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Abstract
1

A new method for detecting anomalies in the usage of 

protocols in computer networks is presented in this work. 

The proposed methodology is applied to TCP and 

disposed in two steps. First, a quantization of the TCP 

header space is accomplished, so that a unique symbol is 

associated with each TCP segment. TCP-based network 

traffic is thus captured, quantized and represented by a 

sequence of symbols. The second step in our approach is 

the modeling of these sequences by means of a Markov 
chain. The analysis of the model obtained for diverse 

TCP sources reveals that it captures adequately the 

essence of the protocol dynamics. Once the model is built 

it is possible to use it as a representation of the normal 

usage of the protocol, so that deviations from the 

behavior provided by the model can be considered as a 

sign of protocol misusage. 

1. Introduction 

Research in Intrusion Detection Systems (henceforth 

referred to as IDS) has been an active field during the last 

twenty years. Nevertheless, current detection technology 

still suffers performance limitations referring to its high 

false alarm probability, low detection accuracy and high 

load of monitoring and computing overhead. 

Traditionally there have been two main approaches to the 

problem of intrusion detection: misuse detection and 

anomaly detection. In misuse detection, each known 

attack is modeled through the construction of a signature. 

Incoming activities that match a pattern in the library of 

attack signatures raise an alarm. The percentage of false 

alarms depends on whether the matching algorithm 
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allows only exact signature matching or some kind of 

deviation. In anomaly detection the main objective is to 

model normal profiles of the system, so that substantial 

deviations from this behavior can be labeled as intrusive 

or, at least, as suspicious. Statistical techniques are surely 

the most used tools for the construction of normal activity 

patterns. Interested readers can find good surveys about 

IDS in [1] and [2]. 

Regardless of the method used for detecting attacks, 

an IDS can be alternatively classified as host based or 

network based depending on its source of input data. A 

host based IDS tries to identify intrusions analyzing 

activities at hosts, mainly users and programs. For 

example, Denning [3] proposed a scheme in which 

patterns related to login times and resources consumed by 

users and programs were constructed. On the contrary, 

network based IDS do not focus on activities on hosts but 

on the traffic that is transported over the network [4]. 

Examples of network based IDS are Snort [5] and Bro 

[6].  

The need to define the normal state of a monitored 

system is a crucial question for any anomaly based IDS. 

Several authors agree and point out that probably the 

most important challenge for these methods is the 

choosing of features to be modeled [7], [8]. Such a 

features must characterize with precision the service, 

system or network usage patterns, in order to obtain an 

accurate model of the normal behavior of the object. But 

at the same time, they must have enough discriminant 

capacity to perform a correct separation of intrusive and 

non-intrusive activities. Measuring system normality 

turns thus into one of the most important points 

concerning the performance improvement in current 

detection systems. 

 In the case of host based IDS, several works have 

shown that the sequences of system calls executed by a 

program are excellent features for  modeling the normal 

behavior [7], [9]. Once that an application is “sampled” 

by means of an ordered set of the system calls that it has 

executed, it is possible to extract some kind of statistical 

properties with the aim of modeling its behavior. Markov 
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chains, rule learning systems and other approaches have 

been used for this purpose (e.g., see [10], [11]). 

In the context of network based IDS, it has been 

argued that several features associated with traffic 

modeling, like volume of traffic in the network or 

statistics of the operation of application protocols, are 

particularly suited for detecting general novel attacks 

[12], [13]. Another proposed approaches define the 

normal state of the network by means of a finite 

automaton, obtaining thus that each sequence of normal 

actions can be expressed by allowed transitions between 

states [8], [14]. Some of these proposals are signature 

based approaches, and state machines are used as a 

framework for the construction of attack patterns. 

 In this work we present a special case of anomaly 

based method for detecting protocol misusages in 

computer networks. A protocol anomaly detector is 

designed to monitor a given protocol looking for 

deviations from its normal usage. Justification for this 

approach comes from the fact that a large amount of 

network attacks are founded on diverse protocol usages 

that fall out of the official protocol description. Building 

such a detector requires an analysis of the specific 

protocol implementation existing across the network.  

The approach taken in our work is inspired in that 

used in host based IDS. The basic idea is to define a set of 

features for a given protocol in such a way that they can 

be conceived as the equivalent of the system calls 

executed by the applications (i.e., as a signature of its 

operation). These features are subsequently used for 

characterizing network traffic that utilizes the protocol. 

The “normal” protocol usage is then modeled by means 

of a Markov chain, using these sequences of observations 

as inputs. Likewise, in this contribution we propose the 

use of a specific measure, called MAP, for evaluation 

purposes

The rest of this paper is organized as follows. Section 

2 introduces a brief background on Markov chains and 

their use for sequence recognition. We describe in detail 

our approach to protocol modeling in Section 3, 

specifically its application to TCP. Section 4 provides 

further discussion concerning the proposed scheme and 

the results obtained. Finally, Section 5 summarises the 

paper by presenting our main conclusions, the benefits of 

the work developed and future research objectives. 

2. A brief background on Markov chains 

2.1. Foundations

Let us suppose a system which evolves through 

numbered states in accordance with probabilistic laws 

satisfying the Markov hypothesis (i.e., the state at time 

t+1 only depends on the state at time t). Each state of the 

set of possible states ={S1, S2, ..., SN} represents a 

different and specific situation in which the system can 

be.

 Let the variable that represents the current state at 

time t be qt. Then, if P[qt=i] > 0, define aij by 
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and let A be the matrix [aij]. Then, if P[qt=i] > 0, 
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Thus the matrix of probabilities of transitions A=[aij]

represents the probability of being in the state i at some 

time t, and reach the state j at time t+1. According to the 

previous definitions any matrix A=[aij] satisfying (2) can 

be used, together with initial probabilities ={ i}, so that 

i=P[q1=i], satisfying 
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to define a Markov chain with stationary transition 

probabilities. The probability pj
(n) of state j at time n is 

given recursively by 
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Good introductory texts about Markov chains are [15] 

and [16], and interested readers can found there more 

detailed information. 

2.2. Parameter estimation in Markov chains

In this discussion we suppose that the knowledge 

concerning different states reached by the system is 

acquired through the observation of the system outcomes. 

These outcomes are elements from a finite set ={Oi}, so 

that the possible outcomes Oi are referred to as possible 

states of the system. 

Let us suppose that a set of system observations O1,

O2, ..., OT, is given. In the theory of Markov chains we 

consider the simplest generalization which consists in 

permitting the outcome of any trial to depend on the 

outcome of the directly preceding trial (and only on it) 

[15]. Thus the matrix of probabilities of transitions can be 

estimated by: 
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Figure 1. Illustration of the TCP quantization 
process. Flags are considered as a binary number n 
of 6 bits, so that Sn is the symbol associated with the 
TCP segment. 
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Both terms of the previous expression can be 

calculated by means of a simple process of counting 

occurrences into the sequence of observations. On the 

other hand, initial probabilities vector can be estimated 

in a similar way if a set of outcome sequences is 

available. Thus initial probability of each symbol can be 

computed by simply counting the number of times the 

corresponding symbol appears at the beginning of the 

sequences. 

2.3. Sequence recognition with Markov chains

Let us suppose a given Markov chain =(A, ), where A

= [aij] is the matrix of probabilities of transitions and  = 

(pi) the vector of initial probabilities, and let be O = {O1,

O2, ... OT} a sequence of observed symbols. The problem 

of recognition with Markov chains is the problem of 

estimating P[O | ], that is, the probability of the observed 

sequence evaluated by the chain. A useful measure for 

this purpose is the Maximum A-posteriori Probability

(MAP), defined as: 
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A problem with this measure is that it converges 

quickly to zero. Therefore, sometimes it is more useful to 

use a representation in a logarithmic scale, that is: 
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The use of accumulated probabilities presents the 

inconvenient that no one probability can be zero. This is 

usually solved by means of a previous smoothing of the 

model. Although several methods exist for this purpose, 

probably the simplest smoothing technique consists in 

setting those probabilities lower than a given threshold to 

a fixed value “ ”.

3. TCP Modeling with Markov chains

3.1. Parameterization and quantization

Information concerning signaling and dynamics in 

network protocols is located at PDU (Protocol Data Unit)

headers. Thus, it might be expected that useful variables 

for modeling the “normal” protocol behavior will be the 

values of header fields or some combination of them. Our 

basic approach consists in obtaining a representation of 

the network traffic at a given layer (i.e., the modeling of 

the corresponding protocol) as a sequence of scalar 

observations.  

Once this transformation is achieved, the next step 

will be the modeling of such a sequence. For this purpose 

it is necessary to carry out a quantization stage of the 

protocol headers. In the case of TCP, most of the 

information related to the signaling is located in the fields 

known as flags [17]. A simplistic but effective approach 

is to consider the flags configuration of each TCP 

segment as its signature. Thus, it is possible to associate a 

unique symbol Sp with each segment: 

        

finurg

rstpshacksynbwS
i
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6
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The idea behind this simple quantization scheme is 

illustrated in Figure 1. Flags are retrieved from each 

segment and disposed in the order shown in the cited 

figure. The symbol associated with the segment is 

obtained according to expression (8), i.e., considering the 

flags configuration as a binary number. We obtain thus a 

64-valued quantization dictionary, in which each element 

represents a different configuration of flags. 

According to the protocol specification [17] not all of 

these configurations are valid. For example, a TCP 

segment with SYN and RST flags simultaneously set to 1 

is not coherent with the correct protocol usage and, hence, 

can be considered as a protocol misuse. Most of these 

protocol misuses are basic tools for information gathering 

processes like port scanning. Current techniques used in 

NIDS to detect this kind of attacks are signature-based, so 
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Figure 2. Sequence of symbols corresponding to 
two short SSH sessions. The first session starts at 
time t=1 and finishes at time t=75, while the second 
one starts at time t=76 and finishes at time t=148.

that a pattern representing the attack is constructed. 

Subsequently, some kind of pattern matching algorithm is 

used to find evidences of any known attack in the 

incoming network traffic. Surely the most limiting 

characteristic of this approach is the impossibility of 

recognizing those attacks that have not previously been 

typified by means of a signature. 

3.2. Data sets

As a first approach we have used incoming TCP traffic 

filtered by destination port (i.e., by application or service) 

as training sequences. Applications monitored for our 

experiments have been SSH, HTTP, and FTP, so that 

several connections have been recorded for each one of 

them. 

Table 1 shows some characteristics of the traffic files 

used. Such a traffic has been obtained monitoring normal, 

incoming connections to a single host running an FTP 

server, an SSH server, and an HTTP server in our 

laboratory. The capture, filtering and extraction of the 

TCP headers can be easily made with tcpdump [18] or 

any similar tool. Each file contains several non-

interleaved sessions. To be precise, each session is a 

sequence of ordered TCP headers which will be 

transformed into a sequence of symbols according to the 

quantization process. For example, Figure 2 shows a 

portion of a SSH file with two complete sessions (each 

session always  has the symbol S1 as starting value). 

3.3. Model estimation

Figure 3 graphically illustrates the estimation process 

for the model. TCP headers collected in the data sets are 

quantized so that each session is represented as an 

ordered sequence of symbols like that shown in Figure 2. 

These traces are then used as inputs for the estimation 

algorithm briefly described in section 2.2. 

Results provided after this process concern the matrix 

of transition probabilities and the vector of initial 

probabilities. This task is achieved separately with the 

traces corresponding to each application. The obtained 

models are shown in the Figure 4. 

 For example, the model obtained with sequences from 

FTP traffic presents four states with non-null probability 

of transition: S1, S2, S6, and S34 (see Figure 4). State S1

corresponds to a TCP segment with SYN flag set to 1, and 

represents the request for the establishment of a 

connection. States S2 and S6 are conceptually identical and 

represent the acknowledgment of a received packet. 

Nevertheless, while S2 only has ACK flag set to 1, state S6

corresponds to a segment with ACK and PSH flags set to 

1. This difference could be originated by different states 

of network load, so that certain packets are labeled with 

PSH flag for their immediate delivery. Finally, state S34

corresponds to a packet with FIN and ACK flags set to 1. 

It represents an acknowledgment of a previous packet and 

simultaneously the closing of the connection.  

Table 1. Data sets of normal traffic used for the construction of a TCP model. The size of 
each trace indicates the number of recorded TCP headers. 

Service FTP Service HTTP Service SSH 

Trace No. of 

sessions 

Total 

Size

Trace No. of 

sessions 

Total 

Size 

Trace No. of 

sessions 

Total

Size 

ftp.1 14 5207 http.1 29 8975 ssh.1 11 3349 

ftp.2 9 3762 http.2 41 13862 ssh.2 9 3294 

ftp.3 18 6862 http.3 102 28107 ssh.3 12 3766 

ftp.4 32 18101 http.4 57 19343 ssh.4 24 7069 

ftp.5 69 27753 http.5 98 50462 ssh.5 143 63252 

ftp.6 78 51345 http.6 62 21310 ssh.6 218 122355 

ftp.7 156 133615 http.7 117 41329 ssh.7 241 151142 
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The analysis of the transitions obtained for this model 

reveals that it has captured the correct dynamics specified 

for the protocol TCP [17]. More specifically, this model is 

a subset of the well known TCP state machine. 

The previous discussion is likewise applicable to the 

models obtained for HTTP and SSH services. Although 

they are essentially equivalent, the observed differences –

like the apparition of states with flags RST– are 

originated by the usage that the particular application 

makes of the protocol. Anyway, it is possible to identify 

the same semantics corresponding to the protocol 

utilization in these models. 

3.4. Testing the model

After the training period a Markov chain is available 

for the incoming TCP traffic from each specific 

application. These models can be evaluated according to 

expressions (6) and (7), obtaining thus performance 

measures related to their discriminative power between 

correct and wrong TCP usage. 

The testing procedure is as follows. Incoming traffic is 

filtered according to its destination port (i.e., the receiver 

application). Each packet in the flow is then processed by 

extracting its TCP header and quantized according to 

expression (8). The obtained sequence of symbols is then 

passed through the model and evaluated. Figure 5 shows 

examples of outputs produced by the corresponding model 

during two HTTP sessions. 

A smoothed model has been used during the 

evaluation period in order to solve the problem of null 

probabilities. The implemented method was that briefly 

described in Section 2.3. Those probabilities which are 

lower than a given threshold =10-6 were setting to the 

value of .

The output shown in the upper graph in Figure 5 

corresponds to a “normal” session. The function LogMAP

for this kind of traffic has always a shape similar to that 

shown in the figure. While incoming symbols correspond 

well with those expected by the model, the respective 

probabilities of transition between them are adequate and, 

thus, the accumulated sum given by the logMAP has no 

abrupt changes of slope. 

On the contrary, the appearance of any pattern of non-

expected symbols produces a burst of consecutive low 

probabilities. This phenomenon can be easily observed by 

an abrupt change in the slope of the output, like those 

shown in the lower graph in Figure 5. 

A useful method for detecting these changes and, 

hence, the presence of anomalous traffic is to control 

when the derivative of logMAP is higher than a fixed 

threshold. We have used for that purpose the family of 

functions: Figure 3. Graphical illustration of the Markov 
chain estimation process. 

Figure 4. Estimated models for different services 
over TCP. The values of the transition probabilities 
between states are also shown. Each transition is 
defined by the current state Si and the next state Si+1.
Transitions not shown in the table are zero. 
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for values of the parameter Wm = 1, 2, 3, ... Note that the 

second term in (9) is the mean of the last Wm outputs. 

Figure 6 shows the effect of this parameter in the response 

produced by the detector. An increment of its value 

induces an amplification in the output. Note that the 

smoothing parameter  plays an equivalent although 

inverse role: small values of  will produce more abrupt 

changes of slope. 

 Data sets of anomalous traffic used during the test 

period have been obtained using tools that exploit several 

TCP weakness and ambiguities for different purposes. For 

example, nmap [19] and other scanning tools utilize 

certain TCP segments like the followings in order to 

achieving their objectives: 

Null scan, in which no one flag is activated. 

Xmas scan, in which all the flags are set to 1.

Stealth FIN, in which a segment with the flag 

FIN activated, is sent against a port without a 

previous established connection.

These and other techniques are well known and 

appropriate filters could be written and installed on a 

signature based IDS for their detection. However, it is 

Figure 6. Effect of the parameter Wm in the 
response produced by the detector. Higher values 
produce an amplification of the output.

Figure 5. Comparative output graphs produced by the HTTP chain with normal and anomalous TCP traffic
corresponding to two sessions. In the lower graph, attacks are located at time t=37, t=85, t=118, t=172, and t=235. 

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03) 
0-7695-1886-9/03 $17.00 © 2003 IEEE 



obvious that detection capabilities will be given by the 

library of attack signatures available and, hence, new 

attacks require new signatures. On the contrary, the use of 

anomaly detectors implies that not only well known 

misusages will be detected but too those not exploited yet. 

Figure 7 shows the results of monitoring four 

consecutive SSH sessions. While sessions 1 and 4 do not 

contain any malicious traffic, sessions 2 and 3 includes 

several forms of misusages. The graphs illustrate how the 

detectors correctly capture these anomalies. 

4. Discussion

According to the methodology that has been exposed 

in the previous section, results obtained after the training 

procedure are a set of individual models: one for each 

service. To be precise each one of these models contains 

the “correct” (but specific) usage that a given service 

makes of the protocol. The deployment of detectors based 

in this scheme would be as it was previously described: 

each isolated model monitors incoming traffic whose 

target is the corresponding application. 

 Although this approach presents several benefits, its 

main disadvantage is exactly this specialization property, 

regardless of performance considerations. It is thus 

possible that a given service makes use only of a certain 

subset of the correct protocol usage. The presence of 

activities that fall into the correct, formal protocol 

specification but that have not been previously seen by the 

model raise the alarm. This limitation is inherent to the 

definition of anomaly based detector: every anomalous 

event is suspicious. 

However, it is reasonable to conceive a unique model 

for the usage of the protocol (TCP in this case), regardless 

of the application that utilizes it. In other words, an 

interesting objective to be tackled is obtaining a model for 

the usage that the entire network system makes of the 

protocol. Such a model can be easily built within the same 

previous procedure, but using all the training data without 

consideration about the destination port. 

It is obviously expected that the obtained model with 

this new approach will be a unification of those individual 

Figure 7. Output produced by the detector during the monitoring of four consecutive SSH sessions. Sessions 2 and 
3 contains several attacks, while sessions 1 and 4 are correct. It is clearly shown how the detector has adequately 
captured  the protocol misuses. 
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chains shown in Figure 4. Although the set of reachable 

states for such a model is the effective union of states 

contained in the isolated models, transitions between them 

can be substantially different. Hence, it is needed to 

compute them again within the new framework. Likewise, 

it is accepted an eventual loss of detection accuracy due to 

the smaller specialization of the complete protocol model. 

 Figure 8 shows the global TCP chain obtained after the 

training process using all the data sets described in Table 

1. As it was expected, the model for the entire TCP usage 

is composed by all the states present in the individual 

chains. On the other hand, new transition probabilities 

between them can be seen as a “weighted mixture” of the 

previous ones. It is possible to illustrate this fact with a 

simple example. Let us consider transition from state S2 to 

state S6. The probability of this transition is 0.66 in the 

case of the FTP chain, 0.26 in the case of the HTTP chain, 

and 0.05 for the SSH case (see Figure 4). The 

corresponding probability value for this transition in the 

global model is 0.11. Similar comparatives ca be 

established for the rest of transition probabilities. 

 Figure 9 shows experimental intrusion detection 

results for this new model. In this case the evaluation has 

been made with an smoothing value =10-9. It is clearly 

observed how the model detects protocol misuses 

similarly it was done by the application-dependant 

models. However, it is important to comment an important 

fact. Comparing Figures 5 and 9 it is clearly shown that 

the output ranges provided by the sequences evaluation 

have changed. The specific HTTP chain produces values 

lower than 1.5 for normal traffic and upper than 17 for 

anomalous traffic. Evaluation of the same traffic with the 

new model provides an output lower than 6 for normal 

Figure 9. Output produced by the global TCP detector during the monitoring of two SSH sessions and two HTTP 
sessions. Although the detection accuracy has not decreased, it may be observed how the output ranges have 
changed. 

Figure 8. TCP chain obtained with differents 
sources. Note how the entire model can be seen as 
an average of the previous, individual chains. 
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traffic and upper than 9 for anomalous usages. 

This phenomenon is directly related to the loss of 

specialization of the general model that has been 

previously discussed. Nevertheless, the detection 

accuracy can be controlled through the smoothing 

parameter  as well as the Wm. For example, in the case 

of application-dependant chains the experiments reveal 

that a value of =10-6 is enough for a good discrimination. 

However, for the case of the global TCP chain, a value of 

=10-9 or lower is necessary for an accurate separation of 

correct and wrong TCP usages. 

5. Conclusions and future work

In this paper we have presented preliminary results of 

a new approach for the detection of anomalies in the 

usage of network protocols. The previously described 

method, applied to TCP, has demonstrated to be effective 

in all our experiments. 

Besides the modeling scheme proposed, another 

important contribution is the use of the measure MAP and 

its logarithm for testing purposes. This procedure has 

been widely used in other applications (e.g., speech 

recognition) where Markov chains are appropriate 

solutions for sequence recognition. The “continuous” 

output given by this function can be easily interpreted as a 

measure of the probability of recognition of the input 

sequence. Moreover, derivative of the logMAP is an 

excellent candidate for the construction of anomaly 

detectors.  A simple method based on a threshold can be 

applied to the response provided by logMAP. Differences 

between outputs of normal and anomalous traffic can be 

controlled by parameters Wm and , facilitating thus the 

adjustment of the detectors. 

In the case of TCP, we have shown that the results 

obtained are similar to those that could be derived from a 

model directly built from the formal specification of the 

protocol. Nevertheless, this way of actuating is not always 

feasible for several reasons. First, although an 

specification of each protocol exists, it uses to be 

ambiguous and, hence, very reliant on the 

implementation. For example, it is well known that 

different operating systems have protocol stacks with 

different behaviors in some circumstances. In this 

context, a model of the protocol usage derived directly 

from its use in the environment is more appropriate. 

Furthermore, there are protocols that do not have 

something similar to the TCP state machine. For these 

protocols it is useful to build a model, not only from its 

general use, but from the specific utilization that the 

network applications are making of it. This last fact is a 

crucial point for any anomaly based network intrusion 

detection.  

The deployment of sensors based on the proposed 

protocol modeling must not be conceived as a complete 

solution for detection purposes. On the contrary, it is 

strongly recommended its use in conjunction with other 

anomaly detection techniques as well as signature 

methods. It must be considered that attacks based on 

protocol misusage are only a piece of the current attack 

technology. 

We firmly believe that a layered approach can be used 

for the detection of anomalous usages of network 

protocols. Future work will study the application of this 

methodology to other protocols. The modeling of 

application level protocols (e.g., HTTP or DNS) for the 

detection of abnormal uses and intrusion attempts is 

especially attractive and will be nextly tackled. A 

previous theoretical and empirical study of the protocol is 

required for the completion of this objective in order to 

obtain those significant features that contain important 

information concerning its use. Moreover, once that the 

protocol usage is represented as sequences of 

observations, other modeling techniques will be studied 

and evaluated. 

Likewise, monitoring of self, outcoming traffic points 

out as an interesting research topic. Correlation of 

incoming and outcoming traffic models could provide 

better results than those obtained by only monitoring 

incoming activities. 
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