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Stochastic Ranking Algorithm for Many-Objective
Optimization Based on Multiple Indicators

Bingdong Li, Student Member, IEEE, Ke Tang, Senior Member, IEEE,

Jinlong Li, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Traditional multiobjective evolutionary algorithms
face a great challenge when dealing with many objectives.
This is due to a high proportion of nondominated solutions in
the population and low selection pressure toward the Pareto
front. In order to tackle this issue, a series of indicator-based
algorithms have been proposed to guide the search process
toward the Pareto front. However, a single indicator might
be biased and lead the population to converge to a subregion
of the Pareto front. In this paper, a multi-indicator-based
algorithm is proposed for many-objective optimization prob-
lems. The proposed algorithm, namely stochastic ranking-based
multi-indicator Algorithm (SRA), adopts the stochastic ranking
technique to balance the search biases of different indicators.
Empirical studies on a large number (39 in total) of problem
instances from two well-defined benchmark sets with 5, 10, and
15 objectives demonstrate that SRA performs well in terms of
inverted generational distance and hypervolume metrics when
compared with state-of-the-art algorithms. Empirical studies also
reveal that, in the case a problem requires the algorithm to have
strong convergence ability, the performance of SRA can be fur-
ther improved by incorporating a direction-based archive to store
well-converged solutions and maintain diversity.

Index Terms—Archive method, many-objective evolutionary
algorithm, multi-indicator, multiobjective optimization, stochastic
ranking.

I. INTRODUCTION

T
HE GOAL of optimizing a multiobjective optimization

problem (MOP) is to obtain an optimal tradeoff front
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[Pareto front (PF)] of different objectives. MOPs with more

than three objectives are often called many-objective opti-

mization problems (MaOPs) [1]. MaOPs appear in various

real-world applications such as car controller optimization [2],

software engineering [3], and water supply portfolio plan-

ning [4].

In recent decades, many multiobjective evolutionary algo-

rithms (MOEAs) have been proposed. However, tradi-

tional dominance-based MOEAs, such as NSGA-II [5] and

SPEA2 [6], have been shown to be inefficient when deal-

ing with MaOPs [7], [8]. With an increasing number of

objectives in the problem, the proportion of nondominated

solutions is quite large and the traditional Pareto dominance

loses its efficiency to push the population toward the PF.

This is referred to as dominance resistance phenomenon [9].

When the dominance-based (primary) selection criterion fails

to differentiate the nondominated solutions, the diversity-based

(secondary) criterion plays a vital role during environmental

selection. Thus, the final population may spreads all over the

objective space but fails to converge to the PF.

In order to overcome this obstacle, researchers have

proposed various many-objecitve evolutionary algorithms

(MaOEAs) in the literature. Based on the key ideas used, these

methods can be categorized into the six classes [10].

1) Relaxed dominance-based algorithms try to alleviate

the inefficiency of dominance by enlarging the domi-

nated area of a solution. A series of approaches have

been proposed, e.g., ǫ-dominance [11], controlling dom-

inance area of solution [12], and L-dominance [13].

Under these relaxed definitions, a solution has a higher

chance to be dominated by other solutions and thus

the selection pressure toward the PF is increased. One

representative relaxed dominance-based algorithm is the

GrEA [14] which uses grid-based convergence and

diversity measurements to compare nondominated solu-

tions. A difficult issue of these methods is to determine

the extent of relaxation of the new dominance definitions

for different problems and dynamically tuning method

has been studied [15].

2) Diversity-based methods try to improve the performance

through more advanced diversity maintaining strategy. In

general, by considering convergence to a certain amount,

these methods aim to reduce the detrimental impact

of diversity maintenance on the selection pressure. For

example, diversity management mechanism DM1 [16]

deactivates the diversity promotion mechanism once the

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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population is excessively diverse. Shift-based density

estimation (SDE) strategy [17] shifts the position of

solutions according to their convergence information

during the density estimation and it shows competitive

performance when integrated into SPEA2 [17], [18].

However, one might wonder what is the cost of these

strategies with the gain of selection pressure (for exam-

ple, SPEA2+SDE tends to concentrate on the central

area of PF when tackling DTLZ1 problems [19]).

3) The aggregation-based methods use a series of scalar-

izing functions to decompose the MaOPs into a set

of single objective subproblems. Various scalarizing

functions and weight vector generation methods have

been studied in [20] and [21]. MOEA/D [20] is a

popular aggregation-based method. The main advan-

tage of MOEA/D over other aggregation-based methods

lies in that it incorporates the neighborhood of sub-

problems to improve the efficiency of both generating

new solutions and selecting solutions for the next gener-

ation. However, it maintains relatively poor diversity for

high-dimensional problems and more advanced solution-

vector mapping method has been proposed [22]. Besides,

although the contour lines of different scalarizing func-

tions have been studied [23], [24], more in-depth studies

on the scalarizing functions for different problems are

still needed.

4) Indicator-based methods take advantage of indicator

values to guide the search process when optimiz-

ing an MaOP. Various indicators have been used to

design MaOEAs, such as hypervolume [25], genera-

tional distance (GD) [26], and inverted generational

distance (IGD) [27], and so on. The final solution set

depends mainly on the characteristics of the indicators

incorporated. However, hypervolume-based algorithms

(evolutionary multi-objective optimization algorithms

based S metric selection [28] and HypE [29]) are

usually more time-consuming compared with other algo-

rithms. Evaluating GD and IGD values needs a reference

set to serve as the PF. Since the true PF is usually

unknown a priori, maintaining the reference set is also

a nontrivial task.

5) Preference-based algorithms focus on the region of inter-

est according to the user’s preference information. In

order to select solutions, a series of preference mod-

els have been studied in the literature such as goal

specification, preference polyhedron, objective weight-

ing, and so on [30], yet how to choose the appropriate

preference model may be a problem-dependent task.

An interesting algorithm, namely preference-inspired

coevolutionary algorithms, model preference informa-

tion as a set of solutions which coevolve along with

the population [31], [32].

6) More recently, hybrid MaOEAs that combine two or

more of the abovementioned techniques have also

been proposed. Two representative algorithms are

NSGA-III [21] and Two_Arch2 [33]. NSGA-III is

based on Pareto and aggregation where the Pareto

dominance-based nondomination sorting is used to drive

the population toward the PF and a set of reference

directions are used to maintain the diversity of the

population.1 Two_Arch2 maintains two archives, i.e.,

the convergence archive (CA) and the diversity archive

(DA), to aim at convergence and diversity, respectively.

The additive indicator Iǫ+ is used to update CA while

Pareto dominance and a Lp-norm based nearest neigh-

bor distance is used to update DA. However, Two_Arch2

might fail to preserve the extreme points of the PF, while

NSGA-III may struggle to converge to the PF on multi-

modal problems, as can be seen from our experimental

results.

In order to tackle an MaOP, the indicator-based algorithms

seem to be quite straightforward since the final solution set

is evaluated according to the indicators. However, a single

indicator might bias the search toward a certain subregion.

For example, indicator-based evolutionary algorithm (IBEA),

an algorithm based on the Iǫ+ indicator, struggles to maintain

the diversity for solution set when dealing with many-objective

problems [33]. This phenomenon indicates that the Iǫ+ indi-

cator prefers convergence to diversity. Other indicators (e.g.,

the crowding distance [5], ISDE [17], etc.) may prefer diverse

solutions instead. Since indicators may have different biases,

which might complement each other, using multiple indica-

tors rather than a single one for environmental selection may

result in an even better algorithm. Motivated by this, a multi-

indicator algorithm is proposed in this paper. In particular, the

key question to develop such an algorithm is how to carry out

environmental selection based on multiple indicators that are

inconsistent with each other. We employ the stochastic ranking

technique, which was originally designed to balance the fitness

and constraint violation in constrained optimization, to address

this difficulty and show that the resultant algorithm, namely

stochastic ranking-based multi-indicator algorithm (SRA), can

achieve competitive performance on a large variety of test

problems.

The main contributions of this paper are summarized as

follows.

1) We introduce a new technique for balancing the influ-

ence of different indicators in a many-objective opti-

mization algorithm. The balance is achieved through

a ranking procedure based on the stochastic bubble-

sort. With a tunable parameter, it enables an algorithm

designer to make an appropriate tradeoff between dif-

ferent indicators.2

2) In order to deal with problems that require the algo-

rithm to have strong convergence ability, a direction-

based archive (DBA) is incorporated into SRA to store

well-converged solutions and maintain diversity.

3) Comprehensive experimental studies covering both

DTLZ and WFG problems reveal that different bench-

mark sets favor different algorithms and show the neces-

sity of using both test suites to evaluate the performance

of many-objective evolutionary algorithms.

1The perpendicular distance in NSGA-III is a component of PBI and
NSGA-III can be seen as a variant of MOEA/D; see the website of MOEA/D
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm.

2In this paper, we focus on algorithms based on two indicators due to space
limits. Yet the ranking procedure can be easily generalized into cases with
three or more indicators by specifying probability for all the indicators.
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The rest of this paper is organized as follows. Section II

introduces the preliminary background of many-objective

optimization. Section III presents the details of the SRA.

Section IV illustrates SRA with archive. Section V is devoted

to experimental setup. Section VI discusses the empirical

results. Section VII concludes this paper and indicates some

future directions.

II. PRELIMINARY BACKGROUND

A. MultiObjective Optimization Problem

Generally, an MOP can be stated as follows [34]:

minimize F(x) = ( f1(x), f2(x), . . . , fm(x))T

subject to x ∈ � (1)

where x = (x1, x2, . . . , xn) is the decision vector, � is the

(nonempty) decision space, F : � → � is the objective func-

tion vector, � is the objective space. Here, we refer to MOPs

as problems whose number of objectives m is larger than 1

and MaOPs as problems whose m is larger than 3.

B. Pareto Dominance

Given two solutions x, y ∈ �f , x is said to dominate y

(denoted as x ≺ y) if and only if ∀i ∈ {1, 2, . . . , m}, fi(x) ≤

fi(y) and ∃j ∈ {1, 2, . . . , m}, fj(x) < fj(y) [35].

C. Pareto Optimal Solution

A solution x∗ ∈ �f is said to be Pareto optimal if no other

solution x ∈ �f can dominate it.

D. Pareto Set

The solution set consists of all the Pareto optimal solutions

is called the Pareto Set: PS = {x ∈ �f |∀y ∈ �f , y ⊀ x}.

E. Pareto Front

The corresponding objective vector set of the Pareto Set is

called the PF.

F. Approximation Set

An approximation set A ⊂ � is defined as a solution set

where no member of A dominates or is equal to any other

member in A [36].

The goal of optimizing an MaOP is to obtain an approxi-

mation set A considering the following two subgoals [37].

1) Convergence: A are as close as possible to the PF.

2) Diversity: A spreads as diversely as possible.

G. Quality Indicator

An k-ary quality indicator I is a function I : Ŵk → R, which

assigns each vector (A1, A2, . . . , Ak) of k approximation sets

a real value I(A1, A2, . . . , Ak) [36]. Quality indicators quan-

tify the goodness of a solution set in terms of convergence,

diversity, or both.

Algorithm 1: Main Loop of SRA

input : an MaOP, population size N
output: an approximation set Aout

1 Randomly generate the initial population P0
2 Evaluate all the individuals in P0
3 Set Q0 ← Ø, t ← 0
4 while t < MaxGen do
5 for each i ∈ N do
6 Create an offspring qi with randomly chosen p1,p2 ∈

Pt

7 Set Qt ← Qt ∪ {qi}

8 end
9 Evaluate the offspring population Qt

10 Obtain the combined population: Ut ← Pt ∪ Qt

11 Compute the indicator values I1(ui) and I2(ui) for all
ui ∈ Ut

12 Set the probability parameter pc

13 Stochastic ranking based environmental selection: Pt+1 ←

SRES(Ut, pc)
14 t ← t + 1
15 end
16 Return the non-dominated solutions of At+1 as Aout

III. PROPOSED SRA

A. Overview

In the proposed SRA, a stochastic ranking procedure is

employed to carry out environmental selection based on

multiple indicators. The framework of SRA is described in

Algorithm 1. First, N solutions are randomly created as the

initial population. At each generation, randomly picked parent

individuals are used to create offspring. After fitness eval-

uation, the offspring population is merged with the parent

population. Then the indicator values of the merged population

are computed. After that, the stochastic ranking based proce-

dure is implemented for environmental selection. When the

iterative optimization is finished, the nondominated solutions

in the final population is returned as the output.

B. Indicators

Computationally, Algorithm 1 can accommodate any com-

putable indicators (i.e., the I1 and I2 in line 11). However,

since we expect to acquire additional benefits by involving

two indicators, intuitively they should show different biases,

e.g., one favors convergence and the other prefers diversity.

Hence, the indicators Iǫ+ [38] and ISDE [17] are chosen for

SRA since: 1) these two indicators have been shown to be

effective in terms of convergence or diversity and 2) they do

not involve the nontrivial task of setting appropriate reference

set/point.

The additive indicator Iǫ+ and the corresponding I1(x) for

comparing solutions are defined as

Iǫ+(x, y) = min
ǫ

( fi(x) − ǫ ≤ fi(y), i ∈ {1, . . . , m}) (2)

I1(x) =
∑

y∈P,y �=x

−e−Iǫ+(x,y)/0.05 (3)

where P is the population3 that includes x and y.

3Note that the population P discussed in this section corresponds to the
combined population Ut in SRA.
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The ISDE and the corresponding I2(x) for comparing solu-

tions are defined as

ISDE(x, y) =

√

∑

1≤i≤m
sd( fi(x), fi(y))2 (4)

I2(x) = min
y∈P,y precedes x

{ISDE(x, y)} (5)

where

sd( fi(x), fi(y)) =

{

fi(y) − fi(x) if fi(x) < fi(y)

0 otherwise.
(6)

Here, y precedes x means that the original index of the position

of y in the population P is smaller than x. It should be noted

that (5) is different from the original definition in [17], which

computes (4) for all pairs of x and y. The reason is that adopt-

ing multiple indicators introducing additional computational

costs, i.e., two indicators (instead of one) need to be com-

puted. The computational overhead can be reduced by using

(5) instead of the original definition. Meanwhile, this modifi-

cation did not deteriorate the performance of SRA according

to our preliminary experimental studies.

C. Stochastic Ranking-Based Environmental Selection

Suppose N individuals need to be selected from 2N indi-

viduals. Intuitively, the environmental selection can be viewed

as comprising two steps. That is, the 2N individuals are first

sorted according to a criterion, and then the best N are selected.

The sorting process is trivial when only one indicator is

employed, since it only takes the indicator value of each indi-

vidual as the input. In case of multiple indicators, however,

sorting becomes much more complicated, because different

indicators might assign different ranks to the same individual.

In fact, this is likely to happen especially when the indica-

tors favor different aspect of multiobjective optimization, i.e.,

convergence and diversity. The sorting result in such a case

should represent good balance between two indicators that pro-

duce inconsistent ranks to the same population. This scenario

is similar to that commonly encountered in constrained (single

objective) optimization, in which one may get quite different

results by sorting the population according to fitness and con-

straint violation. Therefore, SRA utilizes the stochastic ranking

technique [39], an approach that has been shown to be effec-

tive for the sorting problem in constrained optimization, to

address the sorting problem in multiple indicator MaOEAs.

To be specific, stochastic ranking is applied once the

indicator values of all individuals are obtained (line 13 in

Algorithm 1). As shown in Algorithm 2, stochastic ranking

is a stochastic bubble-sort algorithm. It ranks the individu-

als by sweeping the whole population (of size 2N) for N

times.4 During each sweep, all adjacent individuals are com-

pared according to values of a randomly chosen indicator. The

sweep stops if there is no change in the rank ordering. The

tradeoff of different indicators is controlled by the parameter

pc ∈ (0, 1). After the ranking procedure terminates, the top N

individuals will be selected.

4Population size N = |Ut|/2.

Algorithm 2: Stochastic Ranking Based Environmental

Selection
input : combined population Ut = {u1, . . . , u2N},

parameter pc

output: sorted population Pt+1

1 for sweepCounter ← 1 to |Ut|/2 do

2 for j ← 1 to |Ut| − 1 do

3 Sample u ∈ U(0, 1)

4 if u < pc then

5 if I1(uj) is worse than I1(uj+1) then

6 swap(uj, uj+1)

7 end

8 else

9 if I2(uj) is worse than I2(uj+1) then

10 swap(uj, uj+1)

11 end

12 end

13 end

14 if no swap done then

15 break;

16 end

17 end

18 Copy top |Ut|/2 solutions of Ut to Pt+1

D. Computational Complexity Analysis

Given an MaOP with m objectives and a population size

of N, the time complexity of each generation of SRA is as

follows: first, the time complexity of creating a new popula-

tion (lines 5–8 in Algorithm 1) is O(N). Second, the fitness

evaluation and population merging steps (lines 9 and 10 in

Algorithm 1) need O(mN) and O(N), respectively. Third, the

time complexity of computing I1(ui) and I2(ui) for all ui ∈ Ut

is O(mN2). Fourth, the stochastic ranking-based environmen-

tal selection procedure (line 13 in Algorithm 1) takes O(N2)

time complexity. In summary, the computational complexity

is O(mN2), which is at the same level as the complexity of

NSGA-III and Two_Arch2 [33].

IV. SRA WITH ARCHIVE

The SRA presented in Section III randomly chooses

two individuals from a population to generate an offspring.

Meanwhile, some other schemes, such as maintaining an exter-

nal archive have shown their advantages in a number of

existing MaOEAs [33], [40]. Thus, a variant of SRA, namely

SRA with Archive (SRA2) is further developed by incorporat-

ing a DBA into SRA. Here, the search directions are defined

by a set of weight vectors,5 which are set according to the

method in [21]. Given a set of weight vectors, SRA2 first

generates 2N individuals, N of which are randomly assigned

to each weight vector and are treated as the initial archive.

The other N individuals are adopted as the initial population.

In each generation, each member in the archive is recombined

5Although using the weight vector–based mechanism can obtain a perfect
distribution of solutions on some MOPs, it may fail on some discontinuous
MOPs, such as DTLZ7 [41].
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Fig. 1. Associate solutions to weight vectors (denoted as V1, . . . , V5). All the
solutions (denoted as S1, . . . , S5) that survive the stochastic ranking-based
multi-indicator environmental selection in the previous step are associated
with the weight vector with the minimum perpendicular distance.

with an individual randomly picked from the current popula-

tion to generate an offspring. Then, the archive is updated after

the environmental selection step using the new population.

The pseudocode of the archive update procedure is shown

in Algorithm 3. For weight vector–based methods, two key

aspects are the association step and the replacement step. In

SRA2, an individual is associated to the weight vector with the

minimum perpendicular distance according to [21] and [22].

An illustration of the association step is shown in Fig. 1. After

that, an individual can replace at most nr archive members

corresponding to the neighbors of the associated weight vector,

as long as it obtains better fitness value than the archive mem-

bers along the directions [20]. The penalty-based boundary

intersection (PBI) [20] fitness function, defined as a weighted

sum of the perpendicular distance and the projection length,

is adopted in SRA2 to compare an individual with the archive

member.

In terms of computational complexity, the main additional

cost induced by the use of archive lies in the archive updating

phase. For each of the N solutions, the complexity of associat-

ing the solution to a weight vector and of updating the archive

members is O(Nm) and O(Tm), respectively. Since T ≪ N,

the complexity for the archive updating phase is O(mN2), In

other words, SRA and SRA2 have the same computational

complexity, while the latter is more time-consuming than the

former in practice.

V. EXPERIMENTAL SETUP

A. Test Problems

In order to evaluate the performance of our algorithm, we

have tested it on two well-defined benchmark problem sets:

DTLZ [42] and WFG [43] test suites.6 Specifically, DTLZ1-

DTLZ4 and WFG1-WFG9 with 5, 10, and 15 objectives are

used for empirical studies. The parameter settings and the

characteristics of the problems are listed in Table I.

6For DTLZ1, we use the normalized form as in [20] and the PF is the
hyper-plane satisfying that

∑m
i=1 fi = 1.

Algorithm 3: Archive Update Procedure

input : an archive A = {a1, a2, . . . , aN},

a population P = {s1, s2, . . . , sN},

a weight vector set V = {v1, v2, . . . , vN},

a neighborhood matrix B = {bi,j}N×T ,

max replacement number nr

output: Updated Archive A

1 Normalize the archive and population

2 for each si ∈ P do

3 for each vj ∈ V do

4 compute the length of the perpendicular line

segment of si and vj

5 end

6 associate si with the weight vector vj∗ with shortest

perpendicular distance

7 Set counter ← 0

8 Generate a random permutation perm of [1, . . . , T]

9 for t = 1; t ≤ T; t ← t + 1 do

10 k = bj∗,perm[t] ∈ B

11 if fit(si, vk) < fit(ak, vk) then

12 set ak ← si, counter ← counter + 1

13 end

14 if counter ≥ nr then

15 break

16 end

17 end

18 end

B. Performance Metrics

In the experiment, we use two indicators, the hypervolume

indicator (HV) [25] and IGD [27]. Both of them are widely

used in [21] and [33].

IGD [27] is a distance-based metric, which is defined as

IGD
(

A, PF
′
)

=
1

|PF
′
|

(

∑|PF
′
|

i=1
distance

(

pi, A
)p

)

1
p

(7)

where A = {a1, a2, . . . , a|A|} is an approximation set of the

PF, PF
′
= {p1, p2, . . . , p

|PF
′
|
} is a subset of the true PF. The

distance between a solution and a solution set is defined as

the minimum distance between the solution and all solution

set members. Here p is set to 1. Since the PF is known a priori

for both DTLZ1-4 and WFG1-9 problems, we sample 500 000

points on the Pareto surface as PF
′

according to [33]. The

IGD metric can measure the convergence and diversity of an

solution set simultaneously. The smaller the IGD value is, the

better the solution set is.

The HV measures the volume of solutions that is dom-

inated by the approximation set [25], [28]. Given a refer-

ence point z† and an approximation set A, HV(z†, A) is

defined as

HV
(

z†, A
)

= L

({

⋃

a∈A

{

b ∈ �
∣

∣a ≺ b ≺ z†
}

)

(8)
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TABLE I
PARAMETER SETTINGS AND CHARACTERISTICS OF THE TEST PROBLEMS

TABLE II
POPULATION SIZE SETTINGS OF THE REPRESENTATIVE ALGORITHMS

where L is the Lebesgue measure, z† is the reference point in

the objective space. It measures both convergence and diver-

sity of an approximation set. HV is the only indicator which is

Pareto-compliant [29]. A higher HV value indicates a larger

volume is dominated by the approximation set, thus corre-

sponding to better performance. In our experiments, the output

population is first normalized using the 1.1× znadir. After that,

the hypervolume is computed using (1.0, . . . , 1.0)T as the ref-

erence point. In order to estimate the true HV value, we use

a method from [44] according to [45].

C. State-of-the-Art Algorithms

In order to verify the performance of the proposed algo-

rithm, the following state-of-the-art many-objective evolution-

ary algorithms (implemented in the jMetal framwork [46] on

a 32-core 2.60 GHz Intel Xeon CPU with 64 GB RAM) are

considered.

1) HypE [29]: HypE is an indicator-based many-objective

algorithm. It uses Monte Carlo sampling to approxi-

mate the exact Hypervolume values. This enables the

user to make a tradeoff between accuracy and compu-

tation time. Moreover, solutions are compared with the

expected hypervolume loss for environmental selection

as well as mating selection, aiming to maximizing the

hypervolume of the solution set.

2) AGE-II [47]: AGE-II is an approximation indicator-

based algorithm [48]. It adopts ǫ-dominance to store all

the ǫ-nondominated solutions into an archive.7 During

environmental selection, the solution set that approxi-

mates the archive best is kept for the next generation.

7Thus, it can also be categorized into the relaxed dominance-based
algorithms.

TABLE III
PERFORMANCE COMPARISON OF SRA AND SRA2 IN TERMS OF

THE AVERAGE IGD AND HV VALUES ON DTLZ PROBLEMS.
THE BETTER AVERAGE VALUES OF THE TWO ALGORITHMS

FOR EACH INSTANCE ARE HIGHLIGHTED IN GRAY

3) NSGA-III [21]: NSGA-III use a set of weight vectors

to indicate different search directions. In order to main-

tain diversity, it associate solutions to weight vectors

and compares niche counts of different weight vectors.

The algorithm has been shown to be highly competitive

according to [21] and [33].

4) Two_Arch2 [33]: Two_Arch2 is a newly proposed algo-

rithm that uses two archives to take care of convergence

and diversity, respectively. The CA is updated accord-

ing to the additive indicator Iǫ+, while the DA is

updated according to the Lp-norm-based nearest neigh-

bor distance.
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Fig. 2. Solution set obtained by three variants of stochastic ranking with the parameter pc set to 0 (left), 0.5 (middle), and 1 (right), respectively, (corresponding
to Iǫ+ only, Iǫ+ and ISDE, ISDE only scenarios) on 10-objective DTLZ1 problem.

TABLE IV
PERFORMANCE COMPARISON OF SRA AND SRA2 WITH STATE-OF-THE-ART ALGORITHMS IN TERMS OF THE AVERAGE IGD VALUES

ON DTLZ PROBLEMS. THE BEST AND SECOND BEST AVERAGE IGD VALUES AMONG ALL THE ALGORITHMS FOR

EACH INSTANCE ARE HIGHLIGHTED IN GRAY AND LIGHT GRAY

5) SPEA2+SDE [17]: SPEA2+SDE adopts the SDE into

SPEA2 to improve the convergence of the algorithm on

many-objective optimization problem. Numerical studies

have demonstrated the efficiency of the algorithm.

6) MOEA/D [20]: MOEA/D is a weight vector-based

algorithm that decomposes an MaOP into a set of

single-objective subproblems. The convergence of the

algorithm is improved by the neighborhood definition

and the diversity is maintained by the search directions

represented by the weight vectors.

7) IBEA [38]: IBEA is based on the Iǫ+ indicator. It has

been shown that it may converge quickly but leads to a

solution set with poor diversity, which indicates that it

might cause biased search on some problems.

D. Parameter Settings

The general and algorithm-specific parameter settings are

summarized as follows.

1) Population Size: The population size of representative

algorithms is shown in Table II. For the other algorithms,

the population size is the same with that of NSGA-III.

2) Reproduction Operators: The simulated binary

crossover operator and polynomial mutation are used

for reproducing offspring solutions [49]. The mutation

probability is set to 0.1, the crossover probability is

set to 1.0. The mutation distribution index ηm and the

crossover distribution index ηc are set to = 15.0 [33].

3) The neighborhood size is set to 20 and the maximum

replacement number is set to 2 for MOEA/D and SRA2.

4) The ǫ in AGE-II is set to 0.1 [45].

5) Termination Criterion: All algorithms are allowed for

a maximum of 90 000 fitness evaluations for all the

problem instances.

6) Number of Runs: For all the problems instances, all the

algorithms are repeated 20 times independently.

7) Statistical Test: In order to test the difference of algo-

rithms, the Wilcoxon rank sum test [50] (0.05 signifi-

cance level) is applied for analysis.

8) The value of parameter pc [pc lies in (0, 1)] needs

to be set for SRA and SRA2. This parameter is an

inherent parameter of stochastic ranking and controls

the balance between indicators. The optimal value for

pc is problem-dependent and may vary as the search

progresses. To make a fair comparison, pc was not

fine-tuned for each test instance. Instead, preliminary

experiment was conducted on DTLZ1 with 5, 10, and

15 objectives. The performance of SRA and SRA2 with

pc setting to 0.3 to 0.7 with step size 0.1 were com-

pared. It was found that pc ∈ [0.4, 0.6] works well for

both algorithms. Hence, pc was set to a random num-

ber generated in this range at each generation of SRA

and SRA2.

VI. RESULTS AND DISCUSSIONS

A. Bias of Indicators

In this experiment, we choose the ten objective DTLZ1

problem for investigation [33]. In order to show the search
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TABLE V
PERFORMANCE COMPARISON OF SRA AND SRA2 WITH STATE-OF-THE-ART ALGORITHMS IN TERMS OF THE AVERAGE HV VALUES

ON DTLZ PROBLEMS. THE BEST AND SECOND BEST AVERAGE HV VALUES AMONG ALL THE ALGORITHMS FOR

EACH INSTANCE ARE HIGHLIGHTED IN GRAY AND LIGHT GRAY

TABLE VI
PERFORMANCE COMPARISON OF SRA AND SRA2 WITH STATE-OF-THE-ART ALGORITHMS IN TERMS OF THE AVERAGE IGD VALUES

ON WFG PROBLEMS. THE BEST AND SECOND BEST AVERAGE IGD VALUES AMONG ALL THE ALGORITHMS FOR

EACH INSTANCE ARE HIGHLIGHTED IN GRAY AND LIGHT GRAY

bias of indicators, we implement three variants of stochastic

ranking with the parameter pc set to 1, 0.5, and 0 (corre-

sponding to Iǫ+ only, Iǫ+ and ISDE, ISDE only scenarios).

The direction-based archive is not included in the three vari-

ants in order to keep the algorithm behavior away from the

archive’s impact. Fig. 2 shows a typical solution set in par-

allel coordinates obtained by the three algorithm variants. As

can be seen from the figure, Iǫ+ leads the population to con-

vergence to a single solution in the objective space; ISDE

results in a diverse population yet it is unable to push the

population to converge to the PF; the combination of the two

indicators with a probability of 0.5 results in a well-converged

and well-spreading population.

B. Effectiveness of Archive

In order to show the effectiveness of the archive, we com-

pared SRA and SRA2 (SRA with archive) on DTLZ1-4

problems with 5, 10, and 15 objectives. The IGD and HV

results are shown in Table III. From the table, we can see

that the overall performance of SRA2 is better than SRA in

terms of both IGD and hypervolume, since the right column
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TABLE VII
PERFORMANCE COMPARISON OF SRA AND SRA2 WITH STATE-OF-THE-ART ALGORITHMS IN TERMS OF THE AVERAGE HV VALUES

ON WFG PROBLEMS. THE BEST AND SECOND BEST AVERAGE HV VALUES AMONG ALL THE ALGORITHMS FOR

EACH INSTANCE ARE HIGHLIGHTED IN GRAY AND LIGHT GRAY

corresponding to SRA2 contains more gray items than the left

one. For multimodal problems DTLZ1 and DTLZ3, SRA2 per-

forms better than SRA in terms of IGD. The major credit

goes to the direction based archive, which helps to tackle

the multimodal issue and improve the convergence of the

algorithm. For unimodal problems DTLZ2 and DTLZ4, the

contradiction between different indicators seems to be less

than that on multimodal problems. SRA2 is better than SRA in

terms of hypervolume, which indicates that the archive helps

to maintain diversity for the population.

C. Comparison With State-of the-Art Algorithms

The performance comparisons of the peer algorithms on

DTLZ and WFG problems in terms of IGD and HV are

shown in Tables IV–VII, respectively. Table VIII presents

the pair-wise comparison results according to Wilcoxon rank

sum test. Based on the statistical test results, the average

performance score (APS) [29] is further calculated to reveal

the overall performance of the algorithms. Given a certain

problem instance, the performance score of an algorithm

is defined as the number of algorithms that beat the algo-

rithm on the specific instance significantly. The smaller the

performance score is, the better the algorithm performs on

that instance. Here, the APS over all test instances for all

these algorithms in terms of IGD and HV is summarized

in Fig. 3.

From the results of Wilcoxon rank sum test and APS, it can

be observed that both SRA and SRA2 achieve competitive

performance since they are both among the top three algo-

rithms in terms of the overall IGD (rank 2nd and 3rd,

respectively) as well as the overall HV (rank 1st and 2nd,

respectively). Moreover, one should note that the best algo-

rithms in terms of the overall IGD and HV are two different

algorithms. These results demonstrate that the proposed SRA

and SRA2 are able to achieve good performance in terms of

different performance metrics through adopting the stochastic

ranking strategy with multiple indicators.

The performance of algorithms not only vary over perfor-

mance metrics, but also vary over problem classes. From the

statistical test table and Fig. 3, one can see that our algo-

rithms generally perform better on WFG problems than on

DTLZ problems. This is because that the DTLZ test suite

requires an algorithm to have strong convergence abilities but

does not require strong diversification properties [51]. In SRA

and SRA2, on the other hand, both indicators (emphasizing

convergence and diversity, respectively) are given the same

importance. We can also observe that SRA2 achieves better

performance than SRA on the DTLZ test suite, while this is

not the case for WFG problems. The direction-based archive in

SRA2 seems to be too greedy for WFG problems in terms of

convergence over diversity. This also verifies the reason why

SRA does not perform as well on DTLZ problems to some

extent.
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TABLE VIII
SUMMARY OF THE WILCOXON TEST IN TERMS OF PERFORMANCE METRICS BETWEEN DIFFERENT ALGORITHMS ON DTLZ AND

WFG PROBLEMS. THE PAIRWISE WIN-TIE-LOSS COUNTS OF ROWS AGAINST COLUMNS ARE SHOWN IN THE TABLE

1) DTLZ Test Suite: A closer look of the results in

Tables IV and V can tell us that other algorithms achieve

mixed performance on DTLZ problems. To be specific, accord-

ing to Table IV, AGE-II and SPEA2+SDE are the best

two algorithms in terms of IGD, yet the order of these

two algorithms may vary with different objective numbers.

Similar results are obtained for MOEA/D and NSGA-III

in terms of HV on Table V. Thus, we show the paral-

lel coordinates of the solution sets on 10-objective prob-

lems with the best IGD value among all the 20 runs in

Figs. 4–78 and discuss the results on DTLZ problems in

detail.

For the DTLZ1 problem, SPEA2+SDE and NSGA-III

achieve the best IGD and hypervolume performance, respec-

tively. From Fig. 4, we can see that HypE, AGE-II, and IBEA

lead the population to sub-regions of the PF in different forms,

which demonstrates the search bias of indicators to some

8The population of SRA2 is not shown in this paper due to space
limitations.
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Fig. 3. APS for all the compared algorithms on the instances from (a) DTLZ (left), (b) WFG (middle), and (c) both test suites (right). The smaller the APS
is, the better the algorithm performs.

Fig. 4. Solution set corresponding to the best IGD values for all algorithms on DTLZ1 problems with ten objectives. The x-axis is the objective number,
while the y-axis is the objective value.

extents. The scale of SPEA2+SDE objective values [0, 0.8) are

smaller than the true PF [0, 1], which indicates that the algo-

rithm has certain extent of preference for the solutions located

in the central area. Our algorithm obtains medium performance

on these instances in terms of both IGD and HV.

For the DTLZ2 problem, AGE-II has the best IGD value

for the five and ten objective instance. For the 15-objective

instances, MOEA/D performs best in terms of IGD, respec-

tively. As for the hypervolume value, MOEA/D always shows

the best value. From Fig. 5, one can see that, on the



LI et al.: STOCHASTIC RANKING ALGORITHM FOR MANY-OBJECTIVE OPTIMIZATION BASED ON MULTIPLE INDICATORS 935

Fig. 5. Solution set corresponding to the best IGD values for all algorithms on DTLZ2 problems with ten objectives. The x-axis is the objective number,
while the y-axis is the objective value.

Fig. 6. Solution set corresponding to the best IGD values for all algorithms on DTLZ3 problems with ten objectives. The x-axis is the objective number,
while the y-axis is the objective value.

10-objective DTLZ2 instance, HypE converges to a small

number of optimal solutions, while other indicator-based

algorithms (AGE-II, IBEA, SRA) provide populations with

good convergence and diversity. All three weight vector-

based algorithms, NSGA-III, MOEA/D, and SRA2, achieve

well-organized PF approximation sets.

DTLZ3 includes a great number of local optima, and

imposes a great challenge for the algorithms to push the pop-

ulation toward the PF. For the DTLZ3 problem, the best IGD

performance is achieved by MOEA/D and AGE-II while the

best hypervolume value is achieved by SRA. From Fig. 6, one

can see that HypE and IBEA still have issues with maintain-

ing diversity. Both NSGA-III and Two_Arch2 have trouble

converging within the given number of fitness evaluations.

One reason for the poor convergence of NSGA-III is that

the Pareto dominance-based nondomination sorting loses its

efficiency in high dimensional problems. The remaining algo-

rithms show good convergence and diversity on this test

problem.

For the DTLZ4 problem, the main challenge, maintain-

ing diversity of the population, is created by a nonuniform

density of solutions. AGE-II and MOEA/D perform best in

terms of IGD and HV, respectively. Since this is a unimodal

problem, it does not cause much trouble for the conver-

gence of the tested algorithms. From Fig. 7, we can see

that HypE performs poorly in terms of maintaining diver-

sity. Two_Arch2 has trouble to obtain the boundary solutions

on the PF.
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Fig. 7. Solution set corresponding to the best IGD values for all algorithms on DTLZ4 problems with ten objectives. The x-axis is the objective number,
while the y-axis is the objective value.

Fig. 8. Solution set corresponding to the best IGD values for all algorithms on WFG4 problems with ten objectives. The x-axis is the objective number,
while the y-axis is the objective value.

2) WFG Test Suite: The results on WFG problems look

more clear, so relatively less discussion is devoted to the WFG

test suite. Our SRA and SRA2 performs well on WFG prob-

lems in terms of both IGD and HV. In fact, SRA ranks second

in terms of overall IGD and first in terms of the overall hyper-

volume. The other algorithm which also rank 1st in terms of

HV, i.e., HypE, obtains the second worst IGD. Table VIII also

shows similar results of SRA and HypE, where the pairwise

win-tie-loss counts of HypE against SRA in terms of IGD and

HV are 0-0-27 and 13-4-10, respectively. This is another evi-

dence that shows different indicators may have different biases.

Not surprisingly, HypE performs well in terms of hypervol-

ume since it is guided by the HV. Yet this comes with a loss

in performance in terms of the IGD metric.

In order to reveal more details of the population of the

algorithms, the results on the ten objective WFG4 problem is

shown by parallel coordinates in Fig. 8. From the figure, one

can see that the solution sets of HypE and IBEA are rather

poorly distributed, while the proposed SRA provides a more

evenly distributed population over different objective dimen-

sions. This is because that emphasizing a single indicator may

cause performance deterioration in terms of other indicators.

VII. CONCLUSION

In this paper, a multi-indicator-based algorithm is proposed

for many-objective optimization problems. The proposed algo-

rithm, namely SRA, employs the stochastic ranking technique
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to balance the search biases of different indicators. Moreover,

in the case a problem requires the algorithm to have strong

convergence ability, the performance of SRA can be further

improved by incorporating an direction-based archive, which

preserves well-converged solutions and maintains diversity.

Experimental results on 39 test instances with 5, 10, and 15

objectives from two benchmark problem suites indicate that

the proposed algorithm is competitive compared with state-

of-the-art algorithms in terms of both IGD and hypervolume.

As a side note, we could like to encourage all researchers to

carry out experimental studies on both DTLZ and WFG prob-

lems because they have very different characteristics. Using

only one of them could potentially bias conclusions drawn

from the experiments.

Although the overall performance of SRA is very promising,

more studies need to be carried out in the future. First, a simple

parameter setting scheme is adopted in the current version of

SRA. Yet the effect of the parameters on SRA’s performance

should be thoroughly studied and some adaptive parameter

strategies can be proposed accordingly. Second, only one pair

of indicators is studied in this paper. It should be interesting

to examine the behavior of SRA with other indicators. Third,

SRA is outperformed by MOEA/D on the DTLZ test suite.

The main reason for this needs to be studied. Fourth, the per-

formance of SRA on real-world applications and combinatorial

problems with more objectives needs to be tested.
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