations prevent the hydro scheduling problem from
decoupling with respect to reservoirs.

The paper of Fosso et al. (1999) gives an overview of the deregulated electricity
system in Norway and the corresponding long-term, medium-term and short-term
models used for hydro scheduling. In particular, it is explained how water value
calculations can be adapted to the system. The long-term model is a stochastic
program that is able to handle uncertainties in market prices and reservoir inflows
and provides water values for the medium-term models. The authors suggest to
calculate marginal water values as derivatives of stochastic dynamic programming
value functions with respect to reservoir storage levels. The medium-term models
are deterministic scenario problems producing water values for a detailed short-
term model that includes nonlinear generation efficiency curves, head variation
effects, tunnels branching into pipes etc.

The adaptation of the hydro unit commitment problem to a market-orientated
system has not been found in the literature until recently, where a stochastic
programming version has appeared by Garćıa-González et al. (2006). More inter-
estingly, however, an alternative to handling head variation effects is proposed. A
procedure iteratively produces reservoir net heads as a function of storage levels
and solves the stochastic programming problem with a relation between reservoir
discharge and turbine generation that depends only on a fixed net head.

In Chapter 5, we describe a new hydro unit commitment problem that has
become relevant with the introduction of market dispatch. The problem consists in
hydro-power production planning that complies with the day-ahead commitments
and illustrates the necessity of the demand constraints in the very short term. In
contrast to dynamic unit commitment, the aim is to determine a daily production
plan that values the current market prices and reservoir inflows against the future.
With fixed day-ahead commitments, the production planning becomes a matter
of spatial distribution of water among the reservoirs.

3.6 Solution approaches

Thermal unit commitment

The solution approaches to stochastic power production problems are extensions
from the deterministic case. Primal approaches mainly rely on LP based branch
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and bound, this method being highly supported by the advances in hardware and
the development of software implementations. At present, general purpose pack-
ages can combine the LP methodology with a variety of options for arranging the
branch and bound. The package allows for fast heuristics to obtain initial feasible
solutions, specific branching rules and techniques from combinatorial optimiza-
tion such as valid inequalities. Most importantly, the LP-based branch and bound
works with ample enrichment as long as the model is expressed in mixed-integer
linear terms. A critical drawback is the full handling of the model which may
become prohibitive with the sizes illustrated in the previous sections. This paves
the way for decomposition methods.

For an example on the application of LP-based branch and bound to determin-
istic thermal unit commitment and hydro-thermal scheduling, see Gollmer et al.
(1999). The authors argue that the method shows its strengths with complex
constraints interconnecting generating units in contrast to dual approaches that
have their merits with nonlinearities.

Among the dual approaches, Lagrangian relaxation has proved to be a strong
tool because of the algorithmic progress for solving the Lagrangian dual, the usu-
ally small duality gap and the advance of fast Lagrangian heuristics to close this
gap. For references on the application of Lagrangian relaxation in the determin-
istic case, see Feltenmark et al. (1997) and Gollmer et al. (1999).

To illustrate Lagrangian relaxation, we develop the Lagrangian dual of the
multi-stage stochastic programming version of the thermal unit commitment prob-
lem (3.4.1)-(3.4.7) and its scenario tree formulation. The problem is nearly separa-
ble with respect to thermal units as only the constraints (3.4.5) and (3.4.6) involve
different units. This property may be utilized by stochastic Lagrangian relaxation
of the unit coupling constraints. Assigning non-negative stochastic Lagrange mul-
tipliers that inherit the tree structure from dn, rn, n ∈ N , the Lagrangian function
is given by

L(u, p;λ1, λ2) :=
∑

n∈N

∑

i∈I

πn(FCi(p
n
i , u

n
i ) + SCi(u

n
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)

,

where u = (un
i )i∈In∈N and p = (pn

i )i∈In∈N and the corresponding dual function
is

D(λ1, λ2) := min
u,p

{

L(u, p;λ1, λ2) | (3.4.2) − (3.4.4)
}

(3.6.1)
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The Lagrangian dual now reads

max
{

D(λ1, λ2) | (λ1, λ2) ∈ R
2|N |
+

}

. (3.6.2)

Due to integrality constraints, the primal problem is non-convex. The dual prob-
lem therefore only provides a lower bound to the primal problem. Still, the La-
grangian relaxation provides a tighter bound than the continuous relaxation.

The problem (3.6.1) decomposes into multi-stage single-unit subproblems. In
this fashion the dual function

D(λ1, λ2) =
∑

i∈I

Di(λ1, λ2) +
∑

n∈N

πn
(

λn
1d

n + λn
2 r

n
)

is evaluated by solving subproblems of the form
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∣
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(3.4.3)− (3.4.4)

}

,

where ui = (un
i )n∈N . The single-unit subproblems are solvable by stochastic

dynamic programming. For an outline of the approach, including how to cope
with minimum up- and down-times, see for instance Nowak and Römisch (2000).

Since the dual function (3.6.1) is concave and non-differentiable, the Lagrangian
dual (3.6.2) was originally solved with subgradient procedures. Currently more re-
fined methods such as cutting plane or bundle methods have been successfully ap-
plied. An example is the proximal bundle method used in Dentcheva and Römisch
(1998), Nowak and Römisch (2000) and Gröwe-Kuska et al. (2002). Based on func-
tion and subgradient information, the method constructs a bundle of linearizations
of the dual function. In order to replace the original dual function, the resulting
piecewise linear upper approximation is added a proximity term before being min-
imized.

Mostly the dual solution provided by the cutting plane or bundle method vio-
lates the demand and reserve constraints and produces a duality gap. Lagrangian
heuristics are therefore used to determine a feasible and hopefully nearly optimal
solution of the primal problem. In most cases, the heuristic seeks to find a unit
commitment solution that induces economic dispatch. The heuristic suggested in
Gröwe-Kuska et al. (2002) starts from an initial set of Lagrange multipliers and
perturbs the multipliers such as to obtain primal feasible unit commitment sched-
ules. Most binary variables do not change and can be fixed in order to decrease
the size of the problem, whereas the remaining variables are switched off one at
a time as long as feasibility persists. Dentcheva and Römisch (1998) provide a
bound on the duality gap that depends on the number of demand and reserve
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constraints. The duality gaps decreases in the case of a larger power plant or a
finer discretization of the probability distribution.

The authors Dentcheva and Römisch (1998), Nowak and Römisch (2000) and
Gröwe-Kuska et al. (2002) employ the stochastic Lagrangian relaxation to the
stochastic hydro-thermal scheduling problem. This prompts a decomposition into
both single-unit thermal and hydro subproblems and opens the possibility of
heuristics that exploit the additional flexibility of the hydro-power pumped stor-
age plants. Since the test problem from the German utility involves 25 thermal
units and 7 hydro reservoirs, it decomposes into 32 subproblems. For the instance
of 100 scenarios and 4200 nodes, the thermal subproblems each have 4200 binary
variables, 4200 continuous variables and 8400 constraints and the hydro subprob-
lems 12600 continuous variables and 8500 constraints. The instance can be solved
within an optimality gap of approximately 0.1% in about 1000 seconds of comput-
ing time. The two-stage problems by Dentcheva and Römisch (1998) and Nowak
et al. (2000) are solved on similar lines by Lagrangian relaxation of the unit cou-
pling constraints, the result being a similar decomposition into thermal and hydro
subproblems.

Relaxation of unit coupling constraints is also possible by means of the aug-
mented Lagrangian technique as suggested by Carpentier et al. (1996). However,
to facilitate decomposition, it is necessary to linearize the Lagrangian. Other dual
solution approaches to stochastic power production problems include Lagrangian
relaxation of the non-anticipativity constraints, which usually decomposes the
problems into a larger number of smaller deterministic subproblems. In this way,
Takriti et al. (1996) and Takriti et al. (2000) solve the multi-stage stochastic unit
commitment problem by progressive hedging and seem to outperform the above
approach. Carøe and Schultz (1998) and Gollmer et al. (2000) solve the two-stage
version of the problem by dual decomposition are thereby, in principle, able to
close the duality gap by branch and bound. For further references on Lagrangian
relaxation of the non-anticipativity constraints, see Chapter 1.

Hydro scheduling

For a long time, stochastic hydro scheduling problems have been solved by stochas-
tic dynamic programming, which has also occasionally been used for stochastic
hydro unit commitment problems. The application of dynamic programming is
supported by the sequential structure of the decision-making process and justi-
fied by the fact that the problems have relatively few constraints interconnecting
different stages. We attempt to illustrate the dynamic programming recursion on
the hydro scheduling problem (3.4.17)-(3.4.24) for reservoirs in cascade. The no-
tation of the preceding sections will be modified to fit the framework. We assume
that the uncertain data consists of random demands dt, t ∈ T and random inflows
νjt, j ∈ J , t ∈ T . For reservoirs in cascade, the storage levels can be redefined
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to include delayed inflows from upstream reservoirs. The dynamic programming
states are defined by these storage levels, still denoted lt = (ljt)j∈J , t ∈ T , and
by the uncertain data ξt = (νt, dt), t ∈ T , where νt = (νjt)j∈J , t ∈ T . The
action space consists of reservoir discharges, turbine generation levels and spills
vt = (vjt)j∈J , wt = (wjt)j∈J , rt = (rjt)j∈J , t ∈ T . With these definitions, the
expected future value function of stage T compute as

FT (lT−1, ξT−1) = EξT |ξT−1

[

max
vT ,wT ,rT

{

−
∑

j∈J

Vj(ljT − vj−1T − rj−1T )
∣

∣

(3.4.18)− (3.4.20), ljT − vj−1T − rj−1T + vjT + rjT =

ljT−1 + νjT , j ∈ J , (3.4.22) − (3.4.24)
}]

and the stage t expected future value as

Ft(lt−1, ξt−1) = Eξt|ξt−1

[

max
vt,wt,rt

{

Ft+1(lt, ξt)
∣

∣ (3.4.18)− (3.4.20),

ljt − vj−1t − rj−1t + vjt + rjt = ljt−1 + νjt, j ∈ J , (3.4.22)− (3.4.24)
}]

.

In dynamic programming, the continuous reservoir storage levels are often
discretized in order to facilitate computations. With the discretization of the
state space, however, the full dynamic programming approach is known to suffer
from the curse of dimensionality and is only able to handle a few reservoirs. In
order to restrict the state space, it has been proposed to aggregate reservoirs and
power stations or to decompose the dynamic programming problem according to
reservoirs. As an alternative, Archibald et al. (2001) suggest that an appropriate
definition of the state space for multi-reservoir systems allows for a simplification
of the solution method on the basis of information on an optimal policy.

Another way of avoiding the curse of dimensionality is to describe the dynamic
programming value function by supporting hyperplanes, which is utilized in nested
Benders’ decomposition. The method has been applied by Jacobs et al. (1995),
who suggest a number of algorithmic enhancements that are further explored in
Morton (1996). The enhancements include the use of warm start bases, initial
cut generation, disaggregated cuts and decision tree traversing strategies. The
performance of the enhanced algorithm is tested on a collection of multi-stage
stochastic hydro scheduling problems. The algorithm is outperformed by general
LP optimizers if applied to single scenario problems but is preferable as the number
of scenarios increases. As an example, the previously mentioned problem by Jacobs
et al. (1995) decomposes into 45 nodal subproblems of 57–1273 variables and 271–
6279 constraints - a significant reduction in size - and is solved in 200–400 seconds
of CPU time.
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For further inspections of algorithms for multi-stage stochastic hydro schedul-
ing problems, the authors Archibald et al. (1996) compare the revised simplex
method, full dynamic programming, dynamic programming decomposition and
nested Benders’ decomposition. Only the revised simplex method and nested
Benders’ decomposition provide exact optimal solutions. Furthermore, the au-
thors find the nested Benders’ decomposition approach to be the fastest followed
by dynamic programming decomposition, the revised simplex method and, finally,
full dynamic programming. Although most results favor the nested Benders’ de-
composition, the approach fails to solve stochastic programs having many stages
due to the explosion in the number of nodes.

The major drawbacks of dynamic programming and nested Benders’ decom-
positions are avoided in the stochastic dual dynamic programming algorithm pro-
posed by Pereira and Pinto (1991). In a backward run, the algorithm approximates
the dynamic programming value function by Benders’ cuts induced by trial points
that are determined in a forward run by sampling from the set of scenarios. Since
state space discretization is unnecessary, the curse of dimensionality is not an is-
sue and because of sampling, the effects of the explosion in the number of nodes
are reduced. The stochastic dual dynamic programming, however, is not capable
of incorporating market price uncertainty due to lack of convexity in the state
space, whereas both dynamic programming and nested Benders’ decomposition
are applicable to the models for hydro scheduling on market conditions.

The stochastic hydro unit commitment problems have to be solved by dy-
namic programming, Philpott et al. (2000) being an example, or more general
approaches applicable to mixed-integer linear stochastic programming problems.
An example of the application of commercial mixed-integer linear programming
software is given in Chapter 5, where we consider a multi-stage stochastic hydro
unit commitment problem and succeed in solving its scenario tree formulation of
267 scenarios, 11777 nodes, 141846 variables and 261254 constraints to optimality
in less than 30 seconds of CPU time.

3.7 Physical trading and bidding

With the liberalization of power markets, new planning problems have arisen and
introduced the need for corresponding optimization models. Of great importance
are especially the problems of physical trading and bidding in power markets
like the spot and the reserve markets. This section presents some of the models
that have recently been proposed within the field of stochastic programming and
related areas of stochastic optimization. A major difference between the models is
the handling of offers or bidding curves submitted to the market. Some models are
based on smooth, linear or piece-wise linear bidding curves, while others include a
finite number of offers which results in step functions. Another crucial difference
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is the extent to which the current market participant has market power. Some
models operate on a price-taker assumption, whereas other models assume the
market participant is able to influence market prices. If, however, competitors
respond to the offers of each other, a game theoretic approach should replace the
stochastic programming approach. No general solution approach appears to apply
to the newer problems of physical trading and bidding.

The day-ahead market

Most models for bidding into the spot or day-ahead market involve one-period
sealed auctions in an electricity market that is organized as a pool and for which a
uniform clearing price rule applies. Within this framework, Fleten and Pettersen
(2005) propose a two-stage stochastic mixed-integer linear program for construct-
ing piece-wise linear bidding curves to be submitted to the Nordic day-ahead
market. The problem is addressed from the perspective of a price-taking retailer
who supplies to price-sensitive end users under both price and demand uncertainty.
Since the problem consists in demand-side bidding, decision-making can be made
on an hourly basis. First-stage decisions involve the bids to be submitted, whereas
the second stage accounts for the actual dispatch and the settlement of day-ahead
and intra-day market costs and risks. The modeling of Chapter 4 resembles this
approach in some respects. However, although also assuming a price-taker, the
problem is approached from the point of view of a hydro-power producer facing
the coordination of day-ahead market trading and hydro-power generation. The
complexity of the problem increases in that the time coupling due to reservoir bal-
ances and turbine start-up costs forces decision-making to be effected on a daily
basis. As before, first-stage decisions relate to day-ahead bidding, whereas the
second stage now comprises the dispatch of the system, the settlement of costs
and risk and the relatively flexible hydro-power generation to be undertaken in
real-time. By formulating the deterministic equivalent of the two-stage stochastic
program, the problem of Chapter 5 is solvable by standard mixed-integer linear
programming software within small computing times, which also applies to the
problem by Fleten and Pettersen (2005). A slightly different two-stage stochastic
mixed-integer linear programming model is presented by Nowak et al. (2005). The
model describes simultaneous power production and day-ahead power trading of a
hydro-thermal producer who is able to influence market prices. The price clearing
mechanism is based on the equilibrium between demand and supply and is mod-
eled by the use of logical constraints and binaries. The price clearing serves as the
second stage, whereas the first stage consists in bidding and production planning.
The producer is subjected to uncertainty with respect to foreign bids, although
the question remains as to whether a producer would have market information
sufficiently detailed to estimate the necessary distribution. The extensive use of
binaries significantly increases the model complexity and in spite of applying de-
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composition, the solution time is about 3 hours for a test problem with as few as
10 scenarios.

To illustrate the modeling of bidding curves, define a bid as a price-volume pair
(x, p). The problem of selecting both a price p and a volume x is nonlinear. To
circumvent this problem, the studies mentioned above all discretize the continuous
price range into a finite number of fixed price points p1 ≤ · · · ≤ pH . Feasible bids
are then (x1, p1), . . . , (xH , pH) of which only the volumes x1, . . . , xH ∈ R+ have
to be selected. Let the bidding curve be defined by the relation between volume
and price, denoted by y and ρ respectively. Now Nowak et al. (2005) suggest the
use of hourly block bids which results in the following bidding curve with respect
to selling bids

y =



































x1 , if p1 ≤ ρ < p2

...
∑

h′≤h−1 xh′ , if ph−1 ≤ ρ < ph

...
∑

h′≤H xh′ , if ρ = pH .

As should be clear, the bidding curve is a nondecreasing step function. In contrast,
Fleten and Pettersen (2005) perform a linear interpolation between the price-
volume points and construct the following piece-wise linear nondecreasing bidding
curve that is consistent with the rules of the Nordic day-ahead market
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ρ−p1

p2−p1
x2 + p2−ρ

p2−p1
x1 , if p1 ≤ ρ < p2

...
ρ−ph−1

ph−ph−1
xh + ph−ρ

ph−ph−1
xh−1 , if ph−1 ≤ ρ < ph

...
ρ−pH−1

pH−pH−1
xH−1 + pH−ρ

pH−pH−1
xH , if pH−1 ≤ ρ ≤ pH .

In Chapter 4, the modeling of the Nordic day-ahead market is further extended
to include block bids of a duration longer than an hour.

Although the authors do not apply stochastic programming, Wen and David
(2001b) present a related approach to the problem of deriving optimal bidding
strategies. In the same spirit as above, the problem concerns a supplier submit-
ting hourly bidding curves to the day-ahead market. Since the supplier has market
power, the price clearing mechanism is included in the hourly bidding problem for-
mulated as a nonlinear stochastic optimization problem in which foreign supply
curves are uncertain. For the complete bidding strategy, the hourly bidding prob-
lem must be coordinated with unit commitment to account for the time coupling
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induced by start-up costs. This is done by means of a heuristic. An extension to
the same problem is provided by Wen and David (2001a), who consider both large
producers and consumers trading in the day-ahead market.

The bidding curves suggested by Wen and David (2001b) and Wen and David
(2001a) are linear functions of the form

ρ = α+ βy

in the case of selling bids and, similarly, in the case of buying bids. The coefficients
α, β ∈ R+ are optimization variables of the bidding problem. The coefficients of
the foreign bidding curves are random variables assumed to have a joint distri-
bution. Again, it is unclear whether it would be possible to estimate the joint
distribution of the foreign bidding curves.

For other studies on bidding, Neame et al. (2003) consider a price-taking gen-
erator making offers into an electricity spot market under uncertainty in market
prices. According to the market rules, offers are restricted to hourly block bids.
In that the generator does not affect market prices, the optimal offers reflect the
marginal costs of generation, although the market rules only allow an approxima-
tion. The solution of the proposed nonlinear programming problem is illustrated
in combination with thermal unit commitment and hydro scheduling in a New
Zealand river system. Prichard and Zakeri (2003) further address the coordina-
tion of hydro scheduling and bidding of a price-taking producer. However, the
authors argue that since the costs of hydro-power generation include only oppor-
tunity costs of released water, there is no simple way to determine marginal costs
and bid accordingly. Instead they suggest to use stochastic dynamic programming
for deriving bidding curves on the general form

y(ρ), ρ ∈ [0,∞).

In a different study, Anderson and Philpott (2002) investigate strategies for
generators having market power. In formulating the bidding problem of the gen-
erator, the bidding curve is modeled as a continuous parametrized curve

σ = {(y(k), ρ(k)), 0 ≤ k ≤ K},

where y(·), ρ(·) are increasing functions. The authors analyze both smooth curves
and the step functions that arise in the case of a finite number of bids. The clear-
ing of the spot market is established in a separate network flow model from which
spot prices can be obtained as marginal values. The generator is able to influence
clearing prices by providing input to this model. Market prices are further affected
by random demand and supply of competitors. To encapsulate the effects of uncer-
tainty on the dispatch of the current generator, the so-called market distribution
function ϕ(y, ρ) comes into play. This function alone is sufficient to determine the
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stochastic behavior of the market and is defined as the probability of not being
fully dispatched in the market if offering the volume y at a price of ρ. However,
the authors admit the difficulties in estimating such a function. The bidding prob-
lem itself is that of selecting the bidding curve that maximizes expected profit in
terms of the market distribution function and can be formulated as a nonlinear
optimal control problem. Philpott and Schultz (2006) integrate the framework
with thermal production and unit commitment in particular. The authors pro-
pose two two-stage decision problems for determining optimal offers of either a
single or several thermal units. The first stage of the single-unit problem seeks to
determine offers of a must-run auction for generating units, while the second stage
computes the optimal spot market offers given the results. Considering several
generating units, the first stage optimizes the spot market offers and the second
stage determines the units to run in order to meet the dispatch. In both cases,
the unit commitment part of the problems is solved by dynamic programming,
whereas the bidding part is handled by optimality conditions.

A common aim of most bidding problems from the literature is that of selecting
bidding curves that maximize expected profit. Profit amounts to

P (y, ρ) = yρ− C(y),

where yρ are revenues from market dispatch and the function C(y) accounts for
operational costs and possibly start-up and shut-down costs as well as opportu-
nity costs. Profit may also involve revenues from more long-term physical and
financial contracts. Neame et al. (2003) first analyze general cost functions and
derive optimality conditions for local optima, and second explore piece-wise lin-
ear cost functions and the application of dynamic programming to locate global
optima. Anderson and Philpott (2002) consider only smooth operating costs,
whereas Philpott and Schultz (2006) extend the situation to allow for a fixed
number of jump discontinuities due to start-up and shut-down costs. In both
cases, they express the expected profit as an integral with respect to the mar-
ket distribution function. In particular, if the market distribution function ϕ is
continuous, the expected profit can be calculated as

∫

σ

P (y, ρ)ϕ(dy, dρ).

While stochastic programming practitioners usually discretize the distribution of
the random components to facilitate computations, Anderson and Philpott (2002)
and Philpott and Schultz (2006) seek to solve the problems directly by deriving
optimality conditions.
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Ancillary services

In relation to the relatively new practice of physical trading and bidding, the
deregulation of the markets has called for more ancillary services in the power
system, such as spinning reserves, non-spinning reserves, balancing power etc.
which in turn has made new markets arise. However, the literature on ancillary
service problems is limited.

Among the rather few contributions, the problem of Wen and David (2001b)
is extended by Wen and David (2002) to account for the coordinated bidding
into the day-ahead energy market and the spinning reserves market. A supplier
submits hourly linear supply functions to the two markets separately. Still, from
the perspective of a supplier, day-ahead and reserve markets exchanges are inter-
dependent due to production capacity limits. A similar problem is addressed by
Triki et al. (2005), who consider the simultaneous bidding into the spinning and
non-spinning reserve markets, the day-ahead market, an inter-mediate adjustment
market and an intra-day balancing market. A price-taking generating unit submits
an offer to each of the markets while faced with uncertain prices. The multi-auction
problem is therefore formulated as a multi-stage stochastic programming problem
in which the different auctions constitute the stages. In most cases the problem
is separable with respect to generating units and can be solved with commercial
software.

With the restructuring, generation and transmission have been separated and
transmission has become the responsibility of an independent system operator,
who at the same time ensures security of supply. This involves the task of balanc-
ing demand and supply and that of procuring reserves to facilitate the balancing.
The paper by Yu et al. (2005) addresses the problem of procuring and pricing
reserves in the day-ahead market from the point of view of the power system
operator. Hence, social welfare is optimized taking into account the costs of avail-
able reserve capacity in the day-ahead market, the costs of the resources actually
used for matching demand and supply, the expenses of excess demand as well as
the benefits of procuring reserves. Since demand is uncertain, the problem is a
stochastic optimization problem. By defining the reliability level as the probability
of shortage in reserve capacity, the paper provides a trade-off analysis between the
capacity and reliability levels. The application in Chapter 6 includes two models
that involve some of the same features in objectives and constraints. However,
the stochastic programming models in this chapter seek to determine the optimal
purchases of regulating reserves to be used in the real-time balancing of demand
and supply. The two models incorporate pay-as-bid pricing and marginal pricing,
respectively, since the intra-day balancing market of the particular application is
currently undergoing a transition from one pricing scheme to another. The price
clearing mechanisms are explicitly included in the linear mixed-integer models by
the use of logical constraints and binaries. The two problems are solved with



3.8. Risk 71

procedures that utilize the structure of stochastic programming problems but are
similar in spirit to those of common practice.

3.8 Risk

Financial risk management is often a high priority for participants in a deregu-
lated electricity market due to the substantial price and volume risk caused by
price volatility, demand peaks and supply shortages. To protect themselves from
volatility, producers and consumers therefore enter into hedge contract with each
other through the financial markets in which contracts have been developed to
meet different needs, such contracts including forwards, futures, options and con-
tracts of differences. The risk management deserves further attention in relation
to the liberalized power markets that is the case in this chapter.





Chapter 4

Stochastic programming for

optimizing bidding strategies of a

Nordic hydro-power producer

As discussed in Chapter 3, a highly relevant power optimization problem that has
arisen with the deregulation of the power markets in the last decade is the problem
of bidding. The current chapter suggests a way of handling the problem using the
framework of stochastic programming which appears to be very suitable for the
purpose.

Considering a price-taking hydro-power producer participating in the day-
ahead power market and for whom market prices are highly uncertain, the chapter
provides a model for determining optimal bidding strategies taking this uncertainty
into account. In particular, market price scenarios are generated and a stochastic
mixed-integer linear programming model that involves both hydro-power produc-
tion and physical trading aspects is developed. The idea is to explore the effects
of including uncertainty explicitly into optimization by comparing the stochastic
approach to a deterministic version. The model is illustrated with data from a
Norwegian hydro-power producer and the Nordic power market at Nord Pool.

4.1 Introduction

The increased interest in power optimization problems within recent years has
been stimulated by the tendency to decentralize and deregulate the power sector.
Whereas traditional operating and planning procedures were based on centralized
optimization, novel approaches rest on independent optimization of separate power
plants. In addition, the liberalization of markets has forced former procedures to
conform to more market oriented approaches.

73
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With the pioneering act of 1990 Norway was among the first countries in the
world to deregulate and already in 1991 a Norwegian power market was estab-
lished. From 1996 to 2000 the national Norwegian power market developed into a
multi-national Nordic power market that also encompassed the three neighboring
countries, Sweden, Finland and Denmark. Today, the Nordic power market has
successfully adapted to the new competitive environment and serves as a model
for the restructuring of other power markets.

An important component of the Nordic power market is the presence of a
power exchange that facilitates physical trading and is effective immediately. The
spot market, Elspot, at the Nordic power exchange Nord Pool, takes the form of
a pool-based market in which market participants exchange power contracts for
physical delivery the following operation day and is referred to as the day-ahead
market. In 2004 a total of 167 TWh was exchanged at Elspot, representing 421

percent of the overall consumption in the Nordic region.
Inevitably, physical trading is of vital importance in the economic activity of

the power sector with the so-called bidding problem being a major challenge in
this respect. Bidding involves the submission of sales and purchase bids to the
power exchange a day ahead of physical trading. Since day-ahead market clearing
prices are determined by the balance between sales and purchase bids, bidding
takes place ahead of market clearing and, thus, with only limited information on
day-ahead market prices. As a result, bidding is a rather complicated task. In the
following, we will refer to the problem of submitting bids to the day-ahead market
as the bidding problem.

In the Nordic region, power production comprises thermal power in addition
to hydro power and other kinds of renewable power such as wind. Sweden and
Finland use nuclear, fossil-fuel and hydro-power production, Denmark makes use
of conventional thermal power plants, combined heat and power facilities and
accounts for most of the wind power, while almost Norway almost only relies
on hydro-power. In general, thermal power production is located in the south,
whereas hydro-power production is found in the northern parts of the Nordic region
and is transmitted to the heavily populated south. Approving of the comparatively
low costs of hydro-power production, the market prefers this energy source over
thermal power. The number of hydro-power producers participating in Nord Pool
amounts to around 48 and the total hydro-power based generation in the Nordic
region is 191 TWh or 49% of the total generation in 20042.

A crucial difference between thermal power and hydro-power production is the
possibility of “storing” energy by holding water back. If production is disposed
of in the power market, this possibility allows the producer to respond to the

1 Reference: www.nordel.org and www.nordpool.no

2 Reference: www.nordel.org
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development in market prices. When prices are high, water is released and en-
ergy is produced and sold immediately, whereas when prices are low, the water
is held back and the energy is saved for future disposal at higher prices. More-
over, in contrast to thermal production, hydro-power generation has the ability to
quickly start and stop and is therefore typically applied to peak-load demand. The
flexibility makes bidding strategies extremely relevant to hydro-power producers.

To address the bidding problem, we will present a model of a price-taking
hydro-power producer bidding into the day-ahead market under market price un-
certainty. The model is motivated by the needs of small Nordic hydro-power
producers although its major parts are applicable in general to price-taking power
producers acting in a pool-based day-ahead market.

As already implied, the bidding problem of a hydro-power producer involves
both hydro-power generation and day-ahead market exchange. Bidding decisions
take place with only limited information on day-ahead market prices, whereas pro-
duction decisions may be deferred until the information has been fully disclosed. In
effect, the decision process is divided into stages and, more specifically, the bidding
problem fits the framework of two-stage stochastic programming. The objective is
to maximize sales and production profits subject to a number of bidding and oper-
ational constraints. The first stage decisions concern day-ahead market exchanges
while the second stage includes real-time hydro-power generation. Uncertainty of
the day-ahead market prices is represented by a known probability distribution.
Formally speaking, the probability distribution is obtained by the modeling of a
stochastic process calibrated from historical data.

In practice power planning and operation is often based on deterministic opti-
mization tools, such as the Short-term Hydro Operation Planning (SHOP) model,
cf. Fosso et al. (1999), used in Norway. Moreover, the setting up of bidding tables
rests on skills and experience of the operating engineers. Until now, uncertainty
has not been handled explicitly neither when planning and operating nor when
bidding. Current practice is limited to the selection of appropriate critical quan-
tiles of the uncertain data and the following solution of a number of deterministic
problems in order for the planner to identify decisions that hedge against adversity
at a few probability levels.

The chapter aims at comparing the stochastic approach to a deterministic ver-
sion. The idea is to explore the effects of including uncertainty explicitly into the
optimization model and, in particular, to examine its objective function value and
solutions. It has already been shown, cf. Birge and Louveaux (1997), that higher
expected profits are obtained by the stochastic approach than by the deterministic
version. The difference in profits is however highly relevant. Moreover, we expect
the bidding structure of the stochastic approach to differ from that of the deter-
ministic version. Most likely, the deterministic model suggests the use of hourly
bids only, whereas the stochastic model combines hourly bids and block bids.

The outline of the chapter is as follows. We explain the composition of the
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day-ahead market and model the bidding process in Section 4.2. In Section 4.3
we describe the hydro-power plant and model production. Section 4.4 introduces
uncertainty and the resulting stochastic programming model, whereas Section 4.5
is devoted to scenario generation. Section 4.6 illustrates the model with a case
study from a Norwegian hydro-power producer and the Nordic power exchange,
Nord Pool.

4.2 Day-ahead bidding

Elspot at Nord Pool is a spot market in which contracts for physical delivery the
following operation day are exchanged. The power exchange offers an access to
the physical market at low transaction costs as well as a possibility of settlement
close to real-time operation. The Elspot contracts are power obligations to deliver
or receive power of a duration of one hour or longer. Contracts are divided into
hourly bids, block bids and flexible hourly bids and all bids consist of a price
and a volume. When submitting hourly bids, the procedure is the same for all
hours. Sales bids have to be listed in ascending order and purchase bids in de-
scending order according to price. Consistent with the rules, Elspot will make
a linear interpolation between the price-volume points to construct the bidding
curve. The volume dispatched is determined by the point on the bidding curve
that corresponds to the market price and all transactions are settled at market
price. Block bids are aggregated bids valid for a number of consecutive hours and
associated with only one price and volume. The so-called mean price condition
determines whether a block bid is either rejected or accepted as a whole. If the
price of a sales bid is less than or equal to the average market price or if the price
of a purchase bid is greater than or equal to the average market price of the hours
of the block, the bid is accepted. All transactions are settled at the mean price.
Flexible hourly bids are basically hourly bids that are accepted in the hour with
the highest price, provided this price exceeds a certain threshold. Here, such bids
are omitted, since the bids are mainly used by companies able to close down power
intensive production. Participants post the price-differentiated bids for all hours
of the following operation day before deadline at noon.

It is important to note that the volumes dispatched and the prices at which
transactions are settled are unknown until the market has cleared and market
clearing prices have been determined. Once this is done, the participants receives
a notification of the volumes dispatched. The market price calculations are the
same for each individual hour. The bidding curves that are sales or purchase
curves, are collocated to an aggregated demand curve and an aggregated sup-
ply curve, respectively. The intersection of the demand curve and the supply
curve defines a candidate of the unconstrained market price. Through an iterative
process, the bidding curves are updated according to certain priority rules that
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include accepted block bids and accepted flexible hourly bids until a new uncon-
strained market price is found. The Nordic grid is however divided into fixed price
zones. Sweden, Finland, East and West Denmark are each one zone and Norway
is divided into four zones. If the contractual flow between zones does not exceed
the allocated grid capacity, the unconstrained market price simply applies to all
zones. Otherwise, separate prices are established through counter purchases and
corresponding iterations of price calculations in order to relieve grid congestion.
We assume a single price applies, which is justified in the case of local physical
trading or more generallly by assuming no grid congestion.

The following model should work as a tool of a price-taking hydro-power pro-
ducer bidding into the day-ahead market and producing in accordance. We assume
w.l.g. that the hydro-power producer does not participate in bilateral exchange,
but instead disposes of the entire production in the day-ahead and real-time mar-
kets. We further assume that the producer only participate in the day-ahead
market on the supply side and not on the demand side.

The time horizon of 24 hours is divided into hourly time intervals and is denoted
T = {1, . . . , T} with T = 24. From this the set of blocks A = {a1, . . . , aA} is
constructed. A block is a number of minimum two consecutive hours and the
total number of such blocks within 24 hours is therefore A = 276. Examples of
blocks are a140 = {1, . . . , 7}, a165 = {8, . . . , 18} and a265 = {19, . . . , 24}.

Regarding the modeling of the bidding process, the problem of selecting both
bid prices and bid volumes is nonlinear. However, we have chosen to work with a
linear formulation. The reason is that the problem, even formulated as a mixed-
integer linear program, is relatively hard to solve in terms of computing times.
Moreover, the linear formulation is amenable to standard mathematical program-
ming software packages and specially designed stochastic programming algorithms.
Nonlinearities are avoided by fixing prices in advance such that only volumes
have to be selected. Let H = {1, . . . , H} index the possible bid prices and de-
note these prices ph, h ∈ H, where ph ≤ ph+1. The corresponding bid volumes
are represented by the variables xht ∈ R+, h ∈ H, t ∈ T for hourly bids and
xha ∈ R+, h ∈ H, a ∈ A for block bids. The variables yt ∈ R+, t ∈ T and
ya ∈ R+, a ∈ A are the volumes dispatched, for hourly bids and block bids respec-
tively. The hourly market prices are denoted ρt, t ∈ T and average market prices
for the blocks ρ̄a, a ∈ A, where ρ̄a = (1/|a|)

∑

t∈a ρt.
Disposing of hydro-power production in the day-ahead market, total sales rev-

enues accumulate to
∑

t∈T

ρtyt +
∑

a∈A

ρ̄aya.

Hourly bids are handled in a spirit similar to that of Fleten and Pettersen
(2005). The bidding curve is assumed to cover the entire plant, although bidding
on a single-reservoir basis causes no further difficulty in modeling. For each hour,
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t ∈ T , the bids (xht, ph), h ∈ H are interpreted as price-volume points on a bidding
curve that determines the relation between volumes bid and volumes dispatched.
The curve is constructed by making a linear interpolation between the points, the
result being a piecewise linear curve. Thus, in terms of prices, the bidding curve
can be expressed as

ρt =







































p1 + p2−p1

x2t−x1t
(yt − x1t) , if x1t ≤ yt < x2t

...

ph−1 + ph−ph−1

xht−xh−1t
(yt − xh−1t) , if xh−1t ≤ yt < xht
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or equivalently, in terms of volumes,
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x1t , if p1 ≤ ρt < p2

...
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ph−ph−1
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...
ρt−pH−1

pH−pH−1
xHt + pH−ρt

pH−pH−1
xH−1t , if pH−1 ≤ ρt ≤ pH .

(4.2.1)

For an illustration, see Fig. 4.1. In the case of sales bids, the bidding curves would
naturally be non-decreasing although the market rules does not explicitly dictate
this. Monotonicity constraints may therefore in principle be omitted. In practice,
decreasing bidding curves are rare and we include the constraints

xht ≤ xh+1t, h ∈ H\{H}, t ∈ T . (4.2.2)

p1

p2

ρt

p3

p4

x1t x2t yt x3t x4t

Price

Volume

Figure 4.1: Bidding curve of a given time interval t ∈ T .
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For each b ∈ A, the block bids are (xha, ph), h ∈ H and the relation between
volumes bid and volumes dispatched is

ya =
∑

j:pj≤ρ̄a

xja, a ∈ A (4.2.3)

i.e. in a given block, the volume dispatched comprises the volumes of accepted
bids. For example, consider the block a140 = {1, . . . , 7}. If two bids are given
by (x1,140, p1) = (50, 100) and (x2,140, p2) = (100, 200) and the mean price is
ρ̄140 = 175, then only one bid is accepted and the volume dispatched is y140 = 50.

4.3 Daily hydro-power production

Modeling the hydro-power production side more or less follows the lines of for
example Philpott et al. (2000). The section presents a simple but illustrative model
of a small Norwegian hydro-power plant. Still, it is relatively straightforward to
combine a different modeling of the hydro-power plant with the modeling of the
bidding process in Section 4.2. The plant consists of two reservoirs in cascade; a
larger upper reservoir and a smaller lower reservoir. There is a time delay between
the two reservoirs. The combination of time delay and size differences restricts
the flexibility of the system, which contributes to understanding the importance
of including uncertainty and will be discussed later. Each reservoir is connected
to a power station that contains a single generator. Hydro-power production
works as follows. Upstream water reaching the plant flows to the upper reservoir
where it is stored until released for generation. When released, the water from
the upper reservoir flows to the lower reservoir and is again stored until used
for generation. Electricity is generated by converting the potential energy of the
water into electrical energy. Water that is not discharged on purpose and used for
generation is considered spill. Leaving the plant, the water proceeds downstream.
For an illustration, see Fig. 4.2.

To model the production side, let J = {1, 2} index the reservoirs, let the
variables ujt ∈ {0, 1}, j ∈ J , t ∈ T represent the on/off states of the generators,
wjt ∈ R+, j ∈ J , t ∈ T the generation levels and vjt ∈ R+, j ∈ J , t ∈ T the
corresponding discharges from the reservoirs. Moreover, let the variables ljt ∈
R+, j ∈ J , t ∈ T be the reservoir storage levels and rjt ∈ R+, j ∈ J , t ∈ T the
spill.

Direct costs of hydro-power production include only start-up costs since oper-
ating costs are negligible. Start-up costs amount to

∑

t∈T

∑

j∈J

SCj(ujt−1, ujt),
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Power station

Power station

Lower reservoir

Upper reservoir

Figure 4.2: Two hydro-power reservoirs in cascade.

with the cost functions being

SCj(ujt−1, ujt) = cj max{ujt − ujt−1, 0}, j ∈ J , t ∈ T ,

where cj , j ∈ J are the unit start-up costs. Note that the cost functions are
consistent with a mixed-integer linear formulation. The initial conditions uj0 =
uj,init, j ∈ J must be added.

Costs also include opportunity costs of releasing water as the water could be
stored and saved for future disposal. Such costs are measured as the value of stored
water, which is usually available from more long-term models. As estimates of the
water values we have used an average of prices of futures contracts and prices on
forward contracts.

For reservoirs in cascade the potential for future disposals of stored water
depends on the progress of water releases downstream. Since the reservoirs are
serially connected, the water value of the upper reservoir accounts for the oppor-
tunity of releasing water from both the upper and the lower reservoirs. However,
the possibility of releasing water from the upper reservoir depends on the storage
level of the lower reservoir.

We begin with the lower reservoir. In computing the value of stored water, we
first determine the marginal water value. As a starting point, we have

∂V2(l2t)/∂l2t =

{

0.5FO + 0.5FU , if l2t = lmin
2

0 , if l2t = lmax
2 ,

where FO,FU are the prices on forwards and futures and ∂/∂ denotes the partial
derivative. The reasoning is that in case of an empty reservoir the storage contents
can be disposed of at any time in the future, whereas in the case of a full reservoir
additional storage is spilled. We make a linear interpolation between the end points
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so that the marginal water value is given by the linear non-decreasing function

∂V2(l2t)/∂l2t = (0.5FO + 0.5FU)(l2t − lmax
2 )/(lmin

2 − lmax
2 )

and the water value function can be obtained by integration

∫ l2t

0

(∂V2(l
′
2t)/∂l

′
2t)dl

′
2t.

To account for the fact that the water value of the upper reservoir depends on
the storage level of the lower reservoir, Terry et al. (1986) assume certain operating
rules as for instance the upper reservoir must be completely empty before releasing
water from the lower or the lower reservoir is always emptied before the upper.
We however employ a slightly different approach and determine the water value of
the upper reservoir on the assumption that the lower is half full when the water
of the upper reservoir reaches the lower. The result is then

∂V1(l1t)/∂l1t = (0.5FO + 0.5FU)
(

(l1t − lmax
1 )/(lmin

1 − lmax
1 )+

(l1t + 0.5l2t − lmax
2 )/(lmin

2 − lmax
2 )

)

, if l1t + 0.5l2 ≤ lmax
2

and

∂V1(l1t)/∂l1t = (0.5FO + 0.5FU)(l1t − lmax
1 )/(lmin

1 − lmax
1 ),

if l1t + 0.5l2 ≥ lmax
2 .

To avoid dependency of ∂V1(l1t)/∂l1t on l2t, we replace it by l2,init. Although
slightly more complex, the water value function is again obtained by integration.

The water value functions of the upper and lower reservoirs of the case study
are displayed in Fig. 4.3. In general, the opportunity costs are given by

∑

j∈J

(Vj(lj0) − Vj(ljT ))

and the concave water value functions are approximated by piecewise linear func-
tions to be consistent with a mixed-integer linear formulation

Vj(ljt) = min
k∈K

{d1
kj ljt + d2

kj}, j ∈ J , t ∈ T ,

where d1
kj , d

2
kj , k ∈ K, j ∈ J are the coefficients.

The following bounds are imposed on the water discharges. The upper reservoir
is either not in operation or operated at maximum capacity, which leads to the
constraints

w1t = u1tw
max
1 , t ∈ T ,
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(b) Lower reservoir.

Figure 4.3: Water value functions for two hydro-power reservoirs in cascade.

where wmax
1 is the maximum generation level. The lower reservoir, however, can

be operated anywhere between its minimum and maximum capacity so that

u2tw
min
2 ≤ w2t ≤ u2tw

max
2 , t ∈ T ,

where wmin
2 and wmax

2 are the minimum and maximum generation levels. Similar
bounds apply to the discharges, i.e.

vmin
j ≤ vjt ≤ vmax

j , j ∈ J , t ∈ T .

Here, vmin
j , j ∈ J and vmax

j , j ∈ J are the minimum and maximum discharges.
Finally, the storage levels have to adhere to the bounds

lmin
j ≤ ljt ≤ lmax

j , j ∈ J , t ∈ T ,

where lmin
j , j ∈ J and lmax

j , j ∈ J denote the minimal and maximal storage levels.
As a reservoir has to balance, storage from the previous period and reservoir

inflow either appear as storage, discharge or spill. In the case of the upper reservoir
the balance equations are

l1t − l1t−1 + v1t + r1t = ν1t, t ∈ T ,

in which ν1t, t ∈ T are the inflows from upstream. The initial storage level is
l10 = l1,init. In the case of the lower reservoir, the balance equations are

l2t − l2t−1 + v2t + r2t = v1t−τ , t ∈ T ,

where τ is the time delay between the upper and lower reservoirs. Note that
upstream discharges appear as downstream inflows. However, we have assumed
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that upstream spill is lost and does not appear downstream. Again, the initial
storage level is l20 = l2,init.

Generation and discharge are essentially proportional if ignoring that genera-
tion efficiency is in fact non-constant and omitting effects of the reservoir storage
levels on both generation and discharge. This leads to the constraints

wjt = ηjvjt, j ∈ J , t ∈ T ,

in which ηj , j ∈ J are the generation efficiency coefficients. For the case study,
the assumption of proportional generation and discharge is justified by Fig. 5.3 of
Chapter 5.

Imbalances between volumes produced and volumes dispatched in the day-
ahead market are settled in an intra-day balancing market. As the day-ahead
market should work as a de facto spot market planned imbalances are not allowed.
Hence, a hydro-power producer cannot save water and postpone production for
disposal in the intra-day balancing market since then the day-ahead market would
no longer reflect the physical conditions of the system. The primary focus in the
short-term planning of a hydro-power plant is therefore by all means the day-ahead
market. Justified by the discussion, we approximate the balancing effects of the
intra-day market. We impose a penalty or a reward on imbalances. The penalty
is higher than the day-ahead market price and paid if volumes dispatched exceed
the volumes produced, i.e. in hours of up-regulation, and the reward is lower than
the day-ahead market price and is paid if volumes produced exceed the volumes
dispatched, i.e. in hours of down-regulation. By imposing a penalty or a reward,
the producer retains flexibility to ramp up or down and to bid this flexible capacity
into the balancing market close to real-time. This way of modeling does not
prevent the producer from participating in the balancing market, but is alone an
attempt to avoid planned imbalances. As penalty and reward, we take the average
intra-day market price of hours in which the market has been up-regulated and
down-regulated, respectively. Such penalties and rewards would apply in Norway
if the producer is always regulated in the same direction as the market. In reality,
a producer is very rarely regulated in the opposite direction of the local market.
For a different modeling approach, see also Fleten and Pettersen (2005). Let the
variables yup

t , ydo
t ∈ R+, t ∈ T represent the imbalances and let pup

t , pdo
t , t ∈ T

denote the corresponding penalty and reward. Then the total penalty and reward
amount to

∑

t∈T

(pup
t yup

t − pdo
t y

do
t )

and the balance constraints are

yt +
∑

a∈A:t∈a

ya −
∑

j∈J

wjt = yup
t − ydo

t , t ∈ T .
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It should be remarked that most problems from the literature on bidding into the
day-ahead market simply ignore the trading in a intra-day balancing market and
thereby the consequences of a mismatch between production and dispatch.

4.4 Day-ahead bidding under uncertainty

The model of the preceding sections does not take into considerations the uncer-
tainty of the data, which can arise with respect to reservoir inflows and market
prices. As the idea is to analyze uncertainty that relates directly to bidding, we
ignore the possibility of inflows to be stochastic and confine ourselves to price
stochasticity. For a price-taker, the market clearing process is governed by the
behavior of other participants and, in that the day-ahead market is organized as
a sealed auction, such market conditions are undisclosed. However, market prices
are determined by clearing the market, which makes prices unknown at the time
of bidding.

Uncertainty can be handled by means of stochastic programming. As decisions
are to be made before and after observing uncertainty, respectively, a two-stage
recourse model is appropriate. The first stage involves bidding and the second
stage concerns production aspects. Since bids are submitted before the market
has cleared, prices are unknown at the time of first-stage decision-making. In
contrast, second-stage decision-making is put off until the market has cleared
and take advantage of the additional information from observing prices. The
overall aim is to obtain optimal bidding strategies in terms of expected sales and
production profits.

To incorporate uncertainty, we assume market prices {ρt}t∈T form a stochastic
process on some probability space. We further assume that the multivariate dis-
tribution is known and in particular that it is discrete with a finite number of real-
izations S = {1, . . . , S} referred to as scenarios. The scenario probabilities are de-
noted by πs, s ∈ S and the corresponding market prices by {ρs

t}t∈T s∈S . First-stage
decisions xht, xha, h ∈ H, t ∈ T , a ∈ A are the volumes bid and should be indepen-
dent of future market prices. Second-stage decisions ys

t , y
s
a, q

up,s
t , qdo,s

t , vs
jt, w

s
jt, l

s
jt,

rs
jt ∈ R+, u

s
jt ∈ {0, 1}, s ∈ S are the volumes dispatched and the production deci-

sions. These are allowed to depend on the realization of future market prices, re-
flected in the scenario superscript. The stochastic program consists in maximizing
the expected sales and production profits subject to the bidding and operational
constraints. The constraints (4.2.1)-(4.2.3) couple first-stage and second-stage de-
cisions through the relation between volumes bid and volumes dispatched, whereas
the constraints (4.4.3)-(4.4.10) apply to second-stage decisions only and model
hydro-power production. The two-stage stochastic mixed-integer linear program
stated as its deterministic equivalent is then
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max
∑

s∈S

πs
(

∑

t∈T

ρs
ty

s
t +

∑

a∈A

ρ̄s
ay

s
a −

∑

t∈T

(pup
t qup,s

t − pdo
t q

do,s
t )− (4.4.1)

∑

t∈T

∑

j∈J

SCj(u
s
jt−1, u

s
jt) −

∑

j∈J

(Vj(l
s
j0) − Vj(l

s
jT ))

)

s.t. (4.2.1) − (4.2.3) (4.4.2)

ws
1t = us

1tw
max
1 , t ∈ T , s ∈ S (4.4.3)

us
2tw

min
2 ≤ ws

2t ≤ us
2tw

max
2 , t ∈ T , s ∈ S (4.4.4)

vmin
j ≤ vs

jt ≤ vmax
j , j ∈ J , t ∈ T , s ∈ S (4.4.5)

lmin
j ≤ lsjt ≤ lmax

j , j ∈ J , t ∈ T , s ∈ S (4.4.6)

ls1t − ls1t−1 + vs
1t + rs

1t = νs
1t, t ∈ T , s ∈ S (4.4.7)

ls2t − ls2t−1 + vs
2t + rs

2t = vs
1t−τ , t ∈ T , s ∈ S (4.4.8)

ws
jt = ηjv

s
jt, j ∈ J , t ∈ T , s ∈ S (4.4.9)

ys
t +

∑

a∈A:t∈a

ys
a −

∑

j∈J

ws
jt = qup,s

t − qdo,s
t , t ∈ T , s ∈ S (4.4.10)

xht, xha ∈ R+, h ∈ H, t ∈ T , a ∈ A (4.4.11)

ys
t , y

s
a, q

up,s
t , qdo,s

t ∈ R+, t ∈ T , a ∈ A, s ∈ S (4.4.12)

vs
jt, w

s
jt, l

s
jt, r

s
jt ∈ R+, u

s
jt ∈ {0, 1}, j ∈ J , t ∈ T , s ∈ S. (4.4.13)

It should be remarked that (4.2.1) and (4.2.3) can be simplified. Consider a
fixed t ∈ T and s ∈ S. If the price points ph, h ∈ H are fixed in advance, the
realized market price ρs

t is located between two adjacent points. The remaining
price points are irrelevant for determining the volume to be dispatched. Letting
h(t, s) = max{h ∈ H : ph ≤ ρs

t}, the point of dispatch (ys
t , ρ

s
t ) is located on the

line segment between (xh(t,s)t, ph(t,s)) and (xh(t,s)+1t, ph(t,s)+1). From this, (4.2.1)
is equivalent to

ys
t =

ρs
t − ph(t,s)

ph(t,s)+1 − ph(t,s)
xh(t,s)+1t +

ph(t,s)+1 − ρs
t

ph(t,s)+1 − ph(t,s)
xh(t,s)t, t ∈ T , s ∈ S.
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Similarly, letting h(a, s) = max{h ∈ H : ph ≤ ρ̄s
a}, (4.2.3) can be rewritten as

ys
a = xh(a,s)a, a ∈ A, s ∈ S,

the reason being that for a fixed a ∈ A and s ∈ S, the same dispatch is obtained
by bidding just below the realized market price.

Remark 4.4.1 We operate with two different ways of fixing the price points ph, h ∈
H in advance, one way being to fix equidistant price points and the other being
to fix price points such that the number of realized market prices ρs

t , t ∈ T , s ∈ S
between any two points is always the same. The latter reflects the distribution of
market prices and consequently the price graduation is more crude in areas where
market prices are less likely. We refer to the price points as distributional. In
the last case we examined the effect on the optimal bidding curves of varying the
number of price points. In general, the more crude the price graduation, the more
crude the bidding curves, although small changes in the number of price points
did not alter the curves. Also, we found that equidistant price points may gener-
ally induce rather fine bidding curves. However, within the interval of realized of
market prices, the bidding curves are in fact cruder than those derived from the
distributional price points.

4.5 Scenario generation

To describe the behavior of day-ahead market prices, the ARMA methodology
may be applied. Basically, ARMA processes comprise a specific class of stochastic
processes adopted for the analysis of time series. Here, ARMA processes provide
a statistical model from which price scenarios can be generated by sampling. A
similar approach is applied by Gröwe-Kuska et al. (2000) and Gröwe-Kuska et al.
(2002), who generate electricity demand scenarios and by Eichhorn et al. (2005)
who consider electricity demand, heat demand and day-ahead market prices. For
further details on the ARMA methodology and the application to electricity prices,
see Chapter 8.

We briefly sketch the application of the ARMA methodology. An ARMA
model can be formulated as

ψ(B)ρt = γ(B)et, t ∈ Z,

where ψ(B) and γ(B) are polynomials of the form ψ(B) = 1 −
∑

k ψkB
k and

γ(B) = 1−
∑

k γkB
k and B denotes the back-shift operator, i.e. Bkρt = ρt−k. The

innovations {et}t∈Z are assumed a Gaussian white noise process, i.e. et, t ∈ Z are
independent normally distributed random variables with zero mean and constant
variance. The development of the ARMA model follows the steps
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1. Identify a statistical model of the historical data.

2. Estimate the parameters of the model.

3. Validate the model.

1. An hourly price profile of a year is given. In the creation of a trial model the
data is made stationary by a transformation of the original data. The logarithm is
applied to attain a stable variance and the inclusion of the factors (1−B), (1−B24)
and (1 −B168) is used to stabilize the mean. The structure of the polynomials is
determined by considering seasonalities and investigating the autocorrelations and
partial autocorrelations of the transformed data. When refined, the final so-called
seasonal integrated ARMA (SARIMA) model is identified as

(1 −B)(1 −B24)(1 −B168) log ρt =

(1 − γ1B
1 − · · · − γ7B

7)(1 − γ23B
23 − · · · − γ25B

25−

γ47B
47 − · · · − γ49B

49)(1 − γ168B
168)et, t ∈ Z.

2. Having completed the identification, parameter estimates may be computed
by the use of maximum likelihood optimization.

3. The model is validated by testing the assumptions of a Gaussian white noise
process made on the innovations.

Price scenarios {ρs
t}

T
t=1, s = 1, . . . , S can be generated by drawing the starting

values ρt, t = −192, . . . , 0 and et, t = −223, . . . , 0 from the historical data and
sampling from the independent identically and normally distributed random vari-
ables et, t ∈ Z. Monte Carlo sampling has been used to generate a large number
of scenarios. An example of some sample scenarios is shown in Fig. 4.4a.

Steps 1-3 are all carried out by the statistical software package SAS, version 8.2,
see SAS Institute Inc. (1999). The Monte Carlo sampling has been implemented
in C++.

Due to computational limitations, the number of scenarios has been reduced
using the scenario reduction approach of Heitsch and Römisch (2006a). The ap-
proach rests on the selection and clustering of scenarios that are close with respect
to a certain distance. Here, we have used the euclidean distance. For the basic
concepts, see Chapter 7. We have implemented the scenario reduction approach
in C++.

Remark 4.5.1 Although in practice the distribution of electricity prices is contin-
uous, it is approximated by a discrete distribution with finite support by sampling
a number of scenarios. The quality of the approximation is directly linked to the
quality of the scenarios and it is therefore relevant to evaluate the scenario gen-
eration method. For practical performance, cf. Chapter 7, the in-sample and the
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out-of-sample stability was tested. Where the true distribution was needed, so-
called back-testing was done using historical data. The values of the mean, the
standard deviation and the standard deviation as a percent of the mean are re-
ported in Table 4.1 in case of both in-sample and out-of-sample stability. The

Table 4.1: In-sample stability and out-of sample stability for the problem
(4.4.1)-(4.4.13).

Sce. Mean Std. dev.
In-sample 10 33429.62 74.58 (0.22%)
Out-of-sample 10 34716.69 2.02 (0.01%)

stability analysis gives an indication of the number of scenarios to include in or-
der to represent uncertainty. As is clear from the table, the stochastic program
was found to fulfill the stability requirements in a satisfying way for as few as 10
scenarios.

For illustration purposes a number of demonstration scenarios have been gen-
erated in which the day-ahead market prices are very volatile. An example of
some demonstration scenarios is plotted in Fig. 4.4b.
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(b) Demonstration.

Figure 4.4: Day-ahead market price scenarios generated randomly and by sam-
pling from a statistical model.

4.6 Case study

The case study concerns two reservoirs of a small Norwegian hydro-power plant
located near Trondheim and run by the company TrønderEnergi. The real dimen-
sions of the reservoirs and the capacities of the power stations are scaled down by
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a factor ten for computational reasons. Initial reservoir levels and reservoir inflows
are the real data from a typical day of 2005. To generate day-ahead market prices
in 2005, Elspot at Nord Pool has provided the real data from 2004 that applied
to the Norwegian prize zone NO2, which is the Trondheim area.

The two-stage stochastic programming problem contains 18300 continuous
variables and 1440 constraints in the first stage and 590 continuous variables,
48 binary variables and 740 constraints in the second stage. Stated as its de-
terministic equivalent, (4.4.1)-(4.4.13), the problem is a large-scale mixed-integer
linear program solvable by standard software. The problem was solved with the
mixed-integer linear programming solver from OPL Studio version 3.7, ILOG Inc.
(2003), calling CPLEX 9.0, Cplex Optimization Inc. (2006), on an Intel Xeon 2.67
GHz processor with 4 GB RAM. The time of compiling and solving the problem
varied between 1 and 3000 seconds since no special effort was made to make the
code efficient. As the problem is a two-stage stochastic mixed-integer linear pro-
gram special-purpose solution methods such as the dual decomposition algorithm
of Carøe and Schultz (1999) might prove useful.

The rest of this section compares the stochastic approach to the bidding prob-
lem with a deterministic version. The idea is to explore the effects of including
uncertainty explicitly into the optimization model and, in particular, to examine
its objective function value and solutions.

To consider the structure of the bids, we solved the bidding problem as a
stochastic problem and as a deterministic problem. The former is the two-stage
recourse problem and the latter the corresponding expected value problem formed
by replacing random prices by expected prices. Moreover, we computed the ex-
pected result of using the expected value solution. For more information on the
expected value problem and the expected result of using the expected value solu-
tion, see also Birge and Louveaux (1997).

Some results are reported in Table 4.2. EVP denotes the expected value prob-
lem and RP the recourse problem. H. disp. and B. disp. represent the volume
dispatched of hourly bids and block bids, respectively, and Prod. refers to the
volumes produced. Finally, Imbal. denotes the imbalances between total volumes
dispatched and produced. The table illustrates the difference in the structure of
the bids between the expected value problem and the recourse problem. In over-
all terms, the deterministic model suggests the use of hourly bids, whereas the
stochastic model combines hourly bids and block bids.

For details, consider the deterministic bidding problems for one reservoir and
for two reservoirs in cascade. In both cases, the structure of the solution is simple
and hourly bids are sufficient. With the market price being known in advance,
only two hourly bids are relevant. The relevant bids determine the part of the
bidding curve that passes through the point given by the optimal production level
and the market price. However, the resulting bidding curve may be very sensitive
to changes in the market price. In some scenarios the deviations from the expected
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market price may enforce heavy balancing as dispatches are far from being met by
production. An example is given in Table 4.2 in which the imbalances of a given
hour between the total volumes dispatched and the volumes produced are rather
large in some scenarios (scenario 3,6 and 10).

For the stochastic bidding problems the structure of the solution is more com-
plex. In the one-reservoir-case, the structure of the solution depends on whether
start-up costs are included or not. Without start-up costs hourly bids are suf-
ficient. With start-up costs both hourly bids and block bids are necessary. To
explain, note that hourly bids follow prices closely. These are, however, accepted
independently of each other and do not consider intertemporalities due to start-
ups. Block bids, on the other hand, are valid for a number of consecutive hours
and thus tend to support a regular production schedule with less start-ups. In
the two-reservoir-case the structure of the solution likewise depends on whether
start-up costs are included or not. With the size differences between the reservoirs,
the presence of a system bottleneck has further impact on the structure of the so-
lution. A bottleneck occurs when the capacity of the upper reservoir exceeds the
capacity of the lower reservoir. Obviously, water is released from both the upper
and the lower reservoirs in hours of a high market price. Due to combination of
the bottleneck and the time delay between the reservoirs, however, excessive water
releases from the upper reservoir may lead to forced releases in the lower reservoir
in hours of a low market price. Without a bottleneck hourly bids are sufficient,
whereas with a bottleneck both hourly bids and block bids are necessary. An
explanation could be the following. Since hourly bids are accepted independently
they ignore intertemporalities generated by dependencies between the reservoirs.
On the other hand, as block bids are valid for a number of consecutive hours such
bids can be used as protection against major price fluctuations over time.

Note that with different formulations of the problems hourly bids and block
bids might be relevant both in the deterministic and the stochastic problems. Still,
from the present formulation it is clear that uncertainty is one way of justifying
the use of block bids and that block bids provide motivation for the inclusion of
uncertainty into the bidding problem.

Based on 10 demonstration scenarios and 10 sample scenarios respectively,
we have drawn bidding curves in Fig. 4.5. The curves are shown for both the
deterministic problem (EVP), cf. the dashed lines, and the stochastic problem
(RP), cf. full-drawn lines. The grey lines represent block bids and the black lines
represent hourly bids. Although the bidding curves appear as piece-wise constant,
the curves are in fact piece-wise linear. Nearly piece-wise constant bidding curves,
however, are consistent with the bidding practice of the current application and
reflects an almost price insensitive behavior between certain price levels.

The figures illustrate the discussion above. Consider Fig. 4.5b. For an expected
market price of 261.90 NOK/MWh the dispatch is the same in the deterministic
and the stochastic problems, i.e. 2.24 MWh. Nevertheless, as already stated, the
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Table 4.2: Second-stage solutions of a given hour using demonstration scenar-
ios. The columns H. disp. and B. disp. show dispatch generated by hourly bids
and block bids, separately. Prod. denotes production. The column Imbal. shows
imbalances between total production and dispatch.

EVP RP
Sce. H. disp. B. disp. Prod. Imbal. H. disp. B. disp. Prod. Imbal.

1 2.29 0.00 2.24 −0.05 0.00 2.24 2.24 0.00
2 2.29 0.00 2.24 −0.05 0.00 2.24 2.24 0.00
3 0.00 0.00 1.37 1.37 0.00 2.24 2.24 0.00
4 2.29 0.00 2.24 −0.05 0.00 2.24 2.24 0.00
5 2.29 0.00 2.24 −0.05 0.00 2.24 2.24 0.00
6 0.00 0.00 1.37 1.37 0.00 2.24 2.24 0.00
7 2.29 0.00 2.24 −0.05 0.00 2.24 2.24 0.00
8 2.29 0.00 2.24 −0.05 0.00 2.24 2.24 0.00
9 2.29 0.00 2.24 −0.05 0.00 2.24 2.24 0.00

10 0.00 0.00 1.37 1.37 0.00 2.24 2.24 0.00

deterministic bidding curves are very sensitive to changes in the market price. If
the price turns out to be 28.00 NOK/MWh (scenario 10) or 389.00 NOK/MWh
(scenario 1), the dispatch must be smaller (0.00 MWh) or larger (2.29 MWh),
which results in balancing and increased costs. The same situation applies to Fig.
4.5a.

RP

EVP

0

100

200

300

400

0 0.5 1 1.5 2 2.5

0

100

200

300

400

0 2 4 60 2 4 6

0

100

200

300

400

volume (MWh)

p
ri

ce
(N

O
K

/M
W

h
)

(a) Sample scenarios.

RP

EVP0

100

200

300

400

0 0.5 1 1.5 20 0.5 1 1.5 2

0

100

200

300

400

volume (MWh)

p
ri

ce
(N

O
K

/M
W

h
)

(b) Demonstration scenarios.

Figure 4.5: Bidding curves of a given hour.

To examine the effect of including uncertainty on production and sales profits,
we solved the expected value problem and the two-stage recourse problem with
both the demonstration scenarios and the sample scenarios. For the demonstra-
tion scenarios we have fixed equidistant price points and for the sample scenarios
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distributional price points. We recorded the optimal value of the recourse prob-
lem as well as the expected result of using the expected value solution (EEV). To
compare the two we calculated the difference which we refer to as the value of
the stochastic solution (VSS). The VSS measures the effect of including stochas-
tic prices explicitly into the bidding problem rather than simply using expected
prices. Averages of 10 different runs are reported in Tables 4.3 and 4.4. We focus
on the computational results from using the sample scenarios. Although the mon-
etary gains may seem moderate on a per day basis, the gains accumulate with the
problem being solved every day of the year. Moreover, recall that the dimension
of the power plant has been scaled down by a factor ten. The percentual VSS is
7.93% on average. We conclude that significant profits can be earned by applying
stochastic programming.

Table 4.3: Computational results for demonstration scenarios.

S Opt. val. EEV VSS
10 34801.51 33821.17 980.34

Table 4.4: Computational results for sample scenarios.

S Opt. val. EEV VSS
10 33395.45 30992.49 2402.96
30 33420.60 30676.07 2744.53
50 33405.75 30805.37 2600.39

100 33419.60 30566.44 2853.17

It should be remarked that, in terms of the bidding problem, the expected value
problem produces rather simple solutions inducing a very optimistic value of the
stochastic solution. However, rather than using expected values, current practice
often relies upon the selection of appropriate critical quantiles of the uncertain
data and the following solution of a number of deterministic problems. This
may provide decisions that better hedge against adversity and results in a more
moderate value of the stochastic solution. Still, the comparison of the expected
value problem with the stochastic programming problem illustrates the effects of
including uncertainty explicitly into optimization.

As concluded, solutions are less sensitive to changes in the data in the stochastic
approach than in the deterministic version. Still, the expectation-based stochastic
program lacks robustness in the sense that solutions tend to be unstable. Almost
equal objection function values are obtained by structurally different solutions
which indicates a flat objective function. Although structurally different, the so-
lutions are equally good as long as the expectation-based objective criterion is
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acknowledged. However, the expectation-based objective criterion can be claimed
to ignore both risk attributes and profit distribution issues. In order to obtain a
more robust stochastic programming model a risk measure can be included in the
objective function. The result is the so-called mean-risk model. The inclusion of
the downside risk measure semideviation penalizes deviations from the expected
value and has the advantage of being consistent with a mixed-integer linear for-
mulation. With semideviation, the objective function of (4.4.1)-(4.4.13) turns into

∑

s∈S

πszs − λ
∑

s∈S

πs max
{

∑

s̄∈S

πs̄zs̄ − zs, 0
}
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ty

s
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t )−
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s
jt−1, u

s
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s
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s
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where λ is a suitable weight. For more information on semideviation and other risk
measures that are consistent with a linear formulation, see Chapter 2. The mean-
risk problem ensures more stable solutions and a more equal profit distribution
among the scenarios. In Table 4.5 we report the expected value and the risk for
averages of 10 different runs using sample scenarios. Since the objective function
is flat stable solutions can be obtained with only very small profit reductions.

We have solved the mean-risk problem for varying weights λ ∈ R+. The points
defined by the selected weights are efficient points of the bi-criteria mean-risk
problem and gives an indication of the efficient frontier, that can be obtained by
solving the mean-risk problem for all λ ∈ R+. Still, even the efficient frontier
is insufficient to fully describe the entire efficiency set. For more on the efficient
frontier and the efficiency set, see also Chapter 2.

Finally, note that the inclusion of the downside risk measure semideviation
does not alter the structure of the solution in a way that contradicts the analysis
already made.

Table 4.5: Computational results for semideviation using simulation scenarios.

λ 0.001 1 10 100 1000
Exp. val. 33389.34 33389.34 33192.04 32922.73 32716.62
Risk 107.56 107.56 7.94 1.02 0.00





Chapter 5

Short-term hydro-power

production planning by stochastic

programming

The present chapter presents a short-term production planning problem not pre-
viously addressed in the literature. As in Chapter 4, the problem has become
relevant with the restructuring of the power sector and the introduction of the
day-ahead market.

Within the framework of multi-stage stochastic mixed-integer linear program-
ming, the aim is to develop a short-term production plan for a price-taking hydro-
power plant operating under uncertainty. Current production must however com-
ply with the day-ahead commitments of the previous day which makes short-term
production planning a matter of spatial distribution among the reservoirs of the
plant. Day-ahead market prices and reservoir inflows are uncertain beyond the
current operation day and, hence, water must be allocated among the reservoirs
in order to strike a balance between current profits and expected future profits.
A case study is based on data from a Norwegian hydro-power producer and the
Nordic power market at Nord Pool.

5.1 Introduction

As is also the case in other regions of the world, hydro-power production accounts
for a significant share of the total power production in the Nordic countries. As
an example, the countries within Nordel produced 191 TWh hydro-power out of
a total production of 387 TWh in 20041.

1 Reference: www.nordel.org
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12.00 24.00 24.00

day-ahead
bidding

one-day
planning

real-time
balancing

Figure 5.1: Time schedule for short-term power planning and operation.

In the process of planning hydro-power production, problems are usually cate-
gorized according to their time horizon; long-term, medium-term and short-term.
Short-term hydro-power production planning mainly involves the physical oper-
ation of the plant within a time horizon of a day or a week and with a time
resolution of an hour or shorter. The most important activities that come into
play are

• the day-ahead commitments, i.e. the bidding of the production into a power
exchange a day in advance.

• the establishment of a production plan that complies with the day-ahead
commitments.

• the intra-day balancing, i.e. the continuous corrections of deviations between
the commitments and the actual production.

The focus of the present paper is the establishment of a one-day production plan
that complies with the day-ahead commitments of the previous day. From the
perspective of this study, the day-ahead bidding has been completed whereas real-
time balancing considerations will be postponed until actual production has been
observed. For an illustration of the time schedule, see Fig. 5.1.

When the results of the day-ahead auction are known, the classical hydro-
power problem, that consists in scheduling of water through time, is no longer an
issue. The challenge in making a production plan for the following operation day
is rather the scheduling of water through space, which involves the allocation of
production between various parts of the plant to achieve effective and efficient
operation. Since, however, short-term planning is strongly coupled to more long-
term planning, the value of current decisions must be evaluated against future
consequences. Therefore, in determining the spatial distribution of the following
operation day, production is usually considered in a longer time span such as seven
days.

Day-ahead market prices and reservoir inflows are both subject to data un-
certainty caused by non-anticipated market conditions and unpredictable weather
situations. We propose the stochastic programming framework to handle this un-
certainty. Indeed, as information evolves over time and uncertainty is disclosed in
stages, a multi-stage stochastic program is appropriate. In line with the above,
the first stage relates to the one-day production plan and the remaining stages
to the production of the following six days. It follows that the overall objective
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of the stochastic program is to establish a one-day production plan that strikes a
balance between current profits and expected future profits subject to a number
of operational constraints.

Existing approaches to short-term production planning comprise both simula-
tion and optimization. As simulation is often based on adjusting manual sugges-
tions until a convincing plan is found, this approach is highly user dependent and
does not guarantee an optimal plan. On the contrary, optimization represents a
relatively impartial way of identifying an optimal plan. Whichever approach is
used, most practical applications do not explicitly include data uncertainty.

The outline of the paper is the following. Sections 5.2 and 5.3 present a mixed-
integer linear programming problem for the development of a one-day production
plan that complies with the day-ahead commitments. Section 5.4 introduces data
uncertainty and presents a stochastic programming formulation of the problem,
whereas Section 5.5 explains how to generate scenarios that serve as input to the
stochastic program. Finally, Section 5.6 illustrates the problem with a case study.

5.2 Short-term hydro-power production

The starting point for modeling is short-term hydro-power production. Modeling
is restricted to mixed-integer linear programming and follows along the lines of for
example Philpott et al. (2000). For illustration purposes, the case study is kept
rather simple and the model concerns only a very small hydro-power plant. Some
examples of non-modeled features are constraints that apply to the network of
watercourses and junctions, the distinction between baseload and load-following
power stations, reserve requirements as well as legal requirements, see Jacobs et al.
(1995). Nevertheless, it should be clear that including additional hydrological
constraints or modeling a larger hydro-power plant is possible by means of mixed-
integer linear programming.

As in Chapter 4, the hydro-power plant of the case study consists of two reser-
voirs in cascade; a larger upper reservoir and a smaller lower reservoir. However,
each reservoir now has its own inflow stream. Furthermore, each reservoir is con-
nected to a power station that contains a number of turbines. As upstream water
reaches the plant, it is stored in the reservoirs until released through the turbines.
In the turbines, electricity is generated by converting potential energy into electri-
cal energy, before the water proceeds downstream. Water released from the upper
reservoir flows to the lower reservoir with some time delay on its way. Water
that is not discharged on purpose and used for generation is considered spill. The
size differences of the reservoirs restrict the flexibility of the system in that water
releases from the upper reservoir may force releases in the lower reservoir or may
even lead to spill. For an illustration of the plant, see Fig. 5.2. The model is
presented in slightly more general terms than the case study requires.
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Power station

Power station

Lower reservoir

Upper reservoir

Figure 5.2: Two hydro-power reservoirs in cascade.

The time horizon covers the current operation day, for which a production plan
should be made, as well as the following six operation days. Due to the nature of
the data, the time horizon is discretized into intervals with the length of an hour
and is denoted by T = {1, . . . , T} with T = 7 × 24 = 168.

To model hydro-power generation in cascade, let J index the reservoirs and let
Ij , j ∈ J index the generators of the connected power stations. For the case study,
J = {1, 2}, I1 = {1} and I2 = {2}. Let the variables uit ∈ {0, 1}, i ∈ Ij , j ∈ J , t ∈
T represent the on/off states of the generators, wit ∈ R+, i ∈ Ij , j ∈ J , t ∈ T the
generation levels and vit ∈ R+, i ∈ Ij , j ∈ J , t ∈ T the corresponding discharges
from the reservoirs. Also, let the variables ljt ∈ R+, j ∈ J , t ∈ T be the reservoir
storage levels and rjt ∈ R+, j ∈ J , t ∈ T the spill.

As concerns direct costs of hydro-power generation, operating costs are negli-
gible. However, start-up costs amount to

∑

t∈T

∑

j∈J

∑

i∈Ij

SCi(uit−1, uit),

where the cost functions are

SCi(uit−1, uit) = ci max{uit − uit−1, 0}, i ∈ Ij , j ∈ J , t ∈ T

and the costs per start-up are ci, i ∈ Ij , j ∈ J . It should be remarked that the
formulation can be transformed into a mixed-integer linear formulation. Initial
on/off states of the generators are ui0 = ui,init, i ∈ Ij , j ∈ J .

Indirect costs include opportunity costs of releasing water as the water could
be stored and saved for future generation and, thus, such costs are measured as
the value of stored water. The opportunity costs are

∑

j∈J

(Vj(lj0) − Vj(ljT )),
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where

Vj(ljt) = min
k∈K

{d1
kj ljt + d2

kj}, j ∈ J , t ∈ T

and the coefficients of the concave water value functions are d1
kj , d

2
kj , k ∈ K, j ∈ J .

The formulation is consistent with a linear formulation. For further remarks on
the derivation of the water value functions, see Chapter 4.

The following bounds are imposed on the generation levels

wmin
i uit ≤ wit ≤ wmax

i uit, i ∈ Ij , j ∈ J , t ∈ T ,

where wmin
i , i ∈ Ij , j ∈ J and wmax

i , i ∈ Ij , j ∈ J are the minimum and maximum
generation levels. The water discharges have to comply with similar bounds, so
that

vmin
j ≤

∑

i∈Ij

vit ≤ vmax
j , j ∈ J , t ∈ T ,

where vmin
j , j ∈ J and vmax

j , j ∈ J are the minimum and maximum discharges.
Finally, the following bounds apply to the storage levels

lmin
j ≤ ljt ≤ lmax

j , j ∈ J , t ∈ T ,

where lmin
j , j ∈ J and lmax

j , j ∈ J denote minimal and maximal storage levels.
According to the reservoir balances, inflow and storage from previous periods

either appear as discharge, storage or spill in the following period. The upper
reservoir balance equations are therefore

l1t − l1t−1 +
∑

i∈I1

vit + r1t = ν1t, t ∈ T ,

in which ν1t, t ∈ T are the inflows from upstream. The initial storage level is
l10 = l1,init. The lower reservoir balance equations are

ljt − ljt−1 +
∑

i∈Ij

vit + rjt =
∑

i∈Ij−1

vit−τ + νjt, j ∈ J \{1}, t ∈ T ,

in which νjt, j ∈ J \{1}, t ∈ T are the direct inflows from upstream. Note that,
for reservoirs in cascade, releases from the upper reservoirs are inflows of the lower
reservoirs. It is, however, assumed that upstream spill does not contribute to the
downstream inflows. τ is the time delay between the reservoirs. Again, the initial
storage level is lj0 = lj,init, j ∈ J \{1}.

The generation level is a function of the water discharge from the reservoir
and the net water head of the power station. The net water head is the difference
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between the headwater elevation and the tailwater elevation and, whereas the
former is a function of the reservoir storage level, the latter is a function of the
discharge. It is, however, assumed that the net water head only varies with the
discharge over the course of the short-term planning horizon. The assumption is
justified in the case of relatively small storage level variations compared to the
net head, which holds for the case study. By ignoring some head variation effects,
the relation between generation and discharge can be approximated by a concave
function. Hence,

wit = Gi(vit), i ∈ Ij , j ∈ J , t ∈ T ,

where

Gi(vit) = min
k∈K

{e1kivit + e2ki}, i ∈ Ij , j ∈ J , t ∈ T

and the coefficients of the concave functions are e1ki, e
2
ki, k ∈ K, i ∈ Ij , j ∈ J . For

an illustration of the generating functions of the case study, see Fig. 5.3. It is clear
that the generation and discharge could in fact be assumed to be proportional in
the case study.
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Figure 5.3: Generation functions for two different hydro-power turbines.

5.3 Day-ahead market commitments

Norway was among the first countries in the world to undertake the deregulation
of the power markets. In the beginning of the nineties a Norwegian power market
was established and has since then developed into an overall Nordic power market.
An essential component of the power market is the presence of the power exchange
that facilitates physical trading activity on a day-per-day basis. The spot market,
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Elspot, at the Nordic power exchange, Nord Pool, is a pool-based market in which
market participants exchange power contracts for physical delivery the following
operation day and is referred to as the day-ahead market. In 2004, a total of 167
TWh or 42 percent of the Nordel power production was traded at Elspot2.

Elspot contracts are commitments to sell or purchase power of a duration of
one hour or longer. To use such contracts, the market participants post price-
differentiated bids for every hour of the following operation day before deadline
at noon. The hourly market prices are then determined by equilibrium between
sales and purchases. Once the market prices have been announced, the market
participants receive a notification of the winning bids and the hourly commitments
of the following operation day. Real-time operation and physical delivery is done
according to the day-ahead commitments to the extent possible.

The value of electricity production should be measured on the basis of day-
ahead market prices. We assume w.l.g. that the entire production is sold in the
day-ahead market and that bilateral contracts are left out. Day-ahead market
sales give rise to the revenues

∑

t∈T

∑

j∈J

∑

i∈Ij

ρtwit,

where ρt, t ∈ T are the day-ahead market prices. By assuming that the producer
is a price-taker, market prices can be modeled as exogenous. To justify the price-
taker assumption, the producer should be sufficiently small to have only limited
market power. In the case of significant market power the concepts of game theory,
monopoly or oligopoly becomes important and the complexity of the model may
increase.

The production of the first day has to meet the hourly commitments in the
day-ahead market. As the day-ahead commitments are fixed a day in advance,
these are given as data to the model and may be obtained from more long-term
planning models such as the day-ahead bidding model of Chapter 4. This gives
rise to the constraints

∑

j∈J

∑

i∈Ij

wit = dt, t ∈ T1,

where T1 indexes the hours of the first day and dt, t ∈ T1 are the day-ahead
commitments of the first day. If a producer relies on portfolio bidding and places
compound bids that apply to a number of plants, the modeling of a larger hydro-
power system comes into play. Still, it should be straightforward to extend the
model.

2 Reference: www.nordel.org and www.nordpool.no
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If production deviates from the day-ahead commitments, the imbalances are
settled in an intra-day balancing market. Since, however, the purpose of the model
is production planning rather than market exchange, intra-day balancing is not
included. Moreover, since planned imbalances are forbidden by the market opera-
tors, producers are not allowed to hold back production for the balancing market.
Although intra-day balancing is left out of production planning, a producer can
always ramp down or, in the case of spare capacity, ramp up while actually pro-
ducing and thereby participate in the real-time balancing market. For a way of
incorporating balancing market considerations, see Chapter 4.

5.4 The stochastic programming model

Both day-ahead market prices and reservoir inflows are rather volatile and hard
to predict because of unexpected market conditions and unforeseen weather situa-
tions. The model of the previous sections does not reflect the fact that new infor-
mation about the uncertain data arrives along the planning horizon. Nevertheless,
this can be handled by the application of multi-stage stochastic programming.

To facilitate modeling, we assume the uncertain data evolves over time ac-
cording to a multivariate stochastic process and the probability information is
approximated by a scenario tree. Consistent with the notation of multi-stage
stochastic programming problems introduced in Chapter 1, the realizations of the
uncertain prices and inflows {ρt, ν1t, ν2t}t∈T are denoted {ρn, νn

1 , ν
n
2 }n∈N .

By assuming that information is revealed only at the beginning of an operation
day, the scenario tree consists of seven stages or operation days that each consist
of 24 time intervals or hours. The assumption is valid for day-ahead market prices
that are announced a day prior to physical delivery. Furthermore, it is justified
in the case of daily readings on the reservoir inflow measuring instruments or at
least as an effort to limit the size of the scenario tree. An example of a scenario
tree is shown in Fig. 5.4.

1 2 3 22 23 24

25 26 27 46 47 48

49 50 51 70 71

Figure 5.4: An illustration of a scenario tree for day-ahead market prices and
reservoir inflows.

The inclusion of seven stages ensures the coupling between short-term and more
long-term planning. While the first stage determines the one-day production plan,
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the remaining six stages serve to evaluate the impact of the plan on future produc-
tion. In line with this, the overall objective of the multi-stage stochastic program
is to determine the one-day production plan that strikes a balance between cur-
rent and expected future profits. In its scenario tree formulation, the multi-stage
stochastic program is the following

max
∑

n∈N

∑

j∈J

∑

i∈Ij

πn
(

ρnwn
i − SCi(u

n−1

i , un
i )

)

+ (5.4.1)

∑

n∈NT

∑

j∈J

πnVj(l
n
j ) −

∑

j∈J

Vj(lj,init)

s.t.
∑

j∈J

∑

i∈Ij

wn
i = dn, n ∈ Nt, t ∈ T1 (5.4.2)

un
i w

min
i ≤ wn

i ≤ un
i w

max
i , i ∈ Ij , j ∈ J , n ∈ N (5.4.3)

vmin
i ≤

∑

i∈Ij

vn
i ≤ vmax

i , i ∈ Ij , j ∈ J , n ∈ N (5.4.4)

lmin
j ≤ lnj ≤ lmax

j , j ∈ J , n ∈ N (5.4.5)

ln1 − l
n−1

1 +
∑

i∈I1

vn
i + rn

1 = νn
1 , n ∈ N (5.4.6)

lnj − l
n−1

j +
∑

i∈Ij

vn
i + rn

j =
∑

i∈Ij−1

v
n−τ

i + νn
j , j ∈ J \{1}, n ∈ N (5.4.7)

wn
i = Gi(v

n
i ), i ∈ Ij , j ∈ J , n ∈ N (5.4.8)

un
i ∈ {0, 1}, wn

i , v
n
i , l

n
j , r

n
j ≥ 0, i ∈ Ij , j ∈ J , n ∈ N . (5.4.9)

Note that the multi-stage stochastic program may be approximated by a two-
stage stochastic program. A natural two-stage approximation would consist of a
first stage that determines the one-day production plan and a second stage that
comprises the remaining six days.

5.5 Scenario generation

The modeling of day-ahead market prices and reservoir inflows is based on time
series analysis. Time series models have the advantage of being derived from
limited information and still allow for both forecasting and sampling. As shown
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in Chapter 8, the ARMA time series framework provides an appropriate model
for hourly prices, whereas the modeling of hourly inflows requires development.
Nevertheless, also in this case, we find the ARMA time series models sufficient to
demonstrate the usefulness of stochastic programming.

The multivariate stochastic process of hourly day-ahead market prices and
water inflows constitutes a time series3 characterized by seasonal changes and
stochastic variations that are mainly due to the market conditions and the weather
patterns. In general, a multivariate stochastic process can be modeled as a vector
ARMA (VARMA) process

ψ(B)ξt = γ(B)et, t ∈ Z,

where ψ(B) and γ(B) are the polynomials ψ(B) = 1 −
∑

k ψkB
k and γ(B) =

1 −
∑

k γkB
k with the parameter matrices ψk and γk and where B denotes the

back-shift operator, i.e. Bkξt = ξt−k. ξt and et are vectors, where et, t ∈ Z are
assumed to be independent normally distributed random vectors with zero mean
and constant covariance matrix Σ.

We consider the three-dimensional stochastic process {ρt, ν1t, ν2t}t∈T of day-
ahead market prices and reservoir inflows. An inspection of the cross correlations
indicates that the innovations of prices and inflows are uncorrelated and, thus,
prices and inflows can be modeled separately. For inflows, the innovations can
be assumed only contemporaneously correlated and the inflows can therefore be
modeled by a so-called contemporaneous ARMA (CARMA) model. For further
references on CARMA models and stream-flows, we refer to Chapter 8. As a
result, three univariate ARMA models may be fitted independently and combined
to a multivariate model. The development of the three univariate ARMA models
follows the steps

1. Identify a statistical model of the data.

2. Estimate the parameters of the model.

3. Validate the model.

1. In the identification step the data is made stationary and the orders of
the polynomials are determined. The seasonal ARMA (SARIMA) models are
identified as

(1 − ψ1B)(1 −B)(1 −B24)(1 −B168)ρt =

(1 − γ1B)(1 − γ24B
24)(1 − γ168B

168)et, t ∈ Z (5.5.1)

3 Data sources: Nord Pool (prices) and TrønderEnergi (inflows)
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for day-ahead market prices and

(1 − ψj
1B)(1 −B)νjt =

(1 − γj
1B − γj

2B
2)(1 − γj

41B
41)ejt, j = 1, 2, t ∈ Z. (5.5.2)

for water inflows.
2. Parameter estimation is based on maximum likelihood optimization.
3. Finally, diagnostic checks are applied to validate the assumptions of inde-

pendence and normality.
We assume that the innovations of (5.5.1) and (5.5.2), i.e. {et}t∈Z and {e1t,

e2t}t∈Z, are uncorrelated and, since normally distributed, independent. Further-
more, we assume the innovations of (5.5.2), i.e. {e1t}t∈Z and {e2t}t∈Z, are only
contemporaneously correlated. In order to obtain completely uncorrelated innova-
tions, we let (e1t, e2t)

T = C(ǫ1t, ǫ2t)
T , where CCT = Σ, C is an upper triangular

matrix, Σ is the covariance matrix of the innovations and {ǫ1t, ǫ2t}t∈Z are indepen-
dent normally distributed random vectors with zero mean and constant covariance
matrix I2. A multivariate ARMA model that describes the three-dimensional pro-
cess of day-ahead market prices and reservoir inflows has then been fitted. A
thorough discussion of the application of VARMA and CARMA to the day-ahead
market prices and reservoir inflows is found in Chapter 8.

The development of the time series models in steps 1-3, is accomplished by the
statistical software package SAS, version 8.2., see SAS Institute Inc. (1999).

There are various approaches for approximating what is actually a continuous
probability distribution of the uncertain data by a discrete and finite distribution
represented by a scenario tree. For a general overview on the construction of sce-
nario trees, see Chapter 7. With available historical data, is possible to sample
from the statistical model and convert the resulting scenario paths into a scenario
tree. As a starting point, we therefore generate 1000 scenario paths using Monte
Carlo sampling from the multivariate ARMA model. Examples of a few scenario
paths are shown in Fig. 5.5. The scenario paths are combined to a scenario tree
by applying the conditional clustering algorithm of Heitsch and Römisch (2006b).
For multi-stage stochastic linear programs, the method is supported by stabil-
ity results and consequently, the quality of the constructed scenario tree can be
controlled by certain error bounds. Although, the current problem is actually a
mixed-integer linear multi-stage stochastic program, we still use the method, the
reason being that the conditional clustering is intuitively appealing. Moreover,
only few scenario generation methods apply to multi-stage stochastic programs
that involves multivariate stochastic processes. The Monte Carlo sampling was
implemented in C++, whereas the method of Heitsch and Römisch (2006b) was
most kindly made available by the authors.

Remark 5.5.1 When approximating a continuous probability distribution by a
discrete distribution, the quality of the approximation should be evaluated. How-
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ever, the error bounds controlling the quality of the scenario tree construction
method of Heitsch and Römisch (2006b) are found to be quite loose. Furthermore,
due to the mixed-integer linear formulation, the bounds may not actually be valid.
For these reasons, a different evaluation of the practical performance is relevant.
We have tested in-sample stability and out-of-sample stability of the stochastic pro-
gramming problem. For further details on evaluating scenario generation methods
and the relation to the particular scenario tree construction method, see Chapter 7.
We have generated ten different scenario trees, formulated the stochastic program-
ming problems and solved them. For in-sample stability, we report the optimal
values. For out-of-sample stability, we have used back-testing and evaluated the
optimal solutions on the historical data. We report the mean, the standard devia-
tion and the standard deviation as a percent of the mean for the optimal values in
Table 5.1. The out-of sample values have a smaller standard deviation than the
in-sample values since in-sample stability is evaluated on different trees, whereas
out-of-sample stability is evaluated on the same tree based on historical data. Note
also that the out-of-sample value is much higher than the in-sample value. This
would usually be a sign of poor approximate solutions. Here, it could be explained
by the fact that, as the historical data includes the weeks of one year, the data
does not suitably represent the true probability distribution of a specific week. Un-
fortunately, due to lack of data, we were unable to consider the specific week in
a number of different years. As an overall conclusion, we find the stochastic pro-
gramming problem to be sufficiently stable with respect to the scenario generation
method in use.

Table 5.1: In-sample stability and out-of sample stability for the problem
(5.4.1)-(5.4.9).

Sce. Nodes Mean Std. dev.
In-sample 264 11681 564162.43 3919.77 (0.69%)
Out-of-sample 273 12096 945564.23 0.00 (0.00%)

In addition to sample scenarios, demonstration scenarios have been generated
to illustrate various effects of day-ahead prices and reservoir inflows. The demon-
stration scenarios allow for prices and inflows to be significantly higher and lower
than the real observations of the data.

5.6 Numerical results

The case study is based on data from a small Norwegian hydro-power plant lo-
cated south of Trondheim and run by the company TrønderEnergi. The reservoir
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Figure 5.5: Scenarios generated by sampling from a statistical model.

capacity of all power plants of this company amount to 0.7 TWh, the annual in-
flows to 1.5 TWh and the generation capacity to 334 MW4. Still, the case study
concerns only two reservoirs and two power stations with each one turbine which
corresponds a reservoir capacity of 24.6 GWh, annual inflows of 69.6 GWh and
a generation capacity of 33.9 MW. The initial conditions of the plant are given
by the data from a typical week of 2005 and the same applies for the day-ahead
commitments. The generation of reservoir inflows for 2005 is based on observa-
tions from the year 2004. To generate corresponding day-ahead market prices for
2005, Nord Pool has provided the data from 2004 that applied to the Norwegian
prize zone NO2, which includes the Trondheim area. Basically, NO2 consists of
nine large hydro-power producers and a number of very small producers. The
company TrønderEnergi accounts for 3 percent of the reservoir capacity, 5 percent
of the annual inflows and 5 percent of the generation capacity of the area5 and is
therefore considered a price-taker of the area.

The multi-stage stochastic program (5.4.1)-(5.4.9) contains 12 variables, 1 bi-
nary and 11 continuous, and 22 constraints per node of the scenario tree, except
for a few extra variables and constraints in the first and the last stages. Hence, it
is a mixed-integer linear program which size depends on the number of scenarios
and nodes of the scenario tree. We have solved the problem with the mixed-integer
linear programming solver from OPL Studio version 3.7, ILOG Inc. (2003), calling
CPLEX 9.0, Cplex Optimization Inc. (2006), on an Intel Xeon 2.67 GHz proces-
sor with 4 GB RAM. Direct application of CPLEX is no longer possible when
the number of scenarios and nodes of the scenario tree is further increased. We
consider the scenario tree to be sufficiently large to appropriately approximate
the probability distribution . Moreover, regarding traditional solution approaches
to stochastic hydro scheduling problems, dynamic programming may suffer from
the curse of dimensionality and as shown in Archibald et al. (1996) may be un-

4 Norwegian Competition Authority, 2002

5 Norwegian Competition Authority, 2002
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able to outperform linear programming methods. Also, due to the mixed-integer
formulation, the problem is not amenable to nested Benders’ decomposition. It
may, however, be suitable for some of the general decomposition approaches that
apply to multi-stage stochastic mixed-integer linear programming problems. So-
lution approaches worth investigating comprise those based on Lagrangian relax-
ation of non-anticipativity constraints, cf. progressive hedging by Løkketangen and
Woodruff (1996) or nodal coupling constraints, cf. Dentcheva and Römisch (2004).

While varying the level of clustering in the scenario tree construction method,
we have recorded the number of scenarios and nodes of the scenario tree, the
total number of variables and constraints of the problem, the optimal objective
function value and the computing time spent to solve the problem, cf. Table 5.2.
All numbers reported are averages of 10 different runs and all computations are
based on sample scenarios. Test runs indicate that the two-stage approximation to
the multi-stage stochastic program may provide first-stage solutions of a significant
quality in terms of objective function values.

Table 5.2: Computational results for sample scenarios.

Sce. Nodes Var. Con. Obj. val./NOK CPU/s
267 11777 141846 261254 562207.50 28.71
493 43709 525494 965566 567086.91 203.81
782 103144 1239304 2275470 566645.83 764.35

In hydro-power production, planning is coupled in time. The time coupling can
be explained mainly by the storage balancing between the reservoirs. The storage
balancing and the capacities of the reservoirs determine the spatial distribution
of water between the reservoirs of the hydro-power plant. Therefore, the spatial
distribution depends on future day-ahead market prices and reservoir inflows. To
illustrate this, consider the case where both reservoirs are close to empty. If day-
ahead market prices for the following six days are expected to be high, there is a
potential for future generation and current production takes place in downstream
reservoirs. This ensures future water releases from all reservoirs in cascade and
higher future generation levels. If, on the other hand, day-ahead market prices
for the following six days are expected to be low, current production is allocated
according to water values and start-up costs. Now, consider the case where both
reservoirs are almost full. If reservoir inflows for the following six days are expected
to be high, current production takes place in downstream reservoirs in order to
empty the system and accommodate future generation. If reservoir inflows for the
following six days are expected to be low, current production is again allocated
according to water values and start-up costs.

The dependence of the spatial distribution on the future day-ahead market
prices and reservoir inflow levels is depicted in Figs. 5.6-5.7. The figures repre-
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sent the hourly day-ahead commitments, which for the purpose of illustration are
chosen to be constant, and the dark and light gray colors show the distribution
of generation between the upper and lower reservoirs. The figures are based on
demonstration scenarios.

Obviously, mixed effects of future day-ahead market prices and water inflows
may appear. If both reservoirs are nearly empty and low day-ahead market prices
are expected, current production may take place upstream or downstream depend-
ing on future inflow levels as current production is allocated according to water
values and start-up costs. In the same fashion, consider the case where both reser-
voirs are close to full and water inflows are expected to be low. If day-ahead
market prices are expected to be low, current production takes place upstream.
If day-ahead market prices are expected to be high, there is a potential for future
generation and current production takes place both upstream and downstream to
ensure higher future generation levels.
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Figure 5.6: Spatial distribution among two reservoirs in cascade. Both reservoirs
are close to empty.
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Figure 5.7: Spatial distribution among two reservoirs in cascade. Both reservoirs
are close to full.

Time coupling may also be explained by start-up costs. Furthermore, start-
up costs contribute to the complexity of the model by the introduction of binary
variables. It is therefore relevant to investigate the importance of including start-
up costs. Using sample scenarios, the result of the case study is a production
plan with few start-ups. Therefore, to illustrate the effect of start-up costs, we



110 Short-term hydro-power production planning by stochastic programming

have generated demonstration scenarios that capture fluctuations in day-ahead
prices and reservoir inflows and used these for testing. The results of fluctuating
day-ahead market prices and the combination of fluctuating day-ahead market
prices and reservoir inflows are displayed in Table 5.3. We have listed the optimal
objective function value, the expected number of start-ups and the expected start-
up costs. Although start-up costs seem to be limited, the mixed-integer linear
formulation still has its relevance. The modeling of a larger hydro-power plant with
more turbines or the inclusion of other hydrological constraints might involve an
increase in the number of integer variables. Moreover, when increasing the costs
per start-up, total start-up costs increase even though the expected number of
start-ups decreases.

Table 5.3: Information on start-up costs.

Obj. val./NOK Start-ups Start-up costs/NOK
Prices 1466433.58 0.34 390.53
Prices and inflows 1462328.61 0.22 214.62

By employing the expectation-based objective function criterion, the produc-
tion planning is conducted in a risk neutral fashion. As most power producers are
in fact risk averse, portfolio hedging comes into play. Portfolio hedging is often
separated from production planning so that the aim of planning is to maximize
the value of the available resources, while hedging alone aims to control the risk of
the portfolio. Still, to control risk along with production planning, and in partic-
ular to achieve a more uniform profit distribution among scenarios, a risk measure
can be appended to the objective function. The result is the so-called mean-risk
model. The downside risk measure semideviation penalizes deviations below ex-
pected profit and has the advantage of being consistent with a linear formulation.
For further references on semideviation, see Chapter 2. We append the risk mea-
sure and penalize accumulated deviations to obtain the following mean-risk model

∑

n∈N

πnzn − λ
∑

n∈NT

πn max
{

∑

n̄∈N
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,
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It should be remarked that it is possible to include a multi-period risk measure,
which does not alone focus on accumulated profit but also take into account in-
termediate time periods. For some examples on multi-period risk measures, see
Eichhorn et al. (2005).

We have solved the problem for varying weights and recorded the expected
value along with the risk, cf. Table 5.4. By solving for all positive weights, we
would obtain the efficient frontier. Still, the efficient frontier does not represent
the entire efficiency set and therefore we display only a selected set of weights
and their corresponding records. All numbers reported are averages of 10 different
runs and all computations are based on simulation scenarios.

Table 5.4: Computational results for semideviation using sample scenarios.

λ 0.001 1 10 100 1000
Exp. val. 563110.56 563110.54 495984.66 467811.71 457764.42
Risk 21906.52 21906.26 1480.32 43.03 0.00

From Table 5.4 it can be seen that when employing the expectation-based
objective function criterion in short-term production planning, the downside risk
is significant. Also, a reduction in risk requires a considerable reduction in profit.
In the long run, however, hydro-power producers have a natural hedge. Whereas
prices and inflow are uncorrelated in the short run, they are usually negatively
correlated in a longer time span. If inflows decrease, prices tend to increase and
compensate for this and vice versa.





Chapter 6

Managing power reserves by

two-stage stochastic programming

With the restructuring of the power sector, the reliability of the system has to a
great extent become the responsibility of the system operator. This, among other
things, includes the balancing of power supply and demand and the management
of reserves to facilitate it.

Although the physical transaction of power through bilateral trade or spot mar-
ket exchange aims at balancing supply and demand, real-time imbalances may still
occur due to non-anticipated supply and demand behavior. The real-time balance
is the responsibility of the power system operator and is achieved by means of
regulation that is purchased in the regulating market. To ensure sufficient regula-
tion in the market, the system operator has the possibility of reserving regulating
power in advance. As reserves are purchased prior to actual operation, however,
reserve decisions are subject to supply and demand uncertainty. Regulation deci-
sions on the other hand can be deferred until uncertainty has been revealed and
the system is operating. In the present paper this is formalized by formulating
the problem of managing regulating reserves as a two-stage stochastic program.
A case study that concerns the system operator of Western Denmark is discussed
in detail.

6.1 Introduction

In a power system that comprises several participants on both the supply and
the demand side, it is the task of the system operator to balance production
and consumption by means of regulation purchased in the regulating market. A

113
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major part of the balancing is however the management of regulation reserves, as
sufficient amounts of regulation are not necessarily available in the market unless
reserved in advance. Considering the challenges of uncertain supply and demand,
the problem of managing regulating power reserves can be handled by means
of stochastic programming. Moreover, previous studies show how similar power
optimization problems can be handled successfully by mathematical programming
and stochastic programming in particular, see Chapter 3.

The paper is organized as follows. The problem of managing power reserves
is presented in Section 6.3. Section 6.4 explains how uncertainty affects reserve
management and formulates the problem as a two-stage stochastic program. By
assuming a discrete distribution of the random data, the problem is transformed
into a large-scale mathematical program that is solved by a specially designed
solution procedure in Section 6.5. A specific instance of the problem is addressed
using data from the power system operator of Western Denmark and computa-
tional results are reported in Section 6.6.

6.2 Power reserves

The project grew out of a collaboration with the former Eltra1, which is the
power system operator of Western Denmark. Due to decentralization of the power
generation and deregulation of the power markets, many procedures have either
been modified recently or will be within the near future. In particular, Eltra made
plans to improve the model on which power reserve management is based, which
makes reserves a topic of current interest.

It is necessary to distinguish between different types of reserves

(i) Automatic regulation reserves: Reserves that cover imbalances from the time
of appearance until a regulation bid is activated. The reserves are provided
by running plants capable of adjusting upwards and consumers capable of
adjusting downwards. Activation begins automatically within two to three
minutes.

(ii) Manual regulation reserves: Reserves in the form of regulation resources
that suppliers are obligated to sell in the regulating market. The reserves
are activated manually within 10 minutes.

(iii) Running and available plants: Reserves for ensuring supply in spite of trans-
mission lines or units falling out. Consist of available plants that can be
started, running plants that can adjust upwards and consumers that can
adjust downwards. Running and available plants are activated either auto-
matically or manually.

1 now a part of the overall Danish power and gas system operator Energinet.dk, www.energinet.
dk
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(iv) Emergency start plants: Reserves reestablishing the system in case of black-
out.

We here confine ourselves to manual regulation reserves. The reason why man-
ual regulating reserves are relevant should be clear from the following. In a typical
power system the operator is responsible for balancing supply and demand. Prior
to operation, predicted supply and demand are balanced by resources provided by
bilateral trades and spot market exchanges. Still, supply and demand often differ
from the predictions and imbalances occur when the system is operating. To over-
come such real-time imbalances, the system operator compensates suppliers and
consumers for adjusting production and demand accordingly. The imbalances are
covered by so-called regulation resources, that are traded in a regulating market,
established by system operators to serve this purpose. Suppliers either increase or
decrease power production above or below the amounts committed through bilat-
eral and spot market contracts and offer the adjustments to the regulating market
as so-called up- and down-regulation, respectively. Consumers offer power demand
adjustments to the regulating market in a similar fashion. The system operator
purchases up-regulation in the case of excess demand and down-regulation in the
case of excess supply. In some cases, though, the amounts of resources provided by
the regulating market are insufficient to fully cover imbalances. This may happen
if

(i) Imbalances are substantial due to extreme supply and demand behavior
caused by failure in supplying, unforeseen weather changes leading to un-
predicted wind production or non-anticipated heat demand etc.

(ii) Spot market prices are sufficiently high to prevent market participants from
saving resources for trading in the less secure regulating market.

(ii) Considerable failures occur during transmission, e.g. important transmission
lines fall out.

To ensure that sufficient amounts of resources are available even when facing
such critical situations, regulation can be reserved prior to trading in the regulating
market. The system operator may secure the right of purchasing regulation with
reserver supplier. This right is a type of option in that the system operator pays
for the possibility of purchasing regulation in the market without being forced to
do so. The reserve supplier is obligated to bid an amount of regulation into the
market. As a result, the system operator faces the trade-off between purchasing
regulation at the market price only, thereby risking insufficiency of resources,
and paying both the market price and an additional fixed price to ensure that
regulation is available. We refer to the first and the second type of regulation as
direct and reserved regulation, respectively.
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Figure 6.1: Time schedule for the activities involved in power balancing.

The major problem of managing regulating reserves is that of procuring prior
to observing supply and demand imbalances. On the one hand, the reserve ca-
pacity may turn out to be insufficient to fully cover the imbalances not covered
by direct regulation, which means additional regulation resources must be pro-
cured elsewhere at considerable costs, otherwise the system simply breaks down.
On the other hand, reserves constitute serious costs, which makes excess reserve
capacity unwanted. Stochastic programming provides a tool for determining regu-
lation reserve levels that ”hedge” against the non-anticipated supply and demand
behavior.

The rest of the chapter is motivated by a case study based on the power
system of Western Denmark as well as the local and Nordic power markets. In
many respects, however, the discussion applies in general to other power systems.

As already explained, different power markets come into play when balancing
power supply and demand. To fully understand the interactions of the system
operator with the markets, we consider the following time schedule. The system
operator procures regulating reserves for a longer time period. In Western Den-
mark, a formal reserve market has not yet been fully established. Currently, the
length of the period is at least one month though a reduction is planned. The re-
maining actions concern a 24-hour operation day. By noon bids must be submitted
to the spot market, which in the Danish case is the Nordic Market at Nord Pool2.
Having balanced predicted supply and demand, activated bids are announced by
14:00. Finally, from 24:00 to 24:00 actual supply and demand imbalances are con-
tinuously corrected by trading in the intra-day regulating market. For the case
study, the regulating market is still the local market, although integration into the
Nordic market is planned. For an illustration of the time schedule, see Fig. 6.1.

6.3 The problem of managing power reserves

In stating the problem, consider a given planning horizon. Although in practice,
the power balance should be maintained at every point in time, the horizon is
discretized in order to facilitate computations. Since the bids to the regulating
marked have a duration of a number of full hours, the horizon is discretized into
hourly time intervals. The finite set of such intervals is denoted by T = {1, . . . , T}.

2 www.nordpool.no
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The planning horizon for purchasing regulating reserves may range from one to
several months. In Western Denmark some reserve contracts have long durations,
whereas other contracts are traded regularly on a monthly basis. The planning
horizon of the case study is set to one month, i.e. T = 24 × 30 = 720. However,
to increase the flexibility of the system, it is intended to reduce the horizon, as
is already the case in Eastern Denmark where reserve contracts are traded on a
daily basis.

6.3.1 Procuring reserves

At present, the system operator of Western Denmark procures regulation reserves
mostly locally. Although not fully formalized, regulation reserves are traded on
a monthly auction or as individual contracts of a longer duration. A regulation
reserve bid consists of an offer period, a volume to be available throughout the offer
period, a variable price that applies to the portion of the volume that is activated
and a fixed price for activation of the bid. We assume for the application that
regulation reserves are traded solely on the auction so that the offer period is
always one month. According to the above, the system operator pays the variable
price for the actual amount of regulation used and the fixed price for the availability
of regulation.

Regulation reserves are modeled as follows. Regulation divides into up- or
down-regulation, and so do regulation reserves; thus, the superscripts up and do.
The indices H = {1, . . . , H} are adopted to represent different reserve bids. The
variables xup

h , xdo
h ∈ {0, 1}, h ∈ H indicate whether the reserve bids are activated or

not and the prices for activation are denoted cup
h , cdo

h , h ∈ H. Then fixed regulation
reserve purchase costs compute as

∑

h∈H

(cup
h xup

h + cdo
h x

do
h ).

6.3.2 Purchasing regulation

A larger power system may share a common regulating market. The Nordic system
operators, the Swedish Svenska Kraftnät, the Norwegian Statnett and the Danish
Energinet.dk, have established such a common market, in which Western Denmark
was the last to begin integration in January 2006. Still, although full integration is
on its way, Western Denmark trades regulation mostly locally. Before July 2006,
the regulating market of Western Denmark was a pay-as-bid market. Now, as a
step towards integration, the general rule is to use local marginal prices as market
prices and finally, Nordic marginal prices should be fully in use by January 2008.

When purchasing regulation and regulation reserves outside Western Denmark,
transmission capacity limits may apply. Such limits are due to physical limitations
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or political agreements. Since, for the current application, however, regulation is
mostly purchased locally, we have omitted transmission capacity limits and in
general assumed no grid congestion.

The suppliers to the regulating market are power balance providers submit-
ting bids to the market. Such regulation bids divide into up-regulation and down-
regulation bids. Upward regulation makes consumers decrease demand or suppli-
ers increase production (system operators “buy” power) and downward regulation
makes suppliers decrease production or consumers increase demand (system op-
erators “sell” power). A regulation bid consists of an offer period, a price and
a volume. The offer period may be a number of full hours. During the offer
period, the volume is constant whereas the price may vary between hours. We
however assume that regulation bids have an offer period of only one hour and thus
both the volume and the price are constant. Generally, the up-regulation price
is specified as the system spot price (assuming no grid congestion) and a raise,
i.e. the up-regulation price is always above the system price. Similarly, the down-
regulation price is calculated as the system price (assuming no grid congestion)
and a deduction, i.e. the down-regulation price is always below the system price.
Since prices are usually given as positive numbers unless the system operator sells
up-regulation or buys down-regulation, prices are always assumed to be positive.

Regulation comprises direct purchases in the regulating market and purchases
reserved in advance. In the case of reserved purchases, recall that the indices
H = {1, . . . , H} are included to represent different bids. Up- and down-regulation
volumes are denoted ȳup

h , ȳdo
h , h ∈ H. We assume no failure of supply and, hence,

all reserved purchases will be available in the regulating market. Correspond-
ing prices are denoted p̄up

ht , p̄
do
ht, h ∈ H, t ∈ T . In the case of direct purchases,

K = {H + 1, . . . , H + K} are included to index different bids. Up- and down-
regulation volumes are denoted ȳup

ht , ȳ
do
ht , h ∈ K, t ∈ T and corresponding prices

are p̄up
ht , p̄

do
ht, h ∈ K, t ∈ T . Note that reserved purchases are independent of time,

whereas direct purchases are time dependent. Furthermore, for reserved purchases,
prices should stay between predefined limits, whereas for direct purchases, prices
can vary freely. Finally, a bid is not necessarily activated completely. Actual
purchases are represented by the variables yup

ht , y
up
ht ∈ R+, h ∈ H ∪ K, t ∈ T .

Pay-as-bid pricing

Costs of purchasing regulation, whether reserved or direct, consist of up-regulation
expenses and down-regulation income

∑

t∈T

∑

h∈H∪K

(p̄up
ht q

up
ht − p̄do

hty
do
ht ).
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The following bounds concern reserved purchases

yup
ht ≤ ȳup

h xup
h , ydo

ht ≤ ȳdo
h xdo

h , h ∈ H, t ∈ T , (6.3.1)

whereas direct purchases must submit to the bounds

yup
ht ≤ ȳup

ht , y
do
ht ≤ ȳdo

ht , h ∈ K, t ∈ T . (6.3.2)

Marginal pricing

For each hour the marginal price is determined as the price of the last bid activated
in the direction in which the system is regulated. If the system is up-regulated, the
marginal price is the highest price of the activated up-regulation bids. Likewise, if
the system is down-regulated, the marginal price is the lowest price of the activated
down-regulation bids. The variables δup

ht , δ
do
ht ∈ {0, 1}, h ∈ H ∪K indicate whether

the regulation bids are activated or not for both reserved and direct regulation.
Moreover, the variables pup

t , pdo
t ∈ R

n1
+ represent the marginal prices. In the case

of up-regulation, the marginal price is pup
t = max{p̄up

ht δ
up
ht : h ∈ H ∪K} and in the

case of down-regulation, the marginal price is pdo
t = min{p̄do

htδ
do
ht : h ∈ H ∪K}.

Costs of purchasing reserved and direct regulation amount to

∑

t∈T

(

pup
t

∑

h∈H∪K

yup
ht − pdo

t

∑

h∈H∪K

ydo
ht

)

. (6.3.3)

Evidently, (6.3.3) is nonlinear. In order to be consistent with a mixed-integer
linear formulation, we introduce the variables ρup

t , ρdo
t ∈ R

n1
+ , t ∈ T and replace

(6.3.3) by

∑

t∈T

(ρup
t − ρdo

t )

and

ρup
t ≥ p̄up

ht

∑

h∈H∪J

yup
ht −M(1 − δup

ht ), h ∈ H ∪K, t ∈ T , (6.3.4)

ρdo
t ≤ p̄do

ht

∑

h∈H∪K

ydo
ht +M(1 − δdo

ht ), h ∈ H ∪K, t ∈ T , (6.3.5)

with

M = max
{

p̄up
ht

(

∑

h∈K

ȳup
ht +

∑

h∈H

ȳup
t

)

, p̄do
ht

(

∑

h∈K

ȳdo
ht +

∑

h∈H

ȳdo
t

)

: h ∈ H ∪ K, t ∈ T
}

.
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For both reserved and direct purchases, the volumes activated cannot exceed the
volumes bid

yup
ht ≤ ȳup

ht δ
up
ht , y

do
ht ≤ ȳdo

htδ
up
ht , h ∈ H ∪ K, t ∈ T . (6.3.6)

Reserved regulation cannot be activated unless the regulation reserve bids are
activated

∑

t∈T

δup
ht ≤ xup

h ,
∑

t∈T

δdo
ht ≤ xdo

h , h ∈ H. (6.3.7)

Note that we model the price determination process in terms of mixed-integer
linear programming with the introduction of binary variables indicating activation
or not. An alternative to avoiding nonlinearities would have been to discretize the
continuous price range into a number of price levels and associate with each price
level one or more binary variables. The approach is seen in Nowak et al. (2005),
who address the bidding problem of a power producer being able to influence
market prices. The number of price levels, however, is likely to exceed the number
of bids to be considered for activation. For this reason, the above formulation has
its advantages.

6.3.3 Balancing

The system operator takes care of the power balancing during actual operation. If
actual demand exceeds actual supply, the system operator purchases up-regulation
and if supply exceeds demand, down-regulation is purchased. Imbalances between
demand and supply are usually fully covered by regulation purchased directly or
reserved in advance. In the case of insufficient regulation, however, excess demand
and supply may result in irregular in- and out-flows from abroad that are hardly
penalized. Such in- and out-flows can be avoided by forcing consumers to decrease
demand, by forcing power plants to shut down generating units or by stopping wind
turbines, in which cases severe costs are also paid. Let the variables eup

t , edo
t , t ∈ T

denote excess demand and supply. If bup
t , bdo

t , t ∈ T denote penalty costs, excess
demand and supply give rise to the following costs

∑

t∈T

(bup
t eup

t + bdo
t e

do
t ).

The power balance constraints are
∑

h∈H∪K

(yup
ht − ydo

ht ) + eup
t − edo

t = ∆t, t ∈ T , (6.3.8)

where ∆t, t ∈ T denote the imbalances between demand and supply. If ∆t > 0,
demand exceeds supply and if ∆t < 0, vice versa. Note that supply includes
central, decentral and wind production as well as import and that demand consists
of national consumption and export.
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6.4 Introducing uncertainty

The problem presented in the preceding sections is deterministic. The real prob-
lem, however, involves uncertainties in the data and would therefore be suited for
stochastic optimization. Uncertainties relate to the regulating prices and volumes
that can be changed until an hour before operation. Moreover, demand and sup-
ply uncertainty arises because of failure in supplying, unforeseen weather changes
leading to unpredicted wind production or non-anticipated heat demand. Since,
however, the system imbalances are caused by demand and supply, we restrict the
attention to demand and supply uncertainty.

Uncertainty is handled by means of stochastic programming. Although infor-
mation evolves over time and a multi-stage stochastic program could be relevant,
we approximate the problem by a two-stage stochastic program. We find this
approximation sufficient to capture the interplay between reserves and regulation
purchases. As reserves must be purchased a month in advance, reserve decisions
are first-stage. Decisions have to be made before operation and thus with incom-
plete knowledge of future supply and demand. In contrast, regulation bids have
an activation period of at most ten minutes and can therefore be purchased very
close to operation, which makes regulation decisions second-stage. The objective
is to minimize reserve costs and expected future regulation and penalty costs.

The uncertain data is represented by a stochastic process on some probability
space. To make the problem computationally tractable, we assume a discrete
multivariate distribution with finite support. The realizations of uncertainty will
be referred to as scenarios, indexed by S = {1, . . . , S} and denoted by (∆s

t )t∈T s∈S .
The corresponding probabilities will be denoted by πs, s ∈ S. First-stage reserve
decisions are xup

h , xdo
h ∈ {0, 1}, h ∈ H, whereas second-stage regulation decisions

are indexed yup,s
ht , ydo,s

ht , pup,s
ht , pdo,s

ht , eup
t , edo

t ≥ 0, h ∈ H ∪K, t ∈ T , s ∈ S.
The two-stage stochastic programming formulation of the regulating reserve

management is the following problem, depending on whether pay-as-bid or marginal
pricing applies. The extension to market integration should be straightforward.

Pay-as-bid pricing

min
∑

h∈H

(cup
h xup

h + cdo
h x

do
h )+ (6.4.1)

∑

s∈S

∑

t∈T

∑

h∈H∪K

πs(p̄up,s
ht yup,s

ht − p̄do,s
ht ydo,s

ht )+

∑

s∈S

∑

t∈T

πs(bup
t eup,s

t + bdo
t e

do,s
t )

s.t. (6.3.1)− (6.3.2), (6.3.8)
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xup
h , xdo

h ∈ {0, 1}, h ∈ H

yup,s
ht , ydo,s

ht , pup,s
ht , pdo,s

ht , eup,s
t , edo,s

t ≥ 0, h ∈ H ∪ K, t ∈ T , s ∈ S.

Marginal pricing

min
∑

h∈H

(cup
h xup

h + cdo
h x

do
h )+ (6.4.2)

∑

s∈S

∑

t∈T

πs(ρup,s
t − ρdo,s

t )+

∑

s∈S

∑

t∈T

πs(bup
t eup,s

t + bdo
t e

do,s
t )

s.t. (6.3.4) − (6.3.7), (6.3.8)

xup
h , xdo

h ∈ {0, 1}, h ∈ H

yup,s
ht , ydo,s

ht , pup,s
ht , pdo,s

ht , ρup,s
t , ρdo,s

t , eup,s
t , edo,s

t ≥ 0,

δup,s
ht , δdo,s

ht ∈ {0, 1}, h ∈ H ∪ K, t ∈ T , s ∈ S.

The scenario generation has been kept rather simple. The imbalances between
demand and supply constitute a time series and have, thus, been analyzed by
means of the field. In order to capture the future behavior of demand and sup-
ply imbalances and in particular model the imbalances as a stochastic process,
historical data profiles have been used. Because demand and supply show strong
correlations over time, the stochastic process is chosen as an autoregressive (AR)
process. For proof of concept, the order of the AR process is chosen to be one.
The AR process, cf. Box and Jenkins (1976), is the following

∆t = ψ∆t−1 + et, t ∈ Z, (6.4.3)

where {et}t∈Z is a Gaussian white noise process. The time series may be more ap-
propriately described by higher order autoregressive moving average (ARMA) pro-
cesses, able to describe seasonal variations in the data. For examples on seasonal
ARMA models and electricity demand, see Gröwe-Kuska et al. (2000), Gröwe-
Kuska et al. (2002) and Eichhorn et al. (2005). Scenarios of future demand and
supply imbalances {∆s

t}t∈T ,s∈S are generated by sampling from (6.4.3). To reflect
the true probability distribution, a large number of scenarios has been generated
using Monte Carlo sampling.
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6.5 Solution procedure

The problems (6.4.1) and (6.4.2) may be handled as large-scale mixed-integer lin-
ear problems solvable by standard software packages or stochastic mixed-integer
linear programs amenable to decomposition approaches such as the integer L-
shaped method by Laporte and Louveaux (1993) or the dual decomposition algo-
rithm by Carøe and Schultz (1999). Being able to solve the problems as mixed-
integer linear programs is valuable since this approach is very flexible. Adding
further linear constraints is uncomplicated and becomes particularly relevant with
constraints that introduce time dependencies. However, with the current simplic-
ity of the model, it can be solved by a procedure that utilizes the structure of
the problem. The solution procedure is motivated by the current practice of the
system operator and applies in the case of both pay-as-bid pricing and marginal
pricing.

If formalized, the problems (6.4.1) and (6.4.2) can be stated as

min
{

cx+
∑

s∈S

∑

t∈T

πsΦs
t (x), x ∈ B

n1

}

,

Φs
t (x) = min{qy|Wy = hs

t − Tx, y ∈ R
n2 × B

n′

2},

where x ∈ B
n1 represents the first-stage decisions, y ∈ R

n2 × B
n′

2 represents
the second-stage decisions and data vectors and matrices are derived from the
problems.

As the number of reserve bids often reduces to less than ten, the set of first-
stage decisions is limited and enumeration is possible. The enumeration determines
which reserve bids should be activated.

Algorithm 6.5.1 Enumeration

Step 0 (Initialization) Let z̄ = ∞.

Step 1 (Enumeration) Select a first-stage solution, x.

Step 2 (Evaluation) Let

z̄ = min
{

z̄, cx+
∑

s∈S

∑

t∈T

πsΦs
t (x)

}

,

where, for t ∈ T , s ∈ S, Φs
t (x) is determined by Algorithm 6.5.2. Return

to step 1.
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Having fixed the first-stage decisions, the problem decomposes into subproblems
according to both scenarios and time intervals. A subproblem is solvable by inspec-
tion. After the reserve bids have been activated, the regulating bids are selected
one at a time according to the so-called order of merit until imbalances are covered.
We state the procedure only for up-regulation as the case of down-regulation will
follow in a similar fashion. We assume that the penalty costs of excess supply and
demand exceed all bid prices, although the procedure could be easily adjusted to
account for other relationships between penalty costs and bid prices.

Algorithm 6.5.2 Order of merit

Step 0 (Initialization) If ∆s
t > 0, the system must be up-regulated. Let

Hup,0 = {h ∈ H : xup
h = 1}

index the activated reserve bids. Available regulation bids are then indexed
by Hup,0 ∪ K0. Go to step 1.

Step 1 (Ranking) Set i=i+1. If ∆s
t > 0, activate (fully unless the imbalance is

covered by less) the regulation bid (p̄up
kt , ȳ

up,s
kt ) defined by

p̄up
kt ∈ arg min{p̄up

ht : h ∈ Hup,i−1 ∪ Ki−1}.

Set Hup,i ∪ Ki := Hup,i−1 ∪ Ki−1\{k}. If the imbalance is covered, stop.
If Hup,i ∪ Ki = ∅, the remaining imbalance is excess demand. Otherwise,
return to step 1.

6.6 Computation results

As already stated, the case study concerns the problem of managing regulating
reserves in Western Denmark. The data dates back to June 2006, just before
the transition from pay-as-bid pricing to marginal pricing. Hence, we solve the
problem with both pay-as-bid pricing (6.4.1) and local marginal pricing (6.4.2).
Reserve bids comprise bids of the June auction as well as individual contracts of
a potentially longer duration. As the system operator intends to reduce the offer
period of reserve bids, we assume that such individual contracts have an offer
period of only one month. The reserve bids consist of seven up-regulation bids
and one down-regulating bid. The volumes and the fixed prices of the reserve bids
are released by Energinet.dk3. The variable prices have been randomly generated
based on the announced regulating market prices. Regarding regulating bids to
the market, ten bids have been constructed. Both volumes and prices have been

3 www.energinet.dk
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randomly generated on the basis of the regulating market prices and the total
amounts of up- and down-regulation bid into the market. All data has been
provided by Nord Pool4. The penalties for excess demand and supply are both
set sufficiently high to prevent uncovered imbalances on a regular basis.

With the current data, the problem (6.4.1) contains eight binary variables
and no constraints in the first stage and 53280 continuous variables and 13680
constraints in the second stage. The problem (6.4.2) contains the same number of
variables and constraints in the first stage and 54720 continuous variables, 12960
binary variables and 39608 constraints in the second stage. The Procedures 6.5.1
and 6.5.2 were implemented in C++ and computations were carried out on an
Intel Xeon 2.67 GHz processor with 4 GB RAM.

We have solved the problems (6.4.1) and (6.4.2) with the Procedures 6.5.1
and 6.5.2 and listed the results. For a varying number of scenarios, Table 6.1
displays the average optimal values and CPU times of ten different runs. Obvi-
ously, marginal pricing results in a higher optimal value than pay-as-bid pricing.
The first column of Table 6.2 shows the total balancing costs divided into reserve
costs, regulation costs and penalty costs. Recall that regulation costs consist of
up-regulation expenses and down-regulation income and costs may therefore be
both positive and negative. The second column of Table 6.2 gives the total im-
balances divided into regulation and excess supply and demand along with the
reserved regulation that is available but not necessarily activated. Regulation
consists of both up- and down-regulation. All numbers are based on 100 scenarios
and are averages of ten different runs. It is clear that for both pay-as-bid pricing
and marginal pricing, reserves are highly necessary for the optimal covering of im-
balances. Finally, Table 6.4 lists the reserve bids and indicate whether activation
is effected or not. All ten runs for both pay-as-bid pricing and marginal pricing
show the same result and support the use of reserves.

To compare the stochastic programming approach to a deterministic approach,
we have solved the expected value problems (EVP), in which stochastic demand
and supply imbalances have been replaced by their expected values. Moreover, we
have computed the expected results of using the expected value solutions (EEV).
For further reference on the expected value problem, see Birge and Louveaux
(1997). The average EEVs and CPU times of ten different runs are displayed in
Table 6.1. Generally, the EEVs exceed the optimal values of the stochastic pro-
grams, which is confirmed. In Table 6.3 the total balancing costs and the total
imbalances are divided into reserves, regulation and excess supply and demand.
Table 6.4 indicate whether activation of the reserve bids is effected or not. Since
imbalances often cancel out on average, no reserve bids are activated in the deter-
ministic case. However, the expected result of using the expected value solutions is
a need for a larger amount of direct regulation and if not available, larger excess de-

4 www.nordpool.no
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mand and supply. This is indeed reflected in higher regulation costs, much higher
penalty costs and thus higher total costs. The percentual values of the stochastic
solutions (VSS), i.e. the percentual saving in costs of using the stochastic solutions
rather than the deterministic solutions, are significant. The numbers are in fact
in the range of 36-38 percent. Although the VSSs highly depend on the chosen
penalty costs, they still demonstrate the relevance of stochastic programming to
the managing of regulation reserves.

Table 6.1: Computational results the EVP and the stochastic programming
problem. Based on 10 runs.

Sce. Opt. val. Opt. val. CPU/s
Pay-as-bid pricing Marginal pricing

100 4.99e+07 5.22e+07 51.37
500 4.94e+07 5.18e+07 257.33

1000 4.94e+07 5.18e+07 512.00
EEV 7.89e+07 8.13e+07 1.04

Table 6.2: Computational results for the stochastic programming problem with
100 scenarios. Based on 10 runs.

Costs/DKK Volume/MW
Pay-as-bid Total 4.99e+07 86060.23
pricing Reserve 3.46e+06 94320.00

Regulation 1.32e+06 81545.20
Excess supply and demand 4.52e+07 4515.03

Marginal Total 5.22e+07 86060.23
pricing Reserve 3.46e+06 94320.00

Regulation 3.68e+06 81545.20
Excess supply and demand 4.51e+07 4515.03

6.7 Discussion

It could be argued that reserve management affects spot market trading in that
purchasing regulating reserves prevents suppliers from disposing of production in
the spot market. As the system operator reserves regulation, less production ca-
pacity becomes available for the spot market. Still, we have implicitly assumed
that the production capacity for the spot market is not seriously affected. The as-
sumption is justified if producers allocate production capacity for the spot market
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and the regulating market separately. However, it would be valuable to further
investigate the matter by incorporating the present model in a larger model that
includes the spot market.

Table 6.3: Computational results for the EVP. Based on 10 runs.

Costs/DKK Volume/MW
Pay-as-bid Total 7.89e+07 86226.71
pricing Reserve 0e+00 0.00

Regulation 1.56e+06 78496.00
Excess supply and demand 7.73e+07 7730.71

Marginal Total 8.13e+07 86226.71
pricing Reserve 0e+00 0.00

Regulation 3.94e+06 78496.00
Excess supply and demand 7.73e+07 7730.71

Table 6.4: Computational results the EVP and the stochastic programming
problem with 100 scenarios. Based on 10 runs.

Up-reg.
Price/DKK 288000 625000 384000 330000
Volume/MW 25 16 11 298
Activation 100 sce. 1 1 1 0

EVP 0 0 0 0
Up-reg. Down-reg.

Price/DKK 10298880 714000 966450 152000
Volume/MW 12 21 30 16
Activation 100 sce. 1 1 1 1

EVP 0 0 0 0





Chapter 7

Scenario generation in stochastic

programming electricity models

Being an important part of establishing a stochastic programming model, the
remainder of the thesis is dedicated to scenario generation. The idea is to explain
the methods used for scenario generation and reduction in Chapters 4 and 5 and
put these into perspectives with the existing literature on the subject.

The task of generating the scenarios that serve as input to a stochastic pro-
gramming model can be handled in many ways, depending on the available infor-
mation and data and on the required output. In generating scenarios, some of the
following requirements could be taken into account. Ideally, the scenarios should

• reflect the actual background and be linked with the purpose of the appli-
cation.

• approximate the true probability distribution or represent the uncertain data
in some other way.

• utilize the information of historical data and at the same time be capable of
including exogenous knowledge and extreme situations and capture future
effects such as trends and expectations.

• from a computational point of view, result in a problem of a manageable
size, that still produces solutions of sufficient quality.

To illustrate different requirements, this chapter gives a selected overview of sce-
nario generation methods from the literature. We present scenario generation
methods that are based on experts’ opinions or data manipulation alone, methods
that aim to represent the probability distribution by matching statistical proper-
ties and methods that approximate the probability distribution by sampling from
a statistical model. We briefly mention a method suitable for including additional

129
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scenarios. Furthermore, we examine in greater detail methods that reduce the
stochastic programming problem to a manageable size, and, finally, we discuss the
evaluation of scenario generation methods in terms of solution quality. The main
focus is scenario generation methods that have found use in stochastic program-
ming applications to power systems. To complete the overview, however, some
major advances in scenario generation will be included. This also serves to justify
the choice of the scenario generation methods in Chapter 4 and 5. For a general
survey on scenario generation methods, see Dupačová et al. (2000).

Recall from Chapter 1 that the random components of a general stochastic
programming problem is described by a random vector ξ on some probability
space (Ω,F ,P). The probability distribution of ξ is given by the image measure
µ = P ◦ ξ−1 and is referred to as the probability distribution of the stochastic pro-
gramming problem. We define ζ as a similar random vector on (Ω,F ,P) and let the
probability distribution of ζ be given by the image measure ν = P◦ζ−1. In the fol-
lowing, we will use ξ and ζ in terms of both two-stage and multi-stage stochastic
programming. When specifically addressing only two-stage or multi-stage pro-
grams, however, we will adjust notation accordingly. For discrete a approximation
with finite support, recall that the approximation of ξ is given by the scenarios
{ξ1, . . . , ξS} and corresponding probabilities π1, . . . , πS . When referring to a fixed
value such as a single realization or the mean value of ξ, we often denote it ξ̄.
This chapter aims at approximating the probability distribution of a stochastic
programming problem by a discrete distribution with finite support.

7.1 Subjective approaches and data manipulation

Application specific methods for generating scenarios are not necessarily theo-
retically founded but may rely on subjective judgment, experts’ opinion or data
manipulation.

An obvious scenario generation method is simple data manipulation. Takriti
et al. (1996) present an example that relies alone on historical data but is still
distributions-free. The authors generate demand scenarios for a multi-stage stoch-
astic programming formulation of the unit commitment problem subjected to un-
certainty of demand and generator failures. The scenarios are based on historical
observations under comparable circumstances and are adjusted by incorporating
future expectations and demand peaks that corresponds to unavailable generator
capacity.

Another method that rests on a rather simple use of historical data is presented
by Nowak and Römisch (2000) who develop a multi-stage stochastic programming
problem for planning the weekly generation of electric power in a hydro-thermal
system under demand uncertainty. Starting from a reference scenario based on
real data, a scenario tree is constructed by randomly selecting branching points
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and creating identical scenarios that branch from these. Then a Brownian motion
is added to each node of the scenario tree.

In contrast to the above, the integration of scenario generation into mathe-
matical programming and, in particular, stochastic programming input formats,
has prompted more general scenario generation devices. The stochastic extension
of the mathematical programming standard, MPS, the SMPS, can be combined
with an external scenario generator. In addition, although relatively simple, the
standard itself offers some scenario generation features.

In the initial version of the SMPS, Birge et al. (1987) provide a framework for
generating and organizing uncertain data for multi-stage stochastic programming
problems. The authors propose an input format that incorporates sampling from a
number of univariate distributions by specifying the appropriate parameters. The
input format allows for different kinds of dependencies in data, e.g. independence,
interstage dependence and dependence on past data.

To overcome some of the shortcomings of the initial version, Gassmann and
Schweitzer (2001) have upgraded the SMPS to handle multi-stage stochastic pro-
gramming problems with chance constraints. Furthermore, the user is now able
to choose between a scenario representation or a nodal representation of the data.
A multivariate distribution has been added to the built-in distributions of the
upgraded version.

To include additional scenarios in a scenario tree, the contamination method
finds its use. The scenarios may be extreme scenarios or scenarios that reflect
exogenous knowledge given by experts. The contaminated probability distribution
results from the initial distribution ν and the distribution µ governed by the
additional scenarios in the following way

(1 − λ)ν + λµ,

where λ ∈ [0, 1]. In bounding the optimal value of the multi-stage stochastic
programming problem the effect of including additional scenarios can be evaluated.
The contamination method does not depend on assumptions on the probability
distribution. For further references, see Dupačová et al. (2000).

7.2 Matching statistical properties

Among the scenario generation methods that can be applied in spite of only limited
information on the probability distribution, are the methods of matching statisti-
cal properties. The overall idea is to generate a discrete approximation such that
certain statistical properties of the approximation match statistical properties cal-
culated from data or specified to include future expectations.

The method of Høyland and Wallace (2001) for matching statistical properties
can handle multivariate distributions in both two-stage and multi-stage stochas-
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tic programming. The discrete approximation is found as the solution to a least
squares problem that minimizes the distance between the specified properties and
the corresponding properties of the approximation. The solution of the least
squares problem allows for inconsistencies in the specifications at the expense of a
precise matching between the properties. To formulate the least squares problem,
letK be the number of properties to match. For k ∈ K, let wk be a weight assigned
to property k and denote by TARk the k’th target property specified. Let the
approximate distribution be given by the vectors ξ and π, denote by TARk(ξ, π)
the k’th property of the approximation. Then the problem is

min
ξ,π

{

K
∑

k=1

wk(TARk(ξ, π) − TARk)2|π is a probability distribution
}

.

The properties needed to find a good approximation are highly problem dependent
and may be hard to determine. Also, a good match can be difficult to achieve
since non-convexity of the problem calls for advanced solution procedures.

In order to match specific statistical properties, Høyland et al. (2003) present
a scenario generation method based on moment matching. With the purpose
of reducing computing times, the least squares problem of Høyland and Wallace
(2001) is decomposed by generating univariate distributions separately and com-
bining these to a multivariate distribution. In contrast to the method of Høyland
and Wallace (2001), the method of Høyland et al. (2003) relies primarily on trans-
formations.

Starting from an N -dimensional random vector, ξ = (ξ1, . . . , ξN ), the goal is
to generate a discrete approximation, whose first four moments and correlations
match the specified targets given by the vector TAR and the matrix Σ, respec-
tively. The basics of the matching are the following.

• Construct N discrete random variables.

• Obtain the target moments, TAR, by a cubic transformation.

• Combine the N random variables to an N -dimensional random vector.

• Obtain the target correlations, Σ, by a matrix transformation.

The distributions of N discrete random variables, ζn, n = 1, . . . , N , are generated
separately by sampling. Then, to obtain the target moments, the cubic transfor-
mation

ξn = an + bnζn + cnζ
2
n + dnζ

3
n

is applied before the moments of ζn, n = 1, . . . , N are matched to the target
moments of ξn, n = 1, . . . , N in the same fashion as in Høyland and Wallace (2001).
The coefficients an, bn, cn, dn are constants. Next, the univariate distributions of
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ξn, n = 1, . . . , N are combined to a multivariate distribution of ξ. A specified
correlation matrix is achieved by means of the so-called matrix transformation.
By applying this transformation, the random vector

ζ = Cξ

has correlation matrix Σ, where C is the Cholesky decomposition of Σ. In general,
the cubic transformation matches moments but changes correlations, whereas the
matrix transformation matches correlations but changes moments. In order for
both moments and correlations to almost match the targets, Høyland et al. (2003)
propose an algorithm that iterates between random vectors of the correct moments
and correct correlations. So far, theoretical convergence of the algorithm is left
unproved, but empirical tests are promising.

The moment matching method applies to two-stage stochastic programming.
However, although capable of handling correlations, the method is not suitable for
preserving time series properties such as correlation over time and the application
to multi-stage stochastic programming should be further developed.

The methods of matching statistical properties has been used for stochastic
programming applications to power systems in the papers of Fleten et al. (2002)
and Fleten and Pettersen (2005), both papers employing moment matching.

7.3 Sampling from statistical models

With sufficient historical data, it may be possible to represent the probability dis-
tribution by a statistical model that is suitable for sampling. The modeling of the
probability distribution can be done by the use of time series analysis and advanced
stochastic processes such as simple and multiple regressions, autoregressive and
moving average processes etc. Many examples are found within the application
areas of water resources and power systems.

The paper of Jacobs et al. (1995) describes the progress of a Canadian genera-
tion scheduling system designed to manage medium-term hydro-power generation
in coordination with other energy sources. Special emphasis is placed on the devel-
opment in modeling the underlying multi-stage stochastic programming problem
and the corresponding flow scenarios. It is assumed that different stream-flows
are uncorrelated in the medium term due to the Canadian precipitation patterns.
Each stream-flow is modeled as a simple regression on precipitation. The regres-
sion includes future precipitation and thereby provides an opportunity to quickly
study the consequences of expected future events. Seasonal flows are disaggre-
gated to monthly flows that are specified in terms of remaining seasonal flows and
flows of the previous month.

Due to lack of data, regression may not always be possible and an alternative
is autoregressive and moving average processes, an example of which is found
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Chapter 8. For the use in short-term hydro-power production, both univariate
and multivariate distributions of hourly electricity prices and reservoir inflows
are modeled. Prices and inflows can be assumed to be uncorrelated in the short
term and hence can be modeled separately. For inflows, it is possible to retain
the details of the univariate models in the multivariate model by assuming the
univariate models are statically related to each other only at the same time. The
inflow model that comes to play is a so-called contemporaneous autoregressive
moving average process.

In general, with multidimensional distributions, computations quickly become
very cumbersome. Another way to overcome this difficulty, is to reduce dimen-
sion by factor analysis or principal component analysis. Both approaches aim to
explain the correlation structure of the uncertain data by a small number of inde-
pendent factors or components. For reference, see for example Infanger (1994).

To arrive at a discrete approximation of the probability distribution, sampling
finds its use. The most basic sampling procedure is the Monte Carlo sampling in
which samples are all assigned the same probabilities. Among many others, the
Monte Carlo sampling procedure is applied by Shapiro (2003) who extends the
procedure to a conditional sampling procedure that immediately induces the tree
structure suitable for multi-stage stochastic programming problems. At the same
time, it is shown that conditional sampling provides a valid statistical lower bound
for the original stochastic programming problem and that this bound converges
if the number of samples tends towards infinity. Conditional Monte Carlo sam-
pling is likewise adopted by Shapiro (2006). A more advanced sampling procedure
for use in multi-stage stochastic programming is suggested by Pennanen (2005)
and employs so-called integration quadratures. The procedure applies to a vari-
ety of time series models in which the random variables are uniquely determined
by uniformly distributed random variables. Among others, such time series mod-
els cover autoregressive moving average processes and autoregressive conditionally
heteroscedastic processes. Instead of sampling from the original random variables,
it is proposed to sample from univariate uniform distributions, combine the uni-
variate sample to a multivariate and, finally, apply the inverse mapping from the
uniform to original random variables. The result is a scenario tree that provides a
discrete approximation of the distribution. It is shown that as the discretization
is made finer, the optimal value of the multi-stage stochastic programming prob-
lem converges. The sampling procedure of Pennanen (2005) is further explored in
Pennanen and Koivu (2005).

7.4 Tree construction and reduction

The sampling procedures of Section 7.3 all generates scenario paths. Such scenario
paths may serve as direct input to two-stage stochastic programming problems
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and scenario formulations of multi-stage stochastic programming problems. For
tree formulations of multi-stage stochastic programming problems, however, the
scenario paths must be converted into scenario trees. As many rely on the same
basic principles, we discuss only a few approaches. It should be remarked that for
the approaches to work, the scenario paths do not necessarily have to be generated
by sampling.

A simple approach to converting paths into trees is to partition the paths
according to “high” or “low”, “dry”, “medium” or ”wet” or the like. The root
node is assigned all paths and the tree is constructed so that the descendants of
a node correspond to a partitioning of the paths assigned to it. The conditional
probability of a node is its fraction of paths assigned to the ascending node. For
an example of this approach, see Jacobs et al. (1995).

The approach is related to cluster analysis. It starts by clustering according
to the first components ξ1 of ξ, continue by conditional clustering according to
the second components ξ2 of ξ and so on. For clustering, a dissimilarity measure
such as

T
∑

t=1

wt‖ξ
s1
t − ξs2

t ‖

is evaluated for each pair of scenario paths ξs1 = (ξs1
t )T

t=1 and ξs2 = (ξs2
t )T

t=1, where
wt ≥ 0 are suitable weights. By clustering according to ξ1, the result is K1 clusters
C1

1 , . . . , C
K1
1 represented by ξ̄k

1 , k = . . . ,K1. ξ̄k
1 may be the mean value of the

scenarios included in cluster k. The probability of ξ̄k
1 is the sum of probabilities of

the scenarios included in cluster k. Replacing ξ1 by ξ̄k
1 , the clustering continues for

each cluster Ck
1 separately. For a survey on cluster analysis from a mathematical

programming point of view, see Hansen and Jaumard (1997).
The method we refer to as optimal scenario reduction is presented by Heitsch

and Römisch (2006b) and is among the approaches founded in probability theory.
Starting from a set of scenario paths, forward and backward approaches facilitate
the construction and reduction of a scenario tree. Basically, the approaches consist
in conditional clustering of scenarios forward or backward in time. However, both
approaches are justified by qualitative stability analysis and rely on the following
result from Heitsch et al. (2005). We state only the forward approach as the
backward is similar in spirit.

For notational convenience, let a general stochastic programming problem be
given as

φ(µ) = min{Q(x, µ) | Ax = b, x ∈ X},

where the dependency of φ and Q on µ is emphasized. A stability estimate rests
on the Lr-distance
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‖ζ‖r :=
(

T
∑

t=1

E[‖ζt‖
r]

)1/r
(7.4.1)

for some r ≥ 1, a time dependent variant of this, ‖ ·‖r,t, and the filtration distance

D(µ, ν) := sup
ε∈(0,β]

inf
{

T−1
∑

t=2

max
{

‖xt − E[xt|Ft]‖r′ , ‖x′t − E[x′t‖Gt]‖r′

}

:

x : Q(µ, x) ≤ φ(µ) + ε, x′ : Q(ν, x′) ≤ φ(ν) + ε
}

, (7.4.2)

where r′ is problem dependent and where Ft and Gt are the σ-algebras generated
by ξt and ζt.

Theorem 7.4.1 Assume {x ∈ X | Ax = b} is bounded, relatively complete re-

course locally around ξ, levelboundness locally uniformly at ξ and ξ ∈

Lr(Ω,F ,P; R
P

T
t=1 Nt) for some r ≥ 1. Then there exists positive constants L, α

and β such that the estimate

|φ(µ) − φ(ν)| ≤ L(‖ξ − ζ‖r +D(µ, ν))

holds for all ζ ∈ Lr(Ω,F ,P; R
P

T
t=1 Nt) with ‖ξ − ζ‖ ≤ α.

Based on the set of scenario paths ζ, the approach seeks to construct and reduce
the scenario tree ξ and at the same time bound the distances (7.4.1) and (7.4.2).
In this fashion, the optimal values φ(µ) and φ(ν) of the multi-stage stochastic
programs are kept sufficiently close.

The conditional clustering forward or backward in time make use of certain
scenario reduction heuristics referred to as forward selection and backward re-
duction. As for the clustering, we confine ourselves to the forward approach.
Foremost, the scenario reduction calls for a scenario redistribution rule, an opti-
mal reduction problem and a maximal reduction strategy. To state this, let S1

t

and S2
t index the selected and deleted scenarios at stage t. Given S1

t and S2
t , the

optimal redistribution is determined by

min
{

lr({ξ
s}s∈S1

t−1
, {ξs}s∈S1

t
)
∣

∣

∣

∑

s∈S1
t

πt,s = 1, πt,s ≥ 0, s ∈ S1
t

}

=

(

∑

s2∈S2
t

πt−1,s2 min
s1∈S1

t

‖ξs1 − ξs2‖r
)

1
r

,
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where lr is the Lr-minimal metric, also referred to as the Wasserstein distance of
order r, cf. Heitsch and Römisch (2006b). The solution provides the redistribution
rule of probabilities

πt,s = πt−1,s +
∑

s2∈S2
t (s)

πt−1,s2 , s ∈ S1
t ,

where

S2
t (s) :=

{

s2 ∈ S2
t |s = st(s2)

}

, st(s2) ∈ arg min
s1∈S1

t

‖ξs1 − ξs2‖r.

In other words, the probability of a selected scenario is the sum of its former
probability and of all probabilities of deleted scenarios that are closest in terms
of the Lr-minimal metric. The optimal set S2

t for scenario reduction with fixed
cardinality |S2

t | = K is given by the solution of the optimal reduction problem

min
{

∑

s2∈S2
t

πt−1,s2 min
s1∈S1

t

‖ξs1 − ξs2‖r
∣

∣

∣
S2

t ⊂ S1
t−1, |S

2
t | = K

}

.

Approximate solutions can be found by the following heuristic, iteratively selecting
a scenario at a time.

Algorithm 7.4.1 (Forward selection)

Step 0 Let S1,0
t := ∅.

Step 1 Set i = i+ 1 and let

si ∈ arg min
s3∈S2,t−1

∑

s2∈S2,t−1
t \{s3}

πt−1,s2 min
s1∈S1,t−1

t ∪{s3}
‖ξs1 − ξs2‖r.

S1,t
t := S1,t−1

t ∪ {si}

If i < K − k + 1, return to step 1. Otherwise, go to step 2.

Step 2 Do optimal redistribution.

The maximal reduction strategy serves to determine the set S2
t with maximal

cardinality |S2
t | such that

∑

s2∈S2
t

πt−1,s min
s1∈S1

t

‖ξs1 − ξs2‖r = ‖ξt − ξt−1‖r
r ≤ εt.

where

ξt,s :=

{

ξt−1,s , s ∈ S1
t

ξt−1,st(s) , s ∈ S2
t .
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and εt is a given tolerance.
In stating the forward scenario generation approach, let r ≥ 1 and let εt, t =

2 . . . , T be given. The forward tree construction algorithm is then

Algorithm 7.4.2 (Forward scenario generation)

Step 0 Let C1 = {{1, . . . , S}} be the 1st stage partitioning of {1, . . . , S} and let
ξ1 := ζ be the 1st stage scenario tree. Set t = 0.

Step 1 Set t = t + 1. Let Ct = {C1
t , . . . , C

Kt

t } be the stage-t partitioning of

{1, . . . , S}. Determine the disjoint index sets S1,k
t+1 and S2,k

t+1 of stage t+1

with S1,k
t+1 ∪S2,k

t+1 = Ck
t and the stage t+1 scenario tree ξt+1 with scenarios

ξt+1,s
t1 =

{

ζ
βt1 (s)
t1 , t1 ≤ t+ 1

ζs
t1 , t1 > t+ 1,

where

βt(s) =

{

sk
t (s) , s ∈ S2,k

t , k = 1, . . . ,Kt−1

s , otherwise,

by applying the maximal reduction strategy to stage t such that ‖ξt+1 −

ξt‖r,t+1 ≤ εt. Set Ct+1 = {β−1
t+1(s1) | s1 ∈ S1,k

t+1, k = 1, . . . ,Kt}. If t < T ,

return to step 1. Otherwise, go to step 2.

Step 2 Let CT = {C1
T , . . . , C

KT

T } be the stage-T partitioning of {1, . . . , S}. Con-

struct a scenario tree ξ having KT scenarios such that ξk
t := ζ

βt(s)
t for

s ∈ Ck
T , k =

1, . . . ,KT , t = 1, . . . , T .

It is shown that if ξ is constructed according to Algorithm 7.4.2, then we have the
bound

‖ξ − ζ‖r ≤
T

∑

t=2

‖ξt − ξt−1‖r
r,t ≤

T
∑

t=2

εt.

As the Lr-distance can be bounded by including conditions into Algorithm 7.4.2,
so can the filtration distance and we are thereby able to control the precision of
process.

The optimal scenario reduction has been introduced to the GAMS Distribu-
tion 20.6 and is contained in the library SCENRED.GAMS/SCENRED, cf. GAMS
Software GmbH (2002). To test the approach, Gröwe-Kuska et al. (2003) consider
a hydro-thermal generation system of a German utility. In one case study, scenario
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paths are given by historical data of electrical loads and prices and in another by
electrical loads sampled from a statistical model. Both case studies show encour-
aging computational result.

The forward scenario generation method using the forward selection approach
is applied in Chapter 5. The scenario paths are samples from a stochastic process
describing the future development in hourly electricity prices and reservoir inflows.
The resulting scenario tree serves as input to a multi-stage stochastic programming
problem for the short-term production planning of a Nordic hydro-power plant.

As already stated, the optimal scenario reduction integrates the scenario tree
reduction within the construction. However, the method can be used for scenario
reduction alone and then applies to both two-stage and multi-stage stochastic
programming problems. This was already suggested by Dupačová et al. (2003)
and Heitsch and Römisch (2006a), who proposed a variant of Algorithm 7.4.1
that rests on forward selection of single scenarios. An application to two-stage
stochastic programming can be found in Chapter 4. The scenarios are samples
from a statistical model of hourly electricity prices, while the corresponding two-
stage stochastic programming problem determines the commitment of a Nordic
hydro-power producer bidding into the electricity market. For another example
on forward selection of single scenarios in two-stage stochastic programming and
power management, see Gröwe-Kuska et al. (2000).

The approach by Heitsch and Römisch (2006b) is closely related to the optimal
discretization approach by Pflug (2004). Both approaches aim at generating a
scenario tree that is optimal in the sense that it minimizes the distance between
the optimal values corresponding to the true and the approximate distributions,
respectively. Moreover, the distances used by Heitsch and Römisch (2006b) and
Pflug (2004) are both deriven from the same so-called Wasserstein distance.

Since the sampling procedures of Section 7.3 as well as the scenario tree con-
struction and reduction methods are all used to generate stochastic programming
input before solving the problem, the methods are classified as external. As a
contrast to the external sampling procedures, the next section discusses internal
sampling procedures.

7.5 Internal sampling

When using the scenario generation methods that approximate the probability
distribution by external sampling, it is implicitly assumed that the distribution
is known and the problem is solved with an adaption of a deterministic solution
procedure. In contrast, scenario generation methods based on internal sampling
are integrated into a more general framework that iteratively refines an approx-
imation, possibly by incorporating sampling into the solution procedure. The
components of the iterative framework are
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• Scenario generation by sampling.

• Formulation of a stochastic programming problem that takes the scenarios
as input.

• Optimization, potentially interfaced with sampling.

The stochastic quasi-gradient method by Ermoliev and Gaivoronski (1992) rep-
resents one way of incorporating sampling into a solution method. The algorithm
iteratively determines new solutions to a stochastic programming problem by mov-
ing in the direction of the gradient, which is estimated by sampling a few points
or potentially only one point in each iteration.

Partly based on this, Higle and Sen (1991) suggested another algorithmic inter-
face between optimization and sampling, referred to as stochastic decomposition.
The cutting plane algorithm applies to two-stage stochastic linear programs with
complete recourse and combines the principles of the deterministic decomposi-
tion procedures such as Benders’ decomposition method with those of stochastic
approximation procedures such as quasi-gradient methods. Inspired by Benders’
decomposition, the algorithm successively generates cuts that are statistical esti-
mates of supports of the objective function. Like quasi-gradient methods, each
iteration of the algorithm requires the solution of a subproblem at only one sam-
ple point. Convergence is established in the sense that certain subsequences of
estimated supports accumulate at the support of the original objective function.
Conditional stochastic decomposition by Higle et al. (1994) extends stochastic
decomposition to a multi-cut version, in which the cuts support the conditional
expected objective function terms.

A very similar way of interfacing Benders’ decomposition with sampling is pre-
sented by Infanger (2005). Instead of using a single sample point in each iteration
of the algorithm, a limited number of sample points is used in an importance sam-
pling based heuristic. The method is applied to an expansion planning problem of
a network of electric utilities with uncertainty in the availability of transmission
lines and generators.

Like stochastic decomposition is interfaced with Benders’ decomposition for
two-stage stochastic programming problems, sequential importance sampling can
be combined with nested Benders’ decomposition for multi-stage stochastic pro-
gramming problems.

In its basic form, the sequential importance sampling algorithm serves to con-
struct scenario trees. The initial tree structure is defined through a scenario tree
nodal matrix. As the algorithm progresses one stage at a time, scenario paths
are generated by a conditional resampling that is consistent with the scenario tree
nodal matrix. The resamplings are usually conducted by conditional Monte Carlo
sampling from a statistical model as described in Section 7.3. Given the result-
ing scenario tree, the stochastic programming problem is formulated and solved.
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Then, nodal values of an importance sampling criterion are evaluated at the cur-
rent stage. A new tree structure is defined through an update of the scenario tree
nodal matrix such that the new scenario tree will be enriched with the relevant
scenario paths at this stage according to the importance sampling criterion.

Dempster (2004) employs expected value of perfect information EVPI as im-
portance sample criterion. The stage t EVPI is defined as

ψt(x
t−1, ξt) := Φ̄t(x

t−1, ξt) − Φt(x
t−1, ξt),

where

Φt(x
t−1, ξt) = min

xt

E
[

ctxt + Φt+1(x
t, ξt+1)|Ft

]

, (7.5.1)

Φ̄t(x
t−1, ξt) = E

[

min
xt

ctxt + Φt+1(x
t, ξt+1)|Ft

]

(7.5.2)

are the optimal values of the stage t stochastic programming problem and the
expected value of the associated wait-and-see problem, cf. Birge et al. (1987).
The nodal values of EVPI are evaluated when solving the discrete approximations
(7.5.1) and (7.5.2). Using resampling, each descendant of a node with a small or a
large EVPI is replaced by one new or a number of new descendants, respectively.
Since the EVPI measures the value of future information, a small EVPI indicates
that future scenario information cannot be effectively utilized and that a deter-
ministic future will suffice. In the process of importance sampling, both solutions
and objective function values are shown to converge to those of the original prob-
lem when the number of descendants tends towards infinity. For a small sample
size, the error in objective function values can be estimated, provided an upper
bound on the original problem is at hand.

A parallel version of the EVPI-based sequential importance sampling algorithm
is developed by Dempster and Thompson (1999). The parallel version combines
parallel nested Benders’ decomposition and a parallel approach to evaluating nodal
EVPI.

From test runs, the EVPI-based sequential importance sampling is shown to
require quite long computing times. Some success has been obtained with the
parallel version, although the authors admit that further progress is still possible.

Whereas an external scenario generation method can be used with an ex-
plicit scenario reduction method to limit the number of scenarios before solving a
problem, the internal scenario generation method of importance sampling can be
viewed as an implicit attempt to reduce the potentially very large dimensionality of
stochastic programming problems by only including scenarios that are important
in the process of solving.
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7.6 Evaluating scenario generation methods

For computational purposes, the true probability distribution is mostly approx-
imated by a finite number of scenarios and the quality of the approximation is
therefore determined by the quality of the scenarios. To assess the suitability
of a scenario generation method, Kaut and Wallace (2003) suggest some quality
requirements that should be fulfilled and show how to test the requirements.

The definition of a ”good” approximation is to be understood in various ways.
In a statistical sense, the discrete distribution should converge to the true distri-
bution as the number of realizations tends towards infinity. Due to computational
tractability, however, convergence may be hard to achieve. From an optimization
point of view, the approximation should be evaluated by the quality of the solu-
tions and the objective function values. Continuity of the solution set mapping
and the optimal value function address such stability issues in a theoretical fash-
ion. Still, to facilitate computations, this often involves empirical measures that
converge as the number of observations tends towards infinity. From a practical
viewpoint, a ”good” approximation is given by a limited number of representative
scenarios.

We consider a given stochastic programming problem, its true probability dis-
tributions denoted by µ and an approximation denoted by ν. Using the true or
approximate distributions, we refer to the corresponding problems as the true or
approximate problems. To evaluate the quality of the solutions, define the fol-
lowing error in the true objective function value at the optimal solutions of the
approximate and true problems

e(µ, ν) := Q(argmin
x
Q(x, ν), µ) −Q(arg min

x
Q(x, µ), µ). (7.6.1)

The optimal solutions are not compared directly. The reason for comparing the
solutions by their objective function values is that the objective function is often
flat and different solutions have very similar values. The quality requirements are
based on the idea of a small error, (7.6.1).

We can compare the practical stability requirements to theoretical continuity
results from the literature. According to Pflug (2004), we obtain the following
continuity estimate with respect to the Fortet-Mourier metric of order r. If the
functions Q(x, ·) are Lipschitz continuous with a constant of order r uniformly in
x, we get the estimate

e(µ, ν) ≤ L sup
x

|Q(x, µ) −Q(x, ν)| ≤ Lrdr(µ, ν)

for some constants L,Lr and where dr denotes the Fortet-Mourier metric or order
r. The continuity estimates provides an upper bound on (7.6.1).
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In view of this, the optimal scenario reduction of Section 7.4 seeks to minimize
to an upper bound on the error (7.6.1) in that

e(µ, ν) ≤ L sup
x

|Q(x, µ) −Q(x, ν)| ≤ L1l1(µ, ν) ≤ L1‖ξ − ζ‖1

for some constants L,L1. The inequalities are valid due to the equivalence of the
Wasserstein l1 and Fortet-Mourier d1 metrics of first order. The optimal scenario
reduction can therefore be regarded as an attempt to minimize the error (7.6.1).
The upper bound, nevertheless, is often quite loose for problems of manageable
sizes. Furthermore, in minimizing the upper bound, the link between the opti-
mization problem and the scenario generation method is lost and the practical
evaluation of the scenario generation method maintains its relevance.

Likewise, the convergence of scenario generation methods such as the con-
ditional Monte Carlo sampling and the sampling via integration quadratures in
Section 7.3 does not preclude the need for testing the practical performance of a
number of representative scenarios.

The suggested quality requirements of a scenario generation method are in-
sample stability and out-of-sample stability. In-sample and out-of-sample stability
require that the discrete approximations νk, k = 1, . . . ,K of a given distribution µ
produce optimal solutions with the same objective function values of the approx-
imate and true problems, respectively. Therefore, denote by x∗k, k = 1, . . . ,K the
optimal solutions of the discrete approximations. Then in-sample stability can be
stated as

Q(x∗k1
, νk1) ≈ Q(x∗k2

, νk2), k1, k2 = 1, . . . ,K

and out-of-sample stability as

Q(x∗k1
, µ) ≈ Q(x∗k2

, µ), k1, k2 = 1, . . . ,K.

To test in-sample stability, the approximate problems have to be solved. To test
out-of-sample stability, the true objective function should be evaluated at a given
solution, which requires full knowledge of the true distribution. If the true distri-
bution is known, simulation is a possibility. Otherwise, another scenario genera-
tion method can provide a reference distribution representing the true distribution
or if historical data is available, back-testing may be appropriate. It should be
remarked that in-sample stability does not imply out-of-sample stability or vice
versa and testing both types is recommended. In addition to being stable, a sce-
nario generation method should produce unbiased solutions in the sense that the
solution of the approximate problem should be a solution to the true problem. To
test this, denote by x∗ν and x∗µ the optimal solutions of the approximate and the
true problem. Then the requirement of unbiased solutions reads

Q(x∗ν , µ) ≈ Q(x∗µ, µ).
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Computing the optimal value of the true problem can be done by the use of a
reference distribution from an unbiased scenario generation method or by utilizing
all available historical data.

The way to improve performance of an in-stable or biased scenario generation
method depend on the type of scenario generation method employed. For sampling
methods, the number of scenarios should be increased or the sampling method
itself should be improved. For methods of matching statistical properties, an
option is to increase the number of statistical properties to match or the number
of scenarios, although the latter is not guaranteed to work.

Examples of testing practical performance of the scenario generation methods
are presented in Chapters 4 and 5. In Chapter 4 electricity price scenarios have
been generated by sampling from a statistical model. Tests for in-sample and
out-of-sample stability of the solutions are found to be satisfiable for a sample
of limited size. Likewise, in Chapter 5, scenario paths that consist of electricity
prices and reservoir inflows have been generated by sampling and converted into a
scenario tree by optimal scenario reduction. Again, tests for stability do well even
for limited sample sizes.



Chapter 8

Uncertainty modeling for the

short-term management of

hydro-power systems

As the selected overview of Chapter 7 indicates, there are several methods for
generating scenarios in stochastic programming. With extensive historical data
records, one possibility is to represent the probability distribution of the uncer-
tain data by a statistical model suitable for sampling. This method is especially
useful for handling uncertain data that develops over time by means of time series
analysis. The sample paths can be used directly as scenarios or scenario paths in
two-stage and multi-stage stochastic programming or converted into the scenario
trees for use in multi-stage stochastic programming. Moreover, the method is
found as a part of both external and internal scenario generation methods, as was
explained in Chapter 7.

This chapter aims to determine time series models that are relevant to the
short-term management of hydro-power systems and further illustrates the abilities
of the models to capture the development in the uncertain data over time. Results
from the Nordic power exchange Nord Pool and a Norwegian power plant are
presented.

8.1 Introduction

In the short-term management of a hydro-power plant, the uncertainty of the
future surroundings is a major challenge. In many respects, uncertainty of the
inflows to the reservoirs of the plant is essential. Moreover, uncertainty with
respect to the electricity demand was of vital importance in the traditional setting.
Demand uncertainty, however, has become less prominent with the deregulation

145
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of electricity markets, as a plant is no longer obligated to satisfy demand, but can
resort to market exchange. The exchange through short-term markets has called
for profit maximization, and market price uncertainty has become highly relevant.

Reservoir inflow uncertainty mainly stems from non-anticipated precipitation
and melt of snow. Market price uncertainty is driven by demand and supply.
Demand uncertainty is mostly caused by temperature unpredictability and unpre-
dicted customer behavior, whereas supply uncertainty may be due to unexpected
failures. Nevertheless, a common feature of inflows and prices is that current
observations show strong dependencies on past observations, and therefore the
stochastic processes of inflows and prices can be handled by means of time series
analysis. The time series analysis serves to gain insight into the empirical time
series, to model the underlying stochastic processes and the development of data
over time in particular, and to understand future data values.

For modeling uncertainty in electricity prices and water stream-flows, there
are several frameworks within the ares of engineering, economics and statistics.
Engineering approaches include bottom-up models for power systems and neural
networks for the modeling of hydrological processes. Statistical methods most
notably embrace time series analysis, possibly combined with other statistical
tools. Finally, econometric approaches to analyze time series are mostly developed
to analyze top-down models such as aggregated models for electricity prices.

One of the most common time series models is the ARMA model and its vari-
ants; for instance the integrated ARMA model, the fractional integrated ARMA
model, the seasonal ARMA model, the vector ARMA model, the transfer model
and the contemporaneous model, the ARCH and the GARCH models, some of
which will be discussed in this chapter.

If stochastic processes are appropriately represented by time series models, the
models can be used to forecast and simulate future data values. The short-term
management of hydro-power systems may be based on forecasts and simulations
directly or the procedures may be used as input to other instruments such as opti-
mization tools. Often, optimization tools are based on mathematical programming
and take the form of large-scale deterministic or stochastic programs. For exam-
ples of time series models in optimization, see Eichhorn et al. (2005), Gröwe-Kuska
et al. (2000), Gröwe-Kuska et al. (2001), Gröwe-Kuska et al. (2002) and Chapters
4 and 5.

The chapter is organized as follows. In Section 8.2 an ARMA model and some
extensions are introduced. The ARMA time series analysis is applied to day-ahead
electricity prices and reservoir inflows by first analyzing the univariate time series
in Subsections 8.2.1 and 8.2.2, and secondly the multivariate time series in Section
8.3 and Subsection 8.3.1.
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8.2 Univariate ARMA modeling

An empirical time series consists of observations made at equidistant time points,
so that an observation is dependent on the past development of the process and
therefore on past observations. Autoregressive moving average (ARMA) processes
that were introduced by Box and Jenkins (1976) constitute a class of stochastic
processes for the purpose of analyzing such time series. An ARMA process con-
sists of two parts; an autoregressive (AR) part and a moving average (MA) part,
that, loosely speaking, describe the deterministic and stochastic components of
the process, as it evolves over time.

To formalize the concept of ARMA processes, note that a weakly stationary
process is defined as a process of random variables with constant mean value and
autocovariances that are invariant under translation in time. Moreover, a white
noise process is defined as a process of uncorrelated random variables with mean
values zero and constant variances. We will refer to these random variables as the
innovations. The, an ARMA process can be defined as follows, cf. Andersen and
Blæsild (2003a) and Andersen and Blæsild (2003b).

Definition 8.2.1 Let {et}t∈Z be a white noise process with variance σ2 and let
{ξt}t∈Z be a weakly stationary stochastic process that solves

ψ(B)ξt = γ(B)et, t ∈ Z,

where ψ(z) = 1 −
∑p

k=1 ψkz
k and γ(z) = 1 −

∑q
k=1 γkz

k are polynomials with
p, q ∈ N0, ψ(z) 6= 0 and γ(z) 6= 0 for |z| ≤ 1, ψ(z) and γ(z) have no common
roots, and B is the back-shift operator, i.e. Bkξt = ξt−k. Then {ξt}t∈Z is called
an ARMA process of order (p, q) with parameters σ2, ψ1, . . . , ψp, γ1, . . . , γq.

An extension of an ARMA process that is not a weakly stationary process is an
integrated ARMA process (ARIMA) defined as below.

Definition 8.2.2 Let {ξt}t∈Z be a stochastic process, d ∈ N0, ∆ = 1 − B and
{∆dξt}t∈Z an ARMA process of order (p, q). Then {ξt}t∈Z is called an ARIMA
process of order (p, d, q).

A seasonal ARMA process (SARMA) is obtained as a special case of an ARMA
process that exhibits periodic behavior.

Definition 8.2.3 Let {et}t∈Z be a white noise process with variance σ2 and let
{ξt}t∈Z be a weakly stationary stochastic process that solves

ψ(B)Ψ(Bs)ξt = γ(B)Γ(Bs)et, t ∈ Z,

where ψ(z) = 1 −
∑p

k=1 ψkz
k, γ(z) = 1 −

∑q
k=1 γkz

k,Ψ(z) = 1 −
∑P

k=1 Ψkz
k and

Γ(z) = 1 −
∑Q

k=1 Γkz
k are polynomials with p, q, P,Q, s ∈ N0, ψ(z) 6= 0,Ψ(z) 6=
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0, γ(z) 6= 0 and Γ(z) 6= 0 for |z| ≤ 1, ψ(z) and γ(z) have no common roots, Ψ(z)
and Γ(z) have no common roots, and B is the back-shift operator, i.e. Bkξt = ξt−k.
Then {ξt}t∈Z is called a SARMA process of order (p, q, P,Q, s) with parameters
σ2, ψ1, . . . , ψp,Ψ1, . . . ,ΨP , γ1, . . . , γq,Γ1, . . . ,ΓQ.

Regarding lack of stationarity, a similar extension of a SARMA process to an
integrated SARMA process (SARIMA) applies.

Definition 8.2.4 Let {ξt}t∈Z be a stochastic process, d,D ∈ N0, ∆ = 1−B,∆s =
1−Bs and {∆d∆D

s ξt}t∈Z a SARMA process of order (p, q, P,Q, s). Then {ξt}t∈Z

is called a SARIMA process of order (p, d, q, P,D,Q, s).

It is straightforward to generalize the SARMA and SARIMA processes to a larger
class of seasonal processes by taking in more than one season. In the following we
assume that the involved white noise processes are Gaussian.

Having observed the process {ξt}t∈Z until time t, ξ̄t′ , t
′ ≤ t, it is interesting to

predict or forecast future values of the process, ξt+l, l = 1, 2, 3, . . . . The predicted
value of ξt+l from time t is denoted ξ̄t(l), where l is referred to as the lead time.
In a stationary process such as an ARMA or a SARMA process, the forecasting
relies on a mean square error approach that consists in minimizing the squared
difference between ξt+l and ξ̄t(l) in the conditional distribution given ξ̄t′ , t

′ ≤ t,
i.e.

E[(ξt+l − ξ̄t(l))
2|{ξ̄t′}t′≤t].

The minimum is attained for the so-called minimum mean square predictor

ξ̄t(l) = E[ξt+l|{ξ̄t′}t′≤t].

If {ξt}t∈Z is an ARMA(p, q) process, and {ζt}t∈Z is an ARIMA(p, d, q) process,
the forecast is determined by

ξ̄t(l) = ∆dζ̄t(l)

and likewise, if {ξt}t∈Z is a SARMA(p, q, P,Q, s) process and {ζt}t∈Z is a
SARIMA(p, d, q, P,D,Q, s) process, then

ξ̄t(l) = ∆d∆D
s ζ̄t(l).

In an ARMA process {ξt}t∈Z observed until time t, ξ̄t′ , t
′ ≤ t, the simulating of

future values ξt+l, l = 1, 2, 3, . . . rests on drawing samples from the conditional
distributions given ξ̄t̄, t̄ ≤ t. In particular, a simulated value of ξt+l from time t is
given by a sample from the distribution of the random variable denoted by ξt(l)
and determined by

ξt(l) ∼

p
∑

k=1

ψkB
kξt+l + et+l +

p
∑

k=1

γkB
ket+l

∣

∣

∣
{ξ̄t′}t′≤t,
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where the innovations are independent random variables since they constitute a
Gaussian white noise process. Simulating future values of an ARIMA, a SARMA
or a SARIMA process is similar in spirit to the way of forecasting.

A standard application of the ARMA time series analysis comprises the general
steps of model identification, parameter estimation, model control along with in-
sample and out-of-sample validation of the model.

Model identification: Identifying the class of models starts with detecting
possible seasonalities. If periodic behavior is expected, the period is typically
determined by the way the data has been collected and is therefore closely related
to the design of the experiment. In this respect, either the ARMA or SARMA
model comes into play.

Under the assumptions made, both ARMA and SARMA processes are com-
pletely determined by their mean value and autocovariances. Further model iden-
tification may therefore be based on the study of the empirical autocorrelation
function and the partial autocorrelation function, where the latter is a function of
the former.

The next step is to consider stationarity issues. A weakly stationary process
such as an ARMA or a SARMA process is characterized by a constant mean value
and an autocovariance function invariant under translation in time. Moreover,
the empirical autocorrelation function and partial autocorrelation function decay
exponentially to zero, whereas a slow decay to zero is a sign of non-stationarity.
If the original empirical time series does not appear to be stationary, the property
may apply to the differences. The original series then constitutes an ARIMA or a
SARIMA model.

When the class of models has been identified, the order of the corresponding
ARMA or SARMA process must be determined. For an ARMA process of or-
der (p, q), the following is valid and can be used as a guideline. If p 6= 0, the
autocorrelation function is a sum of exponentially decreasing terms and exponen-
tially damped sine waves, whereas if p = 0 and the MA process is of order q,
the lagged-k autocorrelations are zero for k > q. In the same fashion, if q 6= 0,
the partial autocorrelation function is nearly a sum of exponentially decreasing
terms and exponentially damped sine waves, whereas if q = 0 and the AR process
is of order p, the lagged-k partial autocorrelations are zero for k > p. Similar
results hold for a SARMA process of order (p, q, P,Q, s) where p+ sP replaces p
and q + sQ replaces q. Furthermore, for a SARMA process, the autocorrelations
corresponding to the lags 1, 2, 3, . . . behave like an ARMA process of order (p, q)
and the autocorrelations corresponding to the lags 1s, 2s, 3s, . . . behave like an
ARMA process of order (P,Q).

Parameter estimation: With an appropriate model at hand, the parame-
ters have to be estimated. By accepting that the model is stationary, the most
common estimating methods include maximum likelihood estimation, in which
the log likelihood function is maximized with respect to the parameters. Other
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common methods are the unconditional least square estimation, in which the sum
of squares is minimized, and the conditional least square estimation, in which the
sum of squares is also minimized, but under the assumption that unknown past
values equal zero.

Model control: It remains to be shown that the model is appropriate for
describing the empirical time series and the fit of the model has to be validated.
The validation is based on the residuals, i.e. the differences between actual ob-
servations and predicted values from the fitted model. For the residuals to follow
a white noise process, they must have zero mean value, constant variance and be
uncorrelated. The inspection of their autocorrelation and partial autocorrelation
functions is constructive in the sense that it indicates how an initial model should
be altered. Furthermore, the fit of the model can be assessed using the so-called
Ljung-Box statistics that offer a test of the residuals being uncorrelated.

In-sample and out-of-sample testing: The final model can be used to
forecast or simulate future values of the data. In particular, the ability of the
model to forecast can be evaluated by comparing a forecast with real data of
the identification period, referred to as in-sample testing, or with real data of a
validation period, referred to as out-of-sample testing. If compared, out-of-sample
and in-sample forecast errors should be similar. The simulation abilities of the
model can be tested by comparing distributional characteristics of a large sample
to those of the real data in the identification or validation period.

Concerning the fit of ARMA time series models to day-ahead market prices
and reservoir inflows, we rely on the framework presented above and explain each
step in detail. All computations have been carried out by the statistical software
package SAS, version 8.2, cf. SAS Institute Inc. (1999).

8.2.1 Day-ahead market prices

The recent tendency to restructure and deregulate electricity markets has stim-
ulated most power producers to shift the objective from costs minimization and
demand satisfaction to profit maximization alone, which has made the behavior of
electricity prices of foremost importance. In the short term, power producers may
participate in spot markets such as the day-ahead market for disposing of physical
production.To participate in the day-ahead market, bids must be submitted a day
in advance, as already indicated by the name. The market cannot clear and the
clearing prices of the following day cannot be announced until afterwards. The
clearing prices, also referred to as day-ahead market prices, are therefore uncer-
tain at the time of bidding. Even if disposing of physical production by bilateral
contracts, the market price uncertainty strongly influences the situation, since in
most cases, the price of a bilateral contract reflects the expected development in
day-ahead market prices. The forecasting or simulation of the day-ahead market
prices of tomorrow is essential to market participants in general. The develop-
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ment of bidding strategies may simply be based on reliable price forecasts and
simulations, or the procedures may be used in combination with other instru-
ments. Moreover, for power producers in particular, the prediction of day-ahead
market prices plays a major role in the short-term planning of the power plant,
since physical production is disposed of mostly when prices are profitable.

For applications of the ARMA framework to predict day-ahead electricity
prices, we refer to the following contributions within the literature. The authors of
Contreras et al. (2003) present SARIMA models for day-ahead electricity prices of
the Spanish and Californian markets, whereas Nogales et al. (2002) fit transfer and
regression models in which electricity load has been included as an explanatory
variable and Garcia et al. (2005) focus on GARCH models of the same markets.
Another application of the GARCH framework is presented by Escribano et al.
(2002), who also consider time-dependent jumps in electricity prices and consid-
ers the markets of Argentina, Australia, New Zealand, U.S., Spain as well as the
Nordic market. In a similar spirit, the authors of Haldrup and Nielsen (2004)
develop a model from within the class of long memory models. The ARFIMA
model for the Nordic day-ahead electricity market includes regime switching.

The ARMA time series analysis of day-ahead market prices is performed on
observations from the spot market Elspot at the Nordic power exchange Nord Pool,
and more precisely from the so-called price zone NO2, which is the Trondheim area
in Norway. The empirical time series contains hourly observations from the year of
2004, of which the first 40 weeks are used for model identification and the following
10 weeks for model validation.

Model identification: To identify an appropriate model, the first step is to
detect seasonalities. As day-ahead market prices are partly driven by electricity
demand which exhibits a daily and a weekly pattern, both daily and weekly peri-
odic behavior is to be expected. This is supported by the fact that the day-ahead
market clears every day of the week except in weekends. The periodicities are
visible from Fig. 8.1a. The class of SARMA models provides a base for identifying
a model.

A non-constant mean indicates non-stationarity of the time series data. This
is further justified by empirical autocorrelations that decay very slowly to zero.
The factors (1 − B), (1 − B24) and (1 − B168) are included in order to stabilize
the mean, (1 − B24) and (1 − B168) to remove seasonality, and the process of
differences can then be accepted as being stationary, cf. Fig. 8.1b. Experiments
was made with a logarithmic tranformation to stabilize the variance. However,
the best results were obtained without this transformation. The original process
can therefore be described by a SARIMA model.

Inspecting the empirical autocorrelation and partial autocorrelation functions,
the order of the process of differences can be determined. The functions are shown
in Figs. 8.2. The autocorrelations corresponding to the lags 1, 2, 3, . . . give an in-
dication of an ARMA(2, 2) process. The autocorrelations of the lags 24, 48, 72, . . .
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Figure 8.1: Hourly day-ahead market prices.

show evidence of an MA(2) process, as the lagged-24k autocorrelations are zero
for k > 2 and the partial autocorrelation function is exponentially decreasing. Fi-
nally, the autocorrelations of the lags 168, 336, 504, . . . are indications of anMA(1)
process, as the lagged-168k autocorrelations are zero for k > 1 and the partial au-
tocorrelation function is exponentially decreasing. Although not clearly visible in
Fig. 8.2a, the ARMA(2, 2) process causes the autocorrelation function to peak
in the neighborhood of the lag 24, 48, 72, . . . and the MA(2) process causes it to
peak at the lags 144, 192, 312, 360, 480, 528. The initial proposal of a model is

(1 − ψ1B − ψ2B
2)(1 −B)(1 −B24)(1 −B168)ξt =

(1 − γ1B − γ2B
2)(1 − γ24B

24 − γ48B
48)(1 − γ168B

168)et, t ∈ Z

Inspecting the autocorrelation function and the partial autocorrelation function
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Figure 8.2: Autocorrelation functions for day-ahead market prices.
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of the residuals, the model can be further refined to

(1 − ψ1B − ψ2B
2)(1 −B)(1 −B24)(1 −B168)ξt =

(1 − γ1B − γ2B
2)(1 − γ23B

23 − γ24B
24 − γ25B

25

− γ47B
47 − γ48B

48 − γ49B
49)(1 − γ168B

168)et, t ∈ Z.

The model is an extension of those of the preceding sections. It is, nevertheless,
sufficiently general to include the main characteristics of day-ahead market prices.

Parameter estimation: Parameter estimates are obtained by the use of max-
imum likelihood estimation. Estimates based on data of the model identification
period can be found in Table 8.1.

Table 8.1: Maximum likelihood estimates for day-ahead market prices

Parameter ψ1 ψ2 γ1 γ2 γ24 γ25

Estimate 0.3120 0.3758 0.3942 0.5382 −0.0826 0.6888
Parameter γ26 γ47 γ48 γ49 γ168 σ
Estimate −0.0748 0.0553 0.1834 0.0388 0.9810 5.0487

Model control: To validate the model, the assumption of a white noise pro-
cess on the residuals must be confirmed. A plot of the residuals is given in Fig.
8.3a. It should be clear that the mean value can be assumed to be zero and that
the variance appears to be constant. Furthermore, the autocorrelation and partial
autocorrelation functions of the residuals, cf. Figs. 8.3b and 8.3c, are both close
to zero as is the case for a white noise process. The Ljung-Box statistics back up
the fit of the model.
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Figure 8.3: Residuals of day-ahead market prices.

Out-of-sample testing: Before using forecasts and simulations as tools for
planning purposes, both procedures are suitable for further validation of the model.
Out-of-sample tests are performed and, hence, the model is tested on the data of
the validation period by forecasting and simulating into this period.
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Table 8.2: Weekly forecast errors for day-ahead market prices.

Week 41 42 43 44 45
MPE 0.73 −0.34 0.09 −0.11 −0.16
MAPE 3.00 1.72 2.51 2.95 2.19
MSE 72.32 36.22 58.82 436.67 47.15
Week 46 47 48 49 50
MPE 0.48 0.25 0.51 −0.52 −0.25
MAPE 1.87 1.80 2.08 2.25 2.66
MSE 31.81 44.39 37.51 45.88 61.95

Table 8.3: Weekly descriptive statistics for day-ahead market prices.

Week 41 42 43 44 45
Sim. Mean value 228.46 245.55 242.18 246.32 239.12

Std. dev. 16.26 13.84 11.87 11.35 11.91
Real Mean value 229.68 244.55 240.96 246.57 238.59

Std. dev. 11.46 6.97 4.75 18.67 12.29
Week 46 47 48 49 50

Sim. Mean value 227.95 241.05 236.40 226.20 215.93
Std. dev. 14.74 13.22 13.87 13.45 14.68

Real Mean value 229.10 241.83 238.95 225.23 215.65
Std. dev. 14.67 10.37 11.50 14.49 13.57

The forecast errors of the validation period, i.e. the weeks 41-50 or the hours
6721-8400, are reported in Table 8.2. The mean percentual error (MPE), mean
absolute percentual error (MAPE) as well as the mean square error (MSE) are
displayed on a weekly basis. It should be remarked that the estimation of the
validation period has been conducted on a 24-hour basis using an adaptive ap-
proach, cf. Contreras et al. (2003) and Nogales et al. (2002). The estimation of
the first 24 hours, i.e. the hours 6721-6744, is based on data of the hours 1-6720.
Moving the time window 24 hours, the estimation of the next 24 hours, i.e. the
hours 6745-6768, is based on data of the hours 24-6744 etc. The forecast errors
are seen to be rather small and therefore the model is suitable for forecasting.

Descriptive statistics for a simulation of 1000 samples are shown in Table 8.3
along with the same information on the real observations of the validation period.
Concerning the preservation of the descriptive statistics, the mean value is well
preserved, whereas the standard deviation is generally over-estimated.

Forecast and simulation: Starting from the end of the validation period,
forecasts and simulations can be generated further into the future. As an example
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of a short-term use of the procedures, hourly prices are forecasted and simulated
a week ahead, i.e. into week 51. A plot of the forecasts and the real observations
can be found in Fig. 8.4a. Moreover, the forecast and its confidence intervals are
plotted in Fig. 8.4b. Examples of a few simulated sample paths are displayed in
Fig. 8.4c.
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Figure 8.4: Forecasted and simulated day-ahead market prices.

8.2.2 Reservoir inflows

As water inflows to hydro reservoirs are often highly uncertain, the forecasting or
simulation of future values is crucial in the short-term planning of hydro-power
plants. In the management of reservoirs, the scheduling of water releases depend
among other things on the current reservoir levels. Water releases in turn affect
unit commitment and production level decisions, which makes the knowledge of
future reservoir inflows very valuable. Early applications of the ARMA framework
to forecast and simulate stream-flows can be found in Camacho et al. (1985a),
Camacho et al. (1985b), Camacho et al. (1987), Salas et al. (1980) and Salas
et al. (1985). Newer applications comprise Kuo and Sun (1996), who establish a
section model for ten-days average stream-flows in which each section is a separate
ARMA model. Concerning more long-term models, Mohan and Vedula (1995) fit
a SARIMA model for forecasting monthly inflows into a reservoir system, whereas
Jardim et al. (2001) simulate monthly stream-flows from a periodic ARMA model
to alleviate mid-term planning in a hydro-power plant.

For the ARMA time series analysis of water inflows to reservoirs, the data
consists of hourly observations from the same hydro-power plant located in the
area of Trondheim in Norway and run by the company TrønderEnergi. The data
dates back to 2004, which is again divided into a model identification period of 40
weeks and a model validation period of 10 weeks.

Typically, even smaller hydro-power plants consist of more than one reservoir.
Therefore, it is highly relevant to consider multiple reservoir inflow series. Inflows
to different reservoirs may stem from the same stream or from different streams.
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Here, we consider two reservoir inflow series from two different streams and initially
handle the series individually. We show a model for one of the inflow series should
be fitted, as fitting the other may be done in a similar fashion. The first inflow
series corresponds to a reservoir named Samsjøen, the second inflows series to
H̊aen.

Model identification: Consider the inflow to Samsjøen. The data does
not immediately disclose any obvious short-term seasonalities of the reservoir in-
flows. Hence, the starting point of model identification is stationarity. Highly
non-constant mean value and variance reveal non-stationarity of the time series
data, which is further verified by slowly decreasing empirical autocorrelations.
By experimenting with logarithmic transformation and differences, the inclusion
of factor (1 − B) was found most suitable in obtaining stationarity. In particu-
lar, the aucorrelation functions decreased more quickly without the logarithmic
transformation. Hence, an appropriate model should be found within the class of
ARIMA models. The original empirical time series and the series of differences
are displayed in Fig. 8.5.
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Figure 8.5: Hourly reservoir inflows.

To determine the order of the model, the empirical autocorrelation and partial
autocorrelation have been drawn in Fig. 8.6. The autocorrelations of the lags
1, 2, 3, . . . suggest an ARMA(1, 2) model, whereas the autocorrelations of the lags
41, 82, 123, . . . and 120, 240, 360, . . . both point to a MA(1) process. Refining the
model further, an appropriate end result is

(1 − ψ1B)(1 −B)ξt = (1 − γ1B − γ2B
2)

(1 − γ41B
41)(1 − γ119B

119 − γ120B
120 − γ21B

121)ǫt, t ∈ Z.
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Figure 8.6: Autocorrelation functions for reservoir inflows.

Parameter estimation: Parameter estimates are obtained using maximum
likelihood estimation. Estimates based on data of the model identification period
are found in Table 8.4.

Table 8.4: Maximum likelihood estimates for reservoir inflows.

Parameter ψ1 γ1 γ2 γ41

Estimate 0.9879 1.2698 −0.3095 0.8385
Parameter γ119 γ120 γ121 σ
Estimate 0.1729 −0.1742 −0.0691 3049.4570

Model control: The model is validated by testing the assumption of a white
noise process on the residuals and is confirmed by the behavior of the autocorre-
lation and partial autocorrelation functions as well as by the Ljung-Box statistics,
none of which is displayed here.

Out-of-sample testing: Further validation of the model is based on forecasts
and simulations. Again, we do out-of-sample testing. Forecast errors are shown in
Table 8.5. We find forecasts to be useful for high inflow weeks, i.e. weeks 41 and 45-
50. However, for low inflow weeks, i.e. weeks 42-44, the forecasts are rather poor.
The descriptive statistics of the simulations, cf. Table 8.6, show that the mean is
more or less preserved, whereas the standard deviation is highly overestimated.

Forecast and simulation: With the validated model at hand, short-term
forecasts and simulations of hourly inflows can be made. Plots of the forecast and
the real data as well as the forecast and its corresponding confidence interval a
week ahead are shown in Fig. 8.7a and 8.7b. Examples of a few simulated sample
paths are shown in Fig. 8.7c.

Model identification and parameter estimation: Consider now the inflow
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Table 8.5: Weekly forecast errors for reservoir inflows.

Week 41 42 43 44 45
MPE −7.74 −52.36 15.88 6.78 9.22
MAPE 16.10 116.10 115.78 57.10 15.15
MSE 12.78×106 13.89×106 12.95×106 10.73×106 62.16×106

Week 46 47 48 49 50
MPE 1.97 0.31 −5.22 3.32 5.46
MAPE 11.76 10.05 11.07 10.55 9.68
MSE 46.75×106 9.73×106 6.36×106 7.17×106 22.97×106

Table 8.6: Weekly descriptive statistics for reservoir inflows

Week 41 42 43 44 45
Sim. Mean value 19053.45 9346.40 9077.62 6458.55 50638.26

Std. dev. 10224.38 10116.10 10102.11 10348.29 10348.29
Real Mean value 17896.71 6323.36 8995.71 6960.00 44862.86

Std. dev. 4818.84 3597.40 4677.30 3386.63 17653.88
Week 46 47 48 49 50

Sim. Mean value 50638.26 24185.43 19574.73 17772.61 38566.49
Std. dev. 12882.12 10196.85 10178.67 9570.64 10407.45

Real Mean value 45686.57 24573.21 19284.64 21884.79 40509.64
Std. dev. 8933.57 6164.27 6311.45 8864.11 11268.43
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(c) Simulation.

Figure 8.7: Forecasted and simulated reservoir inflows.

to H̊aen. The model fitted for the corresponding inflow series is

(1 − ψ1B)(1 −B)ξt = (1 − γ1B − γ2B
2)(1 − γ41B

41)et, t ∈ Z,

with the parameter estimates of Table 8.7.
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Table 8.7: Maximum likelihood estimates for reservoir inflows

Parameter ψ1 γ1 γ2 γ41 σ2

Estimate 0.9759 1.4352 −0.5554 0.8344 740.3185

8.3 Multivariate ARMA modeling

Univariate ARMA processes can be generalized to multivariate ARMA processes,
see Tiao and Box (1981) and Jenkins and Alavi (1981). The generalization of
ARMA processes to higher dimensions is referred to as vector ARMA (VARMA)
processes.

Definition 8.3.1 Let {et}t∈Z be a N×1 white noise process with N×N covariance
matrix Σ and let {ξt}t∈Z be a N×1 weakly stationary stochastic process that solves

ψ(B)ξt = γ(B)et, t ∈ Z,

where ψ(z) = IN −
∑p

k=1 ψkz
k and γ(z) = IN −

∑q
k=1 γkz

k are polynomials with
p, q ∈ N0, ψ(z) 6= 0 and γ(z) 6= 0 for ‖z‖ ≤ 1 and B is the backshift operator, i.e.
Bkξt = ξt−k. Then {ξt}t∈Z is called a VARMA process of order (p, q) with N ×N
parameter matrices Σ, ψ1, . . . , ψp, γ1, . . . , γq.

If the parameter matrices are diagonal and the innovations are uncorrolated,
the multivariate VARMA model collapses to independent univariate ARMA mod-
els. As a hybrid between the multivariate and the univariate models, the contem-
poraneous ARMA (CARMA) model arises if the parameter matrices are diagonal,
but the innovations are allowed to be contemporaneously correlated, see Salas
et al. (1980) and Hipel and McLeod (1993).

Definition 8.3.2 Let {et}t∈Z be a N×1 white noise process with N×N covariance
matrix Σ and let {ξt}t∈Z be a N × 1 stochastic process that solves

ψ(B)ξt = γ(B)et, t ∈ Z,

where ψ(z) = IN −
∑p

k=1 ψkz
k and γ(z) = IN −

∑q
k=1 γkz

k are polynomials with
p, q ∈ N0, and N ×N parameter matrices ψ1, . . . , ψp, γ1, . . . , γq that have zeros off
the diagonal and B is the backshift operator, i.e. Bkξt = ξt−k. If the univariate
processes {ξn,t}t∈Z that solve

ψnn(B)ξn,t = γnn(B)en,t, t ∈ Z

are ARMA processes of order (p, q) and the corresponding white noise processes
{en,t}t∈Z are allowed to be contemporaneously correlated, then the multivariate
process {ξt}t∈Z is called a CARMA process of order (p, q) with N ×N parameter
matrices Σ, ψ1, . . . , ψp, γ1, . . . , γq.
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Motivated by the fact that the VARMA model is difficult to estimate, especially
for higher order models in which the number of parameters is large, the more
simple CARMA model finds its relevance. The main advantage of the CARMA
model is its decoupling of the multivariate model into univariate models that
facilitates the application of specially designed parameter estimation procedures
based on the univariate estimates. In spite of its simplicity, the CARMA model
incorporates correlation among the univariate models by allowing the innovations
to be instantaneously correlated.

Salas et al. (1980) propose an alternative formulation of the CARMA model as
a VARMA model. Let {ξt}t∈Z be a CARMA process of order (p, q) with parameter
matrices Σ, ψ1, . . . , ψp, γ1, . . . , γq and an upper triangular matrix C that satisfies
CCT = Σ. Let {ǫt}t∈Z be a N × 1 white noise process with covariance matrix IN .
Then {ξt}t∈Z is a N × 1 weakly stationary stochastic process that solves

ψ(B)ξt = γ(B)Cǫt, t ∈ Z.

Hence, {ξt}t∈Z is a VARMA process of order (p, q) with parameter matrices
IN , ψ1, . . . , ψp, γ1C, . . . , γqC.

Multivariate ARMA time series modeling includes the same general steps as
for univariate models, which is model identification, parameter estimation, model
control and validation as well as forecasting and simulation.

Model identification: To fix the structure of a multivariate model, the de-
pendencies between the univariate series must be identified. Whether the series
exhibit contemporaneous, unidirectional, bidirectional relationships, mixtures of
these or no dependencies at all, dependencies are disclosed by the cross-correlations
of the series. For contemporaneous models, the cross-correlations are zero except
at lag zero, for unidirectional relationships, the cross-correlations are zero at neg-
ative lags but significant at the remaining ones, whereas for bidirectional relation-
ships the cross-correlations are significant at all lags. When the structure of the
model has been fixed, the order can be determined. For contemporaneous ARMA
models, univariate procedures can be used. For vector ARMA models in general,
the cross-correlation matrices and the partial correlation matrices complement the
autocorrelation and partial autocorrelation functions in the order determination.

Parameter estimation and model control: Parameter estimation, model
control, forecasting and simulation in the multivariate case is an extension that in
the univariate case.

8.3.1 Simultaneity of prices and inflows

If hourly day-ahead market prices and reservoir inflows are considered simultane-
ously, the time series is multidimensional. We illustrate the fitting of a multivariate
model with the day-ahead market price series and the two reservoir inflow series
of the preceding sections.
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Examples from the literature on VARMA modeling in stream-flows include
Camacho et al. (1985a) and Salas et al. (1980) and on CARMA modeling especially
Camacho et al. (1985b) and Salas et al. (1985).

Model identification: The VARMA model could be adopted to fit the mul-
tivariate model. The three-dimensional VARMA model, however, simplifies as
day-ahead market prices and reservoir inflows may be assumed uncorrelated in
the short term. This is supported by the plot of day-ahead market prices versus
reservoir inflows in Fig. 8.8a. It should be clearer from Figs. 8.8b and 8.8c, which
display cross-correlations between the residuals of prices and inflows from one of
the streams. Corresponding cross-correlations between the residuals of prices and
inflows from the other stream are similar. The figures reveal uncorrelated residu-
als. Consequently, day-ahead market prices and reservoir inflows can be handled
separately. For the day-ahead market prices, we refer to the preceding sections.
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(a) Prices and inflows.
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(c) Serial cross correlation.

Figure 8.8: Correlation between day-ahead market price and reservoir inflow
series.

We proceed with the reservoir inflows. Inflow series from different streams
are correlated and cannot be treated separately. The correlation between the
two inflow series should be visible from Fig. 8.9a. Therefore, the simultaneous
modeling of multiple inflow series, in principle, relies upon the VARMA model.
Nevertheless, unidirectional dependencies often occur in the case of connected
streams, whereas, if the streams are not connected, contemporaneous dependencies
may apply. Within reasonable limits, the cross-correlations between the residuals
of the two inflow series depicted in Figs. 8.9b and 8.9c support the use of a CARMA
model.

Parameter estimation: We use the univariate estimates, although a multi-
variate estimation procedure, applying only to CARMA models, may reduce the
variance of the estimates. Some parameter estimates were given in Tables 8.4 and
8.7. Moreover, Table 8.8 shows the maximum likelihood estimates for the covari-
ance matrix of the innovations Σ and the corresponding upper triangular matrix
C.

Model control: The univariate models have been validated in the preceding
sections.
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Figure 8.9: Correlation between reservoir inflows series.

Table 8.8: Maximum likelihood estimates for reservoir inflow.

Parameter Σ11 Σ12 Σ21 Σ22

Estimate 9270446 104030 104030 547131
Parameter C11 C12 C21 C22

Estimate 3044.74 0.00 34.17 738.89

Forecast and simulation: Forecasts and simulations can be based on the
alternative formulation of the multivariate model. The forecasts are shown in Fig.
8.10 and the simulations in Fig. 8.11. The correlation between the two univariate
inflow series should be visible from both the forecasts and the simulations.
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Figure 8.10: Forecasted and real reservoir inflows.

8.4 Conclusions

The results of the previous sections illustrate the ability of ARMA time series
models to forecast and simulate hourly day-ahead electricity prices and reservoir
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Figure 8.11: Simulated reservoir inflows.

inflows. As already indicated, forecasts and simulations are suitable as input for
optimization problems such as deterministic and stochastic planning problems that
future values of data as input.

An example of using simulated day-ahead electricity prices in a stochastic
planning problem is found in Chapter 4. The problem consists in day-ahead
bidding of a hydro-power plant under price uncertainty and simulated hourly day-
ahead market prices serve as scenarios in a corresponding stochastic program. In
a similar fashion, Chapter 5 uses simulated hourly day-ahead market prices and
reservoir inflows as scenarios in a stochastic program that determines the spatial
distribution of water among reservoirs of a hydro-power plant.

In practice, power producers rely upon so-called fundamental models that in-
volve detailed physical relationships. Although the forecast performance may in
general be superior to time series models, the fundamental models are not capable
of simulating and the time series models still have their relevance.

The literature has previously reported on the success of forecasting or simu-
lating hourly day-ahead market prices by ARMA models and the current results
show the same potential. However, ARMA models have been used mostly to de-
scribe monthly and annual stream-flows, whereas the use of ARMA models to
forecast or simulate hourly stream-flows has occurred only rarely in the literature.
By a direct application of the ARMA framwork it may not be possible to capture
intermittency and the current results show a moderate performance with respect
to the hourly stream-flows.

Although the ability to forecast or simulate day-ahead market prices and reser-
voir inflows can be improved, we consider ARMA time series models sufficient for
illustrating the usefulness of stochastic programming, as in Chapters 4 and 5.
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8.4.1 Further improvement

To improve the time series models for reservoir inflows, we suggest to combine a
long-term model, that is able to capture memory, persistence and periodicity prop-
erties, with a short-term model suitable for describing intermittency. A possible
outline is the following.

Since the ARMA framework has been successfully applied for modeling more
long-term stream-flows, performance may improve with a time resolution of a day
or a week. This point of view is supported by the ability of the ARMA processes
to model the general trend in the data, as seen in Figs. 8.7a and 8.10. The idea is
therefore to describe the aggregated daily or weekly inflows by means of ARMA
processes in the same way as the hourly inflows were described. With a daily time
resolution, the “long-term” model is based on the means

ξ̄⌈t/24⌉, t ∈ Z

and similarly for a weekly time resolution.
The daily or weekly data then has to be disaggregated into hourly data. Several

disaggregation techniques can be found in the literature. Still, many techniques
are not suitable for hourly disaggregation due to the intermittency of stream-flows,
whereas others are unable to preserve the time series properties at the disaggre-
gated level. However, the availability of both “long-term” (daily or weekly) and
short-term (hourly) data gives rise to models of different time resolutions, and
the aggregation-disaggregation reduces to a matter of combining the models. The
long-term and the short-term models can be combined by considering

ζt = ξt/ξ̄⌈t/24⌉ or ζt = ξt − ξ̄⌈t/24⌉, t ∈ Z

in the short-term model, cf. Eichhorn et al. (2005) and Gröwe-Kuska et al. (2001).
The short-term model allows for a partitioning of the data set into smaller sets.

Stream-flows can be categorized according to the seasons or according to dry or
wet periods of time. The categories may be determined by clustering methods,
each cluster being used to construct a standard profile or a stochastic submodel
based for instance on regression on time.

The time series models for day-ahead market prices may likewise be improved
by combining a long-term model with a short-term model. Fig. 8.4a indicates that
the ARMA processes are able to model the development in prices except for the
general trend in the data. It may be therefore be relevant to establish a more
long-term model based on weekly or daily means and a short-term model in which
prices are partitioned into smaller sets. Prices may contain the categories spring,
summer, fall and winter and for each of them workday, Saturday and Sunday.

.



Bibliography

Ahmed, S. (2004). Mean-risk objectives in stochastic programming. .
http://hera.rz.hu-berlin.de/speps/contents04.html.

Andersen, A. H. and P. Blæsild (2003a). Time Series Analysis, Volume 1. Århus,
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Gröwe-Kuska, N., W. Römisch, and M. P. Nowak (2000). Power management
under uncertainty by Lagrangian relaxation. In Proceedings of the 6th Inter-
national Conference Probabilistic Methods Applied to Power Systems PMAPS
2000, Volume 2, INESC Porto.

Haldrup, N. and M. O. Nielsen (2004). A regime switching long memory model
for electricity prices. In press, Journal of Econometrics.

Hansen, P. and B. Jaumard (1997). Cluster analysis and mathematical program-
ming. Mathematical Programming 79 (1-3), 191–215.



170 Bibliography

Heitsch, H. and W. Römisch (2006a). A note on scenario reduction for two-stage
stochastic programs. Preprint 335, DFG Research Center Matheon ”Mathemat-
ics for key technologies”, Humboldt University Berlin.

Heitsch, H. and W. Römisch (2006b). Scenario tree modelling for multistage
stochastic programs. http://edoc.hu-berlin.de/docviews/abstract.php?

lang=ger&id=27364.

Heitsch, H., W. Römisch, and C. Strugarek (2005). Stability of multistage stochas-
tic programs. Preprint 255, DFG Research Center MATHEON ”Mathematics
for key technologies”, Humboldt University Berlin.

Higle, J. L., W. W. Lowe, and R. Odio (1994). Conditional stochastic decom-
position: An algorithmic interface for optimization and simulation. Operations
Research 42 (2), 311–322.

Higle, J. L. and S. Sen (1991). Stochastic decomposition: An algorithm for two-
state linear programs with recourse. Mathematics of Operations Research 16 (3),
650–669.

Hipel, K. W. and A. McLeod (1993). Time-series Modelling of Water Resources
and Environmental Systems. Elsevier.

Hobbs, B. F. (1995). Optimization methods for electric utility resource planning.
European Journal of Operational Research 83, 1–20.

Høyland, K., M. Kaut, and S. W. Wallace (2003). A heuristic for moment-
matching scenario generation. Computational Optimization and Applica-
tions 24 (2-3), 169–185. Stochastic programming.

Høyland, K. and S. W. Wallace (2001). Generating scenario trees for multistage
decision problems. Management Science 47 (2), 295–307.

Hreinsson, E. B. (1988). Optimal short term operation of a purely hydroelectric
system. IEEE Transactions on Power Systems 3 (3), 1072–1077.

ILOG Inc. (2003). OPL Studio 3.7 User’s Manual.

Infanger, G. (1994). Planning under uncertainty. Solving large scale stochastic
linear programs, Volume 108. Andover, Hempshire: The Scientific Press.

Infanger, G. (2005). Monte Carlo (importance) sampling within a benders de-
composition algorithm for stochastic linear programs. Annals of Operations
Research 39 (1), 69–95.



Bibliography 171

Jacobs, J., G. Freeman, J. Grygier, D. Morton, G. Schultz, K. Staschus, and
J. Stedinger (1995). SOCRATES: A system for scheduling hydroelectric gener-
ation under uncertainty. Annals of Operations Research 59, 99–133. Models for
planning under uncertainty.

Jardim, D. L. D. D., M. E. P. Maceira, and D. M. Falcao (2001). Stochastic
streamflow model for hydroelectric systems using clustering techniques. In IEEE
Porto Power Tech, Porto, Portugal.

Jenkins, G. M. and A. S. Alavi (1981). Some aspects of modeling and forecasting
multivariate time series. Journal of Time series Analysis 2, 1–47.

Kall, P. (1976). Stochastic Linear Programming. Berlin: Springer.

Kall, P. (1987). On approximations and stability in stochastic programming.
In J. Guddat, T. H. Jongen, B. Kummer, and F. Nožička (Eds.), Parametric
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method for stochastic global optimization. Mathematical Programming Series
A 83 (3), 425–450.

Nowak, M. P., R. Nürnberg, W. Römisch, R. Schultz, and M. Westphalen (2000).
Stochastic programming for power production and trading under uncertainty.
Submitted.

Nowak, M. P. and W. Römisch (2000). Stochastic Lagrangian relaxation applied
to power scheduling in a hydro-thermal system under uncertainty. Annals of
Operations Research 100 (1-4), 251–272.

Nowak, M. P., R. Schultz, and M. Westphalen (2005). A stochastic integer pro-
gramming model for incorporating day-ahead trading of electricity into hydro-
thermal unit commitment. Optimization and Engineering 6, 163–176.
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