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Abstract

In this paper we discuss here-and-now type stochastic programs with equi-

librium constraints. We give a general formulation of such problems and study

their basic properties such as measurability and continuity of the corresponding

integrand functions. We also discuss consistency and rates of convergence of

sample average approximations of such stochastic problems.
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1 Introduction

In this paper we discuss optimization problems where the objective function is given
as the expectation E[F (x, y(x, ω), ω)], with y(x, ω) being a random vector defined as a
solution of a second stage optimization or complementarity problem. By analogy with
stochastic programming with recourse we can view such problems as here-and-now
type problems where a decision should be made before a realization of random data
becomes available (see, e.g., [3, section 4.3]). We refer to such problems as Stochas-
tic Mathematical Programming with Equilibrium Constraints (SMPEC) problems.
The basic difference between SMPEC problems and classical two-stage stochastic
programming problems is that the function F (x, y(x, ω), ω) does not have to be the
optimal value of the corresponding second stage problem.

The SMPEC problems of “here-and-now” type were discussed in [13],[6] and [11],
for example. The main subject of [13] and [6] is an investigation of existence of
optimal solutions of SMPEC problems, while in [11] an example of a variant of the
newsboy (vendor) problem is discussed and an approach to a numerical solution of a
class SMPEC problems is suggested. A convergence theory of discrete approximations
of a different, from “here-and-now”, type of SMPEC problems was discussed in [2].
Stochastic Stackelberg-Nash-Cournot equilibrium problems were formulated in a form
of stochastic mathematical programs with complementarity constraints (SMPCC) and
studied in [22], and a general form of SMPCC is discussed in [23]. There is also an
extensive literature on deterministic MPEC problems. In that respect we may refer
to [12] and [18], and references therein.

We use the following notation and terminology. For a number a ∈ R, we denote
[a]+ := max{0, a}. By ‖x‖ := (xT x)1/2 we denote the Euclidean norm of vector
x ∈ R

n. For a set S ⊂ R
n we denote by dist(x, S) := infy∈S ‖x− y‖ the distance from

a point x to S, and by conv(S) the convex hull of S. For a convex set S we denote
by TS(x) the tangent cone to S at x ∈ S. For a cone Q ⊂ R

s we denote by

Q∗ :=
{
z ∈ R

s : zT y ≤ 0, ∀ y ∈ Q
}

.

its polar (negative dual) cone. For a mapping G(x, y), from R
n×R

m to R
s, we denote

by ∇yG(x, y) its partial derivative, i.e., s×m Jacobian matrix, with respect to y. For
a function g : R

m → R we denote by epi(g) := {(x, α) : g(x) ≤ α} its epigraph, by
∇2g(y) its m × m Hessian matrix of second order partial derivatives. For a mapping
G(y) = (g1(y), ..., gs(y)) : R

m → R
s and vector d ∈ R

m, we denote

∇2G(y)d :=
(
[∇2g1(y)]d, ..., [∇2gs(y)]d

)T
.

For ε ≥ 0 it is said that x̄ is an ε-optimal solution of the problem of minimization
of a function f(x) over a set X, if x̄ ∈ X and f(x̄) ≤ infx∈X f(x) + ε. For a, b ∈ R,
a ∨ b := max{a, b}.
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2 The model

In this section we give a precise definition of the considered class of SMPEC problems.
Consider the following optimization problem

Min
x∈X

{
f(x) := E[ϑ(x, ω)]

}
, (2.1)

where X is a nonempty closed subset of R
n,

ϑ(x, ω) := inf
y∈S(x,ω)

F (x, y, ω) (2.2)

and S(x, ω) is the set of solutions of the variational inequality

H(x, y, ω) ∈ NK(x,ω)(y), (2.3)

i.e., y ∈ S(x, ω) iff (2.3) holds. Here (Ω,F , P ) is a probability space, F : R
n ×

R
m × Ω → R is a real valued function, K : R

n × Ω ⇒ R
m is a set-valued mapping

(multifunction), H : R
n × R

m × Ω → R
m, and NK(y) denotes a normal cone to a

set K ⊂ R
m at y. Unless stated otherwise we make all probabilistic statements with

respect to the probability measure P . In particular, the expectation E[·] is taken with
respect to P . We refer to (2.1)–(2.3) as a Stochastic Mathematical Programming with
Equilibrium Constraints (SMPEC) problem.

For a convex (and closed) set K ⊂ R
m, the corresponding normal cone is defined

in the standard way:

NK(y) :=
{
z ∈ R

m : zT (y′ − y) ≤ 0, ∀ y′ ∈ K
}

, if y ∈ K, (2.4)

and NK(y) = ∅ if y 6∈ K. For a nonconvex set K there are several possible concepts
of normal cones. We use the following construction. We assume that K(x, ω) is given
in the form

K(x, ω) :=
{
y ∈ R

m : G(x, y, ω) ∈ Q
}
, (2.5)

where Q ⊂ R
s is a closed convex cone and G : R

n × R
m × Ω → R

s is a continuously
differentiable in (x, y) mapping. Then, by the definition,

NK(x,ω)(y) :=
{
∇yG(x, y, ω)T λ : λ ∈ NQ(G(x, y, ω)

}
, (2.6)

where NQ(z) is the (standard) normal cone to Q at z. It can be noted that NK(x,ω)(y),
defined in (2.6), coincides with the polar of the tangent cone to K(x, ω) at y ∈
K(x, ω), provided that a constraint qualification holds at the point y. If, moreover,
the set K(x, ω) is convex, then NK(x,ω)(y) coincides with the standard normal cone.

Let us remark at this point that in order to ensure that the above problem is
well defined we need to verify that the expectation E[ϑ(x, ω)] is well defined. We
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will discuss this later. Note also that by the definition, ϑ(x, ω) = +∞ if the set
S(x, ω) is empty. Therefore, if for a given x ∈ X the set S(x, ω) is empty with a
positive probability, then f(x) = +∞. That is, implicitly the optimization in (2.1) is
performed over such x ∈ X that the set S(x, ω) is nonempty for almost every (a.e.)
ω ∈ Ω.

For NK(x,ω)(y) defined in (2.6), variational inequality (2.3) takes the form of the
following so-called generalized equations

−H(x, y, ω) + ∇yG(x, y, ω)T λ = 0, λ ∈ NQ(G(x, y, ω)). (2.7)

Since Q is a convex cone we have that for any z ∈ Q,

NQ(z) =
{
z∗ ∈ Q∗ : zT z∗ = 0

}
, (2.8)

where Q∗ is the polar of the cone Q. Therefore, λ ∈ NQ(G(x, y, ω)) iff

λ ∈ Q∗, G(x, y, ω) ∈ Q and λT G(x, y, ω) = 0, (2.9)

or equivalently iff G(x, y, ω) ∈ NQ∗(λ). It follows that we can write generalized
equations (2.7) as the variational inequality (cf., [14]):

H(x, ζ, ω) ∈ NQ(ζ), (2.10)

where ζ := (y, λ) ∈ R
m+s and

H(x, ζ, ω) :=

[
−H(x, y, ω) + ∇yG(x, y, ω)T λ

G(x, y, ω)

]
and Q := R

m × Q∗. (2.11)

It can be observed that the set Q is a closed convex cone which does not depend on
x and ω. The price of this simplification is that variational inequality (2.10) should
be solved jointly in y and λ. We denote by S(x, ω) ⊂ R

m+s the set of solutions of
variational inequality (2.10), and for y ∈ R

m we denote by Λ(x, y, ω) the set of all λ
satisfying equations (2.7). Note that Λ(x, y, ω) is nonempty iff y ∈ S(x, ω).

By the above discussion, S(x, ω) is also the set of solutions of generalized equations
(2.7), and the set S(x, ω) is obtained by the projection of the set S(x, ω) onto R

m.
Therefore, ϑ(x, ω) coincides with the optimal value of the following problem

Miny∈Rm, λ∈Rs F (x, y, ω)
subject to −H(x, y, ω) + ∇yG(x, y, ω)λ = 0,

λ ∈ Q∗, G(x, y, ω) ∈ Q, λT G(x, y, ω) = 0.
(2.12)

If, moreover, H(x, y, ω) = −∇yh(x, y, ω), where h : R
n × R

m × Ω → R is a con-
tinuously differentiable in (x, y) function, then generalized equations (2.7) represent
first-order (KKT) optimality conditions for the optimization problem

Min
y∈Rm

h(x, y, ω) subject to G(x, y, ω) ∈ Q. (2.13)
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We refer to the set S(x, ω) of solutions of the corresponding variational inequality as
the set of stationary points of (2.13). That is, y is a stationary point of (2.13) if there
exists λ ∈ R

s such that

∇yh(x, y, ω) + ∇yG(x, y, ω)T λ = 0, λ ∈ NQ(G(x, y, ω)). (2.14)

The set Λ(x, y, ω), of all λ satisfying (2.14), represents the set of Lagrange multipliers
associated with y. It is well known that, under a constraint qualification, a locally
optimal solution of (2.13) is also its stationary point. In case the set S(x, ω) is given
by the set of stationary points of an optimization problem, of the form (2.13), we
refer to (2.1) as a Stochastic Bilevel Mathematical Programming (SBMP) problem.

Example 1 Let Q := −R
r
+ × {0} ⊂ R

s, where R
r
+ is the nonnegative orthant of R

r,
{0} is the null space of R

r−s, and G(x, y, ω) = (g1(x, y, ω), ..., gs(x, y, ω)). Here the
set

K(x, ω) =
{
y : gi(x, y, ω) ≤ 0, i = 1, ..., r, gi(x, y, ω) = 0, i = r + 1, ..., s

}
(2.15)

is defined by a finite number of inequality and equality constraints. Also the normal
cone to Q at z ∈ Q can be written as follows

NQ(z) = {z∗ ∈ R
s : z∗i ≥ 0, i = 1, ..., r, z∗i zi = 0, i = 1, ..., r} , (2.16)

and ∇yG(x, y, ω)T λ =
∑s

i=1 λi∇ygi(x, y, ω), where λ ∈ R
s, and hence generalized

equations (2.7) take the form:

−H(x, y, ω) +
∑s

i=1 λi∇ygi(x, y, ω) = 0,
gi(x, y, ω) ≤ 0, i = 1, ..., r, gi(x, y, ω) = 0, i = r + 1, ..., s,
λi ≥ 0, λigi(x, y, ω) = 0, i = 1, ..., r.

(2.17)

Example 2 Suppose that for an x ∈ X, the set S(x, ω) is given by the set of optimal
solutions of the following optimization problem

Min
y∈Rm

q(ω)T y subject to T (ω)x + W (ω)y = h(ω), y ≥ 0, (2.18)

where q(ω) and h(ω) are vector valued and T (ω) and W (ω) are matrix valued ran-
dom variables defined on the probability space (Ω,F , P ). The above problem (2.18)
is a linear programming problem. If, moreover, F (x, y, ω) := cT x + q(ω)T y, then
the corresponding problem (2.1) becomes a two-stage stochastic linear program with
recourse.

We have that y(x, ω) is an optimal solution of (2.18) iff y(x, ω) is a solution of the
variational inequality

−q(ω) ∈ NK(x,ω)(y), (2.19)
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where

K(x, ω) :=
{
y ∈ R

m : T (ω)x + W (ω)y = h(ω), y ≥ 0
}
. (2.20)

Here for every (x, ω) ∈ R
n × Ω, the set K(x, ω) is convex polyhedral and the corre-

sponding normal cone is defined in the standard way. The set S(x, ω) of solutions of
problem (2.18), or equivalently variational inequality (2.19), can be: empty, contain
a single extreme point of K(x, ω), or formed by a nontrivial face of K(x, ω). Let us
remark that the set S(x, ω) can be empty for two somewhat different reasons. Namely,
it may happen that the feasible set K(x, ω) of problem (2.18) is empty, in which case
its optimal value is +∞, or it may happen that problem (2.18) is unbounded from
below, i.e., its optimal value is −∞. Note that in our framework in both cases we
assign value +∞ to the corresponding function ϑ(x, ω).

The dual of problem (2.18) is

Max
λ

λT (h(ω) − T (ω)x) subject to W (ω)T λ ≤ q(ω). (2.21)

The optimality conditions (2.14) take here the form:

y ≥ 0, W (ω)T λ − q(ω) ≤ 0, yT
(
W (ω)T λ − q(ω)

)
= 0, T (ω)x + W (ω)y − h(ω) = 0,

(2.22)

and can be written as variational inequality (2.10) with ζ = (y, λ) and

H(x, ζ, ω) :=

[
W (ω)T λ − q(ω)

T (ω)x + W (ω)y − h(ω)

]
and Q := R

m
+ × R

s. (2.23)

3 Properties of SMPEC problems

In this section we discuss some basic properties of SMPEC problem (2.1) with the
function ϑ(x, ω) given by the optimal value of the problem (2.12). To some extent
such SMPEC problems can be studied in the framework of two-stage stochastic pro-
gramming problems with recourse (cf., [17, Chapters 1 and 2]).

As it was mentioned in the previous section we need to ensure that the expectation
E[ϑ(x, ω)] is well defined for any x ∈ X. That is, we need to verify that ϑx(ω) :=
ϑ(x, ω) is measurable and either E [(ϑx(ω))+] < +∞ or E [(−ϑx(ω))+] < +∞. For a
thorough discussion of the following measurability concepts we may refer to [5] and
[16]. When considering space R

n×Ω we always equip it with the sigma algebra given
by the product of the Borel sigma algebra of R

n and F . A multifunction G : Ω ⇒ R
n

is said to be closed valued if G(ω) is a closed subset of R
n for every ω ∈ Ω. A closed

valued multifunction G is said to be measurable if G−1(A) ∈ F for every closed set
A ⊂ R

n. A function h : R
n × Ω → R is said to be random lower semicontinuous if

the epigraphical mapping ω 7→ epi h(·, ω) is closed valued and measurable. (Random
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lower semicontinuous functions are called normal integrands in [16].) It is said that
a mapping G : R

n × Ω → R
m is a Carathéodory mapping if G(x, ω) is continuous

in x for every ω, and is measurable in ω for every x. Note that a Carathéodory
function g(x, ω) is random lower semicontinuous. We have the following result (e.g.,
[16, Theorem 14.37]).

Theorem 1 Let g : R
n × Ω → R be a random lower semicontinuous function. Then

the min-function φ(ω) := infx∈Rn g(x, ω) is measurable and the multifunction G(ω) :=
arg minx∈Rn g(x, ω) is closed valued and measurable.

We make the following assumption throughout the paper.

(A1) The mappings H(x, y, ω), G(x, y, ω) and function F (x, y, ω) are Carathéodory
mappings, i.e., continuous in (x, y) and measurable in ω.

Consider variational inequality (2.10). By assumption (A1) we have that mapping
H(x, ζ, ω), defined in (2.11), is a Carathéodory mapping. Variational inequality (2.10)
can be transformed into an optimization problem as follows. Consider the following
(regularized) gap function:

γ(x, ζ, ω) := sup
ζ′∈Q

{
H(x, ζ, ω)T (ζ ′ − ζ) − 1

2‖ζ − ζ ′‖2
}

. (3.1)

Regularized gap functions were introduced in [1] and [8] (see also [7, section 10.2.1]
for a discussion of gap functions). We have that, for given x and ω, a point ζ̄ ∈ Q is
a solution of (2.10), i.e., ζ̄ ∈ S(x, ω), iff γ(x, ζ̄, ω) = 0. Since γ(x, ζ, ω) ≥ 0 for any
ζ ∈ Q, it follows that ζ̄ ∈ S(x, ω) iff ζ̄ is an optimal solution of the problem

Min
ζ∈Q

γ(x, ζ, ω) subject to γ(x, ζ, ω) = 0. (3.2)

We also have that the gap function γ(x, ζ, ω) is continuous in (x, ζ) and measur-
able in ω, and hence is a Carathéodory function. Consequently we obtain that the
multifunction (x, ω) 7→ S(x, ω) is closed valued and measurable.

The function ϑx(ω) can be also written in the form

ϑx(ω) = inf
(y,λ)∈S(x,ω)

F (x, y, ω). (3.3)

Since, for a given x, the multifunction S(x, ·) is closed valued and measurable and
by (A1) the function F (x, ·, ·) is random lower semicontinuous, we obtain that ϑx(ω)
is measurable. This settles the question of measurability of the integrand function
inside the expectation in (2.1).

It is said that ζ(ω) = (y(ω), λ(ω)) is a measurable selection of S(x, ω) if ζ(ω) ∈
S(x, ω) for a.e. ω ∈ Ω, and ζ(ω) is measurable. Consider now the function

f̃(x) := inf
ζ(·)∈S(x,·)

E[F (x, y(ω), ω)], (3.4)
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where ζ(·) ∈ S(x, ·) means that the optimization is performed over all measurable
selections ζ(ω) of S(x, ω). By the definition, f̃(x) := +∞ if the set S(x, ω) is empty
with positive probability. We have then that f(x) = f̃(x) for every x ∈ X. Indeed,
assume that S(x, ω) is nonempty for a.e. ω ∈ Ω (otherwise f(x) = f̃(x) = +∞). For
any measurable selection ζ(ω) ∈ S(x, ω) we have that F (x, y(·), ·) ≥ ϑx(·), and hence
f̃(x) ≥ f(x). Conversely, by the Castaing representation theorem ([16, Theorem
14.5]) for any ε > 0 there exists a measurable selection ζ(ω) ∈ S(x, ω) such that
F (x, y(·), ·) ≤ ϑx(·) + ε. It follows that f̃(x) ≤ f(x) + ε, and hence f̃(x) = f(x). We
obtain the following result.

Problem (2.1) is equivalent to the problem

Min
x∈X, ζ(·)∈S(x,·)

E[F (x, y(ω), ω)], (3.5)

where the notation ζ(·) ∈ S(x, ·) means that the optimization is performed
over all measurable selections ζ(ω) of S(x, ω) and such x ∈ X that S(x, ω) is
nonempty for a.e. ω ∈ Ω.

In other words optimization in (3.5) is performed over x ∈ X and measurable
ζ(ω) = (y(ω), λ(ω)) which satisfy the feasibility constraints of problem (2.12). In par-
ticular, suppose that Ω = {ω1, ..., ωK} is finite with respective probabilities p1, ..., pK .
Then we can write problem (2.1) in the following equivalent form

Min
x∈X, y1,...,yK

∑K
k=1 pkF (x, yk, ωk)

subject to −H(x, yk, ωk) + ∇yG(x, yk, ωk)λk = 0, k = 1, ..., K,
λk ∈ Q∗, G(x, yk, ωk) ∈ Q, λT

k G(x, yk, ωk) = 0, k = 1, ..., K.

(3.6)

4 Properties of the expectation function

In this section we discuss continuity and differentiability properties of the expectation
function f(x) := E[ϑ(x, ω)], where ϑ(x, ω) is given by the optimal value of problem
(2.12).

Consider a point x̄ ∈ X and suppose that there exists a P -integrable function
ψ(ω) such that ϑ(x, ω) ≥ ψ(ω) for all ω ∈ Ω and all x in a neighborhood of x̄. (It is
said that a measurable function ψ : Ω → R is P -integrable if E[|ψ|] < +∞.) Then
we have by Fatou’s lemma that

lim inf
x→x̄

E
[
ϑ(x, ω)

]
≥ E

[
lim inf

x→x̄
ϑ(x, ω)

]
. (4.1)

It follows that f(·) is lower semicontinuous at x̄ if ϑ(·, ω) is lower semicontinuous at
x̄ for a.e. ω ∈ Ω. Therefore the question of lower semicontinuity of f(·) is reduced to
studying lower semicontinuity of ϑ(·, ω).
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It is not difficult to give an example of a min-function of a parametric family
of continuous functions which is not lower semicontinuous (e.g., [4, example 4.1]).
Therefore we will need some type of a boundedness condition. We consider a point
x̄ ∈ X and make the following assumptions. Recall that S(x, ω) denotes the set of
solutions of generalized equations (2.7) and that S(x, ω) coincides with the feasible
set of problem (2.12).

(A2) The mappings H(·, ·, ω), ∇yG(·, ·, ω) and function F (·, ·, ω) are continuous.

(A3) For x = x̄ the set S(x̄, ω) is nonempty, and the (possibly empty) sets S(x, ω)
are uniformly bounded for all x in a neighborhood of x̄.

Let us observe that, because of assumption (A2) and since cones Q and Q∗ are
closed, the multifunction x 7→ S(x, ω) is closed. That is, if xn → x̄, ζn ∈ S(xn, ω)
and ζn → ζ̄, then ζ̄ ∈ S(x̄, ω). The following result follows easily by compactness
arguments and closedness of the multifunction S(·, ω), and is quite well known.

Suppose that assumptions (A2) and (A3) hold. Then the min-function ϑ(·, ω)
is lower semicontinuous at x̄.

By the above discussion we have then the following result.

Proposition 1 Suppose that assumptions (A2) and (A3) hold for a.e. ω ∈ Ω, and
there exists a P -integrable function ψ(ω) such that ϑ(x, ω) ≥ ψ(ω) for all ω ∈ Ω and
all x in a neighborhood of x̄. Then the expectation function f(x) is lower semicontin-
uous at x̄.

The above proposition shows that under mild boundedness conditions, the expec-
tation function is lower semicontinuous. It follows then that problem (2.1) has an
optimal solution provided it has a nonempty and bounded level set

levαf := {x ∈ X : f(x) ≤ α}

for some α ∈ R (we refer to such condition as the inf-compactness condition).
In order to ensure continuity of f(x) one needs to investigate continuity properties

of ϑ(·, ω). That is, by using the Lebesgue Dominated Convergence theorem it is
straightforward to show that if there exists a P -integrable function ψ(ω) such that
|ϑ(x, ω)| ≤ ψ(ω) for a.e. ω ∈ Ω and all x in a neighborhood of x̄, then f(·) is
continuous at x̄ if ϑ(·, ω) is continuous at x̄ for a.e. ω ∈ Ω (e.g., [17, p.66]). Consider
the following assumption associated with a point ȳ ∈ S(x̄, ω).

(A4) To every x, in a neighborhood of x̄, corresponds a yω(x) ∈ S(x, ω) such that
yω(x) tends to ȳ as x → x̄.

The above assumption implies that the set S(x, ω), and hence the set S(x, ω), is
nonempty for all x in a neighborhood of x̄. We have then the following result (e.g.,
[4, Proposition 4.4]).
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Suppose that assumptions (A2) and (A3) are satisfied and assumptions (A4)
holds with respect to a point ȳ ∈ arg miny∈S(x̄,ω) F (x̄, y, ω). Then the min-
function ϑ(·, ω) is continuous at x̄.

The above discussion implies the following proposition.

Proposition 2 Suppose that assumptions (A2)–(A4) hold for a.e. ω ∈ Ω, and there
exists a P -integrable function ψ(ω) such that |ϑ(x, ω)| ≤ ψ(ω) for all ω ∈ Ω and all
x in a neighborhood of x̄. Then the expectation function f(x) is continuous at x̄.

The above assumption (A4) actually is formed by two parts, namely:

(A4a) The set S(x, ω), or equivalently of S(x, ω), is nonempty for all x in a neigh-
borhood of x̄,

(A4b) There exists a selection yω(x) ∈ S(x, ω) converging to ȳ as x → x̄.

Nonemptiness of S(x, ω) can be ensured by various conditions. For example, consider
the optimization problem (2.13). It has an optimal solution ȳω(x) provided the cor-
responding inf-compactness condition holds. If, moreover, a constraint qualification
holds at ȳω(x), then ȳω(x) is a stationary point and hence S(x, ω) is nonempty. For
a general discussion of existence of solutions of variational inequalities we may refer
to [10] and [7, section 2.2]. For example, if the set K = K(x, ω) is convex, then
variational inequality (2.3) has a solution if there exists y∗ ∈ K such that the set

{
y ∈ K : H(x, y, ω)T (y − y∗) > 0

}

is bounded (cf., [7, Proposition 2.2.3]). (Note that the set K(x, ω) is closed since it is
assumed that G(x, ·, ω) is continuous and Q is closed.) In particular, this condition
holds if the set K is convex and bounded.

A way to ensure the above condition (A4b) is to verify local uniqueness of the
solution ȳ. Indeed, let ȳ be an isolated point of S(x̄, ω), i.e., there is a neighborhood
V ⊂ R

m of ȳ such that S(x̄, ω) ∩ V = {ȳ}. Of course, we can always choose the
neighborhood V to be bounded. In that case, under the boundedness assumption
(A3), we have by compactness arguments that if yω(x) ∈ S(x, ω) ∩ V , then yω(x)
tends to ȳ as x → x̄. It is also of interest to estimate a rate at which yω(x) converges
to ȳ. We say that the multifunction x 7→ S(x, ω) is locally upper Hölder of degree
γ, at x̄ for ȳ, if there exist neighborhoods W and V of x̄ and ȳ, respectively, and a
constant c = c(ω) such that

‖yω(x) − ȳ‖ ≤ c‖x − x̄‖γ (4.2)

for all x ∈ W and any yω(x) ∈ S(x, ω)∩V . In particular, if this holds with γ = 1, we
say that S(·, ω) is locally upper Lipschitz at x̄ for ȳ.

It is possible to give various conditions ensuring local uniqueness of a solution
ȳ ∈ S(x̄, ω). For fixed x̄ ∈ X and ω ∈ Ω we use notation H(·) = H(x̄, ·, ω) and
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G(·) = G(x̄, ·, ω), etc. It is said that Robinson’s constraint qualification, for the
system G(y) ∈ Q, holds at ȳ if

[∇G(ȳ)]Rm + TQ(G(ȳ)) = R
s. (4.3)

Note that if (4.3) holds, then the set Λ(ȳ) = Λ(x̄, ȳ, ω), of the corresponding Lagrange
multipliers, is bounded. Note also that if the system is defined by a finite number of
constraints as in example 1, then Robinson’s constraint qualification coincides with
the Mangasarian-Fromovitz constraint qualification.

Recall that the cone

C(ȳ) :=
{
d ∈ R

m : H(ȳ)T d = 0, ∇G(ȳ)d ∈ TQ(G(ȳ))
}

is called the critical cone. For a vector d ∈ R
m and G(y) = (g1(y), ..., gs(y)), consider

the set

Λ∗(ȳ, d) := arg max
λ∈Λ(ȳ)

∑s
i=1 λid

T∇2gi(ȳ)d

of Lagrange multipliers. We have the following result (cf., [20, Theorems 3.1,3.2,4.3
and 5.1]).

Proposition 3 Consider a point ȳ ∈ S(x̄, ω). Suppose that H(y) is continuously
differentiable, G(y) is twice continuously differentiable, Robinson’s constraint qualifi-
cation (4.3) holds, and the cone Q is polyhedral. Then ȳ is an isolated point of S(x̄, ω)
if the following condition holds (for vectors d ∈ R

n):

∇H(ȳ)d ∈ conv
{
∪λ∈Λ∗(ȳ,d)

[
∇2G(ȳ)d

]T
λ
}

+ NC(ȳ)(d) implies d = 0. (4.4)

Also if the above condition (4.4) holds and H(x, y, ω) is continuously differentiable
and G(x, y, ω) is twice continuously differentiable jointly in x and y, then S(·, ω) is
locally upper Hölder, of degree γ = 1/2, at x̄ for ȳ. Moreover, if in addition the
mapping G(x, y, ω), and hence the set K(x, ω), do not depend on x, then S(·, ω) is
locally upper Lipschitz at x̄ for ȳ.

It is possible to extend the above condition (4.4) to situations where the cone Q
is not polyhedral (see [20]), although the analysis becomes more involved. Of course,
if the mapping G(y) is affine, then ∇2G(y) = 0, and hence the system in the left
hand side of (4.4) reduces to ∇H(ȳ)d ∈ NC(ȳ)(d). Condition (4.4) is equivalent to
the quadratic growth condition, for a scaled regularized gap function, to hold at the
point ȳ. In case ȳ is a locally optimal solution of the optimization problem (2.13),
condition (4.4) is equivalent (under the assumptions of the above proposition) to the
quadratic growth condition: there exists c > 0 and a neighborhood V of ȳ such that

h(y) ≥ h(ȳ) + c‖y − ȳ‖2, ∀ y ∈ K(x̄, ω) ∩ V. (4.5)
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In the general case of G(x, y, ω) depending on x, in order to ensure locally upper
Lipschitz continuity of S(·, ω), at x̄ for ȳ, one needs conditions which are consider-
ably stronger than assumption (4.4). For optimization problems, for example, the
quadratic growth condition (4.5) does not imply locally upper Lipschitz continuity of
S(·, ω), and a strong form of second order optimality conditions is needed (cf., [15]).

Of course, for any yω(x) ∈ arg miny∈S(x,ω) F (x, y, ω) we have that ϑ(x, ω) =
F (x, yω(x), ω). Consequently, if F (·, ·, ω) is continuously differentiable, and hence
is locally Lipschitz continuous, we can write

|ϑ(x, ω) − ϑ(x̄, ω)| = |F (x, yω(x), ω) − F (x̄, ȳ, ω)| ≤ ℓ(ω)‖yω(x) − ȳ‖

where x ∈ W and ℓ(ω) is a corresponding Lipschitz constant (independent of x). It
follows then from (4.2) that, for x ∈ W ,

|ϑ(x, ω) − ϑ(x̄, ω)| ≤ κ(ω)‖x − x̄‖γ, (4.6)

where κ(ω) := ℓ(ω)c(ω). The above inequality (4.6), in turn, implies that, for x ∈ W ,

|f(x) − f(x̄)| ≤ L‖x − x̄‖γ, (4.7)

where L := E[κ(ω)]. Of course, the estimate (4.7) is meaningful only if the expectation
E[κ(ω)], i.e., the constant L, is finite.

Lipschitz continuity and differentiability properties of the optimal value function
ϑ(·, ω) were also studied in [9] in the case when the set K(x, ω) is defined by a finite
number of constraints, as in example 1.

Let us discuss now differentiability properties of f(x). By f ′(x̄, p) and ϑ′
ω(x̄, p) we

denote the directional derivatives of f(·) and ϑ(·, ω), respectively, at x̄ in direction p.
It is said that f(·) is directionally differentiable at x̄ if f ′(x̄, p) exists for all p ∈ R

n.
By using the Lebesgue Dominated Convergence theorem it is not difficult to show the
following (e.g., [17, Chapter 2, Proposition 2]):

Suppose that ϑ(x̄, ·) is P -integrable, ϑ(·, ω) is directionally differentiable at
x̄ ∈ X for a.e. ω ∈ Ω, and there exists a P -integrable function κ : Ω → R+

such that (4.6) holds with γ = 1, i.e.,

|ϑ(x, ω) − ϑ(x̄, ω)| ≤ κ(ω)‖x − x̄‖ (4.8)

for all x in a neighborhood of x̄ and a.e. ω ∈ Ω. Then f(·) is directionally
differentiable at x̄ and

f ′(x̄, p) = E [ϑ′
ω(x̄, p)] , ∀ p ∈ R

n. (4.9)

Of course, (4.7) follows from (4.8), with γ = 1, and hence the above assumptions
imply that f(x) is finite valued for all x near x̄.
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Suppose now that for all x near x̄ there exists yω(x) ∈ arg miny∈S(x,ω) F (x, y, ω)
converging to a point ȳ as x → x̄. Then since ϑ(x, ω) = F (x, yω(x), ω), we obtain by
the chain rule that

ϑ′
ω(x̄, p) = ∇yF (x̄, ȳ, ω)T y′

ω(x̄, p), (4.10)

provided that F (x̄, ·, ω) is continuously differentiable and the directional derivative
y′

ω(x̄, p) does exist. Concerning directional differentiability of yω(x) we have the fol-
lowing result ([20, Corollary 4.1]).

Proposition 4 Suppose that the assumptions of Proposition 3 and the assumption
(A4) hold and that: (i) the mapping G(x, y, ω) does not depend on x, (ii) for a given
ω ∈ Ω and any p ∈ R

n the system

∇xH(x̄, ȳ, ω)p + ∇yH(x̄, ȳ, ω)d ∈ conv
{
∪λ∈Λ∗(ȳ,d)

[
∇2G(ȳ)d

]T
λ
}

+ NC(ȳ)(d)

(4.11)

has unique solution d̄ = d̄(p).
Then yω(·) is directionally differentiable at x̄ and y′

ω(x̄, p) = d̄(p).

Note that by setting p = 0 in (4.11), we obtain that condition (ii), in the above
proposition, implies condition (4.4) of Proposition 3.

5 Statistical inference

In order to solve SMPEC problems numerically one needs to discretize (possibly
continuous) distributions of the involved random variables. In this section we briefly
discuss the Monte Carlo sampling approach to such a discretization. Assume that
all involved random data depend on a random vector ξ(ω), where ξ(·) : Ω → R

d is
a measurable mapping. Denote by Ξ ⊂ R

d the support of the distribution of ξ(ω).
Let F (x, y, ξ) be a real valued function, F : R

n × R
m × Ξ → R, and suppose that

the objective function in (2.2) can be written (with a certain abuse of notation) as
F (x, y, ξ(ω)), and similarly H(x, y, ξ(ω)) and G(x, y, ξ(ω)). Let ξ1, ..., ξN be a random
sample of ξ(ω). Define

f̂N(x) :=
1

N

N∑

j=1

ϑ(x, ξj), (5.1)

where ϑ(x, ξ) is the optimal value of the problem

Miny∈Rm, λ∈Rs F (x, y, ξ)
subject to −H(x, y, ξ) + ∇yG(x, y, ξ)λ = 0,

λ ∈ Q∗, G(x, y, ξ) ∈ Q, λT G(x, y, ξ) = 0.
(5.2)
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Consequently, the “true” (expected value) optimization problem (2.1) is approximated
by the following, so-called sample average approximation (SAA), problem:

Min
x∈X

f̂N(x). (5.3)

Let us denote by v̂N and ŜN the optimal value and the set of optimal solutions,
respectively, of the SAA problem (5.3), and by v∗ and S∗ the optimal value and the
set of optimal solutions, respectively, of the true problem (2.1). Note that here the
above optimal value function depends on ω ∈ Ω through the random vector ξ(ω),
and therefore we write ϑ(x, ξ) when we view it as a function of two vector variables
x ∈ R

n and ξ ∈ R
m, and we write ϑ(x, ξ(ω)) when we view it as a random function.

It is possible to apply an available statistical inference to the SAA problem (5.3) in
a more or less straightforward way. By the (strong) Law of Large Numbers (LLN) we
have that under standard conditions, e.g., if the sample is iid (independent identically
distributed), f̂N(x) converges pointwise (i.e., for every fixed x ∈ X) with probability
one (w.p.1) to f(x). Moreover, the following uniform convergence result holds (e.g.,
[19, Proposition 7]).

Let V be a nonempty and compact subset of R
n. Suppose that:

(i) For a.e. ω the function ϑ(·, ξ(ω)) is continuous on V ,

(ii) There is a P -integrable function ψ(ω) such that |ϑ(x, ξ(ω))| ≤ ψ(ω) for all
x ∈ V and ω ∈ Ω,

(iii) The random sample ξ1, ..., ξN is iid.

Then f(x) is continuous on V , and f̂N(x) converges to f(x) w.p.1 uniformly on
V , i.e., supx∈V |f̂N(x) − f(x)| → 0 w.p.1 as N → ∞.

We have then the following consistency result.

Proposition 5 Suppose that there is a compact set V ⊂ X such that the above
assumptions (i)–(iii) hold and, moreover, the set ŜN is nonempty and is contained in V
w.p.1 for N large enough. Then v̂N converges w.p.1 to v∗ and supx∈ŜN

dist(x, S∗) → 0
w.p.1 as N → ∞.

In order to verify the above assumption (i) we can use analysis of the previous
section. By ad hoc methods we may verify, for a.e. ω ∈ Ω, existence of a selection
yω(x) ∈ S(x, ξ(ω)) for all x ∈ X. Furthermore, making sure that yω(x) is locally
unique, i.e., yω(x) is an isolated point of S(x, ξ(ω)), we obtain under mild boundedness
conditions that yω(·) is continuous at x. Finally, we would have to verify that yω(x)
is a minimizer of F (x, ·, ω) over S(x, ξ(ω)). Of course, this holds automatically if
S(x, ξ(ω)) = {yω(x)} is a singleton.
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5.1 Exponential rates of convergence

By using Large Deviations (LD) theory it is also possible to give an estimate of the
sample size N which is required in order to solve the true problem with a given
accuracy. Assume that the sample is iid. For constants ε > δ ≥ 0 consider the set
of ε-optimal solutions of the true problem, and the set of δ-optimal solutions of the
SAA problem (5.3). Let us make the following assumptions. Recall that the moment
generating function of a random variable Z is defined as M(t) := E

[
etZ

]
.

(B1) There exists constant σ > 0 such that for any x′, x ∈ X, the moment generating
function Mx′,x(t) of ϑ(x′, ω) − ϑ(x, ω) − E

[
ϑ(x′, ω) − ϑ(x, ω)

]
satisfies:

Mx′,x(t) ≤ exp
(

1
2σ

2t2
)
, ∀ t ∈ R. (5.4)

If, for fixed x′, x, random variable Z(ω) := ϑ(x′, ω)−ϑ(x, ω) has a normal distribution,
then the above assumption (B1) holds with σ2 being the variance of Z(ω). In general,
condition (B1) means that tail probabilities Prob

(
|Z(ω)| > t) are bounded from above

by O(1) exp
(
− t2

2σ2

)
(here O(1) denotes a generic constant).

Suppose, further, that X is a bounded subset of R
n of diameter

D := sup
x′,x∈X

‖x′ − x‖,

and there exists a (measurable) function κ : Ξ → R+ and γ > 0 such that

|ϑ(x, ξ) − ϑ(x̄, ξ)| ≤ κ(ξ)‖x − x̄‖γ (5.5)

holds for all x, x̄ ∈ X and all ξ ∈ Ξ. It follows by (5.5) that

∣∣f̂N(x) − f̂N(x̄)
∣∣ ≤ N−1

N∑

j=1

∣∣ϑ(x, ξj) − ϑ(x̄, ξj)
∣∣ ≤ κ̂N‖x − x̄‖γ, (5.6)

where κ̂N := N−1
∑N

j=1 κ(ξj). Let us make also the following assumption.

(B2) The moment generating function Mκ(t) := E
[
etκ(ω)

]
of κ(ξ) is finite valued for

all t in a neighborhood of 0.

It follows that the expectation L := E[κ(ω)] is finite, and moreover, by Cramér’s LD
Theorem that for any L′ > L there exists a positive constant β = β(L′) such that

P (κ̂N > L′) ≤ e−Nβ. (5.7)

We have then the following estimate

N ≥
4σ2

(ε − δ)2

[
n

(
log D + γ−1 log

2L′

ε − δ

)
+ log

(
O(1)

α

)] ∨ [
β−1 log

(
2

α

)]
(5.8)
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for the sample size which is required to solve the true problem with accuracy ε > 0
by solving the SAA problem with accuracy δ ∈ [0, ε). That is, if α ∈ (0, 1) is a
given significance level and N satisfies (5.8), then with probability at least 1−α any
δ-optimal solution of the SAA problem is an ε-optimal solution of the true problem.
The distinctive feature of the estimate (5.8) is that the dimension n, of the first stage
problem, enters it linearly. For a detailed derivation of this result, and a further
discussion of complexity of stochastic programs, we refer to [19, 21].
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