
Stochastic Rate Parameter Inference

Using the Cross-Entropy Method

Jeremy Revell and Paolo Zuliani(B)

School of Computing, Newcastle University, Newcastle upon Tyne, UK
{j.d.revell1,paolo.zuliani}@ncl.ac.uk

Abstract. We present a new, efficient algorithm for inferring, from time-
series data or high-throughput data (e.g., flow cytometry), stochastic rate
parameters for chemical reaction network models. Our algorithm com-
bines the Gillespie stochastic simulation algorithm (including approxi-
mate variants such as tau-leaping) with the cross-entropy method. Also,
it can work with incomplete datasets missing some model species, and
with multiple datasets originating from experiment repetitions. We eval-
uate our algorithm on a number of challenging case studies, including
bistable systems (Schlögl’s and toggle switch) and experimental data.

1 Introduction

In this paper we are concerned with the inference of biochemical reaction stochas-
tic rate parameters from data. Reactions are discrete events that can occur ran-
domly at any time with a rate dependent on the chemical kinetics [40]. It has
recently become clear that stochasticity can produce dynamics profoundly dif-
ferent from the corresponding deterministic models. This is the case, e.g., in
genetic systems where key species are present in small numbers or where key
reactions occur at a low rate [23], resulting in transient, stochastic bursts of
activity [4,24]. The standard model for such systems is the Markov jump pro-
cess popularised by Gillespie [13,14]. Given a collection of reactions modelling
a biological system and time-course data, the stochastic parameter inference

problem is to find parameter values for which the Gillespie model’s temporal
behaviour is most consistent with the data. This is a very difficult problem,
much harder, both theoretically and computationally, than the corresponding
problem for deterministic kinetics—see, e.g., [41, Sect. 1.3]. One simple reason
is because stochastic models can behave widely differently from the same ini-
tial conditions. (The related issue of parameter non-identifiability is outside the
scope of this paper, but the interested reader can find more in, e.g., [37,38] and
references therein.) Additionally, experimental data is usually sparse and most
often involves only a limited subset of a model’s species; and the system under
study might exhibit multimodal behaviour. Also, data might not directly relate
to a species, it might be measured in arbitrary units (e.g., fluorescence measure-
ments), thus requiring the estimation of scaling factors, or it might be described
by frequency distributions (e.g., high-throughput data such as flow cytometry).
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Stochastic parameter inference is thus a fundamental and challenging problem in
systems biology, and it is crucial for obtaining validated and predictive models.

In this paper we propose an approach for the parameter inference problem
that combines Gillespie’s Stochastic Simulation Algorithm (SSA) with the cross-
entropy (CE) method [27]. The CE method has been successfully used in opti-
misation, rare–event probability estimation, and other domains [29]. For param-
eter inference, Daigle et al. [8] combined a stochastic Expectation–Maximisation
(EM) algorithm with a modified cross-entropy method. We instead develop the
cross-entropy method in its own right, discarding the costly EM algorithm steps.
We also show that our approach can utilise approximate, faster SSA variants such
as tau-leaping [15]. Summarising, the main contributions of this paper are:

– we present a new, cross entropy-based algorithm for the stochastic parameter
inference problem that outperforms previous, state–of–the–art approaches;

– our algorithm can work with multiple, incomplete, and distribution datasets;
– we show that tau-leaping can be used within our technique;
– we provide a thorough evaluation of our algorithm on a number of challenging

case studies, including bistable systems (Schlögl model and toggle switch) and
experimental data.

2 Background

Notation. Given a system with n chemical species, the state of the system at
time t is represented by the vector x(t) = (x1(t), . . . , xn(t)), where xi represents
the number of molecules of the ith species, Si, for i ∈ {1, . . . , n}. A well-mixed
system within a fixed volume at a constant temperature can be modelled by
a continuous-time Markov chain (CTMC) [13,14]. The CTMC state changes
are triggered by the (probabilistic) occurrences of chemical reactions. Given m
chemical reactions, let Rj denote the jth reaction of type:

Rj : ν−
j,1S1 + . . . + ν−

j,nSn

θj

→ ν+
j,1S1 + . . . + ν+

j,nSn,

where the vectors ν−
j and ν+

j represent the stoichiometries of the underlying
chemical kinetics for the reactants and products, respectively. Let νj ∈ Zn

denote the overall (non-zero) state-change vector for the jth reaction type, specif-
ically νj = ν+

j − ν−
j , for j ∈ {1, . . . , m}. Assuming mass action kinetics (and

omitting time dependency for x(t)), the reaction Rj leads to the propensity [41]:

hj(x,θ) = θjαj(x) = θj

n
∏

i=1

(

xi

ν−
j,i

)

, (1)

where θ = (θ1, . . . , θm)⊺ is the vector of rate constants. In general, θ is unknown
and must be estimated from experimental data—that is the aim of our work.
Our algorithm can work with propensity functions factorisable as in (1), but it is
not restricted to mass action kinetics (i.e., the functions αj ’s can be arbitrary).
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Cross-Entropy Method for Optimisation. The Kullback-Leibler divergence
[20] or cross-entropy (CE) between two probability densities g and h is:

D(g, h) = Eg

[

ln
g(X)

h(X)

]

=

∫

g(x) ln
g(x)

h(x)
dx

where X is a random variable with density g, and Eg is expectation w.r.t. g.
Note that D(g, h) ≥ 0 with equality iff g = h (almost everywhere). (However,
D(g, h) �= D(h, g).) The CE has been successfully adopted for a wide range of
hard problems, including rare event simulation for biological systems [7], discrete,
and continuous optimisation [28,29]. Consider the minimisation of an objective

function J over a space χ (assuming such minimum exists), γ∗ = min
x∈χ

J(x). The

CE method performs a Monte Carlo search over a parametric family of densities
{f(·;v),v ∈ V} on χ that contains as a limit the (degenerate) Dirac density
that puts its entire mass on a value x∗ ∈ χ such that J(x∗) = γ∗—the so called
optimal density. The key idea is to use the CE to measure how far a candidate
density is from the optimal density. In particular, the method solves a sequence
of optimisation problems of the type below for different values of γ by minimising
the CE between a putative optimal density g∗(x) ∝ I{J(x)≤γ}f(x,v∗) for some
v∗ ∈ V, and the density family {f(·;v),v ∈ V}

min
v∈V

D(g∗, f(·;v)) = max
v∈V

Eu

[

I{J(X )≤γ} ln f(X;v)
]

(2)

where I is the indicator function and X has density f(·;u) for u ∈ V. The
definition of density g∗ above essentially means that, for a given γ, we only
consider densities that are positive only for arguments x for which J(x) � γ.
The generic CE method involves a 2-step procedure which alternates solving (2)
for a candidate g∗ with adaptively updating γ. In practice, problem (2) is solved
approximately via a Monte Carlo adaptation, i.e., by taking sample averages
as estimators for Eu. The output of the CE method is a sequence of putative
optimal densities identified by their parameters v̂0, v̂1, . . . , v̂

∗, and performance
scores γ̂0, γ̂1, . . . , γ̂

∗, which improve with probability 1. For our problem, a key
benefit of the CE method is that an analytic solution for (2) can be found when
{f(·;v),v ∈ V} is the exponential family of distributions. (More details in [29].)

Cross-Entropy Method for the SSA. We denote by rj the number of firings
of the jth reaction channel, τi the time between the ith and (i − 1)th reaction,
and τr+1 the final time interval at the end of the simulation in which no reaction
occurs. It can be shown that an exact SSA trajectory z = (x0, . . . ,xr), where r
is the total number of reaction events r =

∑m
j=1 rj , belongs to the exponential

family of distributions [41]—whose optimal CE parameter can be found analyt-
ically. Daigle et al. [8] showed that the solution of (2) for the SSA likelihood
yields the following Monte Carlo estimate of the optimal CE parameter v∗

j ,

θ̂j = v̂∗
j =

∑K
k=1 rjkI{J(zk)≤γ}

∑K
k=1 I{J(zk)≤γ}

(

∑rk+1
i=1 αj(xi−1,k)τik

) (3)
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where K is the number of SSA trajectories of the Monte Carlo approximation of
(2), zk is the kth trajectory, rjk and τik are as before but w.r.t. the kth trajectory,
xi,k denotes the state after the (i − 1)th reaction in the kth trajectory, and the
fraction is defined only when the denominator is nonzero (i.e., there is at least
one trajectory zk for which J(zk) ≤ γ—so-called elite samples). Note for γ = 0,
the CE estimator (3) coincides with the maximum likelihood estimator (MLE)
for θj over the same trajectory. Following [7] and [26, Sect. 5.3.4], it is easy
to show that a Monte Carlo estimator of the covariance matrix of the optimal
parameter estimators (3) is given (written in operator style) by the matrix:

Σ̂−1 =

[

−
1

KE

∑

k∈E

∂2

∂θ2
−

1

KE

∑

k∈E

∂

∂θ
·

∂

∂θ

T

+
1

K2
E

(

∑

k∈E

∂

∂θ

)

·

(

∑

k∈E

∂

∂θ

)T]

(log f(θ|x,zk)) (4)

where E is the set of elite samples, KE = |E|, the operator ∂2

∂θ2 returns a

m× m matrix, ∂
∂θ

returns an m-dimensional vector (m× 1 matrix), and ∂
∂θ

T

denotes matrix transpose. From Eq. (4) parameter variance estimates can be
readily derived. However, a more numerically stable option is to approximate
the variance of the jth parameter estimator using the sample variance

σ̂2
j =

1

KE

∑

k∈E

(

rjk
∑rk+1

i=1 αj(xi−1,k)τik

− θ̂j

)2

. (5)

3 Methods

In this section, we present our stochastic rate parameter inference with cross-

entropy (SPICE) algorithm.

Overview. To efficiently sample the parameter space, we treat each
stochastic rate parameter as being log-normally distributed, i.e., θj ∼
Lognormal(ωj , var(ωj)), where ωj = log(θj) is the log-transformed parameter
calculated analagously to (3) and (4), respectively. For the initial iteration, we
sample the parameter vector θ from the (log-transformed) desired parameter

search space [θ
(0)
min,θ

(0)
max] using a Sobol low-discrepancy sequence [33] to ensure

adequate coverage. Subsequent iterations then generate a sequence of distribu-
tion parameters {(γn,θn,Σn)} which aim to converge to the optimal parameters
as follows:

1. Updating of γn: Generate K sample trajectories using the SSA, z1, . . . ,zK ,
from the model f(·;θ(n−1)) with θ(n−1) sampled from the lognormal distri-
bution, and sort them in order of their performances J1′ ≤ · · · ≤ JK′ (see
Eqs. (7) and (6) for the actual definition of the performance, or score, func-
tion we adopt). For a fixed small ρ, say ρ = 10−2, let γ̂n be defined as the
ρth quantile of J(z), i.e., γ̂n = J(⌈ρK⌉).
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2. Updating of θn: Using the estimated level γ̂n, use the same K sample
trajectories z1, . . . ,zK to derive θ̂n and σ̂

2
n from the solution of Eqs. (3) and

(4). In case of numerical issues (or undersampling) in our implementation we
switch to (5) for updating the variance.

The SPICE algorithm’s pseudocode is shown in Algorithm1. This 2-step
approach provides a simple iterative scheme which converges asymptotically to
the optimal density. A reasonable termination criteria to take would be to stop
if γ̂n � γ̂n−1 � . . . for a fixed number of iterations. In general, more samples are
required as the mean and variance of the estimates approach their optima.

Adaptive Sampling. We adaptively update the number of samples Kn taken
at each iteration. The reasoning is to ensure the parameter estimates improve
with statistical significance at each step. Thus, our method allows the algorithm
to make faster evaluations early on in the iterative process, and concentrate
simulation time on later iterations, where it becomes increasingly hard to dis-
tinguish significant improvements of the estimated parameters. We update our
parameters based on a fixed number of elite samples, KE , satisfying J(z) ≤ γ.
The performance of the ‘best’ elite sample is denoted J∗

n, while the performance
of the ‘worst’ elite sample—previously given by the ρth quantile of J(z)—is γ̂n.
The quantile parameter ρ is adaptively updated each iteration as ρn = KE/Kn,
where KE is typically taken to be 1–10% of the base number of samples K0. At
each iteration, a check is made for improvement in either of the best or worst
performing elite samples, i.e., if, J∗

n < J∗
n−1 or γ̂n < γ̂n−1, then we can update

our parameters and proceed to the next iteration. If no improvement in either
values are found, the number of samples Kn in the current iteration is increased
in increments, up to a maximum Kmax. If we hit the maximum number of sam-
ples Kmax for c iterations (e.g., c = 3), then this suggests no further significant
improvement can be made given the restriction on the number of samples.

Objective Function. The SPICE algorithm has been developed to handle an
arbitrary number of datasets. Given N time series datasets, SPICE associates
N objective function scores with each simulated trajectory. Each objective value
corresponds to the standard sum of L2 distances of the trajectory across all time
points in the respective dataset:

Jn(z) =
T

∑

t=1

(yn,t − xt)
2 1 ≤ n ≤ N (6)

where xt = x(t) and yn,t is the datapoint at time t in the nth dataset. To
ensure adequate coverage of the data, we choose our elite samples to be the best
performing quantile of trajectories for each individual dataset (with scores Jn).

In the absence of temporal correlation within the data (e.g., when measure-
ments between time points are independent or individual cells cannot be tracked
as in flow cytometry data), we instead construct an empirical Gaussian mixture
model for each time point within the data. Each mixture model at time t is
comprised of N multivariate normal distributions, each with a vector of mean
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values yn,t corresponding to the observed species in the nth dataset, and diago-
nal covariance matrix σ2

n corresponding to an error estimate or variance of the
measurements on the species. In our experiments we used a 10% standard devia-
tion, as we did not have any information about measurement noise. We then take
the objective score function to be proportional to the negative log-likelihood of
the simulated trajectory w.r.t. the data:

Jn(z) = −
T

∑

t=1

ln

(

N
∑

n=1

exp

[

−
1

2
(yn,t − xt)

⊺σ−2
n (yn,t − xt)

]

)

. (7)

Smoothed Updates. We implement the parameter smoothing update formula

θ̂
(n)

= λθ̃
(n)

+ (1 − λ)θ̂
(n−1)

, σ̂
(n) = βnσ̃(n) + (1 − βn)σ̂(n−1)

where βn = β − β
(

1 − 1
n

)q
, λ ∈ (0, 1], q ∈ N+ and β ∈ (0, 1) are smoothing con-

stants, and θ̃, σ̃ are outputs from the solution of the cross-entropy in Eq. (2),
approximated by (3) and (4), respectively. Parameter smoothing between iter-
ations has three important benefits: (i) the parameter estimates converge to a
more stable value, (ii) it reduces the probability of a parameter value tending
towards zero within the first few iterations, and (iii) it prevents the sampling dis-
tribution from converging too quickly to a degenerate point probability mass at
a local minima. Furthermore, [6] provide a proof that the CE method converges
to an optimal solution with probability 1 in the case of smoothed updates.

Multiple Shooting and Particle Splitting. SPICE can optionally utilise
these two techniques for trajectory simulation between time intervals. For mul-
tiple shooting we construct a sample trajectory comprised of T intervals match-
ing the time stamps within the data y. Originally [42], each segment from xt−1

to xt was simulated using an ODE model with the initial conditions set to the
previous time point of the dataset, i.e., xt−1 = yt−1. We instead treat the data
as being mixture-normally distributed, thus we sample our initial conditions
xt−1 ∼ N (yn,t−1,σ

2
n,t−1), where the index of the time series n is first uniformly

sampled. Using the SSA, each piecewise section of a trajectory belonging to sam-
ple k is then simulated with the same parameter vector θ. For particle splitting
we adopt a multilevel splitting approach as in [8], and the objective function is
calculated after the simulation of each segment from xt−1 to xt. The trajectories
zk satisfying J(zk) ≤ γ̂ are then re-sampled with replacement Kn times before
simulation continues (recall Kn is the number of samples in the nth iteration).
This process aims at discarding poorly performing trajectories in favour of those
‘closest’ to the data. This will in turn create an enriched sample, at the cost of
introducing an aspect of bias propagation.

Hyperparameters. SPICE allows for the inclusion of hyperparameters φ (e.g.,
scaling constants, and non kinetic-rate parameters), which are sampled (logarith-
mically) alongside θ. These hyperparameters are updated at each iteration via
the standard CE method.
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Tau-Leaping. With inexact, faster methods such as tau-leaping [15] a degree
of accuracy is traded off in favour of computational performance. Thus, we are
interested in replacing the SSA with tau-leaping in our SPICE algorithm. The
next Proposition shows that with a tau-leaping trajectory we get the same form
for the optimal CE estimator as in (3).

Proposition 1. The CE solution for the optimal rate parameter over a tau-

leaping trajectory is the same as that for a standard SSA trajectory.

Proof. We shall use the same notation of Sect. 2 and further assume a trajectory
in which state changes occur at times tl, for l ∈ {0, 1, . . . , L}. For each given time
interval of size τl of the tau-leaping algorithm, kjl ∈ Z+ firings of each reaction
channel Rj are sampled from a Poisson process with mean λjl = θjαj(xtl

)τl.
Thus, the probability of firing kjl reactions, in the interval [tl, tl + τl), given the
initial state xtl

is P (kjl|xtl
, λjl) = exp{−λjl}(λjl)

kjl/kjl!, where P (0|xtl
, 0) = 1.

Therefore, the combined probability across all reaction channels is:

m
∏

j=1

P (kjl|xtl
, λjl) =

m
∏

j=1

exp{−λjl}(λjl)
kjl

kjl!
.

Extending for the entire trajectory, the complete likelihood is given by:

L =
L

∏

l=0

m
∏

j=1

P (kjl|xtl
, λjl) =

L
∏

l=0

m
∏

j=1

exp{−λjl}(λjl)
kjl

kjl!
.

We can conveniently factorise the likelihood into component likelihoods associ-
ated with each reaction channel as L =

∏m
j=1 Lj , where each component Lj is

given by Lj =
∏L

l=0
exp{−λjl}(λjl)

kjl

kjl!
. Expanding λjl:

Lj =

L
∏

l=0

exp{−θjαj(xtl
)τl}(θjαj(xtl

)τl)
kjl

kjl!

= θ
rj

j exp

{

−θj

L
∑

l=0

αj(xtl
)τl

}

L
∏

l=0

(αj(xtl
)τl)

kjl

kjl!
,

where rj =
∑L

l=0 kjl, i.e., the total number of firings of reaction channel Rj .
From [29], the solution to (2) can be found by solving:

Eu

[

I{J(X )≥γ}∇ lnLj

]

= 0,

given that the differentiation and expectation operators can be interchanged.
Expanding lnLj and simplifying, we get:

Eu

[

I{J(X )≥γ}∇

(

ln θ
rj

j − θj

L
∑

l=0

αj(xtl
)τl + ln

{

L
∏

l=0

(αj(xtl
)τl)

kjl

kjl!

})]

= 0.
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Algorithm 1. SPICE — Stochastic Rate Parameter Inference with Cross-
Entropy

input : Datasets represented by mixture models Φi at times ti for 0 � i � L,

initial parameter bounds (log-transformed)
[

θ
(0)
min, θ

(0)
max

]

, quantile ρ.

output: Estimate of parameters θ̂
(n)

, and their variances Σ̂
(n)

.

1 Iteration n ← 1

2 Generate Sobol sequence S ←
[

θ̂
(0)

min, θ̂
(0)

max

]

hypercube

3 Initial sample size K1 ← Kmin

4 Initialise γ1 ← ∞
5 repeat

6 for i ← 1 to L do

7 Set initial time point t0 ← ti−1

8 for k ← 1 to Kn do

9 if i = 1 then

10 Set initial state x ← y0

11 if n = 1 then

12 Sample parameters from Sobol sequence θk ← S(k)
13 else

14 Sample parameters from the parameter distribution

θk ∼ Lognormal
(

θ̂
(n−1)

, Σ̂
(n−1)

)

15 else

16 if Method = Multiple Shooting then

17 Sample the starting state from the distribution of the data
x ∼ Φi

18 else

19 Continue from the end state of the current simulation
x ← zi−1,k

20 Forward simulate zi,k ←SSA(x, t0, ti, θk)
21 if (Method = Splitting) or (i = L) then

// depending on type of data, use (6) or (7)

22 Calculate the cost function dk ← J(zk)

23 if Method = Splitting then

24 Sample with replacement weighted trajectories satisfying dk < γn

25 γn ← ρth quantile of (d1, . . . , dKn)

26 Compute θ̂
(n)

and σ̂(n) by means of Eqs. (3) and (4) (or (5)), using the elite
trajectories satisfying dk < γn (and taking log appropriately in (3) and (4) )

27 Increment n ← n + 1
28 Adaptively update Kn

29 until convergence detected in {γ1, . . . , γn−1}
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We can then take the derivative, ∇, with respect to θj ,

Eu

[

I{J(X )≥γ}

(

rj

θj

−
L

∑

l=0

αj(xtl
)τl

)]

= 0.

It is simple to see that the previous entity holds when rj/θj =
∑L

l=0 αj(xtl
)τl,

yielding the Monte Carlo estimate,

θ̂j =

∑K
k=1 I{J(zk)≤γ}rjk

∑K
k=1 I{J(zk)≤γ}

∑L
l=0 αj(xtl,k)τl,k

.

⊓⊔

4 Experiments

We utilise our SPICE algorithm on four commonly investigated systems: (i) the
Lotka-Volterra predator–prey model, (ii) a Yeast Polarization model, (iii) the
bistable Schlögl system, and (iv) the Genetic Toggle Switch. We present results
for each system obtained using both the standard SSA and optimised tau-leaping
(with an error control parameter of ε = 0.1) to drive our simulations.

For each run of the algorithm we set the sample parameters KE = 10, Kmin =
1, 000, Kmax = 20, 000, and set an upper limit on the number of iterations to
250. The smoothing parameters (λ, β, q) were set to (0.7, 0.8, 5) respectively. For
our analysis, we define the mean relative error (MRE) between a parameter

estimate θ̂ and the truth θ∗ as MRE(%ERR) = M−1
∑M

j |θ̂j − θ∗
j |/θ∗

j × 100. All
our experiments were performed on a Intel Xeon 2.9GHz Linux system without

using multiple cores—all reported CPU times are single-core. SPICE has been
implemented in Julia and is open source (https://github.com/pzuliani/SPICE).

For models (i)–(iii), we use synthetic data where the true solution is known,
and compare the results of SPICE against some commonly used parameter esti-
mation techniques implemented in COPASI 4.16 [17]. Specifically, we check the
performance of SPICE against the genetic algorithm (GA), evolution strategy
(ES), evolutionary programming (EP), and particle swarm (PS) implementa-
tions. For the ES and EP algorithms we allow 250 generations with a population
of 1,000 particles. For the GA, we run 500 generations with 2,000 particles.
For the PS, we allow 1,000 iterations with 1,000 particles1. For model (iv), the
Genetic Toggle Switch, we show results for SPICE using real experimental data.

All statistics presented are based on 100 runs of each algorithm using fixed
datasets. For each approach we also compared the performance of using the stan-
dard SSA versus tau-leaping, alongside multiple-shooting and particle splitting
approaches. However, for the models tested, neither multiple shooting nor parti-
cle splitting helped in reducing CPU times or improving the estimates accuracy.

1 NB: we also tested the COPASI implementations using greater populations and more
iterations (not shown), but found little improvement for the significant increase in
computational cost.

https://github.com/pzuliani/SPICE


Stochastic Rate Parameter Inference Using the Cross-Entropy Method 155

Fig. 1. Lotka-Volterra model: box plots showing the summary statistics across 100
runs of COPASI and SPICE for each of the 3 parameter estimates. We note SPICE
consistently has the least variance.

Lotka-Volterra Predator–Prey Model. We implement the standard Lotka-
Volterra model below with real parameters (θ1, θ2, θ3) = (0.5, 0.0025, 0.3), and
initial population (X1, X2) = (50, 50)

X1
θ1−→ X1 + X1 X1 + X2

θ2−→ X2 + X2 X2
θ3−→ ∅

We artificially generated 5 datasets each consisting of 40 timepoints using
Gillespie’s SSA, and performed parameter estimation based on these datasets.
For the initial iteration, we placed bounds on the Sobol sequence parameter
search space of θj ∈ [1e−6, 10], for j = 1, 2, 3. The minimum, maximum, and
average MRE between the true parameters and their estimates across all 100
runs of each algorithm (using the standard SSA) are summarised in Table 1,
together with corresponding CPU run times. Box plots summarising the obtained
parameter estimates across all runs of each method are displayed in Fig. 1.

In the previous Lotka-Volterra predator–prey example, SPICE was provided
with the complete data for both species X1, X2. However, we are also concerned
with cases where the data is not fully observed, i.e., when we have latent species.
To compare the effects of latent species on the quality of parameter estimates, we
ran SPICE again (averaging across 100 runs), this time supplying information
about species X1 alone. The results are presented in Table 1.

Yeast Polarization Model. We implement the Yeast Polarization model (see
below) with real parameters (θ1, . . . , θ8) = (0.38, 0.04, 0.082, 0.12, 0.021, 0.1,
0.005, 13.21), and initial population (R,L,RL,G,Ga, Gbg, Gd) = (500, 4, 110,
300, 2, 20, 90). The reactions of the model are [8]:

∅
θ1−→ R RL + G

θ5−→ Ga + Gbg

R
θ2−→ ∅ Ga

θ6−→ Gd

L + R
θ3−→ RL + L Gd + Gbg

θ7−→ G

RL
θ4−→ R ∅

θ8−→ RL
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Fig. 2. Yeast Polarization parameter estimates: box plots showing the summary statis-
tics of all 8 parameter estimates across 100 runs of COPASI’s methods and SPICE.
We note once again SPICE produces the least variation of obtained estimates.

We artificially generated 5 datasets each consisting of 17 timepoints using
Gillespie’s SSA, and performed parameter estimation based on these datasets.
For the initial iteration, we placed bounds on the parameter search space of
θj ∈ [1e−6, 10] for 1 � j � 7, and θ8 ∈ [1e−6, 100]. The average relative errors
between the estimated and the real parameters across 100 runs of the algorithm
are summarised in Table 1, along with the corresponding CPU run times. The
variability of the estimates obtained using SPICE (and other methods) are shown
in Fig. 2.

Schlögl System. We use the Schlögl model [30] with parameters
(θ1, θ2, θ3, θ4) = (3e−7, 1e−4, 1e−3, 3.5), and initial population (X,A,B) =
(250, 1e5, 2e5). This model is well known to produce bistable dynamics (see
Fig. 4).

2X + A
θ1−→ 3X B

θ3−→ X

3X
θ2−→ 2X + A X

θ4−→ B

We artificially generated 10 datasets (in order to partially capture a degree of
the bistable dynamics) each consisting of 100 timepoints, and performed param-
eter estimation based on these datasets (also see Fig. 4). For the initial iter-
ation, we placed bounds on the parameter search space of θ1 ∈ [1e−9, 1e−5],
θ2 ∈ [1e−6, 0.01], θ3 ∈ [1e−5, 10], θ4 ∈ [0.01, 100]. Unlike the previous models, we
explicitly ran the Schlögl System using tau-leaping for all algorithms, due to the
computation time being largely infeasible under the same conditions (4.5 h in
SPICE, 48+ h in COPASI). The MRE of all the estimated parameters, together
with CPU times for each algorithm are summarised in Table 1. Box plots of the
SPICE algorithm’s performance are presented in Fig. 3. Note that the Schlögl
system is sensitive to the initial conditions, so even slight perturbations of its
parameters can cause the system to fail in producing bimodality.
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Fig. 3. Schlögl system parameter estimates: box plots comparing the parameter esti-
mates across 100 runs of COPASI’s methods and SPICE (all simulated using tau-
leaping, ε = 0.1). Again, SPICE shows the smallest variance, with mean estimates
quite close to the real values of θ1 and θ3. For θ2 and θ4, all the best mean estimates
have variance much larger than SPICE estimates.

Fig. 4. Schlögl: from the left: solid black lines: the 10 datasets generated using
the SSA direct method and the real parameters, and used as input for SPICE.
Blue lines: 100 model runs with estimated parameters sampled by the final
parameter distributions obtained by SPICE with the direct method (means =
(2.14e−7, 7.63e−5, 4.54e−4, 2.18)); variances = (7.81e−16, 2.81e−10, 4.05e−8, 0.13)).
Fitted: empirical distribution of 1,000 model simulations with sampled parameters
from SPICE output. Real distribution: empirical distribution of 1,000 model simula-
tions with the real parameters. (Color figure online)

Toggle Switch Model. The genetic toggle switch is a well studied bistable
system, with particular importance toward synthetic biology. The toggle switch
is comprised of two repressors, and two promoters, often mediated in practice
through IPTG2 and aTc3 induction. We perform parameter inference based on
real high-throughput data (see Fig. 5), implemented upon a simple model (see
below) based on [12]. For our model, we define the following reaction propensities:

h1 = θ1 × GFP h3 = θ3 × mCherry

h2 =
θ2 × φ1

1 + φ1 + φ2 × mCherry
2 h4 =

θ4 × φ3

1 + φ3 + φ4 × GFP
2

2 Isopropyl β-D-1-thiogalactopyranoside.
3 anhydrotetracycline.
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Est. Rate Param. θ̂1 θ̂2 θ̂3 θ̂4

mean-log 0.46 4.22 0.44 3.16

var-log 0.081 0.077 0.0027 0.19

Est. Hyperparam. φ̂1 φ̂2 φ̂3 φ̂4 φ̂5 φ̂6

mean-log 16.5 -5.42 7.72 -2.74 6.04 4.48

var-log 2.81 1.60 1.84 0.77 0.042 0.10

Num. datapoints 0.5hr 1hr 2hr 3hr 4hr 5hr 6hr

7,018 4,246 8,488 5,296 5,183 2,974 7,553

Total dataset = 40,731 points

CPU time = 4,293s

Fig. 5. Toggle switch model: blue circles: the experimental data with the log10(GFP)
fluorescence plotted against the log10(mCherry) fluorescence, across all timepoints
up to 6h. Orange circles: 1,000 model simulations using the direct method, with parame-
ters sampled from the final distribution obtained by SPICE using tau-leaping (ε = 0.1).
(Color figure online)

where GFP and mCherry are the two model species (reporter molecules), and
the stochastic rate parameters are (θ1, . . . , θ4). The data used for parameter
inference was obtained through fluorescent flow cytometry in [21], via the GFP
and mCherry reporters, and consists 40,731 measurements across 7 timepoints
over 6 h. We look specifically at the case where the switch starts in the low-
GFP (high mCherry) state, and switches to the high-GFP (low-mCherry) state
over the time course after aTc induction to the cells. The inclusion of real,
noisy data requires a degree of additional care as the data needs to be rescaled
from arbitrary units (a.u.) to discrete molecular counts. We assume a linear
(multiplicative) scale, e.g., such that GFP (a.u.) = φ5 ×GFP molecules. Fur-
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thermore, we can no longer assume all the cells begin at the same state, and we
must assume the initial state belongs to a distribution. This introduces extra
so-called ‘hyperparameters’, specifically the GFP molecule count to fluorescent
(a.u.) scale factor φ5, and the respective mCherry scale factor φ6. In addition,
the model now contains 4 additional parameters, φ1, . . . , φ4, which in turn are
required to be estimated. Each hyperparameter is initially sampled as before
using the low-discrepancy Sobol sequence, and updated using the means and
variances of the generated elite samples as per the CE method.

The placed bounds on the initial kinetic parameter search space, based
upon reported half-lives for the variants of GFP [2] and mCherry [31], were
θ1,3 ∈ [1e−3, 1], and θ2,4 ∈ [1, 50]. The respective bounds on the search space for
the hyperparameters were φ1,2,3,4 ∈ [1e−3, 10], and φ5,6 ∈ [50, 500]. To generate
the parameter estimates, we used SPICE with tau-leaping (ε = 0.1, CPU time
= 4,293 s). The estimated parameters and the resulting fit against the data for
the model can be seen in Fig. 5.

Table 1. The relative errors for each stochastic rate parameter averaged across 100 runs
using COPASI’s Evolutionary Programming (EP), Evolution Strategy (ES), Genetic
Algorithm (GA), and Particle Swarm (PS) algorithms, and our SPICE algorithm are
shown. The minimum, maximum, and average mean relative error (MRE) for all param-
eter estimates across all runs are also given alongside the averaged CPU time.

Lotka-Volterra Model
Alg. θ1 θ2 θ3 Min. MRE Av. MRE Max. MRE Av. CPU

(%ERR) (%ERR) (%ERR) (%ERR) (s)

EP 38.4 3.5 29.6 0.4 23.8 156.5 1200
ES 3.8 0.6 4.4 0.3 3.0 9.0 5763
GA 5.2 0.8 5.7 0.8 3.9 15.2 3640
PS 25.6 2.2 18.6 0.1 15.5 126.6 2689

SPICE 3.6 0.4 0.4 1.0 1.5 2.1 1025

Lotka-Volterra Latent-Species Model

SPICE 9.4 0.41 6.4 4.1 5.4 6.8 1589

Yeast Polarization Model

Alg. θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 Min. MRE Av. MRE Max. MRE Av. CPU
(%ERR) (%ERR) (%ERR) (%ERR) (s)

EP 662.9 138.4 1.7 235.4 1.7 25.3 3.4 357.0 56.2 178.2 316.9 405

ES 109.8 18.5 1.2 35.4 1.3 3.3 1.5 27.9 3.6 24.9 62.8 1650
GA 564.0 120.2 1.3 275.3 1.6 6.5 2.6 312.4 38.8 160.5 299.4 2696
PS 156.4 29.0 1.4 52.6 0.9 3.7 1.6 48.6 7.3 36.8 173.6 1755

SPICE 221.2 21.7 2.5 34.9 0.9 1.7 1.1 62.7 27.6 43.3 54.4 1116

Schlögl System Model

Alg. θ1 θ2 θ3 θ4 Min. MRE Av. MRE Max. MRE Av. CPU
(%ERR) (%ERR) (%ERR) (%ERR) (s)

EP 12.2 9.7 15.1 142.9 24.4 45.0 60.5 307

ES 3.3 15.5 19.0 40.3 11.5 19.3 31.7 1505
GA 13.7 11.0 14.0 159.7 32.2 49.6 66.3 987
PS 12.0 8.5 11.4 141.4 18.7 43.3 60.0 1095

SPICE 4.6 14.6 6.3 73.0 18.5 24.6 30.9 1054
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5 Discussion

We can see from the presented results that our SPICE algorithm performs well
on the models studied. For the Lotka-Volterra model the quality of the estimates
is always good—there is no relative error larger than 2.1% in Table 1 for SPICE.
The CPU times are reasonable in absolute terms (about 20 min, single core),
and much smaller than those of the methods implemented in COPASI, and with
smaller errors. Also, having one unobserved species (X2) in the data does not
seem to impact the results very much. In particular, from Table 1 we see that the
latent model indeed has higher error than the fully observable model. However,
the error is always smaller than 10%, which is acceptable.

The Yeast Polarization model is a more difficult system: we can indeed see
from Table 1 that a number of parameter estimates have large relative errors.
These are the same ‘hard’ parameters estimated by MCEM2 [8] with similar
errors. However, in CPU time terms, our SPICE algorithm does much better
than MCEM2: SPICE can return a quite good estimate (in line with MCEM2’s)
on average in about 18 min using the direct method, while MCEM2 would need
about 30 days [8]—a speed-up of 2,400 times. Furthermore, for this model one
could use tau-leaping instead of the direct method, gaining a 3x speedup in
performance while giving up little on accuracy (the Min., Av., and Max. MRE
%ERR were 31.2, 41.5, and 56.3, respectively; Av. CPU time was 303 s).

The Schlögl system is another challenging case study, as clearly showed by
results of Table 1, which were obtained by utilising tau-leaping (as a matter of
fact, for the Schlögl model the average accuracy of SPICE increases with the use
of tau-leaping). Our choice was motivated by the large CPU time of the direct
method due to the fact that the upper steady state for X in the model has a
large molecule number (about 600), which negatively impacts the running time
of the direct method samples. The results of Table 1 show that there is no clear
winner: the Evolutionary Programming method in COPASI has the smallest
runtime, but twice the error achieved by SPICE, which has the best accuracy.
As noted before, running the COPASI implementations with larger populations
and more iterations did not significantly improve accuracy for the increased cost.

Lastly, the genetic Toggle Switch presents an interesting real-world case study
with high-throughput data. The model now comprises four hyperparameters,
each of which must be estimated alongside the four kinetic rate constants. In
addition, the non-discrete (and noisy) data is no longer known to be generated
from a convenient mathematical model. In other terms, there is no guarantee
that the model reflects the true underlying biochemical reaction network. Despite
these challenges, our SPICE algorithm does a very good job (in little more than

an hour of CPU time) in computing parameter estimates for which the model
quite closely matches the experimental data—we see in fact from Fig. 5 that
the model simulations fall inside the data, with very few exceptions, and the
empirical and simulated distributions closely match.

Related Work. Techniques for stochastic rate parameter estimation fall into
four categories. Early efforts included methods based on MLE: simulated max-
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imum likelihood utilises Monte Carlo simulation and a genetic algorithm to
maximise an approximated likelihood [34]. Efforts have been made to incor-
porate the Expectation-Maximisation (EM) algorithm with the SSA [18]. The
stochastic gradient descent explores a Markov Chain Monte Carlo sampler with
a Metropolis-Hastings update step [39]. In [25] a hidden Markov model is used
for the system state, which is then solved by (approximate) likelihood maximisa-
tion. Lastly, a recent work [8] has combined an ascent-based EM algorithm with
a modified cross-entropy method. Another category of methodologies include
Bayesian inference. In particular, approximate Bayesian computation (ABC)
gains an advantage by becoming ‘likelihood free’, and recent advances in sequen-
tial Monte Carlo (SMC) samplers have further improved these methods [32,35].
We note the similarities between ABC(-SMC) approaches and SPICE. Both
methods can utilize ‘elite’ samples to produce better parameter estimates. A
key difference is that ABC(-SMC) uses accepted simulation parameters to con-
struct a posterior distribution, while SPICE utilizes complete trajectory infor-
mation to compute optimal updates of an underlying parameter distribution.
The Bayesian approach presented in [5] can handle partially observed systems,
including notions of experimental error. Linear noise approximation techniques
have been used alongside Bayesian analysis [19]. A very recent work [36] com-
bines Bayesian analysis with statistical emulation in an attempt at reducing the
cost due to the SSA simulations. A third class of methodologies center around
the numerical solution of the chemical master equation (CME), which is often
intractable for all but the simplest of systems. One approach is to use dynamic
state space truncation [3] or finite state projection methods [9] that truncate
the CME state space by ignoring the smallest probability states. Another varia-
tion is to use a method of moments approximation [10,16] to construct ordinary
differential equations (ODEs) describing the time evolution for the mean, vari-
ance, etc., of the underlying distribution. Other CME approximations are system
size expansion using van Kampen’s expansion [11], and solutions of the Fokker-
Planck equation [22] using a form of linear noise approximation. Finally, another
method [42] treats intervals between time measurements piecewise, and within
each interval an ODE approximation is used for the objective function. This
method has been recently extended using linear noise approximation [43]. A
recent work [1], tailored for high-throughput data, proposes a stochastic param-
eter inference approach based on the comparison of distributions.

6 Conclusions

In this paper we have introduced the SPICE algorithm for rate parameter infer-
ence in stochastic reaction networks. Our algorithm is based on the cross-entropy
method and Gillespie’s algorithm, with a number of significant improvements.
Key strengths of our algorithm are its ability to use multiple, possibly incom-
plete datasets (including distribution data), and its (theoretically justified) use
of tau-leaping methods for model simulation. We have shown that SPICE works
well in practice, in terms of both computational cost and estimate accuracy
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(which was often the best in the models tested), even on challenging case studies
involving bistable systems and real high-throughput data. On a non-trivial case
study, SPICE can be orders of magnitude faster than other approaches, while
offering comparable accuracy in the estimates.

Acknowledgements. This work has been supported by a BBSRC DTP PhD stu-
dentship and the EPSRC Portabolomics project (EP/N031962/1).
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30. Schlögl, F.: Chemical reaction models for non-equilibrium phase transitions.
Zeitschrift für physik 253(2), 147–161 (1972)

31. Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N.G., Palmer, A.E.,
Tsien, R.Y.: Improved monomeric red, orange and yellow fluorescent proteins
derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–
1572 (2004)

32. Sisson, S.A., Fan, Y., Tanaka, M.M.: Sequential Monte Carlo without likelihoods.
PNAS 104(6), 1760–5 (2007)

33. Sobol’, I.M.: On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Comput. Math. Math. Phys. 7(4), 86–112 (1967)

34. Tian, T., Xu, S., Gao, J., Burrage, K.: Simulated maximum likelihood method for
estimating kinetic rates in gene expression. Bioinformatics 23(1), 84–91 (2007)

35. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.H.: Approximate
Bayesian computation scheme for parameter inference and model selection in
dynamical systems. J. Roy. Soc. Interface 6(31), 187–202 (2009)

36. Vernon, I., Liu, J., Goldstein, M., Rowe, J., Topping, J., Lindsey, K.: Bayesian
uncertainty analysis for complex systems biology models: emulation, global param-
eter searches and evaluation of gene functions. BMC Syst. Biol. 12(1), 1 (2018)

37. Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems
biology: strategies, perspectives and challenges. J. Roy. Soc. Interface 11(91),
20130505 (2013)

http://discovery.ucl.ac.uk/1546318/1/Leon_Miriam_thesis_final.pdf
http://discovery.ucl.ac.uk/1546318/1/Leon_Miriam_thesis_final.pdf
https://doi.org/10.1007/978-1-4757-4145-2


164 J. Revell and P. Zuliani

38. Voit, E.O.: The best models of metabolism. Wiley Interdisc. Rev.: Syst. Biol. Med.
9(6), e1391 (2017)

39. Wang, Y., Christley, S., Mjolsness, E., Xie, X.: Parameter inference for discretely
observed stochastic kinetic models using stochastic gradient descent. BMC Syst.
Biol. 4(1), 99 (2010)

40. Wilkinson, D.J.: Stochastic modelling for quantitative description of heterogeneous
biological systems. Nat. Rev. Genet. 10(2), 122–133 (2009)

41. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. CRC Press, Boca Raton
(2012)

42. Zimmer, C., Sahle, S.: Parameter estimation for stochastic models of biochemical
reactions. J. Comput. Sci. Syst. Biol. 6(1), 11–21 (2012)

43. Zimmer, C., Sahle, S.: Deterministic inference for stochastic systems using multiple
shooting and a linear noise approximation for the transition probabilities. IET Syst.
Biol. 9, 181–192 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Stochastic Rate Parameter Inference Using the Cross-Entropy Method
	1 Introduction
	2 Background
	3 Methods
	4 Experiments
	5 Discussion
	6 Conclusions
	References


