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Preface

This thesis reflects the main part of my work during the four years I worked
at the Department of Econometrics of the University of Groningen. The Na-
tional Operations Research Network in The Netherlands (LNMB) is gratefully
acknowledged for financing this position.

Looking back, the recent past is maybe best characterized by the term
‘global optimization’. First of all, it refers to the excellent work of my supervi-
sors Wim Klein Haneveld and Leen Stougie, who skillfully removed constraints
of many kinds that threatened to obstruct my work. I am grateful for the
personal relationships that we developed.

Secondly, during this period I obtained the opportunity to make contact
with the international research community working on stochastic program-
ming and related fields. In particular, I mention the cooperation with Riidiger
Schultz, which I am pleased to know will continue for some time to come. I
am especially indebted to the members of my committee: Professors Jan Karel
Lenstra, Werner Rémisch, Caspar Schweigman, and Roger Wets.

In the third place, in global optimization it is acceptable, if not neces-
sary, to settle for sub-optimal outcomes of a search procedure that is often
disrupted because of a time constraint. Therefore, the analogy makes it easier
to accept the fact that the results reported in this thesis are sub-optimal and
incomplete.

I thank my former colleagues for providing such a pleasant working envi-
ronment. To a large extend this is due to Daan Brand, with whom I shared a
working room. His friendly attitude and wide interest and knowledge made it a
pleasure to work there. Jointly with Wietse Dol and Erik Frambach I initiated
what is now called the [TFX workbench. Due to their enormous efforts this
computer program is nowadays widely used and appreciated. I do not know
if the amount of time that I saved by using {IEX to write this thesis compen-
sates for the hours that I invested in developing it. Anyway, the joy of working
together made it well-worth. Lies Huizenga and Evert Schoorl of the Gradu-
ate School / Research Institute Systems, Organisations and Management have
been very helpful in arranging many practical things. The publication of this
thesis is financed by SOM.

Finally, I apologize to my family and friends: often a seemingly harmless
question about my work triggered an over-enthusiastic, lengthy, and mostly
incomprehensible answer. By far the greatest burden has been on Wilma. To
her, T dedicate this thesis.

Groningen, March 1995.
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List of
notations

Let s € R, t € R", £ a random variable in R, 7 a random vector in R", ¢ a real
function, and « € [0, 1).

R set of reals

Ry set of non-negative reals

Z set of integers

7 set of non-negative integers

Z_ set of non-positive integers (Z4 N Z_ = {0})
t; ith element of the vector ¢ = (¢1,...,t,)

t(4) the vector (t1,...,t; 1,ti41,... tn) € R"
ez, {c,x) inner product of the vectors ¢ and x

ny dimension of vector of first-stage decision variables
my number of first-stage constraints

no dimension of vector of second-stage decision variables
Mo number of second-stage constraints

g integer expected surplus function

Jo a-approximation of g

g expected surplus function

h integer expected shortage function

ha a-approximation of A

h expected shortage function

Q integer expected value function (EVF)

Qa a-approximation of integer EVF

Q** convex hull of integer EVF

Q expected value function

Q one-dimensional EVF
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LIST OF NOTATIONS

one-dimensional integer EVF

convex approximation of one-dimensional integer EVF
a-approximation of one-dimensional integer EVF
convex hull of one-dimensional integer EVF

integer second-stage value function

second-stage value function

max{0, s}

max{0, —s}

vectors of simple recourse cost coefficients (+ and — are indices)
vectors of simple recourse variables (+ and — are indices)

integer round up of s

integer round down of s

max{0, [s]}

max{0, — ] }

round up of s with respect to a + 7
round down of s with respect to a + 7Z

cumulative distribution function (cdf), F(s) = Pr{¢ < s}
left continuous cdf, F'(s) = Pr{¢ < s}

a-approximation of the cdf F

probability density function (pdf)

a-approximation of the pdf f

marginal cdf/pdf of £

conditional cdf/pdf of £ given 7 =1t

right continuous version of f

left continuous version of f

exponential distribution with parameter A
normal distribution with mean x and variance o2
Poisson distribution with parameter 6

uniform distribution with support [a, b]

kth mass point of the discrete random variable &
a-approximation of £

expectation with respect to &

expectation of (&)

expectation of (£)~

conjugate function of ¢
biconjugate function of ¢
right derivative of ¢



LIST OF NOTATIONS

901
dp

Aty
A7
|Alp

left derivative of ¢
subdifferential of ¢
total increase of ¢

total decrease of ¢
total variation of ¢
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