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Circadian clocks are gene regulatory networks whose role is to help the organisms to cope
with variations in environmental conditions such as the day/night cycle. In this work, we
explored the effects of molecular noise in single cells on the behaviour of the circadian
clock in the plant model species Arabidopsis thaliana. The computational modelling language
Bio-PEPA enabled us to give a stochastic interpretation of an existing deterministic model of
the clock, and to easily compare the results obtained via stochastic simulation and via
numerical solution of the deterministic model. First, the introduction of stochasticity in
the model allowed us to estimate the unknown size of the system. Moreover, stochasticity
improved the description of the available experimental data in several light conditions:
noise-induced fluctuations yield a faster entrainment of the plant clock under certain photo-
periods and are able to explain the experimentally observed dampening of the oscillations in
plants under constant light conditions. The model predicts that the desynchronization
between noisy oscillations in single cells contributes to the observed damped oscillations at
the level of the cell population. Analysis of the phase, period and amplitude distributions
under various light conditions demonstrated robust entrainment of the plant clock to
light/dark cycles which closely matched the available experimental data.

Keywords: circadian clock; Arabidopsis thaliana; discrete stochastic model;
Bio-PEPA process algebra; oscillatory systems

1. INTRODUCTION AND MOTIVATIONS

Circadian clocks are gene regulatory networks present in
most organisms that help them to adapt to the 24 h day/
night cycle. They are composed of a small number of
genes involved in interlocking transcriptional feedback
loops and enable eukaryotic organisms to anticipate
daily changes in environmental conditions such as the
duration of the light period. Circadian clocks have
two essential features: (i) in the absence of external
stimuli (e.g. constant light), the amounts of the involved
mRNAs and proteins oscillate rhythmically with a period
of approximately 24 h (circadian) and (ii) in the presence
of external stimuli (e.g. light on/off), the oscillations
entrain to the external stimuli, adjusting their rhythm
to it. Stochasticity is known to play amajor role in the be-
haviour of circadian clocks owing to the small copy
numbers in which most of the involved molecules are
usually present, and a number of studies on the effect of
stochasticity and noise-induced fluctuations on circadian

clocks in various organisms exist. For instance, a discrete
stochastic model of the circadian clock in mammals has
been presented by Forger & Peskin [1], whereas Gonze
et al. [2–4] developed and compared a deterministic
and a discrete stochastic model of the Drosophila clock;
Akman et al. [5,6] studied the effect of discreteness and
stochasticity on the robustness of the clock in Neuropora
and presented a discrete stochastic model of the clock in
the Ostreococcus alga, which is considered to be a natu-
rally simplified version of the clock in higher plants
such asArabidopsis. In all these studies, important differ-
ences between discrete stochastic models and their
continuous deterministic approximation were found,
and in most cases stochasticity was shown to have a posi-
tive effect on the robustness of the free-running (i.e. not
entrained) clock.

Arabidopsis thaliana is the most studied model
plant and it has been widely used for studying the
plant circadian clock. Several deterministic models of
the circadian clock in A. thaliana have been developed
previously [7–10], and they are based on multiple
data in wild-type and mutant plants.

Here, we explore the impact that intrinsic molecular
noise has on the plant clock behaviour, by adding
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stochasticity to the behaviour of the recent deterministic
model presented by Pokhilko et al. [10]. The size of the
system (i.e. the copy numbers of the molecules involved
in the system) is unknown, but it is supposed to be
small by analogy to other species and, consequently, the
molecular noise is believed to have a significant impact
on the behaviour of the system. This makes a discrete
stochastic interpretation of the model essential in order
to capture the noise-induced behaviour of the clock. We
investigate the effect of the stochastic fluctuations in a
single cell on the clock behaviour, the differences between
continuous deterministic and the discrete stochastic
interpretations of the model, and their relation to exper-
imental data. We also apply measures commonly used
for time-series analysis in signal processing in order to
quantify the relevant features of the dynamic behaviour
of the clock, such as the dampening of oscillations and
their distribution of phase, period and amplitude.

2. THE CLOCK MODEL

The principal scheme of the Arabidopsis clock intro-
duced by Pokhilko et al. [10] is shown in figure 1. The
key dawn genes LATE ELONGATED HYPOCOTYL
(LHY) and CIRCADIAN CLOCK ASSOCIATED 1
(CCA1) are described in the model by a single variable,
LHY/CCA1. They activate the expression of their own
inhibitors, PSEUDO-RESPONSE REGULATOR 9
(PRR9), PRR7 and the night inhibitor NI (PRR5)
inside the morning loop. LHY and CCA1 proteins also
inhibit the expression of the evening genes GIGANTEA
(GI), TIMING OF CAB EXPRESSION 1 (TOC1) and
its hypothetical activator gene Y in the morning, and
thus provide a delay in their expression. GI promotes
the inhibition of TOC1 protein function by positively
regulating the F-box protein ZEITLUPE (ZTL). Eve-
ning genes form an evening loop of the clock, which
feeds back to the morning loop by activating LHY/
CCA1 expression at the end of the night. The evening
loop also inhibits PRR9 expression at night and thus
reduces night inhibition of LHY/CCA1, increasing the
robustness of oscillations. Light activates LHY/CCA1,

PRR9, PRR7, NI, GI and Y at the transcriptional
and/or post-transcriptional levels, providing the day
length sensing by both morning and evening loops.

Our model is based on the deterministic model intro-
duced by Pokhilko et al. [10], which formalizes the
scheme described above.

In order to model the light and the experimental set-
tings, we applied a two-stage light function to describe
an initial entrainment stage followed by an observation
stage. Indeed, in laboratory experiments, plants are
usually kept in alternating light/dark cycles for a few
days, and then transferred to the desired experimental
condition (e.g. constant light, dark or different photo-
periods). The light on/off switch can be modelled either
as a discrete step function, which switches instantly
from 0 to 1 at dawn and from 1 to 0 at dusk, or as a
smooth function in which the switch is rapid but not
instantaneous. Though the discrete step functionmatches
the experimental conditions more closely, the smooth
function is closer to real-life conditions and, moreover,
has the advantage of being integrable. In our experiments,
we have not noticed significant differences in the model
response to these two light functions. The results shown
in the following have been obtained using the smooth func-
tion introduced in Salazar et al. [11]. The formal definition
of the light function is given, together with the full model,
in the electronic supplementary material, appendix C.

We coded the clockmodel in a computational language
called Bio-PEPA [12], which is a stochastic process
algebra developed for modelling biochemical systems.
Process algebras are formal languages commonly used
in computer science areas, such as performance modelling
and concurrency theory. In addition to simulation, formal
languages enable modellers to verify systems: for example,
formal properties of models can be verified to uncover
causal relations between events, reachability of specific
states or equivalences between different systems. Formal
methods and process algebras have been used to model
and analyse biochemical systems in several studies in
recent years (see, for instance, [13,14] for reviews on the
approach). The Bio-PEPA language has been developed
to represent biochemical systems in a formal and compo-
sitional way. It is equipped with both a discrete stochastic

NI GI

ZTL

Y TOC1

TOC1

mod

LHY mod

LHY/

CCA1
PRR9 PRR7

Figure 1. The scheme of the Arabidopsis circadian clock introduced by Pokhilko et al. [10]. Morning and evening loops of the clock
are shown in grey scale (lighter colour for morning genes and darker colour for evening genes). Light inputs to gene transcription
are shown by flashes. (Online version in colour.)
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semantics defined in terms of a continuous-time Markov
chain and a continuous deterministic semantics defined
in terms of ordinary differential equations (ODEs). This
allows us to analyse our model of the clock both by
running stochastic simulations (using standard methods
such as the Gillespie [15] and Gibson–Bruck [16] algor-
ithms) and by solving its (equivalent) underlying set of
ODEs. The fact that the discrete stochastic and continu-
ous deterministic models are formally derived from the
same Bio-PEPA description ensures consistency between
them, thus allowing us to compare the stochastic and the
deterministic behaviour of the clock. A short introduction
to Bio-PEPA is given in the electronic supplementary
material, appendix B; for a more detailed presentation
of the language, the reader is referred to Ciocchetta &
Hillston [12].

In order to have a correct stochastic interpretation of
the model, its variables must represent discrete mol-
ecule counts rather than continuous concentrations.
Hence, the model variables and kinetic laws described
in Pokhilko et al. [10] are rescaled by a parameter V
which represents the size of the system (see §3.1 for a
discussion of V). Consequently, the set of ODEs under-
lying the Bio-PEPA model is the same set of ODEs of
the model presented in Pokhilko et al. [10] except for
the scaling factor V. In our model, the species amounts
represent molecule counts, where species that reached
peak values close to 1 in the relative units of Pokhilko
et al. [10] now peak close to V. The stochastic semantics
of our Bio-PEPA model follows the standard stochas-
tic chemical kinetics approach, where reaction rates
represent propensity functions which define the prob-
ability of occurrence of each reaction from a given
state, governed by the chemical master equation and
where stochastic simulation methods (such as the Gille-
spie method [15]) are commonly adopted for model
analysis. It is worth pointing out that our model is
not a continuous stochastic model described by stochas-
tic differential equations (in which a Gaussian noise
term is added to ODEs to represent stochasticity),
but rather a discrete stochastic model in which stochas-
ticity emerges by the randomness of the behaviour
defined by the reaction propensity functions.

Formodel analysis, we used a tool called theBio-PEPA
Eclipse Plug-in [17]. Among the various simulators and
solvers available within this tool, we used the Gibson–
Bruck stochastic simulator [16] and a Dormand–Prince
[18] adaptive step-size deterministic solver.

The Bio-PEPA model of the clock is described in the
electronic supplementary material, appendix C, and
the full model is available as a Bio-PEPA file (electronic
supplementary material, appendix F) and as an equival-
ent Systems Biology Markup Language (SBML) model
exported from Bio-PEPA (electronic supplementary
material, appendix G). The SBMLmodel is also available
from the Biomodels database [19] and the Plant Systems
Biology Modelling database [20].

3. RESULTS

Here, we discuss some of the simulation results we have
obtained, comparing them with experimental results

reported elsewhere [7,8,10,21,22]. In the following, we
will use the notations LL and DD for constant light and
constant dark, respectively, and hl L : hdD for alternating
cycles of hl hours of light and hd hours of dark. The initial
conditions are the same for all the simulation results
reported below, for both the deterministic and the
stochastic simulations: namely, the initial values are
taken from the limit cycle reached by the deterministic
model in 12 L : 12 D, as in Pokhilko et al. [10] (rescaled
to obtain molecule counts, as described in detail in the
following section), and dawn is assumed to be at t ¼ 0.

We will use the classic notions of phase, period and
amplitude to characterize the oscillatory behaviour of
the system; their most commonly adopted definitions
are the following.

— Peak: highest value obtained by the variable in one
oscillation.

— Trough: lowest value obtained by the variable in one
oscillation.

— Phase: time of the day at which the peak occurs,
relative to dawn.

— Period: peak-to-peak time difference between two
cycles.

— Amplitude: difference between peak and trough
values.

Further details on these notions and on the method
we used to compute them for time-series data obtained
from stochastic simulation are given in the electronic
supplementary material, appendix D.

3.1. The system size and its effect on

molecular noise

The continuous approximation underlying ODE models
of biochemical systems is valid when the copy numbers
of the involved molecules are large. As for many genetic
networks, this assumption is generally not valid for cir-
cadian clocks: their system size (i.e. the average copy
numbers of the involved molecular components) is
believed to be small and, therefore, stochastic noise
generally has a major effect on the system’s behaviour
(see, for instance, [3,5,6]).

The system size of the clock network in Arabidopsis
is unknown. The variables of the original deterministic
model are given in relative units and are normalized to
peak at 1. In order to correctly quantify stochastic fluc-
tuations, the species amounts must represent numbers
of molecules per cell. Hence, we introduced the charac-
teristic size of the system as an additional parameter V,
which is used to scale the species amounts and kinetic
laws accordingly (see the electronic supplementary
material, appendix C). Note thatV is not the maximum
number of molecules of any or all species. Rather, V
scales the variables of the ODEs such that a concen-
tration of 1 in the ODEs becomes a molecule count
close to V.

To compare the individual variations in the copy
numbers of the clock components, we analysed the
data underlying relative quantitative polymerase chain
reaction (qPCR) measurements, which demonstrated
similar peak expression levels of the clock genes, with
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at most a 10-fold range among the transcripts: this
justifies our use of a single scaling factor (shown in
the electronic supplementary material, table S1,
appendix A).

The average copy number of the clock components at
the peaks was estimated to be around several hundreds
of molecules per cell (see the electronic supplementary
material, appendix A and figure S1, for details).

Quantifying the fluctuations owing to stochastic
variations provides another method to estimate the
unknown system size. Therefore, we used stochastic
simulation to verify the above estimations: by observing
the effect of the parameter V on the behaviour of the
system (such as the ability of protein and mRNA
amounts to entrain to the light stimulus), we could
identify the value of V for which the behaviour is closest
to the experimental data. Figure 2 reports a comparison
of the behaviour of the clock for V ¼ 10 and V ¼ 100
(which represent 10 and 100 molecules, respectively).
These results show that, in the entrained clock (12 L :
12 D, figure 2a–d), while for V ¼ 10 the protein
and mRNA amounts exhibit poor entrainment in a
single simulation (i.e. representing a single cell,
figure 2a), for V ¼ 100, instead, the entrainment is
good (figure 2c). Moreover, the mean behaviour for
V ¼ 100 (figure 2d) is closer to the experimental
data (figure 2e) than the mean behaviour for V ¼ 10
(figure 2b); in particular, the asymmetry in the peak
visible for V ¼ 10 is not observed in the experimental
data, and the standard deviation for V ¼ 10 is very
high. It is worth noting that experimental techniques
introduce additional extrinsic noise into the data,
which is not considered in our stochastic simulations.
In particular, qPCR measurements provide more pre-
cise information about the shape of profiles than
luciferase (LUC) bioluminescence traces, because the
qPCR measures native RNA directly, whereas LUC
luminescence is an indirect measure of transcription [25].
However, individual qPCR assays are more variable
than LUC image analysis (figure 2e,f). Our simulations
in the free-running clock (LL, figure 2g– j) also show
that a very small system size (V ¼ 10) results in low-
amplitude, fast-damping oscillations (figure 2h), owing
to the high noise, whereas V ¼ 100 (figure 2j) gives a
better match with the experimental data (figure 2k).
Similar results (not shown) have been obtained for
all the other considered photoperiods. Intermediate
values for V such as 50 (results not shown) also resulted
in worse agreement with the experimental results than
V ¼ 100. On the other hand, higher values for V such
as 1000 (results not shown) led to a further decrease
in noise compared with V ¼ 100 that makes the sto-
chastic effects become almost insignificant and results
in worse agreement with the experimental data in
constant light than V ¼ 100. The conclusion that we
can draw from these results is that the size of the real
system must be of the order of a few hundreds of mol-
ecules per cell. Further confidence in the correctness
of these model estimations of the system size is provided
by the fact that they are of the same order of magnitude
as the estimations, based on the experimental data,
which are discussed above and are in the electronic
supplementary material, appendix A. All the results

reported in the remainder of this paper are obtained
using the estimated value V ¼ 100 as the system size.

3.2. Individual versus mean behaviour

Each individual stochastic simulation run is one possible
evolution of themodel andhence, given that themodel rep-
resents the behaviour of a cell, it can be seen as the
behaviour of one single cell. The experimental data suggest
that individual oscillators in the plant cells are essentially
independent over time scales of several days [26]. One
report quantifies the coupling across the surface of
detached leaves and finds that it is very weak, with most
potential significance over long time scales [27]. The
weak coupling between cells allows us to consider the
mean behaviour of a stochastic model (obtained by
averaging over multiple simulation runs) and the
deterministic behaviour (which also, implicitly, is a mean
behaviour) as representative of the mean behaviour of a
uniform population of independent cells, at least over
several days. This is the typical time scale for the data
available in plants, and the main focus of our work: the
suggested intercellular coupling is too weak to have much
effect on this time scale.Wealso simulate long-termbehav-
iour under the same simplifying assumption. If the results
of Fukuda et al. [27] are representative of cells in the intact
plant, then the intercellular coupling cannot prevent
desynchronization but may limit its extent.

Generally, experimental data represent a mean behav-
iour of a population of cells (standard currently available
experimental tools report average measures over tens of
thousands of cells taken from whole seedlings or even
multiple plants). However, learning how single cells
behave is essential in order to understand how a whole
organism behaves and, therefore, simulation can be a
powerful tool, enabling us to hypothesize the behaviour
of a single cell which would be impossible to observe
experimentally. On the other hand, experimental data
can be used for model validation by comparing them
with the mean simulated behaviour.

In the following, we consider constant light and
light/dark conditions, and compare the deterministic
behaviour with the stochastic one. The qualitative be-
haviour observed in the deterministic model for both
the entrained (12 L : 12 D) and free-running clocks (LL
and DD) is a perfectly periodic permanent oscillation
(see Pokhilko et al. [10]). The differences in these
three settings lie in the period, phase and amplitude
of oscillations; for instance, the period is 24 h in 12 L :
12 D, around 24.5 h in LL, and around 27 h in DD.

The behaviour observed in a single evolution of the
stochastic model in 12 L : 12 D is similar to the regular
oscillatory behaviour of the deterministic model [10],
with the addition of noise-induced stochastic fluctu-
ations (e.g. figure 2c): the noise causes the oscillations
to be less regular in terms of amplitude, but the light
entrainment forces the oscillations to synchronize with
the light and, consequently, only allows for a very
small variation in period.

Contrary to the entrained system, the effect of dis-
creteness and stochasticity on the behaviour of the
clock is clearly visible in the free-running clock: while
the deterministic behaviour is a persistent oscillation,
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the mean stochastic behaviour is a damped oscillation,
matching well with the experimental population data
(figure 3 shows the LL system).

Our stochastic simulation results show that the
damping of oscillations in constant light conditions is

most probably the result of averaging over multiple
noisy oscillators in different cells: despite the stable
oscillations in the single run, the mean stochastic be-
haviour damps fast (figure 3b) because of the lack of
synchronization in the oscillations in different runs.
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Figure 2. Effect of the system size on behaviour in 12 L : 12 D (a– f ) and LL (g–k). (a–d) and (g– j) report the amount of LHY
mRNA obtained from stochastic simulation. We compare two hypothesized system sizes of around 10 and 100 peak molecule copy
numbers, represented by V ¼ 10 and V ¼ 100, respectively. We report the amount obtained in random individual runs, and also
the average value m (thick line) and the standard deviation v (thin lines, m+v) obtained from 1000 runs. Time t ¼ 0 (a–d) is
the time of dawn on day 30 after entrainment to light cycles, whereas (g– j) is the time of transition into constant light. The
experimental qPCR measurement of LHY expression is shown (e) for LD [21] and (k) for LL [23]; ( f ) the non-normalized bio-
luminescence of CCA1 : LUC measured as described in Edwards et al. [24] for two individual seedlings in LD. As the units in our
simulations are molecule counts, the vertical scales are different for different values of V. For comparison, the qPCR data must be
scaled by the same factor. As discussed in the main text, the scale of the luminescence data cannot be directly compared with that
of the qPCR data and simulations, as they are an indirect measure of mRNA. (a) LD, V ¼ 10, 1 run; (b) LD, V ¼ 10; mean; (c)
LD, V ¼ 100, 1 run; (d) LD, V ¼ 100, mean; (g) LL, V ¼ 10, 1 run; (h) LL, V ¼ 10, mean; (i) LL, V ¼ 100, 1 run; ( j) LL, V ¼
100, mean; (e) LD, qPCR data; ( f ) LD, luciferase data; and (k) LL, qPCR data. (Online version in colour.)
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In addition to asynchrony, there are other potential
explanations for the experimentally observed damping.
First, the depletion of the luciferin substrate could con-
tribute to the damping by reducing the signal
progressively over time. Indeed, data suggest that a
decaying exponential with a time constant greater
than 3 days might reflect this substrate depletion, as
recently observed in algal cultures [28]. The observed
faster damping of the amplitude of oscillations suggests
the existence of another major mechanism of damping
unrelated to experimental variation (electronic sup-
plementary material, figure S2, appendix E). The
oscillations at the level of the whole organism might
also subside because of the damping of oscillations in
each individual cell. Though we cannot completely
rule out this hypothesis, the recent deterministic
model of the plant clock, which was based on multiple
experimental data, suggests that oscillations in single
cells are stable [10]. The damping of the oscillations in
a population of persistent cellular clocks was also
observed in fibroblast cultures and in peripheral
explants from mammalian tissues [29,30]. Oscillation
damping could also be reproduced by a population of
deterministic oscillators with different periods [31].
However, because of the low molecule numbers involved
in this (and other) biological clock, the presence of sto-
chastic effects is certain, with or without additional
period variation. Thus, we conclude that noise-induced
asynchrony among different cells is the most proba-
ble mechanism of the population-level damping of
oscillations in constant light conditions.

Additional insight on the model behaviour and its
variability is obtained by computing statistical measures
such as the distribution of phase, period and amplitude
of oscillations. We compute these distributions over
individual time series for both the deterministic and
the stochastic model; for the latter, we also compute
time-dependent distributions at a specific time over a

number of different simulation runs. Details on the com-
putation of these distributions can be found in the
electronic supplementary material, appendix D.

Figure 4 shows the distribution of the period and
amplitude of the LHY mRNA level in a single 80 day-
long stochastic simulation run of the 12 L : 12 D
system: this confirms that the period is distributed
quite tightly around 24 h, while the amplitude is more
variable. Comparing these distributions with the ones
for the free-running clock in LL and DD (figure 4 and
the electronic supplementary material, figure S5,
appendix E), we can observe how the light entrainment
makes the period more stable (the distribution is less
wide), whereas the variation in amplitude is smaller in
LL than in 12 L : 12 D. This agrees with the experimental
observation [7,22]. The additional noise in the amplitude
in 12 L : 12 D is probably related to the noise brought
by acute activation of LHY, PRR9 and GI expression
by light.

The distributions of period and amplitude shown in
figure 4 illustrate the variability of the system in an indi-
vidual run, i.e. how regular the behaviour is over time.
Instead, Figure 5 and the electronic supplementary
material (figure S6, appendix E) illustrate the variability
over multiple runs, i.e. how similarly different runs
behave: they report the time-dependent distribution of
phase, period and amplitude of the oscillations over
1000 independent simulation runs at specific times (on
the second and on the 80th day of the observation
phase) for each of the three light conditions. Figure 5a
confirms that in 12 L : 12 D the distribution of period is
more narrow than the one of amplitude, shows that the
entrainment is quite quick (i.e. the difference between
the distributions at day 2 and those at day 80 are not sig-
nificant) and shows that the period of LHY mRNA
oscillations is always very close to 24 h and the phase is
near dawn. In free-running systems, instead, the variabil-
ity of period length results over time in desynchronization

12 24 36 48 60 72 84 96 108 1200

0.5

0

1.5

0

2.5

3.0

time (h)

T
O

C
1
:L

U
C

 n
o
rm

al
iz

ed
 b

io
lu

m
in

es
ce

n
ce

(a)

24 48 72 96 120 144 168 1920

50

100

150

time (h)

T
O

C
1

 m
R

N
A

 (
m

o
le

cu
le

 c
o
u
n
t)

 

 
(b)

Figure 3. Stochastic behaviour and experimental data in LL. (a) The experimentally measured amount of TOC1 mRNA (TOC1 :
LUC); bioluminescence was normalized to the mean level and averaged over twenty 7 day old plants as described in Locke et al. [8].
(b) The most likely explanation for the experimentally observed damping of oscillations: the persistent oscillations of single stochas-
tic simulation runs are lost when observing the system at the population level because of their asynchrony. Time t ¼ 0 is the time of
transition into constant light. See below and the electronic supplementary material, figure S2, appendix E. (a) Experimental
measurement; (b) model simulation. Blue line, 1 run; red line, 10 runs; green line, 1000 runs. (Online version in colour.)
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of runs so that, at day 80, the distribution of phase spans
the entire cycle (figure 5b and electronic supplementary
material, figure S6, appendix E). The fact that, in the
free-running clock, the period and amplitude distri-
butions are quite similar at early and later times while
the phase distributions are wider at later times confirms
the visual observation that the oscillations in each indi-
vidual run are rather regular but they are not
synchronized (i.e. the peak occurs at different times of
the day), thus causing the dampening of oscillations
observed under multiple runs and in experimental popu-
lation data (figure 3 and [10]). Figure S3 in the electronic
supplementary material, appendix E, shows the distri-
bution of period and amplitude of the LHY mRNA
level over 80 days in the deterministic solution of the
model: in the free-running LL system, the period is
slightly longer (24.5 h instead of 24) and the amplitude
is smaller.

Summing up the comparison between the distri-
butions of phase, period and amplitude in ODEs and
stochastic simulations: (i) in the entrained system
they agree (although the stochastic simulation results
show quite a lot of variation in amplitude) and the dis-
tributions at early times are similar to the distributions

at later times (i.e. there is little or no transient effect)
and (ii) in the free-running system, they show substan-
tial differences—the ODEs show stable oscillations with
a shift in phase caused by the period longer than 24 h,
the single stochastic simulation also shows persistent
(noisy) oscillations, but the mean stochastic behaviour
dampens quickly owing to the variation in phase in
different runs.

The lack of synchronization between different cells is
further illustrated in figure 6b. The five random simu-
lation runs plotted clearly show how the oscillations
quickly become out of phase in LL; this makes the prob-
ability distribution of values so spread that the average
over multiple runs dampens fast. This demonstrates
why we are unable to obtain the persistent oscillatory
behaviour of the cellular system from the population
data, neither the experimental ones (figure 3a) nor
those obtained by averaging multiple stochastic runs
(Figures 3b and 6b). In contrast, the individual oscil-
lations of the entrained clock are synchronized,
although with variable amplitude. The distribution of
values is quite tight around the mean (figure 6a), so the
population data (figure 2d– f ) resemble the single cell
data (figure 2c). Figure 6 also shows that, in LD, the

3 6 9 12 15 18 21 240

5

10

15

20

25

30

35

time (h)

o
cc

u
rr

en
ce

s

50 100 150 2000

2

4

6

8

molecule count

(a)

6 12 18 24 300

2

4

6

8

10

time (h)

o
cc

u
rr

en
ce

s

50 1000

5

10

15

molecule count

(b)

period amplitude

period amplitude

Figure 4. Distribution of period and amplitude of LHY mRNA oscillations over 80 days in a single stochastic run: (a) 12 L : 12 D
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distribution of LHY mRNA levels is broader during the
rising phase than during the falling phase. Our model
suggests an explanation for this asymmetry. Because
different runs are not perfectly synchronized, the rising
phase of LHY mRNA during the night can begin at
slightly different times in different runs, hence causing
some variability of the levels at any specified time in
the rising phase. The faster light-dependent degradation
of LHY mRNA, however, causes LHY mRNA levels to
quickly decrease at dawn in all runs. The regulated

mRNA degradation derives directly from experimental
results [24,32]. Consequently, we observe less variability
in mRNA levels at a particular time in the falling
phase, and hence better synchronization among runs. A
secondary effect is that the LHY mRNA peak is lower
in runs in which the rising phase started later. This
explains both the asymmetry in the broadness of the dis-
tribution of LHY mRNA level in LD and also the higher
variability in peak height compared with LL, in which
the rising phase is not abruptly interrupted by dawn.
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3.3. Moderate noise in a multi-cellular

environment accelerates light entrainment

The mean stochastic behaviour gives a good description
of the experimental data and, particularly in certain
experiments, exhibits a faster entrainment to the light
when compared with the deterministic behaviour of
the system. Figure 7 shows, for instance, the behaviour
of the model after the transition from short days (9 h
light) to long days (15 h light). In the deterministic
model (figure 7a), the amplitude of LHY mRNA peak
value exhibits a transient doubling of period, that is,
an alternation of a higher and a lower peak, which is
still observed after 50 days (figure 7a shows the first
20 days). The stochastic model does not show this
effect and instead predicts that LHY mRNA is quickly
entrained to a regular value. A similar behaviour is
observed for other proteins and mRNAs (results not
shown).

The doubling of period in the current deterministic
model is a consequence of superposition of the mutual
regulation of LHY and PRR genes and strong acute
light induction of the PRR wave. This results in an alter-
nation of higher and lower amplitudes of LHY: a higher
LHY amplitude results in high PRR7/5 expression,
which in turn reduces the expression ofLHY the following
morning, while strong acute light induction ofPRRs cuts
LHY amplitude at a lower level immediately after dawn
on the next day. Such a strong regulation greatly
improves the entrainment and robustness of the
clock [10]. However, it can cause some transient doubling
of period in the deterministicmodel. The stochastic simu-
lations explain why the doubling of period was never
observed experimentally: the noise, together with the
averaging over multiple runs, reduces the effect of vari-
ations in amplitude, which causes doubling of period in

the deterministic solution of the model, consequently
improving the speed of entrainment.

3.4. Stochasticity improves the entrainment to

‘skeleton’ artificial light patterns

To investigate the effects of the dawn and dusk light
separately, some of the experiments were carried out
in special entrainment conditions where 12 h of light
was interrupted by 6 h of dark. This creates a second
dawn in the evening and, as LHY is responsive to
light, it has the effect of introducing a secondary peak
in addition to the morning peak (figure 8d).

The evening peak is not reproduced by the determinis-
tic model (figure 8a), but is instead clearly present in the
mean stochastic behaviour (figure 8b). The better match
to the data obtained using the stochastic model is related
to the low LHY peaks during the first light pulse, which
sometimes occur in single runs. The first (dawn) light
pulse occasionally results in a lower than normal LHY
peak (figure 8c at 72 h). This causes lower PRR7/5
expression while TOC1 trough levels are elevated. This
in turn increases the LHY response to the second
(dusk) light pulse (figure 8c at 81 h). Thus, the addition
of noise-induced behaviour improves the description of
experimental data on the ‘skeleton’ photoperiods also.

3.5. Autocorrelation of time-series data:

a quantification of phase distribution

Most of the above-mentioned considerations have been
drawn by visual comparison of time-series data obtai-
ned from simulation laboratory experiments. Using
this approach, qualitative features such as ‘oscillations
dampen’ or ‘oscillations are persistent’ can be easily
observed, but it is hard to provide a precise quantitative
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measure of the stochastic effects. As discussed in the
electronic supplementary material, appendix D, when
considering noisy data such as experimental data or
those coming from stochastic simulation, performing
data analysis (e.g. measuring phase, period and
amplitude of oscillations) can be difficult. Time-series
analysis techniques originating in signal processing can
be used in order to compute summary measures of the
quality of the circadian clock related to the regularity of
the oscillations, such as the distribution of phase.

The autocorrelation function of a time series measures
the similarity of the time series with a shifted version of
itself, and is commonly used in signal processing to
detect periodicity in noisy signals. For perfectly periodic
signals, the autocorrelation function oscillates regularly
between þ1 and 21, with the same period as the signal,
andwith the highest value at time t ¼ 0. Fornoisyperiodic
signals, the autocorrelation function is also oscillating; if
noise affects the phase of the oscillations of the signal,
then the oscillations of the autocorrelation are dampened,
the envelope of the function decreases exponentially and
the speed of dampening can be used as ameasure to quan-
tify the effect of noise on signal periodicity. For signals
which are only randomnoise, the autocorrelation function
immediately reaches values very close to 0.

Generally, a signal is considered to be statistically differ-
ent from random noise if its autocorrelation function is
outside the 95% confidence band (which can be computed
approximately as ½�2=

ffiffiffiffiffi

N
p

;þ2=
ffiffiffiffiffi

N
p

�, where N is the

number of samples in the time series). The half-life of the
autocorrelation, corresponding to its 50 per cent decrease
(i.e. the time at which the envelope of the autocorrelation
function is smaller than half its maximum), can be used
as a measure of the robustness of periodic signals with
respect to noise. An application of autocorrelation to
biochemical oscillators can be found in Gaspard [33].

Figure 9 shows the autocorrelation function for both the
entrained and the free-running system computed over
LHY mRNA time-series data obtained from stochastic
simulation. Figure S4 in the electronic supplementary
material, appendix E, reports the autocorrelation of the
deterministic behaviour. In the 12 L : 12 D system, the
autocorrelation of the deterministic time series is periodic
and regular, from þ1 to 20.5 (electronic supplementary
material, figure S4a). The mean autocorrelation of mul-
tiple stochastic runs is similar to the deterministic one: it
is also regular but with a smaller amplitude, owing to the
variation in the oscillations (figure 9a). The autocorrela-
tion of a single stochastic run is also regular in
periodicity, but not in amplitude as the amplitude of the
time series is not regular (figure 9b).

In LL, the autocorrelation of the deterministic time
series is similar to the one in 12 L : 12 D, it is periodic and
regular from þ1 to2 0.8 (electronic supplementary
material, figure S4b). The mean autocorrelation of
multiple stochastic runs instead quickly dampens
(figure 9c), and its half-life is around 31 h. The autocorrela-
tion of a single stochastic run, despite being noisy,
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persistently oscillates outside the 95% confidence band
(figure 9d), thus clearly showing the presence of a regular
circadian rhythm. In figure 9c, we can also observe that
the mean autocorrelation function remains outside the
95% confidence band for 8–10 days. Hence, in addition to
confirming the persistence of rhythmic oscillations in the
individual cell behaviour, the above analysis also suggests
that phase synchrony is totally lost only after 8–10 days.

The results for DD are similar to those for LL (elec-
tronic supplementary material, figure S7, appendix E):
the autocorrelation of the deterministic time series is per-
iodic and regular, from þ1 to20.7, the autocorrelation
of the mean stochastic behaviour dampens and the auto-
correlation of an individual stochastic run is noisy and
constantly outside the 95% confidence band. Compared
with the LL system, in LL the autocorrelation half-life
is longer, around 55 h, and the phase distribution is
slower, with the mean autocorrelation function remain-
ing outside the 95% confidence band for 18–20 days.

Beingnormalized, the autocorrelation amplitude and its
half-life are goodmeasures to compare the effect of noise on
phase distribution and its relation with system size. The
autocorrelation for the stochastic model withV¼ 10 (elec-
tronic supplementary material, figure S8, appendix E) is
qualitatively similar to those for V¼ 100 but shows

important quantitative differences, and provides a further
measure to quantify the noise-induced variations and
their relation with the system size. Specifically, in the LD
system, we can observe that the autocorrelation amplitude
is considerably smaller for V¼ 10 because of the larger
variation in amplitude. In the LL system, we notice that
the mean autocorrelation of multiple stochastic runs
immediately drops to zero, with a half-life shorter than a
single cycle, around 20 h, showing that no synchrony is
observed among the oscillations of individual cells; the
autocorrelation of a single stochastic run, in fact, does not
exhibit oscillations with a constant period owing to the
huge noise-induced fluctuations observed in the single cell
behaviour.

4. CONCLUSIONS

The importance of molecular noise in the behaviour of
genetic networks such as circadian clocks has been
shown previously in various systems (e.g. [3,5,6]). In
this work, we have investigated the noise-induced be-
haviour in the circadian clock of the model organism
A. thaliana. The model we have presented here is
obtained by extending an existing model of the
clock [10] with the addition of stochasticity.
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the experimentally measured amount (CCA1 : LUC) in the skeleton light pattern; the experimental data represent normalized biolumi-
nescence, averaged over nine 6 day-old plants [10]. The rare occurrence of high LHY peaks at dusk is visible in the individual stochastic
run ((c), pink, TOC1mRNA; red, PRR9mRNA; green, PRR7mRNA; black, PRR5_NImRNA; blue, LHYmRNA) and is the cause of
the emergence of the secondary evening peak in the mean behaviour (b) and in experimental data (d). The simulations consisted of 40
days of 12 L : 12D followed by the transition into the skeleton light pattern (time t¼ 0 in the plots is the time of transition). (a)
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The simulation results obtained by analysing the dis-
crete stochastic representation of the system allowed us
to estimate the unknown size of the system to around
100 copies of proteins per cell. We also showed how
moderate noise is able to accelerate the entrainment
of the plant clock under certain light conditions and
that the stochastic interpretation of the clock model
showed better agreement with the available experimen-
tal data than the deterministic solution. The analysis of
individual simulation runs, representing the behaviour
of individual independent cells, helped us to explain
the experimentally observed dampening of oscillations
in constant light, which was not captured by the deter-
ministic model: the oscillations in single cells, although
persistent, are not synchronized in different cells, thus
causing phase diffusion.

The distribution of phase, period and amplitude
computed over multiple simulation runs closely matched
the available experimental data, exhibiting robust
entrainment of the plant clock to light/dark cycles with
some fluctuations of the amplitudes. The half-life of the
autocorrelation of simulation time-series data was used

as a measure to quantify the dampening of oscillations
in the free-running system.

The suitability of stochastic models for understanding
single cell behaviour in the presence of noise is well known.
Interestingly, our stochastic model has also been shown to
give a better account of population data than the determi-
nistic model: the mean stochastic dynamics captures the
damping of oscillations experimentally observed in con-
stant light (§3.2) and shows a better entrainment to
light in several light patterns, such as a faster entrainment
to changes in photoperiod (§3.3) and the occurrence of
secondary evening peaks in ‘skeleton’ photoperiods (§3.4).
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