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Abstract

Sparse high-dimensional data vectors are common in many application domains
where a very large number of rarely non-zero features can be devised. Unfortu-
nately, this creates a computational bottleneck for unsupervised feature learning
algorithms such as those based on auto-encoders and RBMs, because they involve
a reconstruction step where the whole input vector is predicted from the current
feature values. An algorithm was recently developed to successfully handle the
case of auto-encoders, based on an importance sampling scheme stochastically
selecting which input elements to actually reconstruct during training for each
particular example. To generalize this idea to RBMs, we propose a stochastic
ratio-matching algorithm that inherits all the computational advantages and un-
biasedness of the importance sampling scheme. We show that stochastic ratio
matching is a good estimator, allowing the approach to beat the state-of-the-art
on two bag-of-word text classification benchmarks (20 Newsgroups and RCV1),
while keeping computational cost linear in the number of non-zeros.

1 Introduction

Unsupervised feature learning algorithms have recently attracted much attention, with the promise of
letting the data guide the discovery of good representations. In particular, unsupervised feature learn-
ing is an important component of many Deep Learning algorithms (Bengio, 2009), such as those
based on auto-encoders (Bengio et al., 2007) and Restricted Boltzmann Machines or RBMs (Hinton
et al., 2006). Deep Learning of representations involves the discovery of several levels of representa-
tion, with some algorithms able to exploit unlabeled examples and unsupervised or semi-supervised
learning.

Whereas Deep Learning has mostly been applied to computer vision and speech recognition, an im-
portant set of application areas involve high-dimensional sparse input vectors, for example in some
Natural Language Processing tasks (such as the text categorization tasks tackled here), as well as in
information retrieval and other web-related applications where a very large number of rarely non-
zero features can be devised. We would like learning algorithms whose computational requirements
grow with the number of non-zeros in the input but not with the total number of features. Unfortu-
nately, auto-encoders and RBMs are computationally inconvenient when it comes to handling such
high-dimensional sparse input vectors, because they require a form of reconstruction of the input
vector, for all the elements of the input vector, even the ones that were zero.

In Section 2, we recapitulate the Reconstruction Sampling algorithm (Dauphin et al., 2011) that was
proposed to handle that problem in the case of auto-encoder variants. The basic idea is to use an
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importance sampling scheme to stochastically select a subset of the input elements to reconstruct,
and importance weights to obtain an unbiased estimator of the reconstruction error gradient.

In this paper, we are interested in extending these ideas to the realm of RBMs. In Section 3 we
briefly review the basics of RBMs and the Gibbs chain involved in training them. Ratio match-
ing (Hyvärinen, 2007), is an inductive principle and training criterion that can be applied to train
RBMs but does not require a Gibbs chain. In Section 4, we present and justify a novel algorithm
based on ratio matching order to achieve our objective of taking advantage of highly sparse inputs.
The new algorithm is called Stochastic Ratio Matching or SRM. In Section 6 we present a wide array
of experimental results demonstrating the successful application of Stochastic Ratio Matching, both
in terms of computational performance (flat growth of computation as the number of non-zeros is in-
creased, linear speedup with respect to regular training) and in terms of generalization performance:
the state-of-the-art on two text classification benchmarks is achieved and surpassed. An interesting
and unexpected result is that we find the biased version of the algorithm (without reweighting) to
yield more discriminant features.

2 Reconstruction Sampling

An auto-encoder learns an encoder function f mapping inputs x to features h = f(x), and a decod-
ing or reconstruction function g such that g(f(x)) ≈ x for training examples x. See Bengio et al.
(2012) for a review. In particular, with the denoising auto-encoder, x is stochastically corrupted into
x̃ (e.g. by flipping some bits) and trained to make g(f(x̃)) ≈ x. To avoid the expensive recon-
struction g(h) when the input is very high-dimensional, Dauphin et al. (2011) propose that for each
example, a small random subset of the input elements be selected for which gi(h) and the associated
reconstruction error is computed. To make the corresponding estimator of reconstruction error (and
its gradient) unbiased, they propose to use an importance weighting scheme whereby the loss on the
i-th input is weighted by the inverse of the probability that it be selected. To reduce the variance of
the estimator, they propose to always reconstruct the i-th input if it was one of the non-zeros in x
or in x̃, and to choose uniformly at random an equal number of zero elements. They show that the
unbiased estimator yields the expected linear speedup in training time compared to the deterministic
gradient computation, while maintaining good performance for unsupervised feature learning. We
would like to extend similar ideas to RBMs.

3 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) is an undirected graphical model with binary variables (Hin-
ton et al., 2006): observed variables x and hidden variables h. In this model, the hidden variables
help uncover higher order correlations in the data.

The energy takes the form
−E(x,h) = hTWx + bTh + cTx

with parameters θ = (W,b, c).

The RBM can be trained by following the gradient of the negative log-likelihood

−∂ logP (x)
∂θ

= Edata

[
∂F (x)
∂θ

]
− Emodel

[
∂F (x)
∂θ

]
where F (x) is the free energy (unnormalized log-probability associated with P (x)). However, this
gradient is intractable because the second expectation is combinatorial. Stochastic Maximum Like-
lihood or SML (Younes, 1999; Tieleman, 2008) estimates this expectation using sample averages
taken from a persistent MCMC chain (Tieleman, 2008). Starting from xi a step in this chain is
taken by sampling hi ∼ P (h|xi), then we have xi+1 ∼ P (x|hi). SML-k is the variant where k is
the number of steps between parameter updates, with SML-1 being the simplest and most common
choice, although better results (at greater computational expense) can be achieved with more steps.

Training the RBM using SML-1 is on the order of O(dn) where d is the dimension of the input
variables and n is the number of hidden variables. In the case of high-dimensional sparse vectors
with p non-zeros, SML does not take advantage of the sparsity. More precisely, sampling P (h|x)
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(inference) can take advantage of sparsity and costs O(pn) computations while “reconstruction”,
i.e., sampling from P (x|h) requiresO(dn) computations. Thus scaling to larger input sizes n yields
a linear increase in training time even if the number of non-zeros p in the input remains constant.

4 Ratio Matching

Ratio matching (Hyvärinen, 2007) is an estimation method for statistical models where the normal-
ization constant is not known. It is similar to score matching (Hyvärinen, 2005) but applied on
discrete data whereas score matching is limited to continuous inputs, and both are computationally
simple and yield consistent estimators. The use of Ratio Matching in RBMs is of particular interest
because their normalization constant is computationally intractable.

The core idea of ratio matching is to match ratios of probabilities between the data and the model.
Thus Hyvärinen (2007) proposes to minimize the following objective function

Px(x)
d∑
i=1

[
g

(
Px(x)
Px(x̄i)

)
− g

(
P (x)
P (x̄i)

)]2

+
[
g

(
Px(x̄i)
Px(x)

)
− g

(
P (x̄i)
P (x)

)]2

(1)

where Px is the true probability distribution, P the distribution defined by the model, g(x) = 1
1+x

is an activation function and x̄i = (x1, x2, . . . , 1 − xi, . . . , xd). In this form, we can see the simi-
larity between score matching and ratio matching. The normalization constant is canceled because
P (x)
P (x̄i) = e−F (x)

e−F (x̄i) , however this objective requires access to the true distribution Px which is rarely
available.

Hyvärinen (2007) shows that the Ratio Matching (RM) objective can be simplified to

JRM (x) =
d∑
i=1

(
g

(
P (x)
P (x̄i)

))2

(2)

which does not require knowledge of the true distribution Px. This objective can be described as
ensuring that the training example x has the highest probability in the neighborhood of points at
hamming distance 1.

We propose to rewrite Eq. 2 in a form reminiscent of auto-encoders:

JRM (x) =
d∑
i=1

(xi − P (xi = 1|x−i))2. (3)

This will be useful for reasoning about this estimator. The main difference with auto-encoders is
that each input variable is predicted by excluding it from the input.

Applying Equation 2 to the RBM we obtain JRM (x) =
∑d
i=1

(
σ(F (x)− F (x̄i))

)2
. The gradients

have the familiar form

−∂JRM (x)
∂θ

=
d∑
i=1

2ηi

[
∂F (x)
∂θ

− ∂F (x̄i)
∂θ

]
(4)

with ηi =
(
σ(F (x)− F (x̄i))

)2 − (σ(F (x)− F (x̄i))
)3

.

A naive implementation of this objective is O(d2n) because it requires d computations of the free
energy per example. This is much more expensive than SML as noted by Marlin et al. (2010).
Thankfully, as we argue here, it is possible to greatly reduce this complexity by reusing computation
and taking advantage of the parametrization of RBMs. This can be done by saving the results of the
computations α = cTx and βj =

∑
iWjixi+bj when computing F (x). The computation of F (x̄i)

can be reduced toO(n) with the formula−F (x̄i) = α−(2xi−1)ci+
∑
j log(1+eβj−(2xi−1)Wji).

This implementation isO(dn) which is the same complexity as SML. However, like SML, RM does
not take advantage of sparsity in the input.
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5 Stochastic Ratio Matching

We propose Stochastic Ratio Matching (SRM) as a more efficient form of ratio matching for high-
dimensional sparse distributions. The ratio matching objective requires the summation of d terms
in O(n). The basic idea of SRM is to estimate this sum using a very small fraction of the terms,
randomly chosen. If we rewrite the ratio matching objective as an expectation over a discrete distri-
bution

JRM (x) = d

d∑
i=1

1
d
g2

(
P (x)
P (x̄i)

)
= dE

[
g2

(
P (x)
P (x̄i)

)]
(5)

we can use Monte Carlo methods to estimate JRM without computing all the terms in Equation
2. However, in practice this estimator has a high variance. Thus it is a poor estimator, especially
if we want to use very few Monte Carlo samples. The solution proposed for SRM is to use an
Importance Sampling scheme to obtain a lower variance estimator of JRM . Combining Monte
Carlo with importance sampling, we obtain the SRM objective

JSRM (x) =
d∑
i=1

γi
E[γi]

g2

(
P (x)
P (x̄i)

)
(6)

where γi ∼ P (γi = 1|x) is the so-called proposal distribution of our importance sampling scheme.
The proposal distribution determines which terms will be used to estimate the objective since only
the terms where γi = 1 are non-zero. JSRM (x) is an unbiased estimator of JRM (x), i.e.,

E[JSRM (x)] =
d∑
i=1

E[γi]
E[γi]

g2

(
P (x)
P (x̄i)

)
= JRM (x)

The intuition behind importance sampling is that the variance of the estimator can be reduced by
focusing sampling on the largest terms of the expectation. More precisely, it is possible to show
that the variance of the estimator is minimized when P (γi = 1|x) ∝ g2(P (x)/P (x̄i)). Thus we
would like the probability P (γi = 1|x) to reflect how large the error (xi−P (xi = 1|x−i))2 will be.
The challenge is finding a good approximation for (xi − P (xi = 1|x−i))2 and to define a proposal
distribution that is efficient to sample from.

Following Dauphin et al. (2011), we propose such a distribution for high-dimensional sparse dis-
tributions. In these types of distributions the marginals Px(xi = 1) are very small. They can
easily be learned by the biases c of the model, and may even be initialized very close to their
optimal value. Once the marginals are learned, the model will likely only make wrong predic-
tions when Px(xi = 1|x−i) differs significantly from Px(xi = 1). If xi = 0 then the error
(0 − P (xi = 1|x−i))2 is likely small because the model has a high bias towards P (xi = 0).
Conversely, the error will be high when xi = 1. In other words, the model will mostly make errors
for terms where xi = 1 and a small number of dimensions where xi = 0. We can use this to define
the heuristic proposal distribution

P (γi = 1|x) =
{

1 if xi = 1
p/(d−

∑
j 1xj>0) otherwise (7)

where p is the average number of non-zeros in the data. The idea is to always sample the terms
where xi = 1 and a subset of k of the (d−

∑
j 1xj>0) remaining terms where xi = 0. Note that if

we sampled the γi independently, we would get E[k] = p.

However, instead of sampling those γi bits independently, we find that much smaller variance is
obtained by sampling a number of zeros k that is constant for all examples, i.e., k = p. A random k
can cause very significant variance in the gradients and this makes stochastic gradient descent more
difficult. In our experiments we set k = p = E[

∑
j 1xj>0] which is a small number by definition of

these sparse distributions, and guarantees that computation costs will remain constant as n increases
for a fixed number of non-zeros. The computational cost of SRM per training example is O(pn),
as opposed to O(dn) for RM. While simple, we find that this heuristic proposal distribution works
well in practice, as shown below.
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For comparison, we also perform experiments with a biased version of Equation 6

JBiasedSRM (x) =
d∑
i=1

γig
2

(
P (x)
P (x̄i)

)
. (8)

This will allow us to gauge the effectiveness of our importance weights for unbiasing the objective.
The biased objective can be thought as down-weighting the ratios where xi = 0 by a factor of E[γi].

SRM is related to previous work (Dahl et al., 2012) on applying RBMs to high-dimensional sparse
inputs, more precisely multinomial observations, e.g., one K-ary multinomial for each word in an
n-gram window. A careful choice of Metropolis-Hastings transitions replaces Gibbs transitions and
allows to handle large vocabularies. In comparison, SRM is geared towards general sparse vectors
and involves an extremely simple procedure without MCMC.

6 Experimental Results

In this section, we demonstrate the effectiveness of SRM for training RBMs. Additionally, we show
that RBMs are useful features extractors for topic classification.

Datasets We have performed experiments with the Reuters Corpus Volume I (RCV1) and 20
Newsgroups (20 NG). RCV1 is a benchmark for document classification of over 800,000 news wire
stories (Lewis et al., 2004). The documents are represented as bag-of-words vectors with 47,236
dimensions. The training set contains 23,149 documents and the test set has 781,265. While there
are 3 types of labels for the documents, we focus on the task of predicting the topic. There are a
set of 103 non-mutually exclusive topics for a document. We report the performance using the F1.0

measure for comparison with the state of the art. 20 Newsgroups is a collection of Usenet posts com-
posing a training set of 11,269 examples and 7505 test examples. The bag-of-words vectors contain
61,188 dimensions. The postings are to be classified into one of 20 categories. We use the by-date
train/test split which ensures that the training set contains postings preceding the test examples in
time. Following Larochelle et al. (2012), we report the classification error and for a fair comparison
we use the same preprocessing1.

Methodology We compare the different estimation methods for the RBM based on the log-
likelihoods they achieve. To do this we use Annealed Importance Sampling or AIS (Salakhutdi-
nov and Murray, 2008). For all models we average 100 AIS runs with 10,000 uniformly spaced
reverse temperatures βk. We compare RBMs trained with ratio matching, stochastic ratio matching
and biased stochastic ratio matching. We include experiments with RBMs trained with SML-1 for
comparison.

Additionally, we provide experiments to motivate the use of high-dimensional RBMs in NLP. We
use the RBM to pretrain the hidden layers of a feed-forward neural network (Hinton et al., 2006).
This acts as a regularization for the network and it helps optimization by initializing the network
close to a good local minimum (Erhan et al., 2010).

The hyper-parameters are cross-validated on a validation set consisting of 5% of the training set. In
our experiments with AIS, we use the validation log-likelihood as the objective. For classification,
we use the discriminative performance on the validation set. The hyper-parameters are found using
random search (Bergstra and Bengio, 2012) with 64 trials per set of experiments. The learning
rate for the RBMs is sampled from 10−[0,3], the number of hidden units from [500, 2000] and the
number of training epochs from [5, 20]. The learning rate for the MLP is sampled from 10−[2,0]. It
is trained for 32 epochs using early-stopping based on the validation set. We regularize the MLP by
dropping out 50% of the hidden units during training (Hinton et al., 2012). We adapt the learning
rate dynamically by multiplying it by 0.95 when the validation error increases.

All experiments are run on a cluster of double quad-core Intel Xeon E5345 running at 2.33Ghz with
2GB of RAM.
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Table 1: Log-probabilities estimated by AIS for the RBMs trained with the different estimation
methods. With a fixed budget of epochs, SRM achieves likelihoods on the test set comparable with
RM and SML-1.

ESTIMATES AVG. LOG-PROB.

log Ẑ log(Ẑ ± σ̂) TRAIN TEST

RCV1 BIASED SRM 1084.96 1079.66, 1085.65 -758.73 -793.20
SRM 325.26 325.24, 325.27 -139.79 -151.30
RM 499.88 499.48, 500.17 -119.98 -147.32
SML-1 323.33 320.69, 323.99 -138.90 -153.50

20 NG BIASED SRM 1723.94 1718.65, 1724.63 -960.34 -1018.73
SRM 546.52 546.55, 546.49 -178.39 -190.72
RM 975.42 975.62, 975.18 -159.92 -185.61
SML-1 612.15 611.68, 612.46 -173.56 -188.82

6.1 Using SRM to train RBMs

We can measure the effectiveness of SRM by comparing it with various estimation methods for
the RBM. As the RBM is a generative model, we must compare these methods based on the log-
likelihoods they achieve. Note that Dauphin et al. (2011) relies on the classification error because
there is no accepted performance measure for DAEs. As both RM and SML scale badly with input
dimension, we restrict the dimension of the dataset to the p = 1, 000 most frequent words. We will
describe experiments with all dimensions in the next section.

As seen in Table 1, SRM is a good estimator for training RBMs and is a good approximation of RM.
We see that with the same budget of epochs SRM achieves log-likelihoods comparable with RM
on both datasets. The striking difference of more than 500 nats with Biased SRM shows that the
importance weights successfully unbias the estimator. Interestingly, we observe that RM is able to
learn better generative models than SML-1 for both datasets. This is similar to Marlin et al. (2010)
where Pseudolikelihood achieves better log-likelihood than SML on a subset of 20 newsgroups. We
observe this is an optimization problem since the training log-likelihood is also higher than RM.
One explanation is that SML-1 might experience mixing problems (Bengio et al., 2013).

Figure 1: Average speedup in the calculation of gradients by using the SRM objective compared to
RM. The speed-up is linear and reaches up to 2 orders of magnitude.

Figure 1 shows that as expected SRM achieves a linear speed-up compared to RM, reaching speed-
ups of 2 orders of magnitude. In fact, we observed that the computation time of the gradients for RM
scale linearly with the size of the input while the computation time of SRM remains fairly constant
because the number of non-zeros varies little. This is an important property of SRM which makes it
suitable for very large scale inputs.

1http://qwone.com/̃ jason/20Newsgroups/20news-bydate-matlab.tgz
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Figure 2: Average norm of the gradients for the terms in Equation 2 where xi = 1 and xi = 0.
Confirming the hypothesis for the proposal distribution the terms where xi = 1 are 2 orders of
magnitude larger.

The importance sampling scheme of SRM (Equation 7) relies on the hypothesis that terms where
xi = 1 produce a larger gradient than terms where xi = 0. We can verify this by monitoring the
average gradients during learning on RCV1. Figure 2 demonstrates that the average gradients for
the terms where xi = 1 is 2 orders of magnitudes larger than those where xi = 0. This confirms the
hypothesis underlying the sampling scheme of SRM.

6.2 Using RBMs as feature extractors for NLP

Having established that SRM is an efficient unbiased estimator of RM, we turn to the task of using
RBMs not as generative models but as feature extractors. We find that keeping the bias in SRM is
helpful for classification. This is similar to the known result that contrastive divergence, which is
biased, yields better classification results than persistent contrastive divergence, which is unbiased.
The bias increases the weight of non-zeros features. The superior performance of the biased objec-
tive suggests that the non-zero features contain more information about the classification task. In
other words, for these tasks it’s more important to focus on what is there than what is not there.

Table 2: Classification results on RCV1 with all 47,326 dimensions. The DBN trained with SRM
achieves state-of-the-art performance.

MODEL TEST SET F1

ROCCHIO 0.693
k-NN 0.765
SVM 0.816

SDA-MLP (REC. SAMPLING) 0.831
RBM-MLP (UNBIASED SRM) 0.816
RBM-MLP (BIASED SRM) 0.829
DBN-MLP (BIASED SRM) 0.836

On RCV1, we train our models on all 47,326 dimensions. The RBM trained with SRM improves
on the state-of-the-art (Lewis et al., 2004), as shown in Table 2. The total training time for this
RBM using SRM is 57 minutes. We also train a Deep Belief Net (DBN) by stacking an RBM
trained with SML on top of the RBMs learned with SRM. This type of 2-layer deep architecture is
able to significantly improve the performance on that task (Table 2). In particular the DBN does
significantly better than a stack of denoising auto-encoders we trained using biased reconstruction
sampling (Dauphin et al., 2011), which appears as SDA-MLP (Rec. Sampling) in Table 2.

We apply RBMs trained with SRM on 20 newsgroups with all 61,188 dimensions. We see in Table
3 that this approach improves the previous state-of-the-art by over 1% (Larochelle et al., 2012),
beating non-pretrained MLPs and SVMs by close to 10 %. This result is closely followed by the
DAE trained with reconstruction sampling which in our experiments reaches 20.6% test error. The
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Table 3: Classification results on 20 Newsgroups with all 61,188 dimensions. Prior results from
(Larochelle et al., 2012). The RBM trained with SRM achieves state-of-the-art results.

MODEL TEST SET ERROR

SVM 32.8 %
MLP 28.2 %
RBM 24.9 %
HDRBM 21.9 %

DAE-MLP (REC. SAMPLING) 20.6 %
RBM-MLP (BIASED SRM) 20.5 %

simpler RBM trained by SRM is able to beat the more powerful HD-RBM model because it uses all
the 61,188 dimensions.

7 Conclusion

We have proposed a very simple algorithm called Stochastic Ratio Matching (SRM) to take advan-
tage of sparsity in high-dimensional data when training discrete RBMs. It can be used to estimate
gradients inO(np) computation where p is the number of non-zeros, yielding linear speedup against
the O(nd) of Ratio Matching (RM) where d is the input size. It does so while providing an unbiased
estimator of the ratio matching gradient. Using this efficient estimator we train RBMs as features
extractors and achieve state-of-the-art results on 2 text classification benchmarks.
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