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Abstract

We develop a new family of variance reduced stochastic gradient descent meth-

ods for minimizing the average of a very large number of smooth functions. Our

method—JacSketch—is motivated by novel developments in randomized numerical

linear algebra, and operates by maintaining a stochastic estimate of a Jacobian matrix

composed of the gradients of individual functions. In each iteration, JacSketch effi-

ciently updates the Jacobian matrix by first obtaining a random linear measurement of

the true Jacobian through (cheap) sketching, and then projecting the previous estimate

onto the solution space of a linear matrix equation whose solutions are consistent

with the measurement. The Jacobian estimate is then used to compute a variance-

reduced unbiased estimator of the gradient. Our strategy is analogous to the way

quasi-Newton methods maintain an estimate of the Hessian, and hence our method

can be seen as a stochastic quasi-gradient method. Our method can also be seen as

stochastic gradient descent applied to a controlled stochastic optimization reformula-

tion of the original problem, where the control comes from the Jacobian estimates.

We prove that for smooth and strongly convex functions, JacSketch converges linearly

with a meaningful rate dictated by a single convergence theorem which applies to

general sketches. We also provide a refined convergence theorem which applies to

a smaller class of sketches, featuring a novel proof technique based on a stochastic

Lyapunov function. This enables us to obtain sharper complexity results for variants of

JacSketch with importance sampling. By specializing our general approach to specific

sketching strategies, JacSketch reduces to the celebrated stochastic average gradient

(SAGA) method, and its several existing and many new minibatch, reduced memory,
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136 R. M. Gower et al.

and importance sampling variants. Our rate for SAGA with importance sampling is

the current best-known rate for this method, resolving a conjecture by Schmidt et al.

(Proceedings of the eighteenth international conference on artificial intelligence and

statistics, AISTATS 2015, San Diego, California, 2015). The rates we obtain for mini-

batch SAGA are also superior to existing rates and are sufficiently tight as to show a

decrease in total complexity as the minibatch size increases. Moreover, we obtain the

first minibatch SAGA method with importance sampling.

Keywords Stochastic gradient descent · Sketching · Variance reduction · Covariates

Mathematics Subject Classification 65Kxx · 90C15 · 90C25

1 Introduction

We consider the problem of minimizing the average of a large number of differentiable

functions

x∗ = arg min
x∈Rd

[

f (x)
def
=

1

n

n
∑

i=1

fi (x)

]

, (1)

where f is μ—strongly convex and L—smooth. In solving (1), we restrict our attention

to first-order methods that use a (variance-reduced) stochastic estimate of the gradient

gk ≈ ∇ f (xk) to take a step towards minimizing (1) by iterating

xk+1 = xk − αgk, (2)

where α > 0 is a stepsize.

In the context of machine learning, (1) is an abstraction of the empirical risk min-

imization problem; x encodes the parameters/features of a (statistical) model, and fi

is the loss of example/data point i incurred by model x . The goal is to find the model

x which minimizes the average loss on the n observations.

Typically, n is so large that algorithms which rely on scanning through all n functions

in each iteration are too costly. The need for incremental methods for the training

phase of machine learning models has revived the interest in the stochastic gradient

descent (SGD) method [27]. SGD sets gk = ∇ fi (xk), where i is an index chosen from

[n]
def
= {1, 2, . . . , n} uniformly at random. SGD therefore requires only a single data

sample to complete a step and make progress towards the solution. Thus SGD scales

well in the number of data samples, which is important in several machine learning

applications since there many be a large number of data samples. On the downside, the

variance of the stochastic estimates of the gradient produced by SGD does not vanish

during the iterative process, which suggests that a decreasing stepsize regime needs

to be put into place if SGD is to converge. Furthermore, for SGD to work efficiently,

this decreasing stepsize regime needs to be tuned for each application area, which is

costly.
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Stochastic quasi-gradient methods: variance reduction… 137

1.1 Variance-reducedmethods

Stochastic variance-reduced versions of SGD offer a solution to this high variance

issue, which improves the theoretical convergence rate and solves the issue with ad hoc

stepsize regimes. The first variance reduced method for empirical risk minimization

is the stochastic average gradient (SAG) method of Schmidt, Le Roux and Bach [29],

closely followed by Finito [7] and Miso [18]. The analysis of SAG is notoriously diffi-

cult, which is perhaps due to the estimator of gradient being biased. Soon afterwards,

the SAG gradient estimator was modified into an unbiased one, which resulted in the

SAGA method [6]. The analysis of SAGA is dramatically simpler than that of SAG.

Another popular method is SVRG of Johnson and Zhang [15] (see also S2GD [16]).

SVRG enjoys the same theoretical complexity bound as SAGA, but has a much smaller

memory footprint. It is based on an inner–outer loop procedure. In the outer loop, a

full pass over data is performed to compute the gradient of f at the current point. In

the inner loop, this gradient is modified with the use of cheap stochastic gradients, and

steps are taken in the direction of the modified gradients. A notable recent addition to

the family of variance reduced methods, developed by Nguyen et al. [20], is known as

SARAH. Unlike other methods, SARAH does not use an estimator that is unbiased in

the last step. Instead, it is unbiased over a long history of the method.

A fundamentally different way of designing variance reduced methods is to use

coordinate descent [24,25] to solve the dual. This is what the SDCA method [33] and

its various extensions [32] do. The key advantage of this approach is that the dual

often has a seperable structure in the coordinate space, which in turn means that each

iteration of coordinate descent is cheap. Furthermore, SDCA is a variance-reduced

method by design since the coordinates of the gradient tend to zero as one approaches

the solution. One of the downsides of SDCA is that it requires calculating Fenchel

duals and their derivatives. This issue was later solved by introducing approximations

and mapping the dual iterates to the primal space as pointed out in [6]. This resulted in

primal variants of SDCA such as dual-free SDCA [31]. A primal-dual variant which

enables the use of arbitrary minibatch strategies was developed by Qu et al. [23], and

is known as QUARTZ.

Finally, variance reduced methods can also be accelerated, as has been shown for

the loop based methods such as Katyusha [3] or using the Universal catalyst [17].

1.2 Gaps in our understanding of SAGA

Despite significant research into variance-reduced stochastic gradient descent methods

for solving (1), there are still big gaps in our understanding of variance reduction. For

instance, the current theory supporting the SAGA algorithm is far from complete.

SAGA with uniform probabilities enjoys the iteration complexity O((n +
Lmax
μ

) log 1
ǫ
), where Lmax

def
= maxi L i and L i is the smoothness constant of fi . While

importance sampling versions of SAGA have proved in practice to produce a speed-up

over uniform SAGA [30], a proof of this speed-up has been elusive. It was conjectured

by Schmidt et al. [30] that a properly designed importance sampling strategy for SAGA

should lead to the rate O
((

n + L̄
μ

)

log 1
ǫ

)

, where L̄ = 1
n

∑

i L i . However, no such
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138 R. M. Gower et al.

result was proved. This rate is achieved by, for instance, importance sampling variants

of SDCA, QUARTZ [23] and SVRG [36]. However, the analysis only applies to a

more specialized version of problem (1) (e.g., one needs an explicit strongly convex

regularizer).

Second, existing minibatch variants of SAGA do not enjoy the same rate as that

offered by methods such as SDCA and QUARTZ. Are the above issues with SAGA

unavoidable, or is it the case that our understanding of the method is far from complete?

Lastly, no minibatch variant of SAGA with importance sampling is known.

One of the contributions of this paper is giving positive answers to all of the above

questions.

1.3 Jacobian sketching: a new approach to variance reduction

Our key contribution in this paper is the introduction of a novel approach—which we

call Jacobian sketching—to designing and understanding variance-reduced stochas-

tic gradient descent methods for solving (1). We refer to our method by the name

JacSketch. We shall now briefly introduce some of the key insights motivating our

approach. Let F : R
d → R

n be defined by

F(x)
def
= ( f1(x), . . . , fn(x)) ∈ R

n, (3)

and further let

∇F(x)
def
= [∇ f1(x), . . . ,∇ fn(x)] ∈ R

d×n, (4)

be the Jacobian of F at x .

The starting point of our new approach is the following trivial observation: the

gradient of f at x can be computed from the Jacobian ∇F(x) by a simple linear

transformation:

1

n
∇F(x)e = ∇ f (x), (5)

where e is the vector of all ones in R
n . This alone is not useful to come up with a better

way of estimating the gradient. Indeed, formula (5) has two issues. First, the Jacobian

is not available. If we wanted to compute it, we would need to pay the cost of one pass

through the data. Second, even if the Jacobian was available, merely multiplying it by

the vector of all ones would cost O(nd) operations, which is again a cost equivalent

to one pass over data.

Now, let us replace the vector of all ones in (5) by ei ∈ R
n , the unit coordinate/basis

vector in R
n . If the index i is chosen randomly from [n], then

∇F(x)ei = ∇ fi (x), (6)

which is a stochastic gradient of f at x . In other words, by performing a random linear

transformation of the Jacobian, we have arrived at the classical stochastic estimate of
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Stochastic quasi-gradient methods: variance reduction… 139

the gradient. This approach does not suffer from the first issue mentioned above as the

Jacobian is not needed at all in order to compute ∇ fi (x). Likewise, it does not suffer

from the second issue; namely, the cost of computing the stochastic gradient is merely

O(d), and we can avoid a costly pass through the data.1

However, this approach suffers from a new issue: by constructing the estimate this

way, we do not learn from the (random) information collected about the Jacobian in

prior iterations, through having access to random linear transformations thereof. In

this paper we take the point of view that this is the reason why SGD suffers from large

variance. Our approach towards alleviating this problem is to maintain and update an

estimate J ∈ R
d×n of the Jacobian ∇F(x).

Given xk ∈ R
d , ideally we would like J to satisfy

J = ∇F(xk), (7)

that is, we would like it to be equal to the true Jacobian. However, at the same time we

do not wish to pay the price of computing it. Hence, assuming we have an estimate

Jk ∈ R
d×n of the Jacobian available, we instead pick a random matrix Sk ∈ R

n×τ

from some distribution D of matrices2 and consider the following sketched version of

the linear system (7), with unknown J:

JSk = ∇F(xk)Sk ∈ R
d×τ . (8)

This equation generalizes both (5) and (6). The left hand side contains the sketched

system matrix Sk and the unknown matrix J, and the right hand side contains a quantity

we can measure (through a random linear measurement of the Jacobian, which we

assume is cheap). Of course, the true Jacobian solves (8). However, in general, and in

particular when τ ≪ n which is the regime we want to be in for practical reasons, the

system (8) will have infinite J solutions.

We pick a unique solution Jk+1 as the closest solution of (8) to our previous estimate

Jk , with respect to a weighted Frobenius norm with a positive definite weight matrix

W ∈ R
n×n :

Jk+1 = arg min
J∈Rd×n

‖J − Jk‖W−1

subject to JSk = ∇F(xk)Sk, (9)

where

‖X‖W−1
def
=

√

Tr
(

XW−1X⊤
)

. (10)

1 For the purposes of this narrative it suffices to assume that stochastic gradients can be sampled at cost

O(d).

2 We will not bother about the distribution from which it is picked at the moment. It suffices to say that

virtually all distributions are supported by our theory. However, if we wish to obtain a practical method,

some distributions will make much more sense than others.
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In doing so, we have built a learning mechanism whose goal is to maintain good

estimates of the Jacobian throughout the run of method (2). These estimates can be

used to efficiently estimate the gradient by performing a linear transformation similar

to (5), but with ∇F(x) replaced by the latest estimate of the Jacobian. In practice, it

is important to design sketching matrices so that the Jacobian sketch ∇F(x)Sk can be

calculated efficiently.

The “sketch-and-project” strategy (9) for updating our Jacobian estimate is analo-

gous to the way quasi-Newton methods update the estimate of the Hessian (or inverse

Hessian) [8,9,12]. From this perspective, our method can be viewed as a stochastic

quasi-gradient method.3

Problem (9) admits the explicit closed-form solution (see Lemma 14):

Jk+1 = Jk + (∇F(xk) − Jk)�Sk
, (11)

where

�S
def
= S(S⊤WS)†S⊤W, (12)

is a projection matrix, and † denotes the Moore–Penrose pseudoinverse.

The key insight of our work is to propose an efficient Jacobian learning mech-

anism based on ideas borrowed from recent results in randomized numerical

linear algebra.

Having established our update of the Jacobian estimate, we now need to use this to

form an estimate of the gradient. Unfortunately, using Jk+1 in place of ∇F(xk) in (5)

leads to a biased gradient estimate (something we explore later in Sect. 2.5). To obtain

an unbiased estimator of the gradient, we introduce a stochastic relaxation parameter

θSk
≥ 0 and use

gk def
=

1 − θSk

n
Jke +

θSk

n
Jk+1e =

1

n
Jke +

1

n

(

∇F(xk) − Jk
)

θSk
�Sk

e, (13)

as an approximation of the gradient. Taking expectations in (13) over Sk ∼ D (for this

we use the notation ED [·] ≡ ESk∼D [·]), we get

ED

[

gk
]

=
1

n
Jke +

1

n
(∇F(xk) − Jk)ED

[

θSk
�Sk

e
]

. (14)

Thus provided that

ED

[

θSk
�Sk

e
]

= e, (15)

3 The term “quasi-gradient methods” was popular in the 1980s [21], and refers to algorithms for solving

certain stochastic optimization problems which rely on stochastic estimates of function values and their

derivatives. In this paper we give the term a different meaning by drawing a direct link with quasi-Newton

methods.
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we have ED

[

gk
] (14)

= 1
n
∇F(xk)e

(5)
= ∇ f (xk), and hence, gk is an unbiased estimate of

the gradient. If (15) holds, we say that θSk
is a bias-correcting random variable and Sk

is an unbiased sketch. Our new JacSketch method is method (2) with gk computed via

(13) and the Jacobian estimate updated via (11). This method is formalized in Sect. 2

as Algorithm 1.

This strategy indeed works, as we show in detail in this paper. Under appropriate

conditions (on the stepsize α, properties of f and randomness behind the sketch

matrices Sk and so on), the variance of gk diminishes to zero (e.g., see Lemma 6),

which means that JacSketch is a variance-reduced method. We perform an analysis

for smooth and strongly convex functions f , and obtain a linear convergence result

(Theorem 1). We summarize our complexity results in detail in Sect. 1.5.

1.4 SAGA as a special case of JacSketch

Of particular importance in this paper are minibatch sketches, which are sketches of

the form Sk = ISk
, where Sk is a random subset of [n], and ISk

is a random column

submatrix of the n × n identity matrix with columns indexed by Sk . For minibatch

sketches, JacSketch corresponds to minibatch variants of SAGA. Indeed, in this case,

and if W = Diag(w1, . . . , wn), we have �Sk
e = eSk

, where eS =
∑

i∈S ei (see

Lemma 7). Therefore,

gk =
1

n
Jke +

θSk

n

∑

i∈Sk

(

∇ fi (xk) − Jk
:i

)

. (16)

In view of (11), and since �Sk
= ISk

I⊤
Sk

(see Lemma 7), the Jacobian estimate gets

updated as follows

Jk+1
:i =

{

Jk
:i i /∈ Sk,

∇ fi (xk) i ∈ Sk .
(17)

Standard uniform SAGA is obtained by setting Sk = {i} with probability 1/n for

each i ∈ [n], and letting θSk
≡ n. SAGA with arbitrary probabilities is obtained by

instead choosing Sk = {i} with probability pi > 0 for each i ∈ [n], and letting

θSk
≡ 1

pi
. However, virtually all minibatching and importance sampling strategies can

be treated as special cases of our general approach.

The theory we develop answers the open questions raised earlier. In particular, we

answer the conjecture of Schmidt et al. [30] about the rate of SAGA with importance

sampling in the affirmative. In particular, we establish the iteration complexity (n +
4L̄
μ

) log 1
ǫ
. This complexity is obtained for different importance sampling distributions

that have not been proposed in the current literature for SAGA. In order to achieve

this, we develop a new analysis technique which makes use of a stochastic Lyapunov

function (see Sect. 5). That is, our Lyapunov function has a random element which

is independent of the randomness inherited from the iterates of the method. This is

unlike any other Lyapunov function used in the analysis of stochastic methods we
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are aware of. Further, we prove that SAGA converges with any initial matrix J0 in

place of the matrix of gradients of functions fi at the starting point. We also show that

our results give better rates for minibatch SAGA than are currently known, even for

uniform minibatch strategies. We also allow for a family of completely new uniform

minibatching strategies which were not considered in connection with SAGA before,

and consider also SAGA with importance sampling for minibatches4 (based on a

partition of [n]). Lastly, as a special case, our method recovers standard gradient

descent, together with the sharp iteration complexity of 4L
μ

log 1
ǫ
.

Our general approach also enables a novel reduced memory variant of SAGA as a

special case. Let Sk = eSk
, and choose W = I. Since �Sk

e = eSk
, the formula for gk

is the same as in the case of SAGA, and is given by (16). What is notably different

about this sketch (compared to ISk
) is that, since �eSk

= 1
|Sk |

eSk
e⊤

Sk
, the update of the

Jacobian estimate is given by

Jk+1 (11)
= Jk −

1

|Sk |

∑

i∈Sk

(

Jk
:i − ∇ fi (xk)

)

e⊤
Sk

.

Thus, the same update is applied to all the columns of Jk that belong to Sk . Equiv-

alently, this update can be written as

Jk+1
: j =

{
1

|Sk |

∑

i∈Sk
∇ fi (xk) if j ∈ Sk,

Jk
: j if j /∈ Sk .

(18)

In particular, if Sk only ever picks sets which correspond to a partition of [n],

and we initialize J0 so that all the columns belonging to the same partition are the

same, then they will be the same within in each partition for all k. In such a case,

we do not need to maintain all the identical copies. Instead, we can update and use

a condensed/compressed version of the Jacobian, with one column per partition set

only, to reduce the total memory usage. This method, with non-uniform probabilities,

is analyzed in our framework in Sect. 5.6.

1.5 Summary of complexity results

All convergence results obtained in this paper are summarized in Table 1.

Our convergence results depend on several constants which we will now briefly

introduce. The precise definitions can be found in the main text. For ∅ �= C ⊆ [n] =

{1, 2, . . . , n}, define fC (x)
def
= 1

|C|

∑

i∈C fi (x). We assume fC is LC —smooth.5 We

let L i = L{i}, L = L [n], Lmax = maxi L i and L̄ = 1
n

∑

i L i . Note that L i ≤ Lmax,

L̄ ≤ Lmax ≤ nL̄ , LC ≤ 1
|C|

∑

i∈C L i and L ≤ L̄ . For a sampling6 S ⊆ [n], we

let supp(S) = {C ⊆ [n] : P [S = C] > 0}. That is, the support of a sampling

4 For some prior results on importance sampling for minibatches, in the context of QUARTZ, see [5].

5 A formal definition can be found in Assumption 4.2.

6 In this paper, a sampling is a random set-valued mapping with the sets being subsets of [n].
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Table 1 Special cases of our JacSketch method, and the associated iteration complexity

ID Method Sketch S ∈ R
n×τ Iteration complexity (× log 1

ǫ ) Reference

W ≻ 0

1 JacSketch Any unbiased max
{

4L1
μ , 1

κ +
4ρL2

κμn2

}

Theorem 1

Any

2 JacSketch IS maxC∈supp(S)

(
1

pC
+ τ

npC

4LC
μ

)

Theorem 6

(Any probabilities for

τ—partition)

I

3 Gradient descent I 4L
μ Theorems 1 and 6

I Sections 4.6 and 5.6

4 SAGA IS n + 4Lmax
μ Theorems 1 and 6

(Uniform sampling) I Sections 4.6 and 5.6

5 SAGA IS n + 4L̄
μ Theorem 6

(Importance

sampling)

I (129)

6 Minibatch SAGA IS max

{

4L
G
max
μ , n

τ +
4ρ
μn maxi

(
Li
wi

)
}

Theorem 1

(τ—uniform

sampling)

Diag(wi ) (100)

7 Minibatch SAGA IS max

{

4L
G
max
μ , n

τ + n−τ
(n−1)τ

4Lmax
μ

}

Theorem 1

(τ—nice sampling) I (101)

8 Minibatch SAGA IS max

{

4L
G
max
μ , n

τ + n−τ
nτ

4(L̄+Lmax)
μ

}

Theorem 1

(τ—nice sampling) Diag(L i ) (102)

9 Minibatch SAGA IS
n
τ + 4Lmax

μ Theorem 1

(τ—partition

sampling)

I (103)

10 Minibatch SAGA Diag(L i )
n
τ +

4 maxC∈supp(S)
1
τ

∑

i∈C Li

μ Theorem 1

(τ—partition

sampling)

IS (104)

11 Minibatch SAGA IS
n
τ +

4 1
|supp(S)|

∑

C∈supp(S) LC

μ Theorem 6

(Importance

τ—partition

sampling)

I (131)

All methods converge linearly. In the iteration complexity column we list the number of iterations sufficient

to obtain an ǫ accurate solution, ignoring a log 1
ǫ factor
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are all the sets which are selected by this sampling with positive probability. Finally,

LG
max = maxi

1
c1

∑

C∈supp(S),i∈C LC , where c1 is the cardinality of the set {C : C ∈

supp(S), i ∈ C} (which is assumed to be the same for all i). So, LG
max is the maximum

over i of averages of values LC for those sets C which are picked by S with positive

probability and which contain i . Clearly, LG
max ≤ Lmax (see Theorem 3).

General theorem. Theorem 1 is our most general result, allowing for any(unbiased)

sketch S (see (15)), and any weight matrix W ≻ 0. The resulting iteration complexity

given by this theorem is

max

{
4L1

μ
,

1

κ
+

4ρL2

κμn2

}

× log

(
1

ǫ

)

,

and is also presented in the first row of Table 1. This result depends on two expected

smoothness constants L1 (measuring the expected smoothness of the stochastic gra-

dient of our stochastic reformulation; see Assumption 3.1) and L2 (measuring the

expected smoothness of the Jacobian; see Assumption 3.2). The complexity also

depends on the stochastic contraction number κ (see (48)) and the sketch residual

ρ (see (37) and (55)). We devote considerable effort to give simple formulas for these

constants under some specialized settings (for special combinations of sketches S and

weight matrices W). In fact, the entire Sect. 4 is devoted to this. In particular, all rows

of Table 1 where the last column mentions Theorem 1 arise as special cases of the

general iteration complexity in the first row.

– Gradient descent As a starting point, in row 3 we highlight that one can recover

gradient descent as a special case of JacSketch with the choice S = I (with

probability 1) and W = I. We get the rate 4L
μ

log 1
ǫ
, which is tight.

– SAGA with uniform sampling Let us now focus on a slightly more interesting

special case: row 4. We see that SAGA with uniform probabilities appears as a

special case, and enjoys the rate
(

n + 4Lmax
μ

)

log 1
ǫ
, recovering an existing result.

– SAGA with importance sampling Unfortunately, the generality of Theorem 1 comes

at a cost: we are not able to obtain an importance sampling version of SAGA as a

special case which would have a better iteration complexity than uniform SAGA.

This will be remedied by our second complexity theorem, which we shall discuss

later below.

– Minibatch SAGA Rows 6–11 correspond to minibatch versions of SAGA. In partic-

ular, row 6 contains a general statement (albeit still a special case of the statement

in row 1), covering virtually all minibatch strategies. Rows 7–11 specialize this

result to two particular minibatch sketches (i.e., S = IS), each with two choices

of W. The first sketch corresponds to samplings S which choose from among all

subsets of [n] uniformly at random. This sampling is known in the literature as

τ -nice sampling [22,25]. The second sketch corresponds to S being a τ—partition

sampling. This sampling picks uniformly at random subsets of [n] which form a

partition of [n], and are all of cardinality τ . The complexities in rows 7 and 8 are

comparable (each can be slightly better than the other, depending on the values of

the smoothness constants {L i }). On the other hand, in the case of τ—partition, the
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choice W = Diag(L i ) is better than W = I: the complexity in row 10 is better

than that in row 9 because maxC∈supp(S)
1
τ

∑

i∈C L i ≤ Lmax.

– Optimal minibatch size for SAGA Our analysis for mini-batch SAGA also gives

the first iteration complexities that interpolate between the (n + 4Lmax
μ

) log 1
ǫ

com-

plexity of SAGA and the 4L
μ

log 1
ǫ

complexity of gradient descent, as τ increases

from 1 to n. Indeed, consider the complexity in rows 7 and 8 for τ = 1 and

τ = n. Our iteration complexity of mini-batch SAGA is the first result that is pre-

cise enough to inform an optimal mini-batch size (see Sect. 6.2). In contrast, the

previous best complexity result for mini-batch SAGA [14] interpolates between

(n + 4Lmax
μ

) log 1
ǫ

and 4Lmax
μ

log 1
ǫ

as τ increases from 1 to n, and thus is not precise

enough as to inform the best minibatch size. We make a more detailed comparison

between our results and [14] in Sect. 4.7.

Specialized theorem We now move to the second main complexity result of our paper:

Theorem 6. The general complexity statement is listed in row 2 of Table 1:

max
C∈supp(S)

(
1

pC

+
τ

npC

4LC

μ

)

× log

(
1

ǫ

)

, (19)

where pC = P [S = C]. This theorem is a refined result specialized to minibatch

sketches (S = IS) with τ—partition samplings S. This is a sampling which picks

subsets of [n] of size τ forming a partition of [n], uniformly at random. This theorem

also includes gradient descent as special case since when S = [n] with probability

1 (hence, p[n] = 1) we have that τ = n and L [n] = L . Hence, (19) specializes to
4L
μ

log 1
ǫ
. But more importantly, our focus on τ—partition samplings enables us to

provide stronger iteration complexity guarantees for non-uniform probabilities.

– SAGA with importance sampling The first remarkable special case of (19) is sum-

marized in row 5, and corresponds to SAGA with importance sampling. The

complexity obtained, (n + 4L̄
μ

) log 1
ǫ
, answers a conjecture of Schmidt et al. [30]

in the affirmative. In this case, the support of S are the singletons {1}, {2}, . . . , {n},

p{i} = pi for all i , τ = 1 and L{i} = L i . Optimizing the complexity bound over the

probabilities p1, . . . , pn , we obtain the importance sampling pi = μn+4τ L i∑

j μn+4τ L j
.

– Minibatch SAGA with importance sampling In row 11 we state the complexity for a

minibatch SAGA method with importance sampling. This is the first result for this

method in the literature. Note that by comparing rows 4 and 10, we can conclude

that the complexity of minibatch SAGA with importance sampling is better than

for minibatch SAGA with uniform probabilities. Indeed, this is because7

1

|supp(S)|

∑

C∈supp(S)

LC ≤ L̄ ≤ max
C∈supp(S)

1

τ

∑

i∈C

L i . (20)

7 We prove inequality (20) in the Appendix; see Lemma 13.
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1.6 Outline of the paper

We present an alternative narrative motivating the development of JacSketch in Sect. 2.

This narrative is based on a novel technical tool which we call controlled stochastic

optimization reformulations of problem (1). We then develop a general convergence

theory of JacSketch in Sect. 3. This theory admits practically any sketches S (includ-

ing minibatch sketches mentioned in the introduction) and weight matrices W. The

main result in this section is Theorem 1. In Sect. 4 we specialize the general results

to minibatch sketches. Here we also compute the various constants appearing in the

general complexity result for JacSketch for specific classes of minibatch samplings. In

Sect. 5 we develop an alternative theory for JacSketch, one based on a novel stochas-

tic Lyapunov function. The main result in this section is Theorem 6. Computational

experiments are included in Sect. 6.

1.7 Notation

We will introduce notation when and as needed. If the reader would like to recall any

notation, for ease of reference we have a notation glossary in Sect. 1. As a general

rule, all matrices are written in upper-case bold letters. By log t we refer to the natural

logarithm of t .

2 Controlled stochastic reformulations

In this section we provide an alternative narrative behind the development of JacSketch;

one through the lens of what we call controlled stochastic reformulations.

We design our family of methods so that two keys properties are satisfied, namely

unbiasedness, E
[

gk
]

= ∇ f (xk), and diminishing variance: E

[∥
∥gk − ∇ f (xk)

∥
∥

2

2

]

−→ 0 as xk → x∗. These are both favoured statistical properties. Moreover, currently

only methods that have diminishing variance exhibt fast linear convergence (exponen-

tial decay of the error) on strongly convex problems. On the other hand, unbiasedness

is not necessary for a fast method in practice since several biased stochastic gradient

methods such as SAG [29] perform well in practice. Still, the absence of bias greatly

facilitates the analysis of JacSketch.

2.1 Stochastic reformulation using sketching

It will be useful to formalize the condition mentioned in Sect. 1.3 which leads to gk

being an unbiased estimator of the gradient.

Assumption 2.1 (Unbiased sketch) Let W ≻ 0 be a weighting matrix and let D be

the distribution from which the sketch matrices S are drawn. There exists a random

variable θS such that

ED [θS�S] e = e. (21)
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When this assumption is satisfied, we say that (S, θS, W) constitutes an “unbiased

sketch”, and we call θS the bias-correcting random variable. When the triple is obvious

from the context, sometimes we shall simply say that S is an unbiased sketch.

The first key insight of this section is that besides producing unbiased estimators

of the gradient, unbiased sketches produce unbiased estimators of the loss function as

well. Indeed, by simply observing that f (x) = 1
n

〈F(x), e〉, we get

f (x)
(1)
=

1

n

n
∑

i=1

fi (x) =
1

n
〈F(x), e〉

(21)
=

1

n
〈F(x), ED [θS�Se]〉

= ED

[
1

n
〈F(x), θS�Se〉

]

.

In other words, we can rewrite the finite-sum optimization problem (1) as an equivalent

stochastic optimization problem where the randomness comes from D rather than from

the representation-specific uniform distribution over the n loss functions:

min
x∈Rd

f (x) = ED [ fS(x)] , where fS(x)
def
=

θS

n
〈F(x),�Se〉 . (22)

The stochastic optimization problem (22) is a stochastic reformulation of the original

problem (1). Further, the stochastic gradient of this reformulation is given by

∇ fS(x) =
θS

n
∇F(x)�Se. (23)

With these simple observations, our options at designing stochastic gradient-type algo-

rithms for (1) have suddenly broadened dramatically. Indeed, we can now solve the

problem, at least in principle, by applying SGD to any stochastic reformulation:

xk+1 = xk − α∇ fSk
(xk). (24)

But now we have a parameter to play with, namely, the distribution of S. The choice

of this parameter will influence both the iteration complexity of the resulting method

as well as the cost of each iteration. We now give a few examples of possible choices

of D to illustrate this.

Example 1 (gradient descent) Let S be equal to I (or any other n ×n invertible matrix)

with probability 1 and let W ≻ 0 be chosen arbitrarily. Then θS ≡ 1 is bias-correcting

since

ED [θS�Se] = �Se
(12)
= S(S⊤WS)†S⊤We = SS−1W−1(S⊤)−1S⊤We = Ie = e.

With this setup, the SGD method (24) becomes gradient descent:

xk+1 = xk − α∇ fSk
(xk)

(5)+(23)
= xk − α∇ f (xk). (25)
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Example 2 (SGD with non-uniform sampling) Let S = ei (unit basis vector in R
n)

with probability pi > 0 and let W = I. Then θei
= 1/pi is bias-correcting since

ED [θS�Se]
(12)
=

n
∑

i=1

pi

1

pi

ei (e
⊤
i ei )

−1e⊤
i e =

n
∑

i=1

ei e
⊤
i e = Ie = e.

Let Sk = {ik} be picked at iteration k. Then the SGD method (24) becomes SGD

with non-uniform sampling:

xk+1 = xk − α∇ fSk
(xk)

(23)
= xk −

α

npik

∇ fik
(xk). (26)

Note that with this setup, and when pi = 1/n for all i , the stochastic reformulation is

identical to the original finite-sum problem. This is the case because fei
(x) = fi (x).

Example 3 (minibatch SGD) Let S = eS =
∑

i∈S ei , where S = C ⊆ [n] with

probability pC . Let W = I. Assume that the cardinality of the set {C ⊆ [n] : C ∈

supp(S), i ∈ C} does not depend on i (and is equal to c1 > 0). Then θeS
= 1/(c1 pS)

is bias-correcting since

ED [θS�Se]
(12)
=

∑

C∈supp(S)

pC

1

c1 pC

eC (e⊤
C eC
︸ ︷︷ ︸

|C|

)−1 e⊤
C e
︸︷︷︸

|C|

=
∑

C∈supp(S)

1

c1
eC = e.

Note that �eS
e = eS . Assume that set Sk is picked in iteration k. Then the SGD

method (24) becomes minibatch SGD with non-uniform sampling:

xk+1 = xk − α∇ fSk
(xk)

(23)
= xk −

α

nc1

∑

i∈Sk

1

pSk

∇ fi (xk). (27)

Finally, note that gradient descent (25) is a special case of (27) if we set p[n] = 1 and

pC = 0 for all other subsets C of [n]. Likewise, SGD with non-uniform probabilities

(26) is a special case of (27) if we set p{i} = pi > 0 for all i and pC = 0 for all other

subsets C of [n].

2.2 The controlled stochastic reformulation

Though SGD applied to the stochastic reformulation can generate several known

algorithms in special cases, there is no reason to believe that the gradient estimates gk

will have diminishing variance (excluding the extreme case such as gradient descent).

Here we handle this issue using control variates, a commonly used tool to reduce

variance in Monte Carlo methods [13] and introduced in [35] for designing variance

reduced stochastic gradient algorithm.
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Given a random function zS(x), we introduce the controlled stochastic reformula-

tion:

min
x∈Rd

f (x) = ED

[

fS,z(x)
]

, where fS,z(x)
def
= fS(x) − zS(x) + ED [zS(x)] .

(28)

Since

∇ fS,z(x)
def
= ∇ fS(x) − ∇zS(x) + ED [∇zS(x)] (29)

is an unbiased estimator of the gradient ∇ f (x), we can apply SGD to the controlled

stochastic reformulation instead, which leads to the method

xk+1 = xk − α(∇ fSk
(x) − ∇zSk

(x) + ED [∇zS(x)]).

Reformulation (22) and method (24) is recovered as a special case with the choice

zS(x) ≡ 0. However, we now have the extra freedom to choose zS(x) so as to control the

variance of this stochastic gradient. In particular, if ∇zS(x) and ∇ fS(x) are sufficiently

correlated, then (29) will have a smaller variance than ∇ fS(x). For this reason, we

choose a linear model for zS(x) that mimicks the stochastic function fS(x).

Let J ∈ R
d×n be a matrix of parameters of the following linear model

zS(x)
def
=

θS

n

〈

J⊤x,�Se
〉

, ∇zS(x) =
θS

n
J �Se. (30)

Note that this linear model has the same structure as fS(x) in (22) except that F(x) has

been replaced by the linear function J⊤x .8 If S is an unbiased sketch (see (21)), we get

ED [∇zS(x)] = 1
n

Je, which plugged into (28) and (29) together with the definition

(22) of fS gives the following unbiased estimate of f (x) and ∇ f (x):

fS,J(x)
def
= fS,z(x) =

θS

n

〈

F(x) − J⊤x,�Se
〉

+
1

n

〈

J⊤x, e
〉

, (31)

and

∇ fS,J(x)
def
= ∇ fS,z(x) =

θS

n
(∇F(x) − J)�Se +

1

n
Je. (32)

We collect this observation that (32) is unbiased in the following lemma for future

reference.

Lemma 1 If S is an unbiased sketch (see Definition 2.1), then

ED

[

∇ fS,J(x)
]

= ∇ f (x), (33)

8 SVRG is also built on a linear covariate model [15].
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for every J ∈ R
d×n and x ∈ R

d . That is, (32) is an unbiased estimate of the gradi-

ent (1).

Now it remains to choose the matrix J, which we do by minimizing the variance of

our gradient estimate.

2.3 The Jacobian estimate, variance reduction and the sketch residual

Since (32) gives an unbiased estimator of ∇ f (x) for all J ∈ R
d×n , we can attempt to

choose J that minimizes its variance. Minimizing the variance of (32) in terms of J

will, for all sketching matrices of interest, lead to J = ∇F(x). This follows because

ED

[∥
∥∇ fS,J(x) − ∇ f (x)

∥
∥

2

2

]

(32)
= ED

[∥
∥
∥
∥

1

n
J(I − θS�S)e −

1

n
∇F(x)(I − θS�S)e

∥
∥
∥
∥

2

2

]

=
1

n2
ED

[

‖(J − ∇F(x))(I − θS�S)e‖2
2

]

=
1

n2
Tr
(

(J − ∇F(x))⊤(J − ∇F(x))B
)

=
1

n2
‖J − ∇F(x)‖2

B, (34)

where

B
def
= ED

[

(I − θS�S)ee⊤(I − θS�⊤
S )

]
(21)
= ED

[

θ2
S�See⊤�⊤

S

]

− ee⊤ � 0,

(35)

and we have used the weighted Frobenius norm with weight matrix B (see (10)).

For most distributions D of interest, the matrix B is positive definite.9 Letting

vS
def
= (I − θS�S)e, we can bound the largest eigenvalue of matrix B via Jensen’s

inequality as follows:

λmax(B)
(35)
= λmax(ED

[

vSv⊤
S

]

) ≤ ED

[

λmax(vSv⊤
S )

]

= ED

[

‖vS‖2
2

]

.

Combined with (34), we get the following bound on the variance of ∇ fS,J:

ED

[∥
∥∇ fS,J(x) − ∇ f (x)

∥
∥

2

2

]

≤
ED

[

‖vS‖2
2

]

n2
‖J − ∇F(x)‖2

I .

This suggests that the variance is low when J is close to the true Jacobian ∇F(x), and

when the second moment of vS is small. If S is an unbiased sketch, then ED [vS] = 0,

9 Excluding such trivial cases as when S is an invertible matrix and θS = 1 with probability one, in which

case B = 0.
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and hence ED

[

‖vS‖2
2

]

is the variance of vS. So, the lower the variance of 1
n
θS�Se as

an estimator of 1
n

e, the lower the variance of ∇ fS,J(x) as an estimator of ∇ f (x).

Let us now return to the identity (34) and its role in choosing J. Minimizing the

variance in a single step is overly ambitious, since it requires setting J = ∇F(x), which

is costly. So instead, we propose to minimize (34) iteratively. But first, to make (34)

more manageable, we upper-bound it using a norm defined by the weight matrix W

as follows

‖J − ∇F(x)‖2
B ≤ ρ ‖J − ∇F(x)‖2

W−1 , (36)

where

ρ
def
= λmax

(

W1/2BW1/2
)

≥ 0 (37)

is the largest eigenvalue of W1/2BW1/2. We refer to the constant ρ as the sketch

residual, and it is a key constant affecting the convergence rate of JacSketch as captured

by Theorem 1. The sketch residual ρ represents how much information is “lost” on

average due to sketching and due to how well W−1 approximates B. We develop

formulae and estimates of the sketch residual for several specific sketches of interest

in Sect. 4.5.

Example 4 (Zero sketch residual) Consider the setup from Example 1 (gradient

descent). That is, let S be invertible with probability one and let θS = 1 be the

bias-reducing variable. Then �Se = e and hence B = 0, which means that ρ = 0.

Example 5 (Large sketch residual) Consider the setup from Example 2 (SGD with non-

uniform probabilities). That is, let S = ei (unit basis vector in R
n) with probability

pi > 0 and let W = I. Then θei
= 1/pi is a bias-reducing variable, and it is easy to

show that B = Diag(1/p1, . . . , 1/pn) − ee⊤. If we choose pi = 1/n for all i , then

ρ = n.

We have switched from the B norm to a user-controlled W−1 norm because min-

imizing under the B norm will prove to be impractical because B is a dense matrix

for most all practical sketches. With this norm change we now have the option to

set W as a sparse matrix (e.g., the identity, or a diagonal matrix), as we explain in

Remark 1 further down. However, the theory we develop allows for any symmetric

positive definite matrix W.

We can now minimize (36) iteratively by only using a single sketch of the true

Jacobian at each iteration. Suppose we have a current estimate Jk of the true Jacobian

and a sketch of the true Jacobian ∇F(xk)Sk . With this we can calculate an improved

Jacobian estimate using a projection step

Jk+1 = arg
J∈Rd×n

min
Y∈Rm×τ

1

2

∥
∥
∥J − ∇F(xk)

∥
∥
∥

2

W−1
subject to J = Jk + YS⊤

k W, (38)

the solution of which, as it turns out, depends on ∇F(xk) through its sketch ∇F(xk)Sk

only. That is, we choose the next Jacobian estimate Jk+1 as close as possible to the
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true Jacobian ∇F(xk) while restricted to a matrix subspace that passes through Jk .

Thus in light of (36), the variance is decreasing. The explicit solution to (38) is given

by

Jk+1 = Jk − (Jk − ∇F(xk))�Sk
. (39)

See Lemma B.1 in the appendix of an extended preprint version of this paper [10]

or Theorem 4.1 in [12] for the proof. Note that, as alluded to before, Jk+1 depends

on ∇F(xk) through its sketch only. Note that (39) updates the Jacobian estimate by

re-using the sketch ∇F(xk)Sk which we also use when calculating the stochastic

gradient (32).

Note that (39) gives the same formula for Jk+1 as (11) which we obtained by solving

(9); i.e., by projecting Jk onto the solution set of (8). This is not a coincidence. In fact,

the optimization problems (9) and (38) are mutually dual. This is also formally stated

in Lemma B.1 in [10].

In the context of solving linear systems, this was observed in [11]. Therein, (9)

is called the sketch-and-project method, whereas (38) is called the constrain-and-

approximate problem. In this sense, the Jacobian sketching narrative we followed in

Sect. 1.3 is dual to the Jacobian sketching narrative we are pursuing here.

Remark 1 (On the weight matrix and the cost) Loosely speaking, the denser the

weighting matrix W, the higher the computational cost for updating the Jacobian

using (39). Indeed, the sparsity pattern of W controls how many elements of the

previous Jacobian estimate Jk need to be updated. This can be seen by re-arranging (39)

as

Jk+1 = Jk + YkS⊤
k W, (40)

where Yk = (∇F(xk)Sk − JkSk)(S
⊤
k WSk)

† ∈ R
d×τ . Although we have no control

over the sparsity of Yk , the matrix S⊤
k W can be sparse when both Sk and W are

sparse. This will be key in keeping the update (40) at a cost propotional to d × τ ,

as oppossed to n × d when W is dense. This is why we consider a diagonal matrix

W = Diag(w1, . . . , wn) in all of the special complexity results in Table 1. While it

is clear that some non-diagonal sparse matrices W could also be used, we leave such

considerations to future work.

2.4 JacSketch algorithm

Combining formula (32) for the stochastic gradient of the controlled stochastic refor-

mulation with formula (39) for the update of the Jacobian estimate, we arrive at our

JacSketch algorithm (Algorithm 1).

Typically, one should not implement the algorithm as presented above. The most

efficient implementation of JacSketch will depend heavily on the structure of W, distri-

bution D and so on. For instance, in the special case of minibatch SAGA, as presented

in Sect. 1.4, the update of the Jacobian (77) has a particularly simple form. That is, we

maintain a single matrix J ∈ R
d×n and keep replacing its columns by the appropriate
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Algorithm 1 JacSketch: Variance Reduced Gradient Method via Jacobian Sketching

1: Input: (D, W, θS)

2: Initialize: x0 ∈ R
d , Jacobian estimate J0 ∈ R

d×n , stepsize α > 0

3: for k = 0, 1, 2, . . . do

4: Sample a fresh copy Sk ∼ D

5: Calculate ∇F(xk )Sk ⊲ Sketch the Jacobian

6: Jk+1 = Jk + (∇F(xk ) − Jk )�Sk
= Jk (I − �Sk

) + ∇F(xk )�Sk
⊲ Update Jacobian estimate

7: gk = 1
n Jke +

θSk
n (∇F(xk ) − Jk )�Sk

e =
1−θSk

n Jke +
θSk
n Jk+1e ⊲ Update gradient estimate

8: xk+1 = xk − αgk ⊲ Take a step

stochastic gradients, as computed. Moreover, in the case of linear predictors, as is

well known, a much more memory-efficient implementation is possible. In particular,

if fi (x) = φi (a
⊤
i x) for some loss function φi and a data vector ai ∈ R

d and all i ,

then ∇ fi (x) = φ′
i (a

⊤
i x)ai , which means that the gradient always points in the same

direction. In such a situation, it is sufficient to keep track of the scalar loss derivatives

φ′
i (a

⊤
i x) only. Similar comments can be made about the step (16) for computing the

gradient estimate gk .

2.5 A window into biased estimates and SAG

We will now take a small detour from the main flow of the paper to develop an

alternative viewpoint of Algorithm 1 and also make a bridge to biased methods such

as SAG [29].

The simple observation that

∇ f (xk) =
1

n
∇F(xk)e, (41)

suggests that ĝk = 1
n

Jk+1e, where Jk+1 ≈ ∇F(xk) would give a good estimate of

the gradient. To decrease the variance of ĝk , we can also use the same update of the

Jacobian estimate (39) since

E

[∥
∥
∥ĝk − ∇ f (xk)

∥
∥
∥

2

2

]

=
1

n2
E

[∥
∥
∥(J

k+1 − ∇F(xk))e

∥
∥
∥

2

2

]

=
1

n2
E

[∥
∥
∥(J

k+1 − ∇F(xk))W−1/2W1/2e

∥
∥
∥

2

2

]

≤
e⊤We

n2
E

[∥
∥
∥Jk+1 − ∇F(xk)

∥
∥
∥

2

W−1

]

.

Thus, if E

[∥
∥Jk+1 − ∇F(xk)

∥
∥

2

W−1

]

converges to zero, so will E

[∥
∥ĝk − ∇ f (xk)

∥
∥

2

2

]

.

Though unfortunately, the combination of the gradient estimate ĝk = 1
n

Jk+1e and a

Jacobian estimate updated via (39) will almost always give a biased estimator. For

example, if we define D by setting S = ei with probability 1
n

and let W = I, then we

recover the celebrated SAG method [29] and its biased estimator of the gradient.
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The issue with using 1
n

Jk+1e as an estimator of the gradient is that it decreases the

variance too aggressively, neglecting the bias. However, this can be fixed by trading

off variance for bias. One way to do this is to introduce the random variable θS as a

stochastic relaxation parameter

ĝk =
1 − θSk

n
Jke +

θSk

n
Jk+1e. (42)

If θS is bias correcting, we recover the unbiased SAGA estimator (13). By allowing

θS to be closer to one, however, we will get more bias and lower variance. We leave

this strategy of building biased estimators for future work. It is conceivable that SAG

could be analyzed using reasonably small modifications of the tools developed in this

paper. Doing this would be important due to at least four reasons: (i) SAG was the

first variance-reduced method for problem (1), (ii) the existing analysis of SAG is not

satisfying, (iii) one may be able to obtain a better rate, (iv) one may be able to develop

and analyze novel variants of SAG.

3 Convergence analysis for general sketches

In this section we establish a convergence theorem (Theorem 1) which applies to

general sketching matrices S (that is, arbitrary distributions D from which they are

sampled). By design, we keep the setting in this section general, and only deal with

specific instantiations and special cases in Sect. 4.

3.1 Two expected smoothness constants

We first formulate two expected smoothness assumptions tying together f , its Jaco-

bian ∇F(x) and the distribution D from which we pick sketch matrices S. These

assumptions, and the associated expected smoothness constants, play a key role in the

convergence result.

Our first assumption concerns the expected smoothness of the stochastic gradients

∇ fS of the stochastic reformulation (22).10

Assumption 3.1 (Expected smoothness of the stochastic gradient) There is a constant

L1 > 0 such that

ED

[∥
∥∇ fS(x) − ∇ fS(x∗)

∥
∥

2

2

]

≤ 2L1( f (x) − f (x∗)), ∀x ∈ R
d . (43)

It is easy to see from (23) and (32) that

10 A similar relation to (43) holds for the stochastic optimization reformulation of linear systems studied by

Richtárik and Takáč [26]. Therein, this relation holds as an identity with L1 = 1 (see Lemma 3.3 in [26]).

However, the function fS considered there is entirely different and, moreover, f (x∗) = 0 and ∇ fS(x∗) = 0

for all S.
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‖∇ fS(x) − ∇ fS(y)‖2
2 = 1

n2 ‖(∇F(x) − ∇F(y))θS�Se‖2
2

=
∥
∥∇ fS,J(x) − ∇ fS,J(y)

∥
∥

2

2
(44)

for all J ∈ R
d×n and x, y ∈ R

d , and hence the expected smoothness assumption can

equivalently be understood from the point of view of the controlled stochastic refor-

mulation. The above assumption is not particularly restrictive. Indeed, in Theorem 2

we provide formulae for L1 for smooth functions f and for a class of minibatch sam-

plings S = IS . These formulae can be seen as proofs that Assumption 3.1 is satisfied

for a large class of practically relevant sketches S and functions f .

Our second expected smoothness assumption concerns the Jacobian of F .

Assumption 3.2 (Expected smoothness of the Jacobian) There is a constant L2 > 0

such that

ED

[∥
∥(∇F(x) − ∇F(x∗))�S

∥
∥

2

W−1

]

≤ 2L2( f (x) − f (x∗)), ∀x ∈ R
d , (45)

where the norm is the weighted Frobenius norm defined in (10).

It is easy to see (see Lemma 4, Eq. (60)) that for any matrix M ∈ R
d×n , we have

ED

[

‖M�S‖2
W−1

]

= ‖M‖2
ED[HS], where

HS
def
= S(S⊤WS)†S⊤ (12)

= �SW−1. (46)

Therefore, (45) can be equivalently written in the form

∥
∥∇F(x) − ∇F(x∗)

∥
∥

2

ED[HS]
≤ 2L2( f (x) − f (x∗)), ∀x ∈ R

d , (47)

which suggests that the above condition indeed measures the variation/smoothness of

the Jacobian under a specific weighted Frobenius norm.

3.2 Stochastic contraction number

By the stochastic contraction number associated with W and D we mean the constant

defined by

κ = κ(D, W)
def
= λmin(ED [�S]). (48)

In the next lemma we show that 0 ≤ κ ≤ 1 for all distributions D for which the

expectation (48) exists.

Lemma 2 For all distributions D, we have the bounds 0 ≤ κ ≤ 1.

Proof It is not difficult to show that W1/2HSW1/2 (46)
= W1/2�SW−1/2 is the

orthogonal projection matrix that projects onto Range
(

W1/2S
)

. Consequently, 0 �
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W1/2HSW1/2 � I and, after taking expectation, we get 0 � W1/2
ED [HS] W1/2 � I.

Finally, this implies that

0 ≤ λmax(I − W1/2
ED [HS] W1/2) = 1 − λmin(W

1/2
ED [HS] W1/2) ≤ 1. (49)

⊓⊔

In our convergence theorem we will assume that κ > 0. This can be achieved

by choosing a suitable distribution D and it holds trivially for all the examples we

develop. The condition κ > 0 essentially says that the distribution is sufficiently

rich. This contraction number was first proposed in [11] in the context of randomized

algorithms for solving linear systems. We refer the reader to that work for details on

sufficient assumptions about D guaranteeing κ > 0. Below we give an example.

Example 6 Let W ≻ 0, and let D be given by setting S = ei with probability pi > 0.

Then

κ
(48)
= λmin

(

W1/2
ED [�S] W−1/2

)

= λmin

(
n
∑

i=1

pi

e⊤
i Wei

W1/2ei e
⊤
i W1/2

)

.

Since the vectors W1/2ei span R
n and pi > 0 for all i , the matrix is positive definite

and hence κ > 0. In particular, when W = I, then the expected projection matrix is

equal to Diag(p1, . . . , pn) and κ = mini pi > 0. If instead of unit basis vectors {ei }

we use vectors that span R
n , using similar arguments we can also conclude that κ > 0.

3.3 Convergence theorem

Our main convergence result, which we shall present shortly, holds for μ-strongly

convex functions. However, it turns out our results hold for the somewhat larger family

of functions that are quasi-strongly convex.

Assumption 3.3 (Quasi-strong convexity) Function f for some μ > 0 satisfies

f (x∗) ≥ f (x) +
〈

∇ f (x), x∗ − x
〉

+
μ

2

∥
∥x∗ − x

∥
∥

2

2
, ∀x ∈ R

d , (50)

where x∗ = arg minx∈Rd f (x).

We are now ready to present the main result of this section.

Theorem 1 (Convergence of JacSketch for General Sketches) Let W ≻ 0. Let f satisfy

Assumption 3.3. Let Assumption 2.1 be satisfied (i.e., S is an unbiased sketch and

θS is the associated bias-correcting random variable). Let the expected smoothness

assumptions be satisfied: Assumptions 3.1 and 3.2. Assume that κ > 0. Let the sketch

residual be defined as in (37), i.e.,

ρ = ρ(θS,D, W)
(37)
= λmax

(

W1/2
(

ED

[

θ2
S�See⊤�S

]

− ee⊤
)

W1/2
)

≥ 0. (51)
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Choose any x0 ∈ R
d and J0 ∈ R

d×n . Let {xk, Jk}k≥0 be the random iterates

produced by JacSketch (Algorithm 1). Consider the Lyapunov function

Ψ k def
=
∥
∥
∥xk − x∗

∥
∥
∥

2

2
+

α

2L2

∥
∥
∥Jk − ∇F(x∗)

∥
∥
∥

2

W−1
. (52)

If the stepsize satisfies

0 ≤ α ≤ min

{
1

4L1
,

κ

4L2ρ/n2 + μ

}

, (53)

then

E

[

Ψ k
]

≤ (1 − μα)k · Ψ 0, (54)

If we choose α to be equal to the upper bound in (53), then

k ≥ max

{
4L1

μ
,

1

κ
+

4ρL2

κμn2

}

log

(
1

ǫ

)

⇒ E

[

Ψ k
]

≤ ǫΨ 0. (55)

Recall that the iteration complexity expression from (55) is listed in row 1 of Table 1.

The Lyapunov function we use is simply the sum of the squared distance between xk

to the optimal x∗ and the distance of our Jacobian estimate Jk to the optimal Jacobian

∇F(x∗). Hence, the theorem says that both the iterates {xk} and the Jacobian estimates

{Jk} converge.

3.4 Projection lemmas and the stochastic contraction number �

In this section we collect some basic results on projections. Recall from (12) that

�S = S(S⊤WS)†S⊤W and from (46) that HS = S(S⊤WS)†S⊤.

Lemma 3

�SW−1(I − �S)⊤ = 0. (56)

Furthermore,

ED

[

�SW−1�⊤
S

]

= ED [HS] and

ED

[

(I − �S)W−1(I − �S)⊤
]

= W−1 − ED [HS] . (57)

Proof Using the pseudoinverse property A†AA† = A† we have that

�SW−1�⊤
S

(12)
= S(S⊤WS)†S⊤WS(S⊤WS)†S⊤ (46)

= �SW−1 = HS, (58)
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and as a consequence (56) holds. Moreover,

(I − �S)W−1(I − �S)⊤
(56)
= W−1(I − �S)⊤

(46)
= W−1 − HS. (59)

Finally, taking expectation over (58) and (59) gives (57). ⊓⊔

Lemma 4 For any matrices M, N ∈ R
d×n we have the identities

‖M(I − �S) + N�S‖2
W−1 = ‖M(I − �S)‖2

W−1 + ‖N�S‖2
W−1

and

ED

[

‖N�S‖2
W−1

]

= ‖N‖2
ED[HS] . (60)

Furthermore,

ED

[

‖M(I − �S) + N�S‖2
W−1

]

≤ (1 − κ)‖M‖2
W−1 + ‖N‖2

ED[HS]. (61)

Proof First, note that

‖M(I − �S) + N�S‖2
W−1 = ‖M(I − �S)‖2

W−1 + ‖N�S‖2
W−1

+Tr
(

M⊤N�SW−1(I − �S)⊤
)

(56)
= ‖M(I − �S)‖2

W−1 + ‖N�S‖2
W−1 .

By taking expectations in D, we get

ED

[

‖M(I − �S) + N�S‖2
W−1

]

= ED

[

‖M(I − �S)‖2
W−1

]

+ ED

[

‖N�S‖2
W−1

]

(57)
= ‖M‖2

W−1−ED[HS]
+ ‖N‖2

ED[HS]

≤ (1 − κ)‖M‖2
W−1 + ‖N‖2

ED[HS],

where in the last step we used the estimate

W−1 − ED [HS] = W−1/2(I − W1/2
ED [HS] W1/2)W−1/2

� λmax(I − W1/2
ED [HS] W1/2)W−1 (49)

= (1 − κ) W−1.

⊓⊔

3.5 Key lemmas

We first establish two lemmas. The first lemma provides an upper bound on the quality

of new Jacobian estimate in terms of the quality of the current estimate and function
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suboptimality. If the second term on the right hand side was not there, the lemma

would be postulating a contraction on the quality of the Jacobian estimate.

Lemma 5 Let Assumption 3.2 be satisfied. Then iterates of Algorithm 1 satisfy

ED

[∥
∥
∥Jk+1 − ∇F(x∗)

∥
∥
∥

2

W−1

]

≤ (1 − κ)

∥
∥
∥Jk − ∇F(x∗)

∥
∥
∥

2

W−1

+ 2L2( f (xk) − f (x∗)), (62)

where κ is defined in (48).

Proof Subtracting ∇F(x∗) from both sides of (39) gives

Jk+1 − ∇F(x∗)
(39)
= (Jk − ∇F(x∗))

︸ ︷︷ ︸

M

(I − �Sk
) + (∇F(xk) − ∇F(x∗))

︸ ︷︷ ︸

N

�Sk
. (63)

Taking norms on both sides, then expectation with respect to Sk and then using

Lemma 4, we get

ED

[∥
∥
∥Jk+1 − ∇F(x∗)

∥
∥
∥

2

W−1

]
(61)
≤ (1 − κ) ‖M‖2

W−1 + ‖N‖2
ED

[

HSk

]

(45)
≤ (1 − κ)

∥
∥
∥Jk − ∇F(x∗)

∥
∥
∥

2

W−1

+ 2L2( f (xk) − f (x∗)).

⊓⊔

We now bound the second moment of gk . The lemma implies that as xk approaches

x∗ and Jk approaches ∇F(x∗), the variance of gk approaches zero. This is a key

property of JacSketch which elevates it into the ranks of variance-reduced methods.

Lemma 6 Let S be an unbiased sketch. Let Assumption 3.1 be satisfied (i.e., assume

that inequality (43) holds for some L1 > 0). Then the second moment of the estimated

gradient is bounded by

ED

[∥
∥
∥gk

∥
∥
∥

2

2

]

≤ 4L1( f (xk) − f (x∗)) + 2
ρ

n2

∥
∥
∥Jk − ∇F(x∗)

∥
∥
∥

2

W−1
, (64)

where ρ is defined in (51).

Proof Adding and subtracting
θSk

n
∇F(x∗)�Sk

e in (13) gives

gk =
1

n
Jke −

θSk

n
(Jk − ∇F(x∗))�Sk

e

︸ ︷︷ ︸

b

+
θSk

n
(∇F(xk) − ∇F(x∗))�Sk

e

︸ ︷︷ ︸

a

.
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Taking norms on both sides and using the bound ‖a + b‖2
2 ≤ 2‖a‖2

2 + 2‖b‖2
2 gives

∥
∥
∥gk

∥
∥
∥

2

2
≤

2

n2

∥
∥
∥(∇F(xk) − ∇F(x∗))�Sk

θSk
e

∥
∥
∥

2

2
︸ ︷︷ ︸

ak

+
2

n2

∥
∥
∥θSk

(Jk − ∇F(x∗))�Sk
e − Jke

∥
∥
∥

2

2
︸ ︷︷ ︸

bk

. (65)

In view of Assumption 3.1 (combine (43) and (44)), we have

ED

[

ak
]

≤ 4L1( f (xk) − f (x∗)), (66)

where the expectation is taken with respect to Sk . Let us now bound ED

[

bk
]

. Using

the fact that ∇F(x∗)e = 0, we can write

ED

[

bk
]

=
2

n2
ED

[∥
∥
∥(J

k − ∇F(x∗))θSk
�Sk

e − (Jk − ∇F(x∗))e

∥
∥
∥

2

2

]

=
2

n2
ED

[∥
∥
∥(J

k − ∇F(x∗))(θSk
�Sk

− I)e

∥
∥
∥

2

2

]

=
2

n2
ED

[

e⊤(θSk
�Sk

− I)⊤(Jk − ∇F(x∗))⊤(Jk − ∇F(x∗))(θSk
�Sk

− I)e
]

=
2

n2
ED

[

Tr
(

e⊤(θSk
�Sk

− I)⊤(Jk − ∇F(x∗))⊤(Jk − ∇F(x∗))(θSk
�Sk

− I)e
)]

=
2

n2
ED

[

Tr
(

e⊤(θSk
�Sk

− I)⊤W1/2W−1/2(Jk − ∇F(x∗))⊤

(Jk − ∇F(x∗))W−1/2W1/2(θSk
�Sk

− I)e
)]

=
2

n2
ED

[

Tr
(

W−1/2(Jk − ∇F(x∗))⊤(Jk − ∇F(x∗))W−1/2W1/2(θSk
�Sk

− I)ee⊤

(θSk
�Sk

− I)⊤W1/2
)]

=
2

n2
Tr
(

W−1/2(Jk − ∇F(x∗))⊤(Jk − ∇F(x∗))W−1/2
ED

[

W1/2(θSk
�Sk

− I)ee⊤

(θSk
�Sk

− I)⊤W1/2
])

.

If we now let v = W1/2(θSk
�Sk

− I)e and M = (Jk − ∇F(x∗))W−1/2, then we can

continue:

ED

[

bk
]

=
2

n2
Tr
(

M⊤MED

[

vv⊤
])

≤
2

n2
Tr
(

M⊤M
)

λmax

(

ED

[

vv⊤
])

(10)
=

2

n2

∥
∥
∥Jk − ∇F(x∗)

∥
∥
∥

2

W−1
λmax

(

ED

[

vv⊤
])

=
2ρ

n2

∥
∥
∥Jk − ∇F(x∗)

∥
∥
∥

2

W−1
, (67)
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where in the last step we have used the assumption that θSk
is bias-correcting:

λmax

(

ED

[

vv⊤
])

(21)
= λmax

(

W1/2
ED

[

θ2
Sk

�Sk
ee⊤�⊤

Sk

]

W1/2 − W1/2ee⊤W1/2
)

(51)
= ρ. (68)

It now only remains to substitute (66) and (67) into (65) to arrive at (64). ⊓⊔

3.6 Proof of Theorem 1

With the help of the above lemmas, we now proceed to the proof of the theorem. In

view of (50), we have

〈

∇ f (y), y − x∗
〉

≥ f (y) − f (x∗) +
μ

2

∥
∥y − x∗

∥
∥

2

2
. (69)

By using the relationship xk+1 = xk −αgk , the fact that gk is an unbiased estimate

of the gradient ∇ f (xk), and using one-point strong convexity (69), we get

ED

[∥
∥
∥xk+1 − x∗

∥
∥
∥

2

2

]

(2)
= ED

[∥
∥
∥xk − x∗ − αgk

∥
∥
∥

2

2

]

(33)
=

∥
∥
∥xk − x∗

∥
∥
∥

2

2
− 2α

〈

∇ f (xk), xk − x∗
〉

+ α2
ED

[∥
∥
∥gk

∥
∥
∥

2

2

]

(69)
≤ (1 − αμ)

∥
∥
∥xk − x∗

∥
∥
∥

2

2
+ α2

ED

[∥
∥
∥gk

∥
∥
∥

2

2

]

−2α( f (xk) − f (x∗)). (70)

Next, applying Lemma 6 leads to the estimate

ED

[∥
∥
∥xk+1 − x∗

∥
∥
∥

2

2

]
(64)
≤ (1 − αμ)

∥
∥
∥xk − x∗

∥
∥
∥

2

2
+ 2α (2αL1 − 1) ( f (xk) − f (x∗))

+ 2α2 ρ

n2

∥
∥
∥Jk − ∇F(x∗)

∥
∥
∥

2

W−1
. (71)

Let σ = 1/(2L2). Adding σαED

[∥
∥Jk+1 − ∇F(x∗)

∥
∥

2

W−1

]

to both sides of the above

inequality and substituting in the definition of Ψ k from (52), it follows that

ED

[

Ψ k+1
] (71)

≤ (1 − αμ)

∥
∥
∥xk − x∗

∥
∥
∥

2

2
+ 2α (2αL1 − 1) ( f (xk) − f (x∗))

+ 2α2 ρ

n2

∥
∥
∥Jk − ∇F(x∗)

∥
∥
∥

2

W−1
+ σαED

[∥
∥
∥Jk+1 − ∇F(x∗)

∥
∥
∥

2

W−1

]

123



162 R. M. Gower et al.

(Lemma 5)
≤ (1 − αμ)

∥
∥
∥xk − x∗

∥
∥
∥

2

2
+ 2α (L2σ + 2αL1 − 1)

︸ ︷︷ ︸

I

( f (xk) − f (x∗))

+ σα

(

1 − κ + 2
αρ

σn2

)

︸ ︷︷ ︸

II

∥
∥
∥Jk − ∇F(x∗)

∥
∥
∥

2

W−1
. (72)

We now choose α so that I ≤ 0 and II ≤ 1 − αμ, which can be written as

α ≤
1 − L2σ

2L1
and α ≤

κ

2ρ/(σn2) + μ
. (73)

If α satisfies the above two inequalities, then (72) takes on the simplified form

ED

[

Ψ k+1
]

≤ (1 − αμ)Ψ k . By taking expectation again and using the tower rule, we

get E
[

Ψ k
]

≤ (1−αμ)kΨ 0. Note that as long as k ≥ 1
αμ

log 1
ǫ
, we have E

[

Ψ k
]

≤ ǫΨ 0.

Recalling that σ = 1/(2L2), and choosing α to be the minimum of the two upper

bounds (73) gives the upper bound on (53), which in turn leads to (55). ⊓⊔

4 Minibatch sketches

In this section we focus on special cases of Algorithm 1 where one computes ∇ fi (xk)

for i ∈ Sk , where Sk is a random subset (mini-batch) of [n] chosen in each iteration

according to some fixed probability law. As we have seen in the introduction, this is

achieved by choosing Sk = ISk
.

We say that S is a minibatch sketch if S = IS for some random set (sampling) S,

where IS ∈ R
n×|S| is a column submatrix of the n × n identity matrix I associated

with columns indexed by the set S. That is, the distribution D from which the sketches

S are sampled is defined by

P [S = IC ] = pC , C ⊆ [n],

where
∑

C⊆[n] pC = 1 and pC ≥ 0 for all C .

4.1 Samplings

We now formalize the notion of a random set, which we will refer to by the name

sampling. A sampling is a random set-valued mapping with values being the subsets

of [n]. A sampling S is uniquely characterized by the probabilities pC
def
= P [S = C]

associated with every subset C of [n].

Definition 1 (Types of samplings) We say that sampling S is non-vacuous if

P [S = ∅] = 0 (i.e., p∅ = 0). Let pi
def
= P [i ∈ S] =

∑

C :i∈C pC . We say that S

is proper if pi > 0 for all i . We say that S is uniform if pi = p j for all i, j . We say

that S is τ—uniform if it is uniform and |S| = τ with probability 1. In particular, the
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unique sampling which assigns equal probabilities to all subsets of [n] of cardinality

τ and zero probabilities to all other subsets is called the τ—nice sampling.

We refer the reader to [22,25] for a background reading on samplings and their

properties.

Definition 2 (Support) The support of a sampling S is the set of subsets of [n] which

are chosen by S with positive probability: supp(S)
def
= {C : pC > 0}. We say that S

has uniform support if

c1
def
= |{C ∈ supp(S) : i ∈ C}| = |{C ∈ supp(S) : j ∈ C}|

for all i, j ∈ [n]. In such a case we say that the support is c1—uniform.

To illustrate the above concepts, we now list a few examples with n = 4.

Example 7 The sampling defined by setting p{1,2} = p{3,4} = 0.5 is non-vacuous,

proper, 2—uniform (pi = 0.5 for all i and |S| = 2 with probability 1), and has 1—

uniform support. If we change the probabilities to p{1,2} = 0.4 and p{3,4} = 0.6, the

sampling is no longer uniform (since p1 = 0.4 �= 0.6 = p3), but it still has 1—uniform

support, is proper and non-vacuous. Hence, a sampling with uniform support need not

be uniform. On the other hand, a uniform sampling need not have uniform support. As

an example, consider sampling S defined via p{1} = 0.4, p{2,3} = p{3,4} = p{2,4} =

0.2. It is uniform (since pi = 0.4 for all i). However, while element 1 appears in a

single set of its support, elements 2, 3 and 4 each appear in two sets. So, this sampling

does not have uniform support.

Example 8 A uniform sampling need not be τ—uniform for any τ . For example, the

sampling defined by setting p{1,2,3,4} = 0.5, p{1,2} = 0.25 and p{3,4} = 0.25 is

uniform (since pi = 0.75 for all i), but as it assigns positive probabilities to sets of at

least two different cardinalities, it is not τ—uniform for any τ .

Example 9 Further, the sampling defined by setting p{1,2} = 1/6, p{1,3} = 1/6,

p{1,4} = 1/6, p{2,3} = 1/6, p{2,4} = 1/6, p{3,4} = 1/6 is non-vacuous, 2—uniform

(pi = 1/2 for all i and |S| = 2 with probability 1), and has 3—uniform support.

The sampling defined by setting p{1,2} = 1/3, p{2,3} = 1/3, p{3,1} = 1/3 is non-

vacuous, proper, 2—uniform (pi = 2/3 for all i and |S| = 2 with probability 1) and

has 2—uniform support.

Note that a sampling with uniform support is necessarily proper as long as c1 > 0.

However, it need not be non-vacuous. For instance, the sampling S defined by setting

p∅ = 1 has 0—uniform support and is vacuous. From now on, we only consider

samplings with the following properties.

Assumption 4.1 S is non-vacuous and has c1—uniform support with c1 ≥ 1.

Note that if S is a non-vacuous sampling with 1—uniform support, then its support

is necessary a partition of [n]. We shall pay specific attention to such samplings in

Sect. 5 as for them we can develop a stronger analysis than that provided by Theorem 1.
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4.2 Minibatch sketches and projections

In the next result we describe some basic properties of the projection matrix �S =

S(S⊤WS)†S⊤W associated with a minibatch sketch S.

Lemma 7 Let W = Diag(w1, . . . , wn). Let S be any sampling, S = IS be the associ-

ated minibatch sketch, and let P be the probability matrix11 associated with sampling

S: Pi j = P [i ∈ S & j ∈ S]. Then

(i) �S = ISI⊤
S . This is a diagonal matrix with the i th diagonal element equal to 1

if i ∈ S, and 0 if i /∈ S.

(ii) �Se = eS
def
=
∑

i∈S ei .

(iii) ED

[

�See⊤�S

]

=
∑

C⊆[n] pC eC e⊤
C = P

(iv) ED [�S] = Diag(P)

(v) The stochastic contraction number defined in (48) is given by κ = mini pi

(vi) Let S satisfy Assumption 4.1. Then the random variable

θS
def
=

1

c1 pS

, (74)

defined on supp(S), is bias-correcting. That is, ED [�SθSe] = e.

Proof (i) This follows by noting that I⊤
S WIS is the |S| × |S| diagonal matrix with

diagonal entries corresponding to wi for i ∈ S, which in turn can be used to

show that (I⊤
S WIS)−1I⊤

S W = I⊤
S .

(ii) This follows from (i) by noting that I⊤
S e is the vector of all ones in R

|S|.

(iii) Using (ii), we have�See⊤�S = eSe⊤
S . By linearity of expectation,

(

ED

[

eSe⊤
S

])

i j

= ED

[

(eSe⊤
S )i j

]

= ED

[

1i, j∈S

]

= P [i ∈ S & j ∈ S] = Pi j , where 1i, j∈S = 1

if i, j ∈ S and 1i, j∈S = 0 otherwise.

(iv) This follows from (i) by taking expectations of the diagonal elements of �S.

(v) Follows from (iv).

(vi) Indeed,

ED [θS�Se]
(ii)
=

∑

C∈supp(S)

pCθC eC
(74)
=

1

c1

∑

C∈supp(S)

eC = e, (75)

where the last equation follows from the assumption that the support of S is

c1—uniform. ⊓⊔

The following simple observation will be useful in the computation of the constant

L1. The proof is straightforward and involves a double counting argument.

Lemma 8 Let S be a sampling satisfying Assumption 4.1. Moreover, assume that S is

a τ—uniform sampling. Then
|supp(S)|

c1
= n

τ
. Consequently, κ = p1 = p2 = · · · =

pn = τ
n

= c1
|supp(S)| , where κ is the stochastic contraction number associated with the

minibatch sketch S = IS .

11 The notion of a probability matrix associated with a sampling was first introduced in [25] in the context

of parallel coordinate descent methods, and further studied in [22].
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4.3 JacSketch for minibatch sampling =minibatch SAGA

As we have mentioned in Sect. 1.4 already, JacSketch admits a particularly simple

form for minibatch sketches, and corresponds to known and new variants of SAGA.

Assume that S satisfies Assumption 4.1 and let W = Diag(w1, . . . , wn). In view of

Lemma 7(vi), this means that the random variable θS = 1
c1 pS

is bias-correcting, and

due to Lemma 7(ii), we have �Sk
e = eSk

=
∑

i∈Sk
ei . Therefore,

gk (13)
=

1

n
Jke +

θSk

n

∑

i∈Sk

(∇ fi (xk) − Jk
:i )

=
1

n

⎛

⎝

∑

i /∈Sk

Jk
:i +

∑

i∈Sk

(

1 − 1
c1 pSk

)

Jk
:i + 1

c1 pSk
∇ fi (xk)

⎞

⎠ . (76)

By Lemma 7(i), �Sk
= ISk

I⊤
Sk

. In view of (11), the Jacobian estimate gets updated as

follows

Jk+1
:i =

{

Jk
:i i /∈ Sk,

∇ fi (xk) i ∈ Sk .
(77)

The resulting minibatch SAGA method is formalized as Algorithm 2.

Algorithm 2 JacSketch: Mini-batch SAGA

1: Parameters: Sampling S satisfying Assumption 4.1, W = Diag(w1, . . . , wn), stepsize α > 0

2: Initialization: Choose x0 ∈ R
d , J0 ∈ R

d×n ⊲ Initialization

3: for k = 0, 1, 2, . . . do

4: Sample a fresh set Sk ∼ S

5: gk = 1
n Jke + 1

nc1 pSk

∑

i∈Sk
(∇ fi (xk ) − Jk

:i ) ⊲ Update gradient estimate

6: Jk+1
:i =

{

Jk
:i i /∈ Sk

∇ fi (xk ) i ∈ Sk .
⊲ Update Jacobian estimate

7: xk+1 = xk − αgk ⊲ Take a step

Below we specialize the formula for gk to a few interesting special cases.

Example 10 (Standard SAGA) Standard uniform SAGA is obtained by setting Sk = {i}

with probability 1/n for each i ∈ [n]. Since the support of this sampling is 1—uniform,

we set c1 = 1. This leads to the gradient estimate

gk =
1

n
Jke + ∇ fi (xk) − Jk

:i . (78)

Example 11 (Non-uniform SAGA) However, we can use non-uniform probabilities

instead. Let Sk = {i} with probability pi > 0 for each i ∈ [n]. Since the support of

this sampling is 1—uniform, we have c1 = 1. So, the gradient estimate has the form
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gk =
1

n
Jke +

1

npi

(∇ fi (xk) − Jk
:i ). (79)

Example 12 (Uniform minibatch SAGA, version 1) Let C1, . . . , Cq be nonempty sub-

sets of forming a partition [n]. Let Sk = C j with probability pC j
> 0. The support

of this sampling is 1—uniform, and hence we can choose c1 = 1. This leads to the

gradient estimate

gk =
1

n
Jke +

1

npC j

∑

i∈C j

(∇ fi (xk) − Jk
:i ).

Example 13 (Uniform minibatch SAGA, version 2) Let Sk be chosen uniformly at

random from all subsets of [n] of cardinality τ ≥ 2. That is, Sk is the τ -nice sampling,

and the probabilities are equal to pSk
= 1/

(
n
τ

)

. This sampling has c1—uniform support

with c1 =
(

n−1
τ−1

)

= τ
n

(
n
τ

)

. Thus, nc1 pSk
= τ , and we have

gk =
1

n
Jke +

1

τ

∑

i∈Sk

(∇ fi (xk) − Jk
:i ). (80)

Example 14 (Gradient descent) Consider the same situation as in Example 13, but with

τ = n. That is, we choose Sk = [n] with probability 1, and c1 = 1. Then

gk =
1

n
Jke +

1

n

n
∑

i=1

(∇ fi (xk) − Jk
:i ) = ∇ f (xk).

4.4 Expected smoothness constantsL1 andL2

Here we compute the expected smoothness constants L1 and L2 in the case of S being

a minibatch sketch S = IS , and assuming that f is convex and smooth. We first

formalize the notion of smoothness we will use.

Assumption 4.2 For ∅ �= C ⊆ [n] define

fC (x)
def
=

1

|C |

∑

i∈C

fi (x). (81)

For each ∅ �= C ⊆ [n] and all x ∈ R
d , the function fC is LC —smooth and convex.

That is, there exists LC ≥ 0 such that the following inequality holds

‖∇ fC (x) − ∇ fC (x∗)‖2
2

≤ 2LC

(

fC (x) − fC (x∗) − 〈∇ fC (x∗), x − x∗〉
)

, ∀x ∈ R
d . (82)

Let L i = L{i} for i ∈ [n].
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The above assumption is somewhat non-standard. Note that, however, if we instead

assume that each fi is convex and L i -smooth, then the above assumption holds for

LC = 1
|C|

∑

i∈C L i . In some cases, however, we may have better estimates of the

constants LC than those provided by the averages of the L i values. The value of these

constants will have a direct influence on L1 and L2, which is why we work with this

more refined assumption instead.

Lemma 9 (Smoothness of the Jacobian) Assume that fi is convex and L i —smooth for

all i ∈ [n]. Define Lmax
def
= maxi L i and DL

def
= Diag(L1, . . . , Ln) ∈ R

n×n . Then

∥
∥∇F(x) − ∇F(x∗)

∥
∥

2

D−1
L

≤ 2n( f (x) − f (x∗)), ∀x ∈ R
d . (83)

Proof Indeed,

∥
∥∇F(x) − ∇F(x∗)

∥
∥

2

D−1
L

(10)
=
∥
∥
∥(∇F(x) − ∇F(x∗))D

−1/2
L

∥
∥
∥

2 (10)
=

n
∑

i=1

1

L i

∥
∥∇ fi (x) − ∇ fi (x∗)

∥
∥

2

2

≤ 2

n
∑

i=1

( fi (x) − fi (x∗) −
〈

∇ fi (x∗), x − x∗
〉

)
(1)
= 2n( f (x) − f (x∗)),

where in the last step we used the fact that
∑n

i=1 ∇ fi (x∗) = n∇ f (x∗) = 0. ⊓⊔

Theorem 2 (Expected smoothness) Let S = IS be a minibatch sketch where S is a

sampling satisfying Assumption 4.1 (in particular, the support of S is c1—uniform).

Consider the bias-correcting random variable θS given in (74). Further, let f satisfy

Assumption 4.2. Then the expected smoothness assumptions (Assumptions 3.1 and 3.2)

are satisfied with constants L1 and L2 given by12

L1 =
1

nc2
1

max
i

⎧

⎨

⎩

∑

C∈supp(S) : i∈C

|C |LC

pC

⎫

⎬

⎭
, L2 = n max

i

{
pi L i

wi

}

, (84)

where L i = L{i}. If moreover, S is τ—nice sampling, then13

L1 = LG
max

def
= max

i

⎧

⎨

⎩

1

c1

∑

C∈supp(S) : i∈C

LC

⎫

⎬

⎭
, L2 = τ max

i

{
L i

wi

}

. (85)

12 Recall that pi = P [i ∈ S] for i ∈ [n], pC = P [S = C] for C ⊆ [n] and W = Diag(w1, . . . , wn) ≻ 0.

13 Note that c1 = |{C ∈ supp(S) : 1 ∈ C}|, and hence L1 has the form of a maximum over averages.
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Proof Let R = ∇F(x) − ∇F(x∗) and A = ED

[

‖∇ fS(x) − ∇ fS(x∗)‖2
2

]

. Then

A
(44)
= ED

[

θ2
S

n2
‖R�Se‖2

2

]

(74)
=

∑

C∈supp(S)

pC

c2
1 p2

C n2

∥
∥R�IC

e
∥
∥

2

2

=
∑

C∈supp(S)

1

c2
1 pC n2

Tr
(

e⊤
�

⊤
IC

R⊤R�IC
e
)

=
∑

C∈supp(S)

1

c2
1 pC n2

Tr
(

R⊤R�IC
ee⊤�⊤

IC

)

Lem 7(iii)
=

∑

C∈supp(S)

1

c2
1 pC n2

Tr
(

R⊤ReC e⊤
C

)

=
∑

C∈supp(S)

1

c2
1 pC n2

∥
∥(∇F(x) − ∇F(x∗))eC

∥
∥

2

2

=
∑

C∈supp(S)

|C |2

c2
1 pC n2

∥
∥∇ fC (x) − ∇ fC (x∗)

∥
∥

2

2
.

Using (82) and (81), we can continue:

A
(82)
≤

∑

C∈supp(S)

2LC |C |2

c2
1 pC n2

( fC (x) − fC (x∗) −
〈

∇ fC (x∗), x − x∗
〉

)

(81)
=

2

c2
1n2

∑

C∈supp(S)

LC |C |2

pC

1

|C |

∑

i∈C

( fi (x) − fi (x∗) −
〈

∇ fi (x∗), x − x∗
〉

)

=
2

c2
1n2

∑

C∈supp(S)

∑

i∈C

( fi (x) − fi (x∗) −
〈

∇ fi (x∗), x − x∗
〉

)
LC |C |

pC

=
2

c2
1n2

n
∑

i=1

∑

C∈supp(S) : i∈C

( fi (x) − fi (x∗) −
〈

∇ fi (x∗), x − x∗
〉

)
LC |C |

pC

=
2

c2
1n2

n
∑

i=1

( fi (x) − fi (x∗) −
〈

∇ fi (x∗), x − x∗
〉

)
∑

C∈supp(S) : i∈C

LC |C |

pC

≤
2

c2
1n

max
i

⎧

⎨

⎩

∑

C∈supp(S) : i∈C

LC |C |

pC

⎫

⎬

⎭

1

n

n
∑

i=1

( fi (x) − fi (x∗)

−
〈

∇ fi (x∗), x − x∗
〉

), (86)

where in this last inequality we have used convexity of fi for i ∈ [n]. Since

1

n

n
∑

i=1

(

fi (x) − fi (x∗) −
〈

∇ fi (x∗), x − x∗
〉)
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= f (x) − f (x∗) −
〈

∇ f (x∗), x − x∗
〉

= f (x) − f (x∗),

the formula for L1 now follows by comparing (86) to (43). In order to establish the

formula for L2, we estimate

ED

[

‖R�S‖2
W−1

]
(10)
= ED

[∥
∥
∥R�SW−1/2

∥
∥
∥

2

I

]

(10)
= Tr

(

R⊤RED

[

�SW−1�⊤
S

])

(57)
= Tr

(

R⊤RED [HS]
)

= Tr
(

D
−1/2
L R⊤RD

−1/2
L D

1/2
L ED [HS] D

1/2
L

)

≤ ‖R‖2

D−1
L

λmax

(

D
1/2
L ED [HS] D

1/2
L

)

(83)
≤ 2nλmax

(

D
1/2
L ED [HS] D

1/2
L

)

( f (xk) − f (x∗)). (87)

From Lemma 7(iv) we have ED [HS] = ED [�S] W−1 = PW−1 =

Diag
(

p1

w1
, . . . ,

pn

wn

)

, and hence D
1/2
L ED [HS] D

1/2
L = Diag

(
p1 L1

w1
, . . . ,

pn Ln

wn

)

. Com-

paring to the definition of L2 in (45) to (87), we conclude that

L2 = nλmax

(

D
1/2
L PW−1D

1/2
L

)

= n max
i

{
pi L i

wi

}

.

The specialized formulas (85) for τ—nice sampling follow as special cases of the

general formulas (84) since
|C|
pC

= 1
τ

(
n
τ

)

= n!
(τ−1)!(n−τ)! = n

(
n−1
τ−1

)

= nc1 and pi = τ/n

for all i . ⊓⊔

In the next result we establish some inequalities relating the quantities L , Lmax, LC

and LG
max. In particular, the results says that for a certain family of samplings S (the

same for which we have defined the quantity LG
max in (85)), the expected smoothed

constant LG
max is lower-bounded by the average of LC over C ∈ G = supp(S), and

upper-bounded by Lmax.

Theorem 3 Let S be a τ—uniform sampling (τ ≥ 1) with c1—uniform support (c1 ≥

1). Let G = supp(S). Then

f (x) =
1

|G|

∑

C∈G

fC (x). (88)

Moreover,

L ≤
1

|G|

∑

C∈G

LC ≤ LG
max ≤ Lmax. (89)

The last inequality holds without the need to assume τ—uniformity.
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Proof Using the fact that S has c1—uniform support, and utilizing a double-counting

argument, we observe that
∑

C∈G |C | fC (x) = c1

∑n
i=1 fi (x). Multiplying both

sides by 1
nc1

, and since |C | = τ for all C ∈ G, we get
τ |G|
c1n

1
|G|

∑

C∈G fC (x) =
1
n

∑n
i=1 fi (x) = f (x). To obtain (88), it now only remains to use the identity

τ |G|

c1n
= 1 (90)

which was shown in Lemma 8. The first inequality in (89) follows from (88) using

standard arguments (identical to those that lead to the inequality L ≤ L̄).

Let us now establish the second inequality in (89). Define LG
i

def
= 1

c1

∑

C∈G : i∈C LC .

Again using a double-counting argument we observe that τ
∑

C∈G LC = c1

∑n
i=1 L

G
i .

Multiplying both sides of this equality by
|G|
c1n

and using identity (90), we get

1
|G|

∑

C∈G LC = 1
n

∑n
i=1 L

G
i ≤ maxi L

G
i = LG

max. We will now establish the last

inequality by proving that L
G
i ≤ Lmax for any i :

LG
i =

1

c1

∑

C∈G : i∈C

LC ≤
1

c1

∑

C∈G : i∈C

1

|C |

∑

i∈C

L i

≤
1

c1

∑

C∈G : i∈C

1

|C |

∑

i∈C

Lmax

= Lmax
1

c1

∑

C∈G : i∈C

1

|C |

∑

i∈C

1

︸ ︷︷ ︸

=1

≤ Lmax
1

c1

∑

C∈G : i∈C

1

︸ ︷︷ ︸

=1

≤ Lmax.

Note that we did not need to assume τ—uniformity to prove that LG
max ≤ Lmax. ⊓⊔

4.5 Estimating the sketch residual�

In this section we compute the sketch residual ρ for several classes of samplings S.

Let G = supp(S). We will assume throughout this section that S is non-vacuous, has

c1—uniform support (with c1 ≥ 1), and is τ—uniform.

Further, we assume that W = Diag(w1, . . . , wn), and that the bias-correcting

random variable θS is chosen as θS = 1
c1 pS

= |G|
c1

(see (75) and Lemma 8). In view of

the above, since �IC
e = eC , the sketch residual is given by

ρ
(51)
= λmax

(

W1/2

(

|G|2

c2
1

ED

[

�See⊤�S

]

− ee⊤

)

W1/2

)

= λmax

⎛

⎝W1/2

⎛

⎝
|G|

c2
1

∑

C∈G

eC e⊤
C − ee⊤

⎞

⎠W1/2

⎞

⎠
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= λmax

⎛

⎝

⎛

⎝
|G|

c2
1

∑

C∈G

eC e⊤
C − ee⊤

⎞

⎠W

⎞

⎠ , (91)

where the last equality follows by permuting the multiplication of matrices within the

λmax.

In the following text we calculate upper bounds for ρ for τ—partition and τ—nice

samplings. Note that Theorem 1 still holds if we use an upper bound of ρ in place of

ρ.

Theorem 4 If S is the τ—partition sampling, then

ρ ≤
n

τ
max
C∈G

∑

i∈C

wi . (92)

Proof Using Lemma 8, and since c1 = 1, we get
|G|

c2
1

= n
τ

. Consequently,

ρ
(91)
≤

n

τ
λmax

⎛

⎝

∑

C∈G

eC e⊤
C W

⎞

⎠ =
n

τ
λmax

⎛

⎝

∑

C∈G

eCw⊤
C

⎞

⎠ , (93)

where wC =
∑

i∈C wi ei and we used that −W1/2ee⊤W1/2 is negative semidefinite.

When W = I, the above bound is tight. By Gershgorin’s theorem, every eigenvalue λ

of the matrix is bounded by at least one of the inequalities λ ≤
∑

i∈C wi for C ∈ G.

Consequently, from (93) we have that ρ ≤ n
τ

maxC∈G

∑

i∈C wi . ⊓⊔

Next we give an useful upper bound on ρ for a large family of uniform samplings

(for proof, see “Appendix C”).

Theorem 5 Let G be a collection of subsets of [n] with the property that the number of

sets C ∈ G containing distinct elements i, j ∈ [n] is the same for all i, j . In particular,

define

c2
def
= |{C : {1, 2} ⊆ C, C ∈ G}|. (94)

Now define a sampling S by setting S = C ∈ G with probability 1
|G|

. Moreover, assume

that the support of S is c1—uniform. Consider the minibatch sketch S = IS .

(i) If W = Diag(w1, . . . , wn), then

ρ ≤ max
i=1,...,n

⎧

⎨

⎩

(
|G|

c1
− 1

)

wi +
∑

j �=i

w j

∣
∣
∣
∣
∣

|G|c2

c2
1

− 1

∣
∣
∣
∣
∣

⎫

⎬

⎭
. (95)

(ii) If W = I, then

ρ = max

{
|G|

c1

(

1 + (n − 1)
c2

c1

)

− n,
|G|

c1

(

1 −
c2

c1

)}

. (96)
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Note that as long as τ ≥ 2, the τ—nice sampling S satisfies the assumptions of the

above theorem. Indeed, G is the support of S consisting of all subsets of [n] of size τ ,

|G| =
(

n
τ

)

, c1 =
(

n−1
τ−1

)

, and c2 =
(

n−2
τ−2

)

. As a result, bound (95) simplifies to

ρ ≤
(n

τ
− 1

)

max
i=1,...,n

⎧

⎨

⎩
wi +

1

n − 1

∑

j �=i

w j

⎫

⎬

⎭
, (97)

and (96) simplifies to

ρ =
n

τ

n − τ

n − 1
. (98)

4.6 Calculating the iteration complexity for special cases

In this section we consider minibatch SAGA (Algorithm 2) and calculate its iteration

complexity in special cases using Theorem 1 by pulling together the formulas for

L1,L2, κ and ρ established in previous sections. In particular, assume S is τ—uniform

and has c1—uniform support with c1 ≥ 1. In this case, formula (85) for L1,L2 from

Lemma 2 applies and we have L1 = LG
max and L2 = τ maxi

{
L i

wi

}

.

Moreover, by Lemma 8, κ = τ
n

. By Theorem 1, if we use the stepsize

α = min

{
1

4L1
,

κ

4L2ρ/n2 + μ

}

=
1

4
min

⎧

⎨

⎩

1

LG
max

,
1

ρ
n

max j=1,...,n

{
L j

w j

}

+ μ
4

n
τ

⎫

⎬

⎭
, (99)

then the iteration complexity is given by

max

{
4L1

μ
,

1

κ
+

4ρL2

κμn2

}

log

(
1

ǫ

)

= max

{

4LG
max

μ
,

n

τ
+

4ρ

μn
max

i

{
L i

wi

}
}

log

(
1

ǫ

)

. (100)

Complexity (100) is listed in line 9 of Table 1. The complexities in lines 3, 5 and

10–13 arise as special cases of (100) for specific choices of S:

– In line 3 we have gradient descent. This arises for the choice W = I and S = [n]

with probability 1. In this case, τ = n, LG
max = L and ρ = 0. So, (100) simplifies

to 4L
μ

log
(

1
ǫ

)

.

– In line 5 we have uniform SAGA. We choose W = I and S = {i} with probability

1/n. We have τ = 1 and LG
max = Lmax. In view of Theorem 4, ρ ≤ n. So, (100)

simplifies to
(

n + 4Lmax
μ

)

log
(

1
ǫ

)

.
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– In line 10 we choose W = I and S is the τ -nice sampling. In this case, Theorem 5

says that ρ = n
τ

n−τ
n−1

(see (98)). Therefore, (100) reduces to

max

{

4LG
max

μ
,

n

τ
+

n − τ

(n − 1)τ

4Lmax

μ

}

log

(
1

ǫ

)

. (101)

– In line 11 we choose W = Diag(L i ) and S is the τ -nice sampling. Theorem 5 says

that ρ ≤ n−τ
τ

(
n−2
n−1

Lmax + n
n−1

L̄
)

(see (97)). Therefore, (100) reduces to

max

⎧

⎨

⎩

4LG
max

μ
,

n

τ
+

n − τ

τn

4
(

n−2
n−1

Lmax + n
n−1

L̄
)

μ

⎫

⎬

⎭
log

(
1

ǫ

)

. (102)

To simplify the above expression, one may further use the bound n−2
n−1

Lmax +
n

n−1
L̄ ≤ Lmax + L̄ . In Table 1 we have listed the complexity in this simplified

form.

– In line 12 of Table 1 we let W = I and S is the τ -partition sampling. In view of

Theorem 4, ρ ≤ n
τ
τ = n and hence (100) reduces to

max

{

4LG
max

μ
,

n

τ
+

4Lmax

μ

}

log

(
1

ǫ

)

. (103)

– In line 13 of Table 1 we let W = Diag(L i ) and S is the τ -partition sampling. In

view of Theorem 4, ρ ≤ n
τ

maxC∈G

∑

i∈C L i and hence (100) reduces to

max

{

4LG
max

μ
,

n

τ
+

4 maxC∈G

∑

i∈C L i

μτ

}

log

(
1

ǫ

)

. (104)

Note that the previous bound for W = I is better than this bound since

maxC∈G

∑

i∈C L i ≤ τ Lmax.

4.7 Comparison with previous mini-batch SAGA convergence results

Recently in [14], a method that includes a mini-batch variant of SAGA was proposed.

This work is the most closely related to our minibatch SAGA. The methods described

in [14] can be cast in our framework. In the language of our paper, in [14] the authors

update the Jacobian estimate according to (77), where Sk is sampled according to a

uniform probability with pi = τ/n, for all i = 1, . . . , n. What [14] do differently

is that instead of introducing the bias-corecting random variable θS to maintain an

unbiased gradient estimate, the gradient estimate is updated using the standard SAGA

update (78) and this sampling process is done independently of how Sk is sampled

for the Jacobian update. Thus at every iteration a gradient ∇ fi (xk) is sampled to

compute (78), but is then discarded and not used to update the Jacobian update so as
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to maintain the independence between Jk and gk . By introducing the bias-correcting

random variable θS in our method we avoid the data-hungry strategy used in [14].

The analysis provided in [14] shows that, by choosing the stepsize appropriately,

the expectation of a Lyapunov function similar to (52) is less than ǫ > 0 after

1

2

⎛

⎝
n

τ
+ K +

√

n2

τ 2
+ K 2

⎞

⎠ log

(
1

ǫ

)

(105)

iterations, where K
def
= 4Lmax

μ
. When τ = 1 this gives an iteration complexity of

O(n + K ) log 1
ǫ
, which is essentially the same complexity as the standard SAGA

method. The main issue with this complexity is that it decreases only very modestly

as τ increases. In particular, on the extreme end when τ = n, since K ≥ 4, we can

approximate (1 + K )2 ≈ 1 + K 2 and the resulting complexity (105) becomes

(

1 +
4Lmax

μ

)

log

(
1

ǫ

)

.

Yet we know that τ = n corresponds to gradient descent, and thus the iteration

complexity should be O( L
μ

log(1/ǫ)), which is what we recover in the analysis of

all our mini-batch variants. In Fig. 1a–c in the experiments in Sect. 6 we illustrate

how (105) descreases very modestly as τ increases.

5 A refined analysis with a stochastic Lyapunov function

In this section we perform a refined analysis of JacSketch applied with a minibatch

sketch S = IS where the sampling S is over partitions of [n] into sets of size τ .14

Assumption 5.1 Let G be a partition of [n] into sets of size τ . Assume that the sampling

S picks sets from the partition G uniformly at random. That is, pC
def
= P [S = C] for

C ∈ G = supp(S). A sampling with these properties is called a τ—partition sampling.

In the terminology introduced in Sect. 4.1, a τ—partition sampling is non-vacuous,

proper and τ—uniform. Its support is a partition of [n], and is 1—uniform. It satisfies

Assumption 4.1. Restricting our attention to τ—partition samplings will allow us to

perform a more in-depth analysis of JacSketch using a stochastic Lyapunov function.

One of the key reasons why we restrict our attention to τ -partition samplings is the

fact that

I⊤
C1

IC2 =

{

I ∈ R
τ×τ , C1 = C2,

0 ∈ R
τ×τ , C1 �= C2,

(106)

14 This is only possible when n is a multiple of τ .
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for C1, C2 ∈ G. Recall from Lemma 7 that if W = I, then �IC
= IC I⊤

C . Consequently,

for C1, C2 ∈ G we have

C1 �= C2 ⇒ �IC1
�IC2

= 0, C1 = C2 ⇒ (I − �IC1
)�IC2

= 0. (107)

This orthogonality property will be fundamental for controlling the convergence of

the gradient estimate in Lemma 10.

5.1 Convergence theorem

Recall from (32) that the stochastic gradient of the controlled stochastic reformulation

(28) of the original finite-sum problem (1) is given by

∇ fIS ,J(x) =
1

n
Je +

1

pSn
(∇F(x) − J)�IS

e (108)

provided that we use the minibatch sketch S = IS and bias-correcting variable θS =

θIS
= 1/pS given by Lemma 7(vi). This object will appear in our Lyapunov function,

evaluated at x = x∗ and J = Jk . We are now ready to present the main result of this

section.

Theorem 6 (Convergence for minibatch sketches with τ -partition samplings) Let

(i) S be a minibatch sketch (i.e., S = IS),15 where S is a τ—partition sampling with

support G = supp(S).

(ii) fC
def
= 1

|C|

∑

i∈C fi be LC —smooth and μ—strongly convex (for μ > 0) for all

C ∈ G.

(iii) W = I, θS = 1
pS

.

(iv) {xk, Jk} be the iterates produced by JacSketch.

Consider the stochastic Lyapunov function

Ψ k
S

def
=
∥
∥
∥xk − x∗

∥
∥
∥

2

2
+ 2σSα

∥
∥
∥
∥

1

n
Jke − ∇ fIS ,Jk (x∗)

∥
∥
∥
∥

2

2

, (109)

where σS = n
4τ L S

is a stochastic Lyapunov constant. If we use a stepsize that satisfies

α ≤ min
C∈G

pC

μ + 4LC τ
n

, (110)

then

E

[

Ψ k
S

]

≤ (1 − μα)k · E

[

Ψ 0
S

]

. (111)

15 We can alternatively set S = eS and the same results will hold.
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This means that if we choose the stepsize equal to the upper bound (110), then

k ≥ max
C∈G

{
1

pC

+
4LC

μ

τ

npC

}

log

(
1

ǫ

)

⇒ E

[

Ψ k
S

]

≤ ǫ · E

[

Ψ 0
S

]

. (112)

5.2 Gradient estimate contraction

Here we will show that our gradient estimate contracts in the following sense.

Lemma 10 Let S be the τ—partition sampling, and σ(S)
def
= σS ≥ 0 be any non-

negative random variable. Then

E

[

σS

∥
∥
∥
∥

1

n
Jk+1e − ∇ fIS ,Jk+1(x∗)

∥
∥
∥
∥

2

2

]

≤ E

[

σS(1 − pS)

∥
∥
∥
∥

1

n
Jke − ∇ fIS ,Jk (x∗)

∥
∥
∥
∥

2

2

]

+E

[

σS pS

∥
∥
∥∇ fIS ,Jk (xk) − ∇ fIS ,Jk (x∗)

∥
∥
∥

2

2

]

.

(113)

Proof For simplicity, in this proof we let ∇Fk = ∇F(xk) and ∇F∗ = ∇F(x∗).

Rearranging (108), we have

1

n
Jk+1e − ∇ fIS ,Jk+1(x∗)

(108)
=

1

npS

(Jk+1 − ∇F∗)�IS
e

(39)
=

1

npS

(

Jk − (Jk − ∇Fk)�ISk
− ∇F∗

)

�IS
e

=
1

npS

(Jk − ∇F∗)(I − �ISk
)�IS

e

+
1

npS

(∇Fk − ∇F∗)�ISk
�IS

e. (114)

Taking norm squared on both sides gives

∥
∥
∥

1

n
Jk+1e − ∇ fIS ,Jk+1 (x∗)

∥
∥
∥

2

2
=

1

n2 p2
S

∥
∥
∥

A
︷ ︸︸ ︷

(Jk − ∇F∗)(I − �ISk
)�IS

e

∥
∥
∥

2

2

︸ ︷︷ ︸

I

+
1

n2 p2
S

∥
∥
∥

R
︷ ︸︸ ︷

(∇Fk − ∇F∗) �ISk
�IS

e

∥
∥
∥

2

2

︸ ︷︷ ︸

II

+2
1

n2 p2
S

〈

(Jk − ∇F∗)(I − �ISk
)�IS

e(∇Fk − ∇F∗)�ISk
�IS

e
〉

︸ ︷︷ ︸

III

.

(115)
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First, it follows from (107) that expression III is zero. We now multiply expressions

I and II by σS and bound certain conditional expectations of these terms. Since S and

Sk are independent samplings, we have

E

[

σS

n2 p2
S

∥
∥
∥A(I − �ISk

)�IS
e

∥
∥
∥

2

2
| A

]

=
∑

C∈G

∑

C ′∈G

pC pC ′
σC

n2 p2
C

∥
∥A(I − �IC ′ )�IC

e
∥
∥

2

2

(107)
=

∑

C∈G

σC

n2 pC

∥
∥A�IC

e
∥
∥

2

2

∑

C ′∈G, C ′ �=C

pC ′

=
∑

C∈G

σC

n2 pC

(1 − pC )
∥
∥A�IC

e
∥
∥

2

2

=
∑

C∈G

pCσC (1 − pC )
1

n2 p2
C

∥
∥
∥A�IC

e

∥
∥
∥

2

2

(114)
= E

[

σS(1 − pS)

∥
∥
∥

1

n
Jke − ∇ fIS ,Jk (x∗)

∥
∥
∥

2

2
| Jk

]

. (116)

Taking conditional expectation over expression II yields

E

[

σS

n2 p2
S

∥
∥
∥R�ISk

�IS
e

∥
∥
∥

2

2
| R, Sk

]

=
∑

C∈G

pC

σC

n2 p2
C

∥
∥
∥R�ISk

�IC
e

∥
∥
∥

2

2

(107)
=

σSk

n2 pSk

∥
∥
∥R�ISk

�ISk
e

∥
∥
∥

2

2
=

σSk

n2 pSk

∥
∥
∥R�ISk

e

∥
∥
∥

2

2

= σSk
pSk

∥
∥
∥∇ fISk

,Jk (xk) − ∇ fISk
,Jk (x∗)

∥
∥
∥

2

2
, (117)

where in the last equation we used the identity

∥
∥∇ fIC ,J(x) − ∇ fIC ,J(y)

∥
∥

2

2

=
∥
∥
∥

1
npC

(∇F(x) − ∇F(y))�C e

∥
∥
∥

2

2
, ∀J ∈ R

d×n,∀C ∈ G, (118)

which in turn is a specialization of (44) to the minibatch sketch S = IS and the specific

choice of the bias-correcting variable θS = 1/pS . It remains to take expectation of

(116) and (117), apply the tower property, and combine this with (115). ⊓⊔

5.3 Bounding the secondmoment of gk

In the next lemma we bound the second moment of our gradient estimate gk .

Lemma 11 The second moment of the gradient estimate is bounded by

E

[∥
∥
∥gk

∥
∥
∥

2

2
| Jk, xk

]

≤ 2E

[∥
∥
∥∇ fIS ,Jk (xk) − ∇ fIS ,Jk (x∗)

∥
∥
∥

2

2
| Jk, xk

]
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+ 2E

[∥
∥
∥∇ fIS ,Jk (x∗) −

1

n
Jke

∥
∥
∥

2

2
| Jk, xk

]

. (119)

Proof Adding and subtracting 1
npSk

∇F(x∗)�ISk
e from (108) gives

gk =
1

n
Jke −

1

npSk

(Jk − ∇F(x∗))�ISk
e +

1

npSk

(∇F(xk) − ∇F(x∗))�ISk
e.

Taking norm squared on both sides, and using the bound ‖a + b‖2
2 ≤ 2‖a‖2

2 + 2‖b‖2
2

gives

∥
∥
∥gk

∥
∥
∥

2

2
≤

2

n2 p2
Sk

∥
∥
∥(∇F(xk) − ∇F(x∗))�ISk

e

∥
∥
∥

2

2

+
2

n2

∥
∥
∥

1
pSk

(Jk − ∇F(x∗))�ISk
e − Jke

∥
∥
∥

2

2

(118)
= 2

∥
∥
∥∇ fISk

,Jk (xk) − ∇ fISk
,Jk (x∗)

∥
∥
∥

2

2

+
2

n2

∥
∥
∥

1
pSk

(Jk − ∇F(x∗))�ISk
e − Jke

∥
∥
∥

2

2
︸ ︷︷ ︸

A

. (120)

Taking expectation of the A term, we get

E

⎡

⎢
⎢
⎣

∥
∥
∥
∥
∥
∥
∥
∥

1
pS

(Jk − ∇F(x∗))�IS
e

︸ ︷︷ ︸

X

− Jke
︸︷︷︸

E[X ]

∥
∥
∥
∥
∥
∥
∥
∥

2

2

| Jk , xk

⎤

⎥
⎥
⎦

≤ E

[∥
∥
∥

1
pS

(Jk − ∇F(x∗))�IS
e

∥
∥
∥

2

2
| Jk , xk

]

(114)
= n2

E

[∥
∥
∥
∥
∇ fIS ,Jk (x∗) −

1

n
Jke

∥
∥
∥
∥

2

2

| Jk , xk

]

,

where we used the inequality E
[

‖X − E [X ]‖2
2

]

≤ E
[

‖X‖2
2

]

. The result follows by

combining the above with (120). ⊓⊔

5.4 Smoothness and strong convexity of fIC,J

Recalling the setting of Theorem 6, we assume that each fC is μ—strongly convex

and LC —smooth:

fC (y) + 〈∇ fC (y), x − y〉 +
μ

2
‖x − y‖2

2 ≤ fC (x)

≤ fC (y) + 〈∇ fC (y), x − y〉 +
LC

2
‖x − y‖2

2
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for all C ∈ G. It is known (see Section 2.1 in [19]) that the above conditions imply the

following inequality:

〈∇ fC (x) − ∇ fC (y), x − y〉 ≥
μLC

μ + LC

‖x − y‖2
2

+
1

μ + LC

‖∇ fC (x) − ∇ fC (y)‖2
2 , (121)

for all x, y ∈ R
d . A consequence of these assumptions that will be useful to us is

that the function fIC ,J is
τμ
npC

—strongly convex and τ LC

npC
—smooth. This can in turn

be used to establish the next lemma, which will be used in the proof of Theorem 6:

Lemma 12 Under the assumptions of Theorem 6 (in particular, assumptions on f and

S), we have

〈∇ f (x) − ∇ f (y), x − y〉 ≥
μ

2
‖x − y‖2

2

+ED

[
npS

2τ L S

∥
∥∇ fIS ,J(x) − ∇ fIS ,J(y)

∥
∥

2

2

]

, (122)

for all x, y ∈ R
d and J ∈ R

d×n .

Proof Applying (121) to the function fIS ,J gives

〈

∇ fIS ,J(x) − ∇ fIS ,J(y), x − y
〉

≥
τ

npS

μL S

μ + L S

‖x − y‖2
2

+
npS

τ(μ + L S)

∥
∥∇ fIS ,J(x) − ∇ fIS ,J(y)

∥
∥

2

2

≥
τμ

2npS

‖x − y‖2
2

+
npS

2τ L S

∥
∥∇ fIS ,J(x) − ∇ fIS ,J(y)

∥
∥

2

2
.

Taking expectation over both sides over S, noting that ED

[
1
pS

]

=
∑

C∈G 1 = n
τ

, and

recalling that ∇ fIS ,J(x) is an unbiased estimator of ∇ f (x), we get the result. ⊓⊔

5.5 Proof of Theorem 6

Let Ek [·] denote expectation conditional on Jk and xk . We can write

Ek

[∥
∥
∥xk+1 − x∗

∥
∥
∥

2

2

]

(2)
= Ek

[∥
∥
∥xk − x∗ − αgk

∥
∥
∥

2

2

]

(33)
=
∥
∥
∥xk − x∗

∥
∥
∥

2

2
− 2α

〈

∇ f (xk), xk − x∗
〉

+ α2
Ek

[∥
∥
∥gk

∥
∥
∥

2

2

]
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(122)
≤ (1 − μα)

∥
∥
∥xk − x∗

∥
∥
∥

2

2
− αEk

[
npS

τ L S

∥
∥
∥∇ fIS ,Jk (xk) − ∇ fIS ,Jk (x∗)

∥
∥
∥

2

2

]

+α2
Ek

[∥
∥
∥gk

∥
∥
∥

2

2

]

(119)
≤ (1 − μα)

∥
∥
∥xk − x∗

∥
∥
∥

2

2
+ 2α2

Ek

[∥
∥
∥
∥

1

n
Jke − ∇ fIS ,Jk (x∗)

∥
∥
∥
∥

2

2

]

+ 2αEk

[(

α −
npS

2τ L S

)∥
∥
∥∇ fIS ,Jk (xk) − ∇ fIS ,Jk (x∗)

∥
∥
∥

2

2

]

. (123)

Next, after taking expectation in (123), applying the tower property, and subsequently

adding the term 2αE

[

σS

∥
∥ 1

n
Jk+1e − ∇ fIS ,Jk+1(x∗)

∥
∥

2

2

]

to both sides of the resulting

inequality, we get

E

[

Ψ k+1
S

]

≤ E

[

(1 − μα)

∥
∥
∥xk − x∗

∥
∥
∥

2

2

]

+2αE

[(

α −
npS

2τ L S

)∥
∥
∥∇ fIS ,Jk (xk) − ∇ fIS ,Jk (x∗)

∥
∥
∥

2

2

]

+ 2α2
E

[∥
∥
∥
∥

1

n
Jke − ∇ fIS ,Jk (x∗)

∥
∥
∥
∥

2
]

+ 2αE

[

σS

∥
∥
∥
∥

1

n
Jk+1e − ∇ fIS ,Jk+1(x∗)

∥
∥
∥
∥

2

2

]

(113)
≤ E

⎡

⎣(1 − μα)
︸ ︷︷ ︸

I

∥
∥
∥xk − x∗

∥
∥
∥

2

2

⎤

⎦

+ 2αE

⎡

⎢
⎢
⎢
⎣

σS

(

1 − pS +
α

σS

)

︸ ︷︷ ︸

II

∥
∥
∥
∥

1

n
Jke − ∇ fIS ,Jk (x∗)

∥
∥
∥
∥

2

2

⎤

⎥
⎥
⎥
⎦

+ 2αE

⎡

⎢
⎢
⎢
⎣

(

α + σS pS −
npS

2τ L S

)

︸ ︷︷ ︸

III

∥
∥
∥∇ fIS ,Jk (xk) − ∇ fIS ,Jk (x∗)

∥
∥
∥

2

2

⎤

⎥
⎥
⎥
⎦

. (124)

Next, we determine a bound on α so that III ≤ 0. Choosing

α + σC pC −
npC

2τ LC

≤ 0, ∀C ∈ G ⇒ α ≤
npC

2τ LC

− σC pC , ∀C ∈ G, (125)

guarantees that III ≤ 0, and thus the last term in term in (124) can be safely dropped.

Next, to build a recurrence and conclude the convergence proof, we bound the stepsize

α so that II ≤ I; that is,

1 − pC +
α

σC

≤ 1 − αμ, ∀C ∈ G ⇒ α ≤
σC pC

μσC + 1
, ∀C ∈ G. (126)
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Consequently,

E

[

Ψ k+1
S

]

≤ E

[

(1 − μα)

∥
∥
∥xk − x∗

∥
∥
∥

2

2

]

+2αE

[

σS(1 − μα)

∥
∥
∥
∥

1

n
Jke − ∇ fIS ,Jk (x∗)

∥
∥
∥
∥

2

2

]

= (1 − μα)E

[

Ψ k
S

]

.

Since σS = n
4τ L S

, in view of (125) and (126) the combined bound on α is

α ≤ min

{
npC

4τ LC

,
pC

μ + 4 τ
n

LC

}

=
pC

μ + 4 τ
n

LC

, ∀C ∈ G.

Hence, we have established the recursion (111).

5.6 Calculating the iteration complexity in special cases

In this section we consider the special case of JacSketch analyzed via Theorem 6—

minibatch SAGA with τ—partition sampling—and look at further special cases by

varying the minibatch size τ and probabilities. Our aim is to justify the complexities

appearing in Table 1. In view of Theorem 6 the iteration complexity is given by

max
C∈G

(
1

pC

+
τ

npC

4LC

μ

)

log

(
1

ǫ

)

, (127)

where G = supp(S). Complexity (127) is listed in line 2 of Table 1. The complexities

in lines 4, 6, 8 and 14 arise as special cases of (127) for specific choices of τ and

probabilities pC .

– In line 4 we have gradient descent. This is obtained by choosing G = {[n]} (whence

p[n] = 1, τ = n and L [n] = L), which is why (127) simplifies to
(

1 + 4L
μ

)

log
(

1
ǫ

)

.

– In line 6 we consider uniform SAGA. That is, we choose τ = 1 and pi = 1/n for

all i . We have G = {{1}, {2}, . . . , {n}} and L{i} = L i . Therefore, (127) simplifies

to
(

n + 4Lmax
μ

)

log
(

1
ǫ

)

. This is essentially the same16 complexity result given in

[6].

– In line 8 we consider SAGA with importance sampling. This is the same setup as

above, except we choose

pi =
μn + 4L i

∑n
j=1 nμ + 4L j

, (128)

16 With the difference being that in [6] the iteration complexity is 2
(

n + Lmax
/

μ
)

log
(

1
ǫ

)

, thus a small

constant change.
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which is the optimal choice minimizing the complexity bound in p1, . . . , pn .

With these optimal probabilities, the stepsize bound becomes α ≤ 1

nμ+4L̄
, and by

choosing the maximum allowed stepsize the resulting iteration complexity is

(

n +
4L̄

μ

)

log

(
1

ǫ

)

. (129)

Now consider the probabilities pi = L i∑n
j=1 L j

suggested in [30]. Using our bound,

these lead to the complexity

max
i=1,...,n

{∑n
j=1 L j

L i

+ 4

∑n
j=1 L j

μn

}

log
1

ǫ
=

(
nL̄

Lmin
+

4L̄

μ

)

log

(
1

ǫ

)

. (130)

Comparing this with (129), we see that this non-uniform sampling offers a signifi-

cant speed up over uniform sampling if nμ ≤ Lmin. However, our complexity

(129) is always better than both the uniform sampling sampling complexity

(n + Lmax/μ) log
(

1
ǫ

)

and (130).

– Finally, in line 14 of Table 1 we optimize over probabilities pC directly; that is

we extend the importance sampling described above to any τ . Minimizing the

complexity bound over the probabilities, and noting that |G| = n
τ

, this leads to the

rate

(

n

τ
+

4 1
|G|

∑

C∈G LC

μ

)

log

(
1

ǫ

)

. (131)

This iteration complexity also applies to the reduced memory variant of

SAGA (18). This is because Theorem 6 also holds for sketches S = eS where

S is a τ—partition sampling. To see this, note that our analysis in this section

relies on the orthogonality property (107) which also holds for S = eS since (for

W = I) we have:

�eC1
�eC2

=
1

τ
eC1(e

⊤
C1

eC2
︸ ︷︷ ︸

=0

)e⊤
C2

1

τ
= 0, for C1, C2 ∈ G, C1 �= C2.

Lemmas 10, 11 and 12 depend on the sketch through ∇ fS,J(x∗) only, which in

turn depends on the sketch through �Se, and it is easy to see that if either S = IS

or S = eS , we have �Se = eS .

6 Experiments

We perform several experiments to validate the theory, and also test the practical

relevance of non-uniform SAGA (79) with the optimized probability distribution (128).

All of our code for these experiments was written in Julia and can be found on github

in https://github.com/gowerrobert/StochOpt.jl.
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In our experiments we test either ridge regression

f (x) =
1

2n

∥
∥
∥A⊤x − y

∥
∥
∥

2

2
+

λ

2
‖x‖2

2 , (132)

or logistic regression

f (x) =
1

n

n
∑

i=1

log
(

1 + e−yi 〈ai ,x〉
)

+
λ

2
‖x‖2

2 , (133)

where A = [a1, . . . , an] ∈ R
d×n, y ∈ R

n is the given data and λ > 0 the regularization

parameter.

6.1 New non-uniform sampling using optimal probabilities

First we compare non-uniform SAGA using the new optimized importance probabili-

ties (128) against using the probabilities pi = L i

/

L as suggested in [30]. When nμ is

significantly smaller than L i for all i then the two sampling are very similar. But when

nμ is relatively large, then the optimized probabilities (128) can be much closer to a

uniform distribution as compared to using pi = L i

/

L . We illustrate this by solving a

ridge regression problem (132), using generated data such that

A⊤x = y + ǫ, (134)

where the elements of A and x are sampled from the standard Gaussian distribution

N (0, 1), and the elements of ǫ are sampled from N (0, 10−3). It is not hard to see

that the smoothness constants {L i } are given by L i = ‖ai‖
2
2 + λ for i ∈ [n]. We

scale the columns of A so that ‖a1‖
2
2 = 1 and ‖ai‖

2
2 = 1

n2 , for i = 2, . . . , n, and

set the regularization parameter λ = 1
n2 . Consequently, Lmax = 1 + 1

n2 , L i = 2
n2 for

i = 1, . . . , n, L = (n+1)2−1

n3 and μ = 1
n
λmin(AA⊤) + 1

n2 . In this case the iteration

complexity of non-uniform SAGA with the optimal probabilities (129) is given by

(

n + 4
(n + 1)2 − 1

μn3

)

log

(
1

ǫ

)

. (135)

The complexity (130) which results from using the probabilities pi = L i

/

L is given

by

(n + 1)2 − 1

n3

(
n3

2
+

4

μ

)

log

(
1

ǫ

)

. (136)

Now we consider the regime where n → ∞, in which case μ → O( 1
n2 ) and conse-

quently (135)→ O(n) log 1
ǫ

and in contrast (136) → O(n2) log 1
ǫ
.

We illustrate this in Fig. 1a-c where we set n = 10, n = 100 and n = 1000,

respectively, and plot the complexities given in (135) and (136) . To accompany this
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(a) (b) (c)

Fig. 1 The iteration complexity of minibatch SAGA (80) vs the mini-batch size τ for two ridge regression

problems (132). We used λ = Lmax/n

(a) (b) (c)

Fig. 2 Comparing the performance of SAGA with importance sampling based on the optimized prob-

abilities (128) (SAGA-opt), pi = L i /L (SAGA-Li) and pi = 1/n (SAGA-uni) for an artificially

constructed ridge regression problem as n grows. Markers represent monitored points and not the iterations

of the algorithms

plot, in Fig. 2a-c we also plot an execution of SAGA-uni (SAGA with uniform

probabilities), SAGA-Li (SAGA with pi = L i/L) and SAGA-opt (SAGA with

optimized probabilities). In all figures we see that SAGA-opt is the fastest method.

We can also see that SAGA-Li stalls in Fig. 2b and c when n is larger, performing

even worst as compared to SAGA-uni.

6.2 Optimal mini-batch size

Our analysis of the mini-batch SAGA is precise enough as to inform an optimal

mini-batch size. For instance, consider τ—nice sampling and the resulting iteration

complexity (102). Theorem 3 states that for any τ ∈ [n], the terms within the maximum

in (102) are bounded by

Lmax ≥ LG
max ≥ L (137)

Lmax +
μn

4
≥ C(τ )

def
=

1

τ

n − τ

n − 1
Lmax +

μ

4

n

τ
≥

μ

4
. (138)

Moreover, the upper and lower bounds are realized for τ = 1 and τ = n, respec-

tively. Consequently, for τ small, we have LG
max ≤ C(τ ). On the other hand, for τ large

we have LG
max ≥ C(τ ). Furthermore, C(τ ) decreases super-linearly in τ while LG

max

tends to decrease more modestly. Consequently, the point where LG
max overtakes C(τ )

is often the best for the overall complexity of the method. To better appreciate these

observations, we plot the evolution of the iteration complexity (102), the total com-
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plexity and the iteration complexity as predicted by Hofmann et al. [14] (see (105)) as

τ increases in Fig. 3a–c for three different linear least squares problems. Since each

step of mini-batch SAGA computes τ stochastic gradients, so the total complexity is

τ times the iteration complexity. In each figure we can see that our iteration complex-

ity initially decreases super-linearly, then at some point the complexity is dominated

by LG
max and the iteration complexity decreases sublinearly. Up to this point we can

observe an improvement in overall total complexity. This is in contrast to the iteration

complexity given by Hofmann et al. that shows practically no improvement in even

the iteration complexity as τ increases.

Though these experiments indicate only modest improvements in total complexity,

and suggests that τ = 2 or τ = 3 is optimal, we must bear in mind that this corresponds

to 10% and 20% of the data for these small dimensional problems. We conjecture that

for larger problems, this improvement in total complexity will also be larger.

To use these insights in practice, we need to be able to efficiently determine the

τ which corresponds to the point at which the convergence regimes switches from

being dominated by C(τ ) to being dominated by LG
max. This surmounts to choosing

τ so that LG
max = 1

τ
n−τ
n−1

Lmax + μ
4

n
τ
. Estimating Lmax and μ is often possible, but the

cost of computing LG
max has a combinatorial dependency on n and τ. Thus to have a

practical way of choosing τ , we first need to bound LG
max. This can be done for losses

with linear classifiers using concentration bounds. We leave this for future work.

6.3 Comparative experiments

We now compare the performance of SAGA-opt to several known methods such as

SVRG [15], grad (gradient descent with fixed stepsizes) and AMprev (an improved

version of SVRG that uses second order information) [28]. For the stepsize of

SAGA-opt and SAG-opt, we found the stepsize α ≤ 1

nμ+4L̄
given by theory

to be a bit too conservative. Instead do we away with the 4 and used α = 1

nμ+L̄

instead. For the remaining methods we used a grid search over Lmax × 2m for

m = 21, 19, 17, . . . ,−10,−11.

To illustrate how biased gradient estimates can perform well in practice, we also

test SAG-opt: a method that uses the same Jacobian updates as SAGA-opt, but

instead uses the biased gradient estimate gk = 1
n

Jk+1e. See Sect. 2.5 for more details

on biased gradient estimates.

In Fig. 3a–c we compare the methods on three logistic regression problems (133)

based on three different data sets taken from LIBSVM [4]. In all these problems the

two methods with optimized non-uniform sampling SAG-opt and SAGA-opt were

faster in terms of both epochs and time. The next best method wasAM-prev, followed

by SVRG and grad. It is interesting to see how well SAG-opt performs in practice,

despite having biased gradient estimates. This is why we believe it is important to

advance the analyse of biased gradient estimates as future work.
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(a)

(b)

(c)

Fig. 3 Comparison of the methods on logistic regression problems (133) with data taken from LIBSVM

[4]

7 Conclusion

We now provide a brief summary of some of the key contributions of this paper and

a few selected pointers to possible future research directions.

We developed and analyzed JacSketch—a novel family of variance reduced meth-

ods based on Jacobian sketching—and provided a link between variance reduction for

empirical risk minimization and recent results from the field of randomized numer-

ical linear algebra on sketch-and-project type methods for solving linear systems.

In particular, it turns out that variance reduction is obtained by taking an SGD step

on a stochastic optimization problem whose solution is the unknown Jacobian. As a

consequence of our analysis, we resolved the conjecture of [30] in the affirmative by

proving a properly designed importance sampling for SAGA leading to the iteration
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complexity of O(n+ L̄
μ
) log

(
1
ǫ

)

. For this purpose we developed a new proof technique

using a stochastic Lyapunov function. Our complexity result for uniform mini-batch

SAGA perfectly interpolates between the best known convergence rates of SAGA and

gradient descent, and is sufficiently precise as to inform the choice of the batch size

that minimizes the over all complexity of the method. Additionally we design and

analyse a reduced memory variant of SAGA as a special case.

For future work we see many possible avenues including the following.

Structured sparse weight matrices One may wish to explore combinations of a weight

matrix and different sketches to design new efficient methods further improving itera-

tion complexity. For this the weighting matrix will have to be highly structured (e.g.,

block diagonal or very sparse) so that the Jacobian update (39) can be computed

efficiently.

Bias-variance trade-off One can try to explore the bias-variance trade-off as opposed

to merely focus on the extremes only: SAG (minimum variance) and SAGA (no bias).

There is also no empirical evidence that unbiased estimators outperform the biased

ones.

Johnson–Lindenstrauss sketches One can design completely new methods using dif-

ferent sparse sketches, such as the fast Johnson–Lindenstrauss transform [2] or the

Achlioptas transform [1]. The resulting method can then be analyzed through Theo-

rem 1. But first these sketches need to be adapted to ensure we get an efficient method.

In particular, computing ∇F(x)S is only efficient if S most of the rows of S are zeros.
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Appendix A: Proof of inequality (20)

Lemma 13 Let S be a sampling whose support G = supp(S) is a partition of [n].

Moreover, assume all sets of this partition have cardinality τ . Then

1

|G|

∑

C∈G

LC ≤ L̄ ≤ max
C∈G

1

τ

∑

i∈C

L i .
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Proof By assumption, |G| = n
τ

. The first inequality follows from
∑

C∈G LC ≤
∑

C∈G
1
τ

∑

i∈C L i = 1
τ

∑n
i=1 L i = n

τ
L̄. On the other hand,

L̄ =
1

n

n
∑

i=1

L i =
1

n

∑

C∈G

∑

i∈C

L i =
1

|G|

∑

C∈G

1

τ

∑

i∈C

L i ≤ max
C∈G

1

τ

∑

i∈C

L i . ⊓⊔

Appendix B: Duality of sketch-and-project and constrain-and-
approximate

Lemma 14 Let Jk,∇F ∈ R
d×n and S ∈ R

n×τ . The sketch-and-project problem

Jk+1 = arg min
J∈Rd×n

1

2

∥
∥
∥J − Jk

∥
∥
∥

2

W−1
subject to ∇FS = JS, (139)

and the constrain-and-approximate problem

Jk+1 = arg
J∈Rd×n

min
Y∈Rd×τ

1

2
‖J − ∇F‖2

W−1 subject to J = Jk + YS⊤W, (140)

have the same solution, given by:

Jk+1 = Jk − (Jk − ∇F)S(S⊤WS)†S⊤W. (141)

Proof The proof is given in Theorem 4.1 in [12]. ⊓⊔

Appendix C: Proof of Theorem 5

First we will establish that

|G|

c2
1

∑

C∈G

eC e⊤
C W =

|G|c2

c2
1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c1
c2

w1 w2 · · · wn−1 wn

w1
c1
c2

w2 · · · wn−1 wn

...
. . .

...

w1 · · · c1
c2

wn−1 wn

w1 w2 · · · wn−1
c1
c2

wn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (142)

Indeed, for every i we have that e⊤
i

|G|

c2
1

(∑

C∈G eC e⊤
C W

)

ei = wi
|G|

c2
1

∑

C∈G : i∈C 1 =

wi
|G|
c1

, and for every i �= j we have e⊤
i

|G|

c2
1

(∑

C∈G eC e⊤
C W

)

e j = w j
|G|

c2
1

∑

C∈G : i, j∈C 1

= w j
|G|c2

c2
1

. Using (142), (91) and the Gershgorin circle theorem to bound ρ from

above we get ρ ≤ maxi

{
(

|G|
c1

− 1
)

wi +
∑

i �= j w j

∣
∣
∣
∣

|G|c2

c2
1

− 1

∣
∣
∣
∣

}

, as claimed. When
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W = I we can get tighter results by using that

(

|G|

c2
1

∑

C∈G eC e⊤
C − ee⊤

)

is a circulant

matrix with associated vector v =

(

|G|
c1

− 1,
|G|c2

c2
1

− 1, . . . ,
|G|c2

c2
1

− 1

)

∈ R
n . There

is an elegant formula for calculating eigenvalues λ j of circulant matrices [34] using

v, given by

λ j = v1 +

n−1
∑

k=1

ωk
jvn−k+1 =

|G|

c1
− 1

+

(

|G|c2

c2
1

− 1

)
n−1
∑

k=1

ωk
j , for j = 0, . . . , n − 1, (143)

where ω j = e
2π i j

n are the n-th roots of unity and i is the imaginary number. From (143)

we see that there are only two distinct eigenvalues. Namely, for j = 0 we have

λ0
(143)
=

|G|

c1
− 1 +

(

|G|c2

c2
1

− 1

)

(n − 1) =
|G|

c1

(

1 + (n − 1)
c2

c1

)

− n.

The other eigenvalue is given by any j �= 0 since

λ j
(143)
=

|G|

c1
− 1 −

(

|G|c2

c2
1

− 1

)

+

(

|G|c2

c2
1

− 1

)
n−1
∑

k=0

ωk
j

︸ ︷︷ ︸

=0

=
|G|

c1

(

1 −
c2

c1

)

. ⊓⊔

Appendix D: Notation glossary

See the Table 2.

Table 2 Frequently used notation

f (x) 1
n

∑n
i=1 fi (x) (convex loss function

f : R
d → R)

(1)

x∗ Minimizer of f (1)

μ Strong convexity constant of f Table 1 and Assumption 3.3 and Theorem 6

α Stepsize (2)

gk Stochastic estimator of ∇ f (xk ) (2), (13), (16), (33)

[n] {1, 2, . . . , n}

F(x) ( f1(x), . . . , fn(x))⊤ ∈ R
n (function

F : R
d → R

n )

(3)

∇F(x) [∇ f1(x), . . . ,∇ fn(x)] ∈ R
d×n (Jacobian

of F at x)

(4)
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Table 2 continued

e (1, 1, . . . , 1)⊤ ∈ R
n (vector of all ones) (5)

f ∗/ f k Shorthand for f (x∗) / f (xk )

W n × n symmetric positive definite “weight”

matrix

(10), (12)

‖X‖
W−1 (Tr

(

XW−1X⊤
)

)1/2 (weighted Frobenius

norm)

(10)

S A random (sketching) n × τ matrix picked

from D

�S S(S⊤WS)†S⊤W (stochastic projection

matrix)

θS Bias-correcting random variable (15) and Assumption 2.1

ED [·] ES∼D [·] (expectation over S ∼ D)

S or Sk Sampling (a random subset of [n])

τ E [|S|] (minibatch size)

C Subset of [n]

eC

∑

i∈C ei (ei is the i th unit coordinate

vector in R
d )

pC /pi P [S = C]/P [i ∈ S] Sections 1.4 and 4

IC Column submatrix of I with columns

indexed by C

Section 4 and Theorem 6

G = supp(S) {C ⊆ [n] : pC > 0} (support of sampling

S)

Section 4

fC
1

|C |

∑

i∈C fi (subsampled loss function) Section 4 and Theorems 3 and 6

LC Smoothness constant of fC Sections 1.5 and 4.4 and Theorems 3 and 6

L i Smoothness constant of fi Sections 1.5 and 4.4

Lmax maxi L i Sections 1.5 and 4.4 and Theorem 3

L Smoothness constant of f = 1
n

∑

i fi Sections 1.5 and 4.4 and Theorem 3

L̄ 1
n

∑

i=1 L i Sections 1.5 and 4.4 and Theorem 3

L1 Expected smoothness constant of the

stochastic gradient

Assumption 3.1 and Theorem 1

L2 Expected smoothness constant of the

Jacobian

Assumption 3.2 and Theorem 1

L
G
i

1
c1

∑

C : C∈G, i∈C LC

L
G
max maxi L

G
i

(= L1 for τ—uniform S with

c1—uniform support)

Sections 1.5 and 4.4 and Theorems 2 and 3

κ Stochastic contraction number Section 3.2 and Lemma 2 and Theorem 1

ρ Sketch residual (37) and Theorem 1 and Lemma 6

Ψ k / Ψ k
S

Lyapunov function/stochastic Lyapunov

function

(52)/(109)

c1 |{C : C ∈ supp(S), 1 ∈ C}| Definition 2

c2 |{C : C ∈ supp(S), 1 ∈ C; 2 ∈ C}| (94)
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26. Richtárik, P., Takáč, M.: Stochastic reformulations of linear systems: algorithms and convergence

theory. arXiv:1706.01108 (2017)

27. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

28. Robert, N.L.R., Gower, M., Bach, F.: Tracking the gradients using the Hessian: a new look at vari-

ance reducing stochastic methods. In: Proceedings of the 21th International Conference on Artificial

Intelligence and Statistics. Proceedings of Machine Learning Research (2018)

29. Schmidt, M., Le Roux, N., Bach, F.: Minimizing finite sums with the stochastic average gradient. Math.

Program. 162(1), 83–112 (2017)

30. Schmidt, M.W., Babanezhad, R., Ahmed, M.O., Defazio, A., Clifton, A., Sarkar, A.: Non-uniform

stochastic average gradient method for training conditional random fields. In: Proceedings of the

Eighteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2015, San

Diego, California, USA, May 9–12, 2015 (2015)

31. Shalev-Shwartz, S.: SDCA without duality, regularization, and individual convexity. arXiv:1602.01582

(2016)

32. Shalev-Shwartz, S., Zhang, T.: Accelerated mini-batch stochastic dual coordinate ascent. Adv. Neural

Inf. Process. Syst. 26, 378–385 (2013)

33. Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss. J. Mach.

Learn. Res. 14(1), 567–599 (2013). arXiv:1209.1873

34. Varga, R.S.: Eigenvalues of circulant matrices. Pac. J. Math. 1, 151–160 (1954)

35. Wang, C., Chen, X., Smola, A.J., Xing, E.P.: Variance reduction for stochastic gradient optimization.

In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds) Advances in

Neural Information Processing Systems, vol. 26, pp. 181–189. Curran Associates Inc. (2013)

36. Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction.

arXiv:1403.4699 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Affiliations

Robert M. Gower1 · Peter Richtárik2,3,4 · Francis Bach5

B Robert M. Gower

gowerrobert@gmail.com

1 LTCI, Telécom Paris, Institut Polytechnique de Paris, Palaiseau, France

2 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

3 University of Edinburgh, Edinburgh, UK

4 Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia

5 INRIA - ENS - PSL Research University, Paris, France

123

http://arxiv.org/abs/1706.01108
http://arxiv.org/abs/1602.01582
http://arxiv.org/abs/1209.1873
http://arxiv.org/abs/1403.4699
http://orcid.org/0000-0003-2320-5159

	Stochastic quasi-gradient methods: variance reduction via Jacobian sketching
	Abstract
	1 Introduction
	1.1 Variance-reduced methods
	1.2 Gaps in our understanding of SAGA
	1.3 Jacobian sketching: a new approach to variance reduction
	1.4 SAGA as a special case of JacSketch
	1.5 Summary of complexity results
	1.6 Outline of the paper
	1.7 Notation

	2 Controlled stochastic reformulations
	2.1 Stochastic reformulation using sketching
	2.2 The controlled stochastic reformulation
	2.3 The Jacobian estimate, variance reduction and the sketch residual
	2.4 JacSketch algorithm
	2.5 A window into biased estimates and SAG

	3 Convergence analysis for general sketches
	3.1 Two expected smoothness constants
	3.2 Stochastic contraction number
	3.3 Convergence theorem
	3.4 Projection lemmas and the stochastic contraction number κ
	3.5 Key lemmas
	3.6 Proof of Theorem 1

	4 Minibatch sketches
	4.1 Samplings
	4.2 Minibatch sketches and projections
	4.3 JacSketch for minibatch sampling = minibatch SAGA
	4.4 Expected smoothness constants mathcalL1 and mathcalL2
	4.5 Estimating the sketch residual ρ
	4.6 Calculating the iteration complexity for special cases
	4.7 Comparison with previous mini-batch SAGA convergence results

	5 A refined analysis with a stochastic Lyapunov function
	5.1 Convergence theorem
	5.2 Gradient estimate contraction
	5.3 Bounding the second moment of gk
	5.4 Smoothness and strong convexity of fIC, J
	5.5 Proof of Theorem 6
	5.6 Calculating the iteration complexity in special cases

	6 Experiments
	6.1 New non-uniform sampling using optimal probabilities
	6.2 Optimal mini-batch size
	6.3 Comparative experiments

	7 Conclusion
	Acknowledgements
	Appendix A: Proof of inequality (20)
	Appendix B: Duality of sketch-and-project and constrain-and- approximate
	Appendix C: Proof of Theorem 5
	Appendix D: Notation glossary
	References


