
Stochastic Protocol Modeling for Anomaly Based

Network Intrusion Detection
†

Juan M. Estevez-Tapiador, Pedro Garcia-Teodoro, and Jesus E. Diaz-Verdejo

Department of Electronics and Computer Technology

University of Granada – Spain

E-mail: {tapiador, pgteodor, jedv}@ugr.es

Abstract
1

A new method for detecting anomalies in the usage of

protocols in computer networks is presented in this work.

The proposed methodology is applied to TCP and

disposed in two steps. First, a quantization of the TCP

header space is accomplished, so that a unique symbol is

associated with each TCP segment. TCP-based network

traffic is thus captured, quantized and represented by a

sequence of symbols. The second step in our approach is

the modeling of these sequences by means of a Markov
chain. The analysis of the model obtained for diverse

TCP sources reveals that it captures adequately the

essence of the protocol dynamics. Once the model is built

it is possible to use it as a representation of the normal

usage of the protocol, so that deviations from the

behavior provided by the model can be considered as a

sign of protocol misusage.

1. Introduction

Research in Intrusion Detection Systems (henceforth

referred to as IDS) has been an active field during the last

twenty years. Nevertheless, current detection technology

still suffers performance limitations referring to its high

false alarm probability, low detection accuracy and high

load of monitoring and computing overhead.

Traditionally there have been two main approaches to the

problem of intrusion detection: misuse detection and

anomaly detection. In misuse detection, each known

attack is modeled through the construction of a signature.

Incoming activities that match a pattern in the library of

attack signatures raise an alarm. The percentage of false

alarms depends on whether the matching algorithm

1†
This work has been partially supported by Spanish MECD under

National Program PNFPU (reference AP2001-3805) and Spanish MCYT

under project TIC2002-02798 (FEDER funds 70%).

allows only exact signature matching or some kind of

deviation. In anomaly detection the main objective is to

model normal profiles of the system, so that substantial

deviations from this behavior can be labeled as intrusive

or, at least, as suspicious. Statistical techniques are surely

the most used tools for the construction of normal activity

patterns. Interested readers can find good surveys about

IDS in [1] and [2].

Regardless of the method used for detecting attacks,

an IDS can be alternatively classified as host based or

network based depending on its source of input data. A

host based IDS tries to identify intrusions analyzing

activities at hosts, mainly users and programs. For

example, Denning [3] proposed a scheme in which

patterns related to login times and resources consumed by

users and programs were constructed. On the contrary,

network based IDS do not focus on activities on hosts but

on the traffic that is transported over the network [4].

Examples of network based IDS are Snort [5] and Bro

[6].

The need to define the normal state of a monitored

system is a crucial question for any anomaly based IDS.

Several authors agree and point out that probably the

most important challenge for these methods is the

choosing of features to be modeled [7], [8]. Such a

features must characterize with precision the service,

system or network usage patterns, in order to obtain an

accurate model of the normal behavior of the object. But

at the same time, they must have enough discriminant

capacity to perform a correct separation of intrusive and

non-intrusive activities. Measuring system normality

turns thus into one of the most important points

concerning the performance improvement in current

detection systems.

 In the case of host based IDS, several works have

shown that the sequences of system calls executed by a

program are excellent features for modeling the normal

behavior [7], [9]. Once that an application is “sampled”

by means of an ordered set of the system calls that it has

executed, it is possible to extract some kind of statistical

properties with the aim of modeling its behavior. Markov

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

chains, rule learning systems and other approaches have

been used for this purpose (e.g., see [10], [11]).

In the context of network based IDS, it has been

argued that several features associated with traffic

modeling, like volume of traffic in the network or

statistics of the operation of application protocols, are

particularly suited for detecting general novel attacks

[12], [13]. Another proposed approaches define the

normal state of the network by means of a finite

automaton, obtaining thus that each sequence of normal

actions can be expressed by allowed transitions between

states [8], [14]. Some of these proposals are signature

based approaches, and state machines are used as a

framework for the construction of attack patterns.

 In this work we present a special case of anomaly

based method for detecting protocol misusages in

computer networks. A protocol anomaly detector is

designed to monitor a given protocol looking for

deviations from its normal usage. Justification for this

approach comes from the fact that a large amount of

network attacks are founded on diverse protocol usages

that fall out of the official protocol description. Building

such a detector requires an analysis of the specific

protocol implementation existing across the network.

The approach taken in our work is inspired in that

used in host based IDS. The basic idea is to define a set of

features for a given protocol in such a way that they can

be conceived as the equivalent of the system calls

executed by the applications (i.e., as a signature of its

operation). These features are subsequently used for

characterizing network traffic that utilizes the protocol.

The “normal” protocol usage is then modeled by means

of a Markov chain, using these sequences of observations

as inputs. Likewise, in this contribution we propose the

use of a specific measure, called MAP, for evaluation

purposes

The rest of this paper is organized as follows. Section

2 introduces a brief background on Markov chains and

their use for sequence recognition. We describe in detail

our approach to protocol modeling in Section 3,

specifically its application to TCP. Section 4 provides

further discussion concerning the proposed scheme and

the results obtained. Finally, Section 5 summarises the

paper by presenting our main conclusions, the benefits of

the work developed and future research objectives.

2. A brief background on Markov chains

2.1. Foundations

Let us suppose a system which evolves through

numbered states in accordance with probabilistic laws

satisfying the Markov hypothesis (i.e., the state at time

t+1 only depends on the state at time t). Each state of the

set of possible states ={S1, S2, ..., SN} represents a

different and specific situation in which the system can

be.

 Let the variable that represents the current state at

time t be qt. Then, if P[qt=i] > 0, define aij by

iqP

jqiqP
iqjqPa

t

tt

ttij

1

1

,
| (1)

and let A be the matrix [aij]. Then, if P[qt=i] > 0,

j

ijij aa 1,0 (2)

Thus the matrix of probabilities of transitions A=[aij]

represents the probability of being in the state i at some

time t, and reach the state j at time t+1. According to the

previous definitions any matrix A=[aij] satisfying (2) can

be used, together with initial probabilities ={ i}, so that

i=P[q1=i], satisfying

i

ii 1,0 (3)

to define a Markov chain with stationary transition

probabilities. The probability pj
(n) of state j at time n is

given recursively by

i

ij

n

i

n

j

jj

napp

p

1,)1()(

)1(

 (4)

Good introductory texts about Markov chains are [15]

and [16], and interested readers can found there more

detailed information.

2.2. Parameter estimation in Markov chains

In this discussion we suppose that the knowledge

concerning different states reached by the system is

acquired through the observation of the system outcomes.

These outcomes are elements from a finite set ={Oi}, so

that the possible outcomes Oi are referred to as possible

states of the system.

Let us suppose that a set of system observations O1,

O2, ..., OT, is given. In the theory of Markov chains we

consider the simplest generalization which consists in

permitting the outcome of any trial to depend on the

outcome of the directly preceding trial (and only on it)

[15]. Thus the matrix of probabilities of transitions can be

estimated by:

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

Figure 1. Illustration of the TCP quantization
process. Flags are considered as a binary number n
of 6 bits, so that Sn is the symbol associated with the
TCP segment.

it

itjt

ij
OqP

OqOqP
a

1

1,
 (5)

Both terms of the previous expression can be

calculated by means of a simple process of counting

occurrences into the sequence of observations. On the

other hand, initial probabilities vector can be estimated

in a similar way if a set of outcome sequences is

available. Thus initial probability of each symbol can be

computed by simply counting the number of times the

corresponding symbol appears at the beginning of the

sequences.

2.3. Sequence recognition with Markov chains

Let us suppose a given Markov chain =(A,), where A

= [aij] is the matrix of probabilities of transitions and =

(pi) the vector of initial probabilities, and let be O = {O1,

O2, ... OT} a sequence of observed symbols. The problem

of recognition with Markov chains is the problem of

estimating P[O |], that is, the probability of the observed

sequence evaluated by the chain. A useful measure for

this purpose is the Maximum A-posteriori Probability

(MAP), defined as:

1

1
11

·),(
T

t

OOO tt
aOMAP (6)

A problem with this measure is that it converges

quickly to zero. Therefore, sometimes it is more useful to

use a representation in a logarithmic scale, that is:

1

1

)log()log(),(
11

T

i

OOO ii
aOLogMAP (7)

The use of accumulated probabilities presents the

inconvenient that no one probability can be zero. This is

usually solved by means of a previous smoothing of the

model. Although several methods exist for this purpose,

probably the simplest smoothing technique consists in

setting those probabilities lower than a given threshold to

a fixed value “ ”.

3. TCP Modeling with Markov chains

3.1. Parameterization and quantization

Information concerning signaling and dynamics in

network protocols is located at PDU (Protocol Data Unit)

headers. Thus, it might be expected that useful variables

for modeling the “normal” protocol behavior will be the

values of header fields or some combination of them. Our

basic approach consists in obtaining a representation of

the network traffic at a given layer (i.e., the modeling of

the corresponding protocol) as a sequence of scalar

observations.

Once this transformation is achieved, the next step

will be the modeling of such a sequence. For this purpose

it is necessary to carry out a quantization stage of the

protocol headers. In the case of TCP, most of the

information related to the signaling is located in the fields

known as flags [17]. A simplistic but effective approach

is to consider the flags configuration of each TCP

segment as its signature. Thus, it is possible to associate a

unique symbol Sp with each segment:

finurg

rstpshacksynbwS
i

iip

3216

842
6

1 (8)

The idea behind this simple quantization scheme is

illustrated in Figure 1. Flags are retrieved from each

segment and disposed in the order shown in the cited

figure. The symbol associated with the segment is

obtained according to expression (8), i.e., considering the

flags configuration as a binary number. We obtain thus a

64-valued quantization dictionary, in which each element

represents a different configuration of flags.

According to the protocol specification [17] not all of

these configurations are valid. For example, a TCP

segment with SYN and RST flags simultaneously set to 1

is not coherent with the correct protocol usage and, hence,

can be considered as a protocol misuse. Most of these

protocol misuses are basic tools for information gathering

processes like port scanning. Current techniques used in

NIDS to detect this kind of attacks are signature-based, so

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

Figure 2. Sequence of symbols corresponding to
two short SSH sessions. The first session starts at
time t=1 and finishes at time t=75, while the second
one starts at time t=76 and finishes at time t=148.

that a pattern representing the attack is constructed.

Subsequently, some kind of pattern matching algorithm is

used to find evidences of any known attack in the

incoming network traffic. Surely the most limiting

characteristic of this approach is the impossibility of

recognizing those attacks that have not previously been

typified by means of a signature.

3.2. Data sets

As a first approach we have used incoming TCP traffic

filtered by destination port (i.e., by application or service)

as training sequences. Applications monitored for our

experiments have been SSH, HTTP, and FTP, so that

several connections have been recorded for each one of

them.

Table 1 shows some characteristics of the traffic files

used. Such a traffic has been obtained monitoring normal,

incoming connections to a single host running an FTP

server, an SSH server, and an HTTP server in our

laboratory. The capture, filtering and extraction of the

TCP headers can be easily made with tcpdump [18] or

any similar tool. Each file contains several non-

interleaved sessions. To be precise, each session is a

sequence of ordered TCP headers which will be

transformed into a sequence of symbols according to the

quantization process. For example, Figure 2 shows a

portion of a SSH file with two complete sessions (each

session always has the symbol S1 as starting value).

3.3. Model estimation

Figure 3 graphically illustrates the estimation process

for the model. TCP headers collected in the data sets are

quantized so that each session is represented as an

ordered sequence of symbols like that shown in Figure 2.

These traces are then used as inputs for the estimation

algorithm briefly described in section 2.2.

Results provided after this process concern the matrix

of transition probabilities and the vector of initial

probabilities. This task is achieved separately with the

traces corresponding to each application. The obtained

models are shown in the Figure 4.

 For example, the model obtained with sequences from

FTP traffic presents four states with non-null probability

of transition: S1, S2, S6, and S34 (see Figure 4). State S1

corresponds to a TCP segment with SYN flag set to 1, and

represents the request for the establishment of a

connection. States S2 and S6 are conceptually identical and

represent the acknowledgment of a received packet.

Nevertheless, while S2 only has ACK flag set to 1, state S6

corresponds to a segment with ACK and PSH flags set to

1. This difference could be originated by different states

of network load, so that certain packets are labeled with

PSH flag for their immediate delivery. Finally, state S34

corresponds to a packet with FIN and ACK flags set to 1.

It represents an acknowledgment of a previous packet and

simultaneously the closing of the connection.

Table 1. Data sets of normal traffic used for the construction of a TCP model. The size of
each trace indicates the number of recorded TCP headers.

Service FTP Service HTTP Service SSH

Trace No. of

sessions

Total

Size

Trace No. of

sessions

Total

Size

Trace No. of

sessions

Total

Size

ftp.1 14 5207 http.1 29 8975 ssh.1 11 3349

ftp.2 9 3762 http.2 41 13862 ssh.2 9 3294

ftp.3 18 6862 http.3 102 28107 ssh.3 12 3766

ftp.4 32 18101 http.4 57 19343 ssh.4 24 7069

ftp.5 69 27753 http.5 98 50462 ssh.5 143 63252

ftp.6 78 51345 http.6 62 21310 ssh.6 218 122355

ftp.7 156 133615 http.7 117 41329 ssh.7 241 151142

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

The analysis of the transitions obtained for this model

reveals that it has captured the correct dynamics specified

for the protocol TCP [17]. More specifically, this model is

a subset of the well known TCP state machine.

The previous discussion is likewise applicable to the

models obtained for HTTP and SSH services. Although

they are essentially equivalent, the observed differences –

like the apparition of states with flags RST– are

originated by the usage that the particular application

makes of the protocol. Anyway, it is possible to identify

the same semantics corresponding to the protocol

utilization in these models.

3.4. Testing the model

After the training period a Markov chain is available

for the incoming TCP traffic from each specific

application. These models can be evaluated according to

expressions (6) and (7), obtaining thus performance

measures related to their discriminative power between

correct and wrong TCP usage.

The testing procedure is as follows. Incoming traffic is

filtered according to its destination port (i.e., the receiver

application). Each packet in the flow is then processed by

extracting its TCP header and quantized according to

expression (8). The obtained sequence of symbols is then

passed through the model and evaluated. Figure 5 shows

examples of outputs produced by the corresponding model

during two HTTP sessions.

A smoothed model has been used during the

evaluation period in order to solve the problem of null

probabilities. The implemented method was that briefly

described in Section 2.3. Those probabilities which are

lower than a given threshold =10-6 were setting to the

value of .

The output shown in the upper graph in Figure 5

corresponds to a “normal” session. The function LogMAP

for this kind of traffic has always a shape similar to that

shown in the figure. While incoming symbols correspond

well with those expected by the model, the respective

probabilities of transition between them are adequate and,

thus, the accumulated sum given by the logMAP has no

abrupt changes of slope.

On the contrary, the appearance of any pattern of non-

expected symbols produces a burst of consecutive low

probabilities. This phenomenon can be easily observed by

an abrupt change in the slope of the output, like those

shown in the lower graph in Figure 5.

A useful method for detecting these changes and,

hence, the presence of anomalous traffic is to control

when the derivative of logMAP is higher than a fixed

threshold. We have used for that purpose the family of

functions: Figure 3. Graphical illustration of the Markov
chain estimation process.

Figure 4. Estimated models for different services
over TCP. The values of the transition probabilities
between states are also shown. Each transition is
defined by the current state Si and the next state Si+1.
Transitions not shown in the table are zero.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

mW

im
mW itLogMAP

W
tLogMAPtD

1

)(
1

)()((9)

for values of the parameter Wm = 1, 2, 3, ... Note that the

second term in (9) is the mean of the last Wm outputs.

Figure 6 shows the effect of this parameter in the response

produced by the detector. An increment of its value

induces an amplification in the output. Note that the

smoothing parameter plays an equivalent although

inverse role: small values of will produce more abrupt

changes of slope.

 Data sets of anomalous traffic used during the test

period have been obtained using tools that exploit several

TCP weakness and ambiguities for different purposes. For

example, nmap [19] and other scanning tools utilize

certain TCP segments like the followings in order to

achieving their objectives:

Null scan, in which no one flag is activated.

Xmas scan, in which all the flags are set to 1.

Stealth FIN, in which a segment with the flag

FIN activated, is sent against a port without a

previous established connection.

These and other techniques are well known and

appropriate filters could be written and installed on a

signature based IDS for their detection. However, it is

Figure 6. Effect of the parameter Wm in the
response produced by the detector. Higher values
produce an amplification of the output.

Figure 5. Comparative output graphs produced by the HTTP chain with normal and anomalous TCP traffic
corresponding to two sessions. In the lower graph, attacks are located at time t=37, t=85, t=118, t=172, and t=235.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

obvious that detection capabilities will be given by the

library of attack signatures available and, hence, new

attacks require new signatures. On the contrary, the use of

anomaly detectors implies that not only well known

misusages will be detected but too those not exploited yet.

Figure 7 shows the results of monitoring four

consecutive SSH sessions. While sessions 1 and 4 do not

contain any malicious traffic, sessions 2 and 3 includes

several forms of misusages. The graphs illustrate how the

detectors correctly capture these anomalies.

4. Discussion

According to the methodology that has been exposed

in the previous section, results obtained after the training

procedure are a set of individual models: one for each

service. To be precise each one of these models contains

the “correct” (but specific) usage that a given service

makes of the protocol. The deployment of detectors based

in this scheme would be as it was previously described:

each isolated model monitors incoming traffic whose

target is the corresponding application.

 Although this approach presents several benefits, its

main disadvantage is exactly this specialization property,

regardless of performance considerations. It is thus

possible that a given service makes use only of a certain

subset of the correct protocol usage. The presence of

activities that fall into the correct, formal protocol

specification but that have not been previously seen by the

model raise the alarm. This limitation is inherent to the

definition of anomaly based detector: every anomalous

event is suspicious.

However, it is reasonable to conceive a unique model

for the usage of the protocol (TCP in this case), regardless

of the application that utilizes it. In other words, an

interesting objective to be tackled is obtaining a model for

the usage that the entire network system makes of the

protocol. Such a model can be easily built within the same

previous procedure, but using all the training data without

consideration about the destination port.

It is obviously expected that the obtained model with

this new approach will be a unification of those individual

Figure 7. Output produced by the detector during the monitoring of four consecutive SSH sessions. Sessions 2 and
3 contains several attacks, while sessions 1 and 4 are correct. It is clearly shown how the detector has adequately
captured the protocol misuses.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

chains shown in Figure 4. Although the set of reachable

states for such a model is the effective union of states

contained in the isolated models, transitions between them

can be substantially different. Hence, it is needed to

compute them again within the new framework. Likewise,

it is accepted an eventual loss of detection accuracy due to

the smaller specialization of the complete protocol model.

 Figure 8 shows the global TCP chain obtained after the

training process using all the data sets described in Table

1. As it was expected, the model for the entire TCP usage

is composed by all the states present in the individual

chains. On the other hand, new transition probabilities

between them can be seen as a “weighted mixture” of the

previous ones. It is possible to illustrate this fact with a

simple example. Let us consider transition from state S2 to

state S6. The probability of this transition is 0.66 in the

case of the FTP chain, 0.26 in the case of the HTTP chain,

and 0.05 for the SSH case (see Figure 4). The

corresponding probability value for this transition in the

global model is 0.11. Similar comparatives ca be

established for the rest of transition probabilities.

 Figure 9 shows experimental intrusion detection

results for this new model. In this case the evaluation has

been made with an smoothing value =10-9. It is clearly

observed how the model detects protocol misuses

similarly it was done by the application-dependant

models. However, it is important to comment an important

fact. Comparing Figures 5 and 9 it is clearly shown that

the output ranges provided by the sequences evaluation

have changed. The specific HTTP chain produces values

lower than 1.5 for normal traffic and upper than 17 for

anomalous traffic. Evaluation of the same traffic with the

new model provides an output lower than 6 for normal

Figure 9. Output produced by the global TCP detector during the monitoring of two SSH sessions and two HTTP
sessions. Although the detection accuracy has not decreased, it may be observed how the output ranges have
changed.

Figure 8. TCP chain obtained with differents
sources. Note how the entire model can be seen as
an average of the previous, individual chains.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

traffic and upper than 9 for anomalous usages.

This phenomenon is directly related to the loss of

specialization of the general model that has been

previously discussed. Nevertheless, the detection

accuracy can be controlled through the smoothing

parameter as well as the Wm. For example, in the case

of application-dependant chains the experiments reveal

that a value of =10-6 is enough for a good discrimination.

However, for the case of the global TCP chain, a value of

=10-9 or lower is necessary for an accurate separation of

correct and wrong TCP usages.

5. Conclusions and future work

In this paper we have presented preliminary results of

a new approach for the detection of anomalies in the

usage of network protocols. The previously described

method, applied to TCP, has demonstrated to be effective

in all our experiments.

Besides the modeling scheme proposed, another

important contribution is the use of the measure MAP and

its logarithm for testing purposes. This procedure has

been widely used in other applications (e.g., speech

recognition) where Markov chains are appropriate

solutions for sequence recognition. The “continuous”

output given by this function can be easily interpreted as a

measure of the probability of recognition of the input

sequence. Moreover, derivative of the logMAP is an

excellent candidate for the construction of anomaly

detectors. A simple method based on a threshold can be

applied to the response provided by logMAP. Differences

between outputs of normal and anomalous traffic can be

controlled by parameters Wm and , facilitating thus the

adjustment of the detectors.

In the case of TCP, we have shown that the results

obtained are similar to those that could be derived from a

model directly built from the formal specification of the

protocol. Nevertheless, this way of actuating is not always

feasible for several reasons. First, although an

specification of each protocol exists, it uses to be

ambiguous and, hence, very reliant on the

implementation. For example, it is well known that

different operating systems have protocol stacks with

different behaviors in some circumstances. In this

context, a model of the protocol usage derived directly

from its use in the environment is more appropriate.

Furthermore, there are protocols that do not have

something similar to the TCP state machine. For these

protocols it is useful to build a model, not only from its

general use, but from the specific utilization that the

network applications are making of it. This last fact is a

crucial point for any anomaly based network intrusion

detection.

The deployment of sensors based on the proposed

protocol modeling must not be conceived as a complete

solution for detection purposes. On the contrary, it is

strongly recommended its use in conjunction with other

anomaly detection techniques as well as signature

methods. It must be considered that attacks based on

protocol misusage are only a piece of the current attack

technology.

We firmly believe that a layered approach can be used

for the detection of anomalous usages of network

protocols. Future work will study the application of this

methodology to other protocols. The modeling of

application level protocols (e.g., HTTP or DNS) for the

detection of abnormal uses and intrusion attempts is

especially attractive and will be nextly tackled. A

previous theoretical and empirical study of the protocol is

required for the completion of this objective in order to

obtain those significant features that contain important

information concerning its use. Moreover, once that the

protocol usage is represented as sequences of

observations, other modeling techniques will be studied

and evaluated.

Likewise, monitoring of self, outcoming traffic points

out as an interesting research topic. Correlation of

incoming and outcoming traffic models could provide

better results than those obtained by only monitoring

incoming activities.

References

[1] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel,

and E. Stoner, “State of the practice of intrusion

detection technologies,” Technical Report CMU/SEI-99-

TR-028, Software Engineering Institute, Carnegie

Mellon, January 2000.

[2] S. Axelsson, “Intrusion Detection Systems: A Survey

and Taxonomy.” Available:

http://citeseer.nj.nec.com/axelsson00intrusion.html,

2000.

[3] D. Denning, “An intrusion-detection model,” in IEEE
Transactions on Software Engineering, vol.SE-13, No.2,

pp. 222-232, February 1987.

[4] B. Mukherjee, L. T.Heberlein and K. N. Levitt,

“Network Intrusion Detection”, IEEE Network, Vol. 8,

No. 3, May/June, pp. 26-41, 1994.

[5] M. Roesch, “Snort – lightweight intrusion detection for

networks,” in Proceedings of the 1999 USENIX LISA
conference, November 1999.

[6] V. Paxon, “Bro: A System for detecting network

intruders in real-time,” in Proceedings of the 7th

USENIX Security Symposium, San Antonio, Texas,

1998.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

[7] C. Warrender, S. Forrest and B. Pearlmutter, “Detecting

Intrusions Using System Calls: Alternative Data

Models”, Proceedings of 1999 IEEE Symposium on
Security and Privacy, pp. 133-145, 1999.

[8] K. Llgun, R. A. Kemmerer, Fellow, IEEE and P. A.

Porras, “State Transitions Analysis: A Rule-based

Intrusion Detection Approach”, 1995.

[9] S. Forrest, S. A. Hofmeyr, A. Somayaji and T. A.

Logstaff, “A sense of Self for Unix process”,

Proceedings of 1996 IEEE Symposium on Computer

Security and Privacy, pp. 120-128, 1996.

[10] S. Jha, K. Tan, and R. A. Maxion, “Markov Chains,

Classifiers, and Intrusion Detection,” in Proceedings of
the 14th IEEE Computer Security Foundations

Workshop, pp. 206-219, 2001.

[11] T. Lunt, A. Tamaru, F. Gilham, R.Jagannathan, P.

Neumann, H. Javitz, A. Valdes, and T. Garvey. A real-

time intrusion detection expert system (IDES) – final

technical report. Teccnical Report, Computer Science

Laboratory, SRI International, Menlo Park, California,

February 1992.

[12] J.B.D. Cabrera, B. Ravichandran, and R. K. Mehra,

“Statistical Traffic Modeling for Network Intrusión

Detection,” in Proceedings of the 8th IEEE International

Symposium on Modeling, Analysis and Simulation of
Computer Telecommunication Systems, pp. 466-473,

2000.

[13] M. Bykoba, S. Ostermann, and B. Tjaden, “Detecting

Network Intrusions via a Statistical Analysis of Network

Packet Characteristics,” in Proceedings of the 33rd IEEE

Southeastern Symposium on System Theory, pp. 309-

314, 2001.

[14] S. Zheng, C. Peng, X. Ying, and X. Ke, “A Network

State Based Intrusion Detection Model,” in Proceedings

of the International IEEE Conference on Computer
Networks and Mobile Computing, pp. 481-486, 2001.

[15] J. L. Doob, Stochastic Processes, John Wiley & Sons,

1953

[16] W. Feller, An Introduction to Probability Theory and Its

Applications, Vol. I, 3rd Edition, John Wiley & Sons,

1968.

[17] J. Postel, “Transmission Control Protocol”, RFC793,

September 1981.

[18] V. Jacobson, C. Leres, and S. McCanne, tcpdump,

http://www.tcpdump.org, June 1994.

[19] Fyodor, “Nmap – Free Stealth Port Scanner for Network

Exploration & Security Audits”. Available:

http://www.insecure.org/nmap/index.html

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

