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Abstract. We study existence and uniqueness of a mild solution in the space of continuous
functions and existence of an invariant measure for a class of reaction-diffusion systems on
bounded domains of R

d , perturbed by a multiplicative noise. The reaction term is assumed
to have polynomial growth and to be locally Lipschitz-continuous and monotone. The noise
is white in space and time if d = 1 and coloured in space if d > 1; in any case the covari-
ance operator is never assumed to be Hilbert-Schmidt. The multiplication term in front of
the noise is assumed to be Lipschitz-continuous and no restrictions are given either on its
linear growth or on its degenaracy. Our results apply, in particular, to systems of stochastic
Ginzburg-Landau equations with multiplicative noise.

1. Introduction

In this paper we are concerned with the study of existence and uniqueness of
solutions and existence of an invariant measure for the following class of reaction-
diffusion systems perturbed by a multiplicative noise






∂ui

∂t
(t, ξ) = Ai ui(t, ξ)+ fi(t, ξ, u1(t, ξ), . . . , ur (t, ξ))

+
r∑

j=1

gij (t, ξ, u1(t, ξ), . . . , ur (t, ξ))Qj

∂wj

∂t
(t, ξ), t ≥ s, ξ ∈O,

ui(s, ξ) = xi(ξ), ξ ∈ O, Bi ui(t, ξ) = 0, t ≥ s, ξ ∈ ∂O.
(1.1)

Here O is a bounded open set of R
d , with d ≥ 1, having regular boundary. For each

i = 1, . . . , r , Ai are second order uniformly elliptic operators with coefficients of
class C1, Bi are operators acting on the boundary of O, Qi are bounded linear
operators fromL2(O) into itself, which are not assumed to be Hilbert-Schmidt and
in the case of space dimension d = 1 can be taken equal to identity, and finally
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∂wi(t)/∂t are independent space-time white noises. This means that in dimension
d = 1 we can consider systems perturbed by white noise and in dimension d > 1
we have clearly to colour the noise but we do not assume any trace-class property
for its covariance.

Concerning the non linear terms, we assume that

f : [0,∞)× O × R
r → R

r , g = [gij ] : [0,∞)× O × R
r → L(R r )

are measurable and for almost all t ≥ 0 the mappings f (t, ·, ·) and g(t, ·, ·) are
continuous on O×R

r . For almost all t ≥ 0, the mapping g(t, ξ, ·) : R
r → L(R r )

is Lipschitz-continuous, uniformly with respect to ξ ∈ O, without any restriction
on its linear growth or its degeneracy (this means that we can take for example
gij (t, ξ, u) = λijuj , with λij ∈ R or more general). Moreover, for almost all
t ≥ 0, the mapping f (t, ξ, ·) : R

r → R
r has polynomial growth, is locally

Lipschitz-continuous and satisfies suitable dissipativity conditions, uniformly with
respect to ξ ∈ O. The example that we have in mind is the case of fi(t, ξ, ·)’s
which are odd-degree polynomials in the space variable having negative leading
coefficients.

In this paper we first show that for any initial datum x ∈ E := C(O; R
r ) prob-

lem (1.1) admits a unique mild solution uxs inLp(�;C((s, T ];E)∩L∞(s, T ;E)),
for any p ≥ 1 and T ≥ s, which depends continuously on the initial datum x ∈ E.
Next, in the case of coefficients f and g not depending on time, we introduce the
transition semigroup Pt associated with system (1.1), by setting for any bounded
Borel measurable function ϕ : E → R

Ptϕ (x) = Eϕ (ux(t)), t ≥ 0, x ∈ E,

where ux(t) is the solution of (1.1) starting from x at time s = 0. By investigating
the asymptotic behaviour of the norm of ux(t) in some spaces of Hölder-continuous
functions, we show that for any a > 0 the family of probabilities Pt(x, ·), t ≥ a, is
tight and then Pt has an invariant measure on (E,B(E)).

Stochastic reaction-diffusion systems with non-Lipschitz reaction terms hav-
ing polynomial growth and fulfilling some monotonicity assumptions have been
studied by several authors, both in the case of additive and multiplicative noise (for
the multiplicative case see [1], [11], [13], [14], [15], [3], [16] and the recent [2];
see also [8], [5] and [6] for several applications to Kolmogorov equations, invariant
measures and stochastic optimal control problems in the case of additive noise).

In [1], [11], [13], [14], [15] comparison arguments are mainly used, providing
the construction of the solution as limit of solutions of auxiliary problems with
known bounds. In these papers, with the only exception of [15] where general do-
mains of R

d are considered, even unbounded, the case of domain O = (0, 1) and
white noise are studied. Instead here, as in [3] and [16], we use semigroup tech-
niques and this enables us to treat also the case of systems of equations for which
the use of comparison is much more complicated, as the maximum principle does
not hold in general.

It is evident that different approaches to the study of SPDE’s involve different
settings of hypotheses that are not always easy to compare. In this paper we try
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to overcome the limits arising from both techniques, which are mainly due to the
fact that a multiplicative noise is considered and pathwise arguments cannot be
used. Thus, concerning the multiplication term in front of the noise, on one hand
we do not assume it to be smooth and strictly non degenerate as e.g. in [1], where
Malliavin calculus is used in order to get rid of only measurable f , and on the
other hand we allow it to have linear growth, unlike in [3] and [16] where a more
abstract setting is considered, which in the concrete cases seems to apply only to
reaction-diffusion problems in bounded domains of R with bounded diffusions.

Moreover, the fact that we are dealing with domains of any dimension d ≥ 1
and looking for solutions in spaces of continuous functions, without having any
Itô’s formula, makes our work much more complicated from a technical point of
view and forces us to work directly on heat kernels and use the factorization formula
pointwise (and not in the classical L2 setting).

In the last section of the paper, the good knowledge of the equation permits us
to give a good description of the asymptotic behaviour of solutions in spaces of
Hölder continuous functions and to show that the family of probability measures
{L(u x0(t)), t ≥ a} is tight in (E,B(E)). Thus, thanks to the classical Krylov-
Bogoliubov theorem we get the existence of an invariant measure for system (1.1).
We would like to stress that here, as above, the main difficulty is providing good
a-priori estimates, which are hard to obtain in the case of non constant diffusion term
in front of the noise, as we cannot proceed pathwise and apply directly deterministic
techniques.

Finally, we would like to recall that the results proved in this article are applied
in [7] to the study of large deviations estimates in the space of paths for the solution
of system (1.1).

2. Preliminaries

If X and Y are two Banach spaces, we denote by L(X, Y ) the Banach space of all
bounded linear operators T : X → Y , endowed with the sup-norm. When X = Y

we write L(X) instead of L(X,X).
LetH be a separable Hilbert space and let T be a compact linear operator inH .

The non negative self-adjoint operator T �T is also compact, so that the operator
A = √

T �T is non negative, self-adjoint and compact. The eigenvalues of A are
called the characteristic numbers of T and are denoted by µk(T ), k ≥ 1.

Definition 2.1. For any p ∈ (0,+∞) we denote by Cp(H) the set of all compact
operators T ∈ L(H) such that

‖T ‖pp :=
∞∑

k=1

µk(T )
p < ∞.

Cp(H) is a Banach space, endowed with the norm ‖ · ‖p.
If p = +∞ we define C∞(H) := L(H) and we have

‖T ‖∞ := ‖T ‖ = sup
k∈ N

µk(T ).
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As shown for example in [12, Lemma XI.9.9], the spaces Cp(H) fulfill the
following properties:

1. if p < q, then Cp(H) ⊂ Cq(H) and the mapping p 	→ ‖T ‖p is decreasing;
2. if S is in Cp(H) and T is in Cq(H), then ST is in Cr (H), with 1/r = 1/p+1/q,

and
‖ST ‖r ≤ 2

1
r ‖S‖p‖T ‖q, 0 < r < ∞; (2.1)

3. if T is in Cp(H) and A is bounded, then AT and TA are in Cp(H) and

‖AT ‖p ≤ ‖A‖ ‖T ‖p, ‖TA‖p ≤ ‖A‖ ‖T ‖p;
4. if {ei} is a complete orthonormal system in H , then for any T ∈ C2(H)

‖T ‖2
2 =

∞∑

i=1

|T ei |2H .

In [12, Lemma XI.9.32] it is also proved that if {ei} is a complete orthonormal
set in H and 2 ≤ p < ∞, then for any T in L(H)

∞∑

i=1

|T ei |pH < ∞ �⇒ ‖T ‖p ≤ cp

( ∞∑

i=1

|T ei |pH
) 1
p

, (2.2)

for some positive constant cp. In particular T ∈ Cp(H).
Next, let O be a bounded open subset of R

d , having a regular boundary.
Throughout the paper we denote by H the separable Hilbert space L2(O; R

r ),
with r ≥ 1, endowed with the scalar product

〈x, y〉H :=
∫

O
〈x(ξ), y(ξ)〉R r dξ =

r∑

i=1

∫

O
xi(ξ)yi(ξ) dξ =

r∑

i=1

〈xi, yi〉L2(O)

and the corresponding norm | · |H . For any p ≥ 1, p �= 2, the usual norm in
Lp(O; R

r ) is denoted by | · |p. If ε > 0, we denote by | · |ε,p the norm in
Wε,p(O; R

r )

|x|ε,p := |x|p +
r∑

i=1

∫

O×O
|xi(ξ)− xi(η)|p

|ξ − η|εp+d dξ dη.

We denote by E the Banach space C(O; R
r ), endowed with the sup-norm

|x|E :=
(

r∑

i=1

sup
ξ∈O

|xi(ξ)|2
) 1

2

and the duality 〈·, ·〉E . Finally, for any θ ∈ (0, 1) we denote by Cθ(O; R
r ) the

subspace of θ -Hölder continuous functions, endowed with the norm

|x|
Cθ (O;R r )

= |x|E + [x]θ := |x|E + sup
ξ,η∈ O
ξ �=η

|x(ξ)− x(η)|
|ξ − η|θ < ∞.
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Now, if we fix any x ∈ E there exist ξ1, . . . , ξr ∈ O such that |xi(ξi)| =
|xi |C(O), for all i = 1, . . . , r . Then, if δ is any element of E� having norm equal 1,
the element δx ∈ E� defined for any y ∈ E by

〈δx, y〉E :=






1

|x|E
r∑

i=1

xi(ξi)yi(ξi), if x �= 0

〈δ, y〉E, if x = 0,

(2.3)

belongs to ∂ |x|E := {h� ∈ E�; |h�|E� = 1, 〈h, h�〉E = |h|E } (see e.g.
[6, Appendix A] for all definitions and details).

2.1. The operator A

For any i = 1, . . . , r we define

Ai (ξ,D) :=
d∑

h,k=1

aihk(ξ)
∂2

∂ξh∂ξk
+

d∑

h=1

bih(ξ)
∂

∂ξh
, ξ ∈ O.

The coefficients aihk are taken of classC1(O) and for any ξ ∈ O the matrix [aihk(ξ)]
is non negative and symmetric and the uniform ellipticity condition

inf
ξ∈O

d∑

h,k=1

aihk(ξ)λhλk ≥ ν |λ|2, λ ∈ R
d ,

is fulfilled, for some ν > 0. The coefficients bih are continuous. Moreover, for any
i = 1, . . . , r we define

Bi (ξ,D) := I, or Bi (ξ,D) :=
d∑

h,k=1

aihk(ξ)νh(ξ)
∂

∂ξk
, ξ ∈ ∂ O.

Next, we denote by A the realization in H of the differential operator A =
(A1, . . . ,Ar ) endowed with the boundary conditions B = (B1, . . . ,Br ). That
is

D(A) =
{
x ∈ W 2,2(O; R

r ) : B(·,D)x = 0 in ∂ O
}
, Ax = A(·,D)x.

Now, for any i = 1, . . . , r we set

Li (ξ,D) :=
d∑

h=1

(

bih(ξ)−
d∑

k=1

∂

∂ξk
aihk(ξ)

)
∂

∂ξh
, ξ ∈ O,

and by difference we define the divergence-form operator

Ci := Ai − Li .
It is possible to check (see e.g. [10] for all details and proofs) that the realization
C in H of the second order elliptic operator C = (C1, . . . , Cr ), endowed with the
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boundary conditions B, is a non-positive and self-adjoint operator which generates
an analytic semigroup etC with dense domain given by etC = (etC1 , . . . , etCr ),
where Ci is the realization in L2(O) of Ci with the boundary condition Bi .

In [10, Theorem 1.4.1] it is proved that the space L1(O; R
r ) ∩ L∞(O; R

r ) is
invariant under etC , so that etC may be extended to a non-negative one-parameter
contraction semigroup Tp(t) on Lp(O; R

r ), for all 1 ≤ p ≤ ∞. These semi-
groups are strongly continuous for 1 ≤ p < ∞ and are consistent, in the sense that
Tp(t)x = Tq(t)x, for all x ∈ Lp(O; R

r )∩Lq(O; R
r ). This is why we shall denote

all Tp(t) by etC . Moreover, Tp(t)� = Tq(t), if 1 ≤ p < ∞ and 1 = p−1 + q−1.
Finally, if we consider the part of C in the space of continuous functions E, it
generates an analytic semigroup which has no dense domain in general (it clearly
depends on the boundary conditions).

For any t, ε > 0 and p ≥ 1, the semigroup etC maps Lp(O; R
r ) into

Wε,p(O; R
r ) and by using the semigroup law we easily obtain

|etCx|ε,p ≤ c (t ∧ 1)−
ε
2 |x|p, x ∈ Lp(O; R

r ), (2.4)

for some constant c independent of p. Due to the Sobolev embedding theorem, we
have thatWε,p(O; R

r ) embeds into L∞(O; R
r ), for any ε > d/p. Then, by easy

calculations we have that etC maps H into L∞(O; R
r ), for any t > 0, and

|etCx|∞ ≤ c (t ∧ 1)−
d
4 |x|H , x ∈ H.

This means that etC is ultracontractive. As C is self-adjoint, by using the Riesz-
Thorin theorem we have that for any t > 0 and 1 ≤ q ≤ p ≤ +∞ the semigroup
etC maps Lq(O; R

r ) into Lp(O; R
r ) and

|etCx|p ≤ c (t ∧ 1)−
d(p−q)

2pq |x|q, x ∈ Lq(O; R
r ). (2.5)

Finally, as Wε,p(O; R
r ) embeds continuously into Cθ(O; R

r ), for any θ < ε −
d/p, we easily have

|etCx|
Cθ (O;R r )

≤ c (t ∧ 1)−
θ
2 |x|E. (2.6)

Since etC is ultracontractive, as proved in [10, Lemma 2.1.2] it admits an inte-
gral kernel K : (0,+∞)× O × O → R

r . That is

etCx(ξ) =
(∫

O
K1(t, ξ, η)x1(η) dη , . . . ,

∫

O
Kr(t, ξ, η)xr(η) dη

)

t > 0,

(2.7)
for any x ∈ L1(O; R

r ) and ξ ∈ O. Moreover, there exist two positive constants
c1 and c2 such that for each i = 1, . . . , r

0 ≤ Ki(t, ξ, η) ≤ c1 t
− d

2 exp

(

−c2
|ξ − η|2

t

)

(2.8)

(see [10, Corollary 3.2.8 and Theorem 3.2.9]).
Furthermore, from the ultracontractivity of etC and the boundedness of O, as

proved in [10, Theorems 2.1.4 and 2.1.5] we have that etC is compact onLp(O; R
r )
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for all 1 ≤ p ≤ ∞ and t > 0. The spectrum {−αk}k∈ N of C is independent of p
and etC is analytic on Lp(O; R

r ), for all 1 ≤ p ≤ ∞. Concerning the complete
orthonormal system of eigenfunctions {ek}k∈ N, we have that ek ∈ L∞(O; R

r ).
In the sequel we shall assume the following condition on the eigenfunctions ek .

Hypothesis 1. The complete orthonormal system of H which diagonalizes C is
equibounded in L∞(O; R

r ), that is

sup
k∈ N

|ek|∞ < ∞. (2.9)

Remark 2.2. We assume this uniform bound on theL∞-norm of the eigenfunctions
ek (which is satisfied for example by the Laplace operator on the square with Di-
richlet boundary conditions) for the sake of simplicity, even if in several important
cases, as for example the disc, it is not satisfied. In fact, what is true in general is
that

|ek|∞ ≤ c kα,

for some α ≥ 0. Thus, in order to compensate the terms kα and get the regularity
results of next sections, in general we have to give some further colour to the noise.

Finally, for any p ≥ 1 we denote by Lp the realization of the operator L =
(L1, . . . ,Lr ) in Lp(O; R

r ). It is immediate to verify that the operators Lp are all
consistent, in the sense that

Lpx = Lqx, x ∈ D(Lp) ∩D(Lq).
Thus, if no confusion arises, we denote all of them by L. For each p ∈ [1,∞]
L : D(L) ⊆ Lp(O; R

r ) → Lp(O; R
r ) is a linear operator with dense domain and

the domains of L and L� coincide with D((−C)1/2), with equivalence of norms.
Moreover for any x ∈ Lp(O; R

r )

|L�etCx|p ≤ c (t ∧ 1)−
1
2 |x|p, t > 0.

3. Regularity of the stochastic convolution

We are here concerned with the study of existence, uniqueness and regularity of
solutions for the system





∂ui

∂t
(t, ξ) = Ai ui(t, ξ)+

r∑

j=1

gij (t, ξ, u1(t, ξ), . . . , ur (t, ξ))Qj

∂wj

∂t
(t, ξ),

ξ ∈ O, t ≥ s

ui(s, ξ) = 0, ξ ∈ O, Bi ui(t, ξ) = 0, ξ ∈ ∂O, t ≥ s, i = 1, . . . , r.

Here ∂wj (t)/∂t are independent space-time white noises defined on the same sto-
chastic basis (�,F,Ft ,P). Thus, if we set w(t) = (w1(t), . . . , wr(t)), we have
that w(t) can be written as

w(t) :=
∞∑

k=1

ekβk(t), t ≥ 0,
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where {ek} is the complete orthonormal system in H which diagonalizes C and
{βk(t)} is a sequence of mutually independent standard real Brownian motions on
(�,F,Ft ,P). As well known, the series above does not converge inH , but it does
converge in any Hilbert space U containing H with Hilbert-Schmidt embedding.

If we denote by Q the operator of components Q1, . . . ,Qr and if we set for
any x, y : O → R

r and t ≥ 0

(G(t, x)y)(ξ) = g(t, ξ, x(ξ))y(ξ), ξ ∈ O,
by using the notations introduced in Subsection 2.1 the system above can be re-
written in the following abstract form

du(t) = Au(t) dt +G(t, u(t))Q dw(t), u(s) = 0. (3.1)

As we have seen in Subsection 2.1, the operatorA can be written asA = C+L
and the complete orthonormal system which diagonalizes the operator C fulfills
Hypothesis 1. Concerning G and Q we assume the following conditions.

Hypothesis 2. 1. The operator Q : H → H belongs to C�(H), with

� = ∞, if d = 1, 2 < � <
2d

d − 2
, if d ≥ 2. (3.2)

2. The mapping g : [0,∞) × O × R
r → L(R r ) is measurable. Moreover for

any σ, ρ ∈ R
r and almost all t ≥ 0

sup
ξ∈O

|g(t, ξ, σ )− g(t, ξ, ρ)|L(R r ) ≤ �(t) |σ − ρ|, (3.3)

for some function � ∈ L∞
loc [0,∞).

As the mapping g(t, ξ, ·) : R
r → L(R r ) is Lipschitz-continuous, uniformly

with respect to ξ ∈ O and t in bounded sets of [0,∞), the operator G(t, ·) is
Lipschitz-continuous from H into L(H ;L1(O; R

r )), uniformly for t in bounded
sets of [0,∞). Indeed, due to (3.3), for any x, y, v ∈ H and z ∈ L∞(O; R

r ) we
have

〈(G(t, x)−G(t, y)) v, z〉H =
∫

O
〈
v(ξ),

[
g�(t, ξ, x(ξ))−g�(t, ξ, y(ξ))] z(ξ)〉 dξ

≤ |z|∞
∫

O
|g�(t, ξ, x(ξ))− g�(t, ξ, y(ξ))|L(R r ) |v(ξ)| dξ

≤ �(t) |z|∞ |x − y|H |v|H .
Thus, we have

‖G(t, x)−G(t, y)‖L(H ;L1(O;R r )) ≤ �(t) |x − y|H . (3.4)

In the same way it is possible to show that the operatorG(t, ·) is Lipschitz-contin-
uous from H into L(L∞(O; R

r );H) and

‖G(t, x)−G(t, y)‖L(L∞(O;R r );H) ≤ �(t) |x − y|H . (3.5)
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Note that estimates (3.4) and (3.5) are also verified by the operator

(G�(t, x)y)(ξ) := g�(t, ξ, x(ξ))y(ξ), ξ ∈ O.
Now, let X be any separable Banach space. For 0 ≤ s < T and p ≥ 1, in

what follows we shall denote by Lp(�;C((s, T ];X)∩L∞(s, T ;X)) the set of all
predictableX-valued processes u in C((s, T ];X)∩L∞(s, T ;X), P-a.s., such that

|u|pLs,T ,p(X) := E sup
t∈ [s,T ]

|u(t)|pX < ∞.

Lp(�;C((s, T ];X) ∩ L∞(s, T ;X)) is a Banach space, endowed with the norm
| · |Ls,T ,p(X). Moreover, we shall denote by Lp(�;C([s, T ];X)) the subspace of
processes u which take values in C([s, T ];X), P-a.s.

Definition 3.1. A processu ∈ Lp(�;C([s, T ];H)), withp ≥ 1, is a mild solution
for problem (3.1) if

u(t) =
∫ t

s

e(t−r)CLu(r) dr +
∫ t

s

e(t−r)CG(r, u(r))Qdw(r), t ∈ [s, T ].

For any p ≥ 1 and f ∈ C([s, T ];D(L)) we define

ψ(f )(t) :=
∫ t

s

e(t−r)CLf (r) dr, t ∈ [s, T ]. (3.6)

By proceeding as for example in [6, Lemma 6.1.2] we can prove that ifX equals ei-
therH orE, thenψ can be extended to a bounded linear operator fromC([s, T ];X)
into itself and for any t ∈ [s, T ]

|ψ(f )(t)|X ≤ c

∫ t

s

((t − r) ∧ 1)−
1+ε

2 |f (r)|X dr, (3.7)

where ε is any constant greater than zero. In particular this implies that

|ψ(f )(t)|X ≤ c

∫ t−s

0
(r ∧ 1)−

1+ε
2 dr sup

r∈ [s,t]
|f (r)|X =: cψs (t) sup

r∈ [s,t]
|f (r)|X,

(3.8)
so that for any p ≥ 1 and u ∈ Lp(�;C([s, T ];X))

|ψ(u)|Ls,T ,p(X) ≤ cψs (T ) |u|Ls,T ,p(X). (3.9)

Notice that if we fix λ > 0 and define

ψλ(f )(t) :=
∫ t

s

e(t−r)(C−λ)f (r) dr, (3.10)

due to (2.6), for any θ ∈ (0, 1)

|ψλ(f )(t)|Cθ (O;R r )
≤ c

∫ t

s

e−λ(t−r)(r ∧ 1)−
1+θ

2 dr sup
r∈ [s,T ]

|f (r)|E

:= c
ψ,λ
s,θ (t) sup

r∈ [s,T ]
|f (r)|E. (3.11)

Since λ > 0, it is immediate to check that cψ,λθ,s ∈ L∞ [s,∞).
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Proposition 3.2. Under Hypotheses 1 and 2, problem (3.1) admits a unique mild
solution in Lp(�;C([s, T ];H)), for any T > s and p ≥ 1.

Proof. Clearly, a process u is a mild solution of problem (3.1) if it is a fixed point
of the mapping

ψ + γ : Lp(�;C([s, T ];H)) → Lp(�;C([s, T ];H)),
where for any u ∈ Lp(�;C([s, T ];H)) we have defined

γ (u)(t) :=
∫ t

s

e(t−r)CG(r, u(r))Qdw(r), t ∈ [s, T ]. (3.12)

Now, if we show that there exists some p� ≥ 1 and T0 ∈ (s, T ] such that γ is a
contraction inLp(�;C([s, T0];H)), for anyp ≥ p�, then, due to (3.9) forX = H ,
we have that the mapping ψ + γ is a contraction, for some T0 possibly smaller.
Thus, by a fixed point argument we can conclude that problem (3.1) admits a unique
mild solution in Lp(�;C([s, T ];H)), for any T ≥ s and p ≥ 1.

By adapting some arguments based on the factorization method described for
example in [8, proof of Theorem 8.3], we can prove that if there exists some δ > 0
and some continuous increasing function cs(t) vanishing at t = s such that for any
u, v ∈ Lp(�;C([s, T ];H))

∫ t

s

(t − r)−2δ
∥
∥
∥e
(t−r)C [G(r, u(r))−G(r, v(r))]Q

∥
∥
∥

2

2
dr

≤ cs(t) sup
r∈ [s,T ]

|u(r)− v(r)|2H , (3.13)

then there exists p� ≥ 1 such that γ is a contraction in Lp(�;C([s, T0];H)),
for T0 sufficiently close to s and p ≥ p�. More precisely, for any p ≥ p� there
exists a continuous increasing function cs,p(t), with cs,p(s) = 0, such that for any
u, v ∈ Lp(�;C([s, T ];H))

|γ (u)− γ (v)|Ls,T ,p(H) ≤ cs,p(T )|u− v|Ls,T ,p(H).
Next lemma shows how from Hypotheses 1 and 2 estimate (3.13) can be estab-

lished.

Lemma 3.3. Assume Hypotheses 1 and 2. Then the operator etCG(r, x)Q is in
C2(H), for any r ≥ 0, t > 0 and x ∈ H . Moreover, for any x, y ∈ H

∥
∥
∥e
tC [G(r, x)−G(r, y)]Q

∥
∥
∥

2
≤ c ‖Q‖� �(r) |x − y|H t−

d(�−2)
4� , (3.14)

where � is the constant introduced in (3.2) and� is the function introduced in (3.3).

Proof. If we fix � as in (3.2) and ς := (1 − 2/�)−1 = �/(� − 2), according to
(2.1) we get

‖etC [G(r, x)−G(r, y)]Q‖2 ≤ ‖Q‖�‖etC [G(r, x)−G(r, y)] ‖2ς .
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Due to (2.2), if {ek} is any complete orthonormal system in H , we have

‖etC [G(r, x)−G(r, y)] ‖2ς ≤ c

( ∞∑

k=1

|etC [G(r, x)−G(r, y)] ek|2ςH
) 1

2ς

,

and then

‖etC [G(r, x)−G(r, y)]Q‖2 ≤ c ‖Q‖�

× sup
k∈ N

|etC [G(r, x)−G(r, y)] ek|
ς−1
ς

H

( ∞∑

k=1

|etC [G(r, x)−G(r, y)] ek|2H
) 1

2ς

.

If {ek} is the basis ofH which diagonalizesC (see Hypothesis 1), as theL∞-norms
of ek are assumed to be equi-bounded, by using (3.5) we easily obtain

sup
k∈ N

|etC [G(r, x)−G(r, y)] ek|H ≤ c�(r) |x − y|H
and this yields

‖etC [G(r, x)−G(r, y)]Q‖2

≤ c ‖Q‖��(r)
ς−1
ς |x − y|

ς−1
ς

H

( ∞∑

k=1

|etC [G(r, x)−G(r, y)] ek|2H
) 1

2ς

.

(3.15)
Now, for any r ≥ 0, t > 0 and x ∈ H we have

∞∑

k=1

|etC [G(r, x)−G(r, y)] ek|2H =
∞∑

k=1

∞∑

h=1

∣
∣
∣

〈
etC [G(r, x)−G(r, y)] ek, eh

〉

H

∣
∣
∣
2

=
∞∑

h=1

∞∑

k=1

∣
∣
∣

〈
ek,

[
G�(r, x)−G�(r, y)

]
etCeh

〉

H

∣
∣
∣
2

=
∞∑

h=1

| [G�(r, x)−G�(r, y)
]
eh|2He−2t αh .

In [10, section 1.9] it is proved that for any t > 0
∞∑

h=1

e−t αh = Tr [etC] =
r∑

i=1

Tr [etCi ] ≤ c |O|2t− d
2 ,

where |O| denotes the Lebesgue measure of the open set O. Thus, by using (3.5)
for G�, we obtain

∞∑

k=1

|etC [G(r, x)−G(r, y)] ek|2H

≤ sup
k∈ N

| [G�(r, x)−G�(r, y)
]
ek|2HTr [e2tC] ≤ c �(r)2|x − y|2H t−

d
2 .

Due to (3.15), recalling that ς = ρ/(ρ − 2) this implies (3.14). ��
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Now we can conclude the proof of the proposition.Actually, as we are assuming
that � = ∞, if d = 1, and � < 2d/(d − 2), if d ≥ 2, for any d ≥ 1 we have
(� − 2)/� < 2/d , and then we can assume that

d(� − 2)

4�
<

1

2
.

Thus, as � ∈ L∞
loc [0,∞), due to (3.14) it is possible to find some δ > 0 such that

(3.13) is verified. ��
Remark 3.4. Assume that there exist some κ ∈ [0, 1] and � ∈ L∞

loc [0,∞) such
that for any t ∈ [0,∞) and σ ∈ R

r

sup
ξ∈O

|g(t, ξ, σ )|L(R r ) ≤ �(t)
(
1 + |σ |κ) .

By repeating the arguments used in the proof of Lemma 3.3, it is easy to show that
in this case

‖et CG(r, x)Q‖2 ≤ c ‖Q‖� �(r)
(
1 + |x|κH

)
t
− d(�−2)

4� ,

so that for any p ≥ p�

|γ (u)|pLs,T ,p(H) ≤ cs,p(T )

(

1 + E sup
t∈ [s,T ]

|u(t)|κpH
)

= cs,p(T )
(

1 + |u|κpLs,T ,κp(H)
)
.

In particular, if κ = 0 then γ (u) is bounded with respect to u.

4. Continuity in space of the solution of problem (3.1)

In this section we show that under more restrictive conditions on the mapping g
and the operator Q the solution of problem (3.1) is continuous in space and time,
P-a.s.

Hypothesis 3. 1. The bounded linear operatorQ : H → H is non negative and
diagonal with respect to the complete orthonormal system {ek} which diago-
nalizes C, with eigenvalues {λk}.

2. For almost all t ≥ 0, the mapping g(t, ·, ·) : O ×R
r → L(R r ) is continuous.

We first prove the following preliminary result.

Lemma 4.1. Assume Hypotheses 1, 2 and 3 and fix x ∈ H , r ≥ 0, t > 0 and
ς ≥ 1. Then, for any ξ ∈ O

∞∑

k=1

|etC [G(r, x)ek] (ξ)|2ς ≤ c

∣
∣
∣e
tCθ(r, ·, x)(ξ)

∣
∣
∣
2(ς−1)

×
r∑

i,j=1

|Ki(t, ξ, ·)gij (r, ·, x)|2L2(O), (4.1)
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where the function θ = (θ1, . . . , θr ) : [0,∞)× O × R
r → R

r is defined by

θi(t, ξ, σ ) :=
r∑

j=1

|gij (t, ξ, σ )|, i = 1, . . . , r. (4.2)

Proof. If we denote by e jk the j -th component of the eigenfunction ek , thanks to
(2.7) for any ξ ∈ O we have

|etC [G(r, x)ek] (ξ)|2 =
r∑

i=1





∫

O
Ki(t, ξ, η)

r∑

j=1

gij (r, η, x(η))e
j
k (η) dη





2

.

(4.3)
Thus, as the L∞-norms of the eigenfunctions e jk are equibounded, we easily have

|etC [G(r, x)ek] (ξ)|2 ≤ c

r∑

i=1





∫

O
Ki(t, ξ, η)

r∑

j=1

|gij (r, η, x(η))| dη




2

= c |etCθ(r, ·, x)(ξ)|2,

where θ is the function defined in (4.2). Moreover, by using again (4.3)

∞∑

k=1

|etC [G(r, x)ek] (ξ)|2 =
∞∑

k=1

r∑

i=1

∣
∣
∣
∣
∣
∣

r∑

j=1

〈
Ki(t, ξ, ·)gij (r, ·, x), e jk

〉

L2(O)

∣
∣
∣
∣
∣
∣

2

≤ c

r∑

i,j=1

∞∑

k=1

∣
∣
∣
∣

〈
Ki(t, ξ, ·)gij (r, ·, x), ejk

〉

L2(O)

∣
∣
∣
∣

2

= c

r∑

i,j=1

|Ki(t, ξ, ·)gij (r, ·, x)|2L2(O).

The last equality is due to the fact that for each j = 1, . . . , r the system {ejk }k∈ N is
complete in L2(O). Then, as we have

∞∑

k=1

|etC [G(r, x)ek] (ξ)|2ς ≤ sup
k∈ N

|etC [G(r, x)ek] (ξ)|2(ς−1)

×
∞∑

k=1

|etC [G(r, x)ek] (ξ)|2,

(4.1) immediately follows. ��
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By proceeding in the same way, for any x, y ∈ H , r ≥ 0, t > 0 and ς ≥ 1 we
have

∞∑

k=1

|etC [G(r, x)−G(r, y)] ek(ξ)|2ς

≤ c

∣
∣
∣e
tCζ(r, ·, x, y)(ξ)

∣
∣
∣
2(ς−1) r∑

i,j=1

|Ki(t, ξ, ·)
(
gij (r, ·, x)− gij (r, ·, y)

) |2
L2(O),

(4.4)
where the function ζ = (ζ1, . . . , ζr ) : [0,∞) × O × R

r × R
r → R

r is defined
by

ζi(t, ξ, σ, ρ) =
r∑

j=1

|gij (t, ξ, σ )− gij (t, ξ, ρ)|, i = 1, . . . , r. (4.5)

We have already seen that the mapping

γ (u)(t) =
∫ t

s

e(t−r)CG(r, u(r))Qdw(r),

is a contraction in Lp(�;C([s, T ];H)), for T sufficiently close to s and p suffi-
ciently large. Now we show that the same is true replacing Lp(�;C([s, T ];H))
with Lp(�;C([s, T ];E)).
Theorem 4.2. Under Hypotheses 1, 2 and 3, there exists p� ≥ 1 such that γ
maps Lp(�;C([s, T ];E)) into itself for any p ≥ p� and for any u, v ∈ Lp

(�;C([s, T ];E))
|γ (u)− γ (v)|Ls,T ,p(E) ≤ c

γ
s,p(T )|u− v|Ls,T ,p(E), (4.6)

for some continuous increasing function cγs,p such that cγs,p(s) = 0.

Proof. By using a factorization argument (see e.g. [8, Theorem 8.3]), we have

γ (u)(t)− γ (v)(t) = sin πα

π

∫ t

s

(t − r)α−1e(t−r)Cυα(u, v)(r) dr,

where

υα(u, v)(r) :=
∫ r

s

(r − r ′)−αe(r−r
′)C [

G(r ′, u(r ′))−G(r ′, v(r ′))
]
Qdw(r ′),

and α ∈ (0, 1/2). If we show that υα(u, v) ∈ Lp([s, T ] × O; R
r ), for α > 1/p,

then, according to (2.4) and to the Hölder inequality, for any ε < 2(α − 1/p) we
have

|γ (u)(t)− γ (v)(t)|ε,p ≤ cα

∫ t

s

((t − r) ∧ 1)α− ε
2 −1 |υα(u, v)(r)|p dr

≤ cα

(∫ t−s

0
(r ∧ 1)

p
p−1 (α− ε

2 −1)
dr

) p−1
p

|υα(u, v)|Lp([s,T ]×O;R r ), (4.7)
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so that γ (u)−γ (v) ∈ C([s, T ];Wε,p(O; R
r )), P-a.s. Moreover, if ε > d/p, that

is if α > (d + 2)/2p, by the Sobolev embedding theorem we have γ (u)− γ (v) ∈
C([s, T ] × O; R

r ), P-a.s.
As we are assuming that the constant � introduced in Hypotheses 2 and 3 fulfills

condition (3.2), we can find p� ≥ 1 such that for any p ≥ p�

d + 2

p
+ d(� − 2)

2�
< 1.

This implies that we can find some α� ∈ (0, 1/2) such that for any p ≥ p�

α� >
d + 2

2p
and 2α� + d(� − 2)

2�
< 1. (4.8)

Whence, in correspondence of such α� the process υα�(u, v) defined above belongs
to Lp([s, T ] × O; R

r ), P-a.s. Actually, for (r, ξ) ∈ [s, T ] × O we have P-a.s.

υα�(u, v)(r, ξ) =
∫ r

s

(r − r ′)−α�
∞∑

k=1

e(r−r
′)C

× ([
G(r ′, u(r ′))−G(r ′, v(r ′))

]
Qek

)
(ξ) dβk(r

′).

Then, if p = 2q, from the Burkholder inequality we get

E |υα�(u, v)(r, ξ)|p ≤ cE

( ∫ r

s

(r − r ′)−2α�
∞∑

k=1

λ2
k |e(r−r ′)C

× ([
G(r ′, u(r ′))−G(r ′, v(r ′))

]
ek
)
(ξ)|2 dr ′

) p
2

,

and, due to (2.1), this implies

E |υα�(u, v)(r, ξ)|p ≤ c ‖Q‖p� E

(∫ r

s

(r − r ′)−2α�

×
( ∑∞

k=1 |e(r−r ′)C ([
G(r ′, u(r ′))−G(r ′, v(r ′))

]
ek
)
(ξ)|2ς

) 1
ς
dr ′

) p
2

where ς = �/(� − 2) and � = +∞, if d = 1, or � < 2d/(d − 2), if d ≥ 2.
According to (4.4), it follows

E |υα�(u, v)(r, ξ)|p ≤ cE

(∫ r

s

(r − r ′)−2α�
∣
∣
∣e
(r−r ′)Cζ(r ′, ·, u(r ′), v(r ′))(ξ)

∣
∣
∣

2(ς−1)
ς

×



r∑

i,j=1

|Ki(r − r ′, ξ, ·) [gij (r ′, ·, u(r ′))− gij (r
′, ·, v(r ′))] |2

L2(O)





1
ς

dr ′






p
2

,
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where ζ is the function defined in (4.5). For any r ≥ 0, t > 0, ξ ∈ O and x, y ∈ H ,
we have

∣
∣Ki(t, ξ, ·)

[
gij (r, ·, x)− gij (r, ·, y)

]∣
∣2
L2(O)

=
∫

O

∣
∣Ki(t, ξ, η)

[
gij (r, η, x(η))− gij (r, η, y(η))

]∣
∣2 dη.

Thus, if we define

ζ̄i (r, ξ, σ, ρ) :=
r∑

j=1

∣
∣gij (r, ξ, σ )− gij (r, ξ, ρ)

∣
∣2 ,

due to (2.8) we have
r∑

j=1

|Ki(t, ξ, ·)
[
gij (r, ·, x)− gij (r, ·, y)

] |2
L2(O)

≤ c t−
d
2

∫

O
Ki(t, ξ, η)ζ̄i(r, η, x(η), y(η)) dη = c t−

d
2 etCi ζ̄i (r, ·, x, y)(ξ).

This implies that

E |υα�(u, v)(r, ξ)|p≤cE

(∫ r

s

(r−r ′)−(2α�+ d
2ς )|e(r−r ′)Cζ(r ′, ·, u(r ′), v(r ′))|

2(ς−1)
ς∞

× |e(r−r ′)C ζ̄ (r ′, ·, u(r ′), v(r ′))|
1
ς∞ dr ′

) p
2

.

Now, since

|ζ(r ′, ·, u(r ′), v(r ′))|∞ ≤ c �(r ′)|u(r ′)− v(r ′)|E (4.9)

and
|ζ̄ (r ′, ·, u(r ′), v(r ′))|∞ ≤ c �2(r ′)|u(r ′)− v(r ′)|2E, (4.10)

from (2.5) by some calculations we get

E |υα�(u, v)|pLp([s,T ]×O;R r )
= E

∫ T

s

∫

O
|υα�(u, v)(r, ξ)|p dξ dr

≤ c |u− v|pLs,T ,p(E)
∫ T

s

(∫ r

s

(r − r ′)−(2α�+
d

2ς )�2(r ′) dr ′
) p

2

dr.

Then, as (4.8) holds, from the Young inequality and (4.7) we have that γ maps the
space Lp(�;C([s, T ]; R

r )) into itself for any p ≥ p� and (4.6) is verified, with

c
γ
s,p(t) := cα

(∫ t

s

(∫ r

s

(r − r ′)−(2α�+
d

2ς )�2(r ′) dr ′
) p

2

dr

) 1
p

×
(∫ t−s

0
(r ∧ 1)

p
p−1 (α− ε

2 −1)
dr

) p−1
p

. (4.11)

��
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Remark 4.3. According to (4.9) and (4.10), it is easy to check that if we assume

sup
ξ∈O

|g(t, ξ, σ )|L(R r ) ≤ �(t)
(
1 + |σ |κ) , t ∈ [0,∞), σ ∈ R

r ,

for some κ ∈ [0, 1] and � ∈ L∞
loc [0,∞), then for any p ≥ p�

|γ (u)|pLs,T ,p(E) ≤ c
γ
s,p(T )

(

1 + E sup
t∈ [s,T ]

|u(t)|κpE
)

, (4.12)

for some continuous increasing function cγs,p(t) vanishing at t = s.

From Theorem 4.2 we obtain the following regularity result for the solution of
(3.1).

Corollary 4.4. The solution of problem (3.1) belongs to Lp(�;C([s, T ];E)), for
any p ≥ 1.

Proof. If we fix t0 > 0 such that

cψs (s + t0)+ c
γ
s,p(s + t0) ≤ 1

2
,

due to (3.9) for X = E and to (4.6) the mapping ψ + γ is a contraction on
Lp(�;C([s, s + t0];E)) and then it admits a unique fixed point. As we can repeat
these arguments in the intervals [s + t0, s + 2t0], [s + 2t0, s + 3t0] and so on, we
have a unique mild solution for problem (3.1) in Lp(�;C([s, T ];E)). ��

Now, for any λ > 0 and u ∈ Lp(�;C([s, T ];E)) define

γλ(u)(t) :=
∫ t

s

e(t−r)(C−λ)G(r, u(r))Qdw(r). (4.13)

Due to the previous theorem we have that there exists p� ≥ 1 such that γλ maps
Lp(�;C([s, T ];E)) into itself for any p ≥ p� and

|γλ(u)|Ls,T ,p(E) ≤ c
γ,λ
s,p (T )

(
1 + |u|Ls,T ,p(E)

)
, (4.14)

for some continuous increasing function cγ,λs,p such that cγ,λs,p (s) = 0.

In next proposition we study the asymptotic behaviour of the function cγ,λs,p .

Proposition 4.5. If λ > 0 and the function � in Hypothesis 2-2 is in L∞(0,∞),
then cγ,λs,p ∈ L∞ [s,∞). Moreover,

lim
λ→∞

sup
t≥s

c
γ,λ
s,p (t) = 0. (4.15)
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Proof. Let p� and α� as in the proof of Theorem 4.2 and fix any p ≥ p�. If we set

υα�(u)(r) :=
∫ r

s

(r − σ)α�−1e(r−σ)(C−λ)G(σ, u(σ ))Qdw(σ),

and if we take ε < 2(α� − 1/p), we have

|γλ(u)|E ≤ c |γλ(u)|ε,p ≤ cα�

∫ t

s

e−λ(t−r)((t − r) ∧ 1)α�−
ε
2 −1|υα�(u)(r)|p dr

≤ cα�

(∫ t−s

0
e
− λp

2(p−1) r (r ∧ 1)
p
p−1 (α�− ε

2 −1)
dr

) p−1
p

×
(∫ t

s

e−
λp
2 (t−r)|υα�(u)(r)|pp dr

) 1
p

.

As in the proof of Theorem 4.2, for (r, ξ) ∈ [s, t] × O we have

E |υα�(u)(r, ξ)|p ≤ cE

(∫ r

s

(r − σ)
−
(

2α�+ d
2ς

)

×
∣
∣
∣e
(r−σ)(C−λ)θ(σ, ·, u(σ ))

∣
∣
∣

2(ς−1)
ς

∞

∣
∣
∣e
(r−σ)(C−λ)θ̄ (σ, ·, u(σ ))

∣
∣
∣

1
ς

∞
dσ

) p
2

,

with ς as in the proof of Theorem 4.2, θ defined by (4.2) and

θ̄i (s, ξ, u) :=
r∑

j=1

|gij (s, ξ, u)|2.

Therefore,
∫ t

s

e−
λp
2 (t−r)|υα�(u)(r)|pp dr

≤ ‖�‖p∞
∫ t

s

e−
λp
2 (t−r)

(∫ r−s

0
e
−λ(2− 1

ς
)σ
σ

−
(

2α�+ d
2ς

) (
1 + |u(σ)|2E

)
dσ

) p
2

dr.

This means that

|γλ(u)|Ls,t,p(E) ≤ c
γ,λ
s,p (t)

(
1 + |u|Ls,t,p(E)

)
,

with

c
γ,λ
s,p (t) := cα� ‖�‖∞

(∫ t

s

e−
λp
2 (t−r)

(∫ r−s

0
e
−λ(2− 1

ς
)σ
σ

−
(

2α�+ d
2ς

)

dσ

) p
2

dr

) 1
p

×
(∫ t−s

0
e
− λp

2(p−1) r (r ∧ 1)
p
p−1 (α�− ε

2 −1)
dr

) p−1
p

.
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For any η, β > 0, δ < 1 and r > η we have

∫ r

0
e−βσ σ−δ dσ =

∫ η

0
e−βσ σ−δ dσ +

∫ r

η

e−βσ σ−δ dσ

≤ 1

1 − δ
η1−δ + η−δ e−βη − e−βr

β
.

Due to the way we have chosen p� and α�, we have that δp := p(1 + ε/2 − α�)/

(p − 1) < 1, for any p ≥ p� and then if we take any t > s + 1 we have

∫ t−s

0
e
− λp

2(p−1) r (r ∧ 1)
p
p−1 (α�− ε

2 −1)
dr

≤ 1

1 − δp
+ 2(p − 1)

λp

(

e
− λp

2(p−1) − e
− λp

2(p−1) (t−s)
)

≤ 1

1 − δp
+ 2(p − 1)

pλ
=: c1

λp.

In the same way, if we set δ := 2α� + d/2ς , for any t > s + 1 we have

∫ t

s

e−
λp
2 (t−r)

(∫ r−s

0
e
−λ(2− 1

ς
)σ
σ

−
(

2α�+ d
2ς

)

dσ

) p
2

dr

≤
∫ t

s

e−
λp
2 (t−r)dr

(
1

1 − δ
+ 2

λ(2 − 1
ς
)

) p
2

= 2 − 2 e−
λp
2 (t−s)

λp

(
1

1 − δ
+ 2

λ(2 − 1
ς
)

) p
2

≤ 2

λp

(
1

1 − δ
+ 2

λ(2 − 1
ς
)

) p
2

=: c2
p,λ.

This implies that for any t ≥ s

c
γ,λ
s,p (t) ≤ cα� ‖�‖∞(c2

p,λ)
1
p

(
c1
p,λ

) p−1
p
,

so that cγ,λs,p ∈ L∞(0,∞) and (4.15) holds true. �

Remark 4.6. In the proof of Proposition 4.5 we have seen that if u ∈ Lp(�;
C([s, T ];E)), with p ≥ p�, then γλ(u) ∈ Lp(�;C([s, T ];Wε,p(O; R

r ))), for
any ε < 2(α� − 1/p). As Wε,p(O; R

r ) continuously embeds into Cθ(O; R
r ),

for any θ < ε − d/p, we have that γλ(u) takes values in Cθ(O; R
r ) for any

θ < θ� := 2α� − (2 + d)/p� and for any T > 0

E sup
t∈ [s,T ]

|γλ(u)(t)|p
Cθ (O;R r )

≤ |cγ,λs,p |p∞
(

1 + |u|pLs,T ,p(E)
)
. (4.16)
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5. The stochastic reaction-diffusion system

Our aim is to apply the results of the previous section to the study of existence,
uniqueness and regularity of solutions for the following class of reaction-diffusion
systems perturbed by a multiplicative noise





∂ui

∂t
(t, ξ) = Ai ui(t, ξ)+ fi(t, ξ, u1(t, ξ), . . . , ur (t, ξ))

+
r∑

j=1

gij (t, ξ, u1(t, ξ), . . . , ur (t, ξ))Qj

∂wj

∂t
(t, ξ), t≥s, ξ ∈ O,

ui(s, ξ) = xi(ξ), ξ ∈ O, Bi ui(t, ξ) = 0, t ≥ s, ξ ∈ ∂O.
(5.1)

The operators Ai with the boundary conditions Bi fulfill the conditions described in
Subsection 2.1. The matrix valued function g = [gij ] : [0,∞)×O×R

r → L(R r )

and the operatorQ = (Q1, . . . ,Qr) : H → H have been introduced in Section 3.
For the non linear term f = (f1, . . . , fr ) we assume that

fi(t, ξ, σ1, . . . , σr ) = ki(t, ξ, σi)+ hi(t, ξ, σ1, . . . , σr ), i = 1, . . . , r,

for some measurable mappings ki : [0,∞) × O × R → R and hi : [0,∞) ×
O × R

r → R. For almost all t ≥ 0, the functions ki(t, ·, ·) : O × R → R and
hi(t, ·, ·) : O × R

r → R are continuous and the following further conditions are
assumed.

Hypothesis 4. 1. The function hi(t, ξ, ·) : R
r → R is locally Lipschitz-contin-

uous with linear growth, uniformly with respect to ξ ∈ O and t in bounded
sets of [0,∞). This means that there exists�1 ∈ L∞

loc [0,∞) such that for any
t ≥ 0

sup
ξ∈O

|hi(t, ξ, σ )| ≤ �1(t) (1 + |σ |) , σ ∈ R
r ,

and for any R > 0 there exists LR ∈ L∞
loc [0,∞) such that

|σ |, |ρ| ≤ R �⇒ sup
ξ∈O

|hi(t, ξ, σ )− hi(t, ξ, ρ)| ≤ LR(t) |σ − ρ|.

2. There exist m ≥ 1 and �2 ∈ L∞
loc [0,∞) such that for any t ≥ 0

sup
ξ∈O

|ki(t, ξ, σi)| ≤ �2(t) (1 + |σi |m), σi ∈ R.

3. For any ξ ∈ O, t ≥ 0 and σi, ρi ∈ R

ki(t, ξ, σi)− ki(t, ξ, ρi) = λi(t, ξ, σi, ρi)(σi − ρi), (5.2)

for some locally bounded function λi : [0,∞)× O × R
2 → R such that

sup
ξ∈ O

σi ,ρi∈ R, t≥0

λi(t, ξ, σi, ρi) < ∞.
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Now, we define the operator F by setting for any x : O → R
r and t ≥ 0

F(t, x)(ξ) := f (t, ξ, x(ξ)), ξ ∈ O.

It is immediate to check thatF(t, ·) is well defined and continuous fromLp(O; R
r )

intoLq(O; R
r ), for any p, q ≥ 1 such that p/q ≥ m. In particular, ifm > 1F(t, ·)

is not defined from H into itself. Moreover, due to (5.2) for x, h ∈ L2m(O; R
r )

and t ≥ 0

〈F(t, x + h)− F(t, x), h〉H ≤ �(t)
(

1 + |h|2H + |x|2H
)
, (5.3)

for some � ∈ L∞
loc [0,∞).

In the same way, it is possible to show that the functional F(t, ·) is well defined
and continuous from E into itself and there exists φ ∈ L∞

loc [0,∞) such that for any
t ≥ 0

|F(t, x)|E ≤ �(t) (1 + |x|mE), x ∈ E. (5.4)

Moreover, by using assumption 3 in Hypothesis 4, it is not difficult to check that
there exists � ∈ L∞

loc [0,∞) such that for any x, h ∈ E

〈F(t, x + h)− F(t, x), δh〉E ≤ �(t) (1 + |h|E + |x|E) , (5.5)

where δh is the element of ∂ |h|E defined in (2.3) (for more details on the properties
of F and of subdifferentials we refer to [6, Chapters 4 and 6 and Appendix A]).

Remark 5.1. 1. In the proof of the main results of this paper what is important is
that (5.3), (5.4) and (5.5) holds, for any x, h ∈ E and for some δh ∈ ∂|h|E ,
not necessarily given by (2.3). Thus we could consider a more general class of
non-linearities f such that the corresponding composition operator F fulfills
(5.3), (5.4) and (5.5).

2. If ci and ci,j are continuous functions from [0,∞)×O into R, for i = 1, . . . , r
and j = 1, . . . , 2k, and if

inf
ξ∈ O

t∈ [0,∞)

ci(t, ξ) > 0,

then, the function

ki(t, ξ, σi) := −ci(t, ξ) σ 2k+1
i +

2k∑

j=1

ci,j (t, ξ) σ
j
i .

fulfills the conditions of Hypothesis 4, with m = 2k + 1.
3. In Hypothesis 4 we assume that the functions hi and ki fulfill conditions 1,

2 and 3, uniformly for t in bounded sets of [0,∞). This is only for the sake
of simplicity. Actually, it is possible to check that in several cases uniformity
with respect to t in bounded sets of [0,∞) can be replaced by some bounds in
L
p
loc [0,∞), for some p ≥ 2.
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If we denote byC the operator (C1, . . . , Cr) and byL the operator (L1, . . . , Lr),
with the notations introduced above (see also Subsection 2.1 and Section 3) the sys-
tem (5.1) can be rewritten as

du(t) = [Cu(t)+ Lu(t)+ F(t, u(t))] dt +G(t, u(t))Q dw(t), u(s) = x.

(5.6)

Definition 5.2. LetX denote bothH andE and fix x ∈ X. AX-valued predictable
process uxs (t) is a mild solution of (5.6) if

uxs (t) = e(t−s)Cx +
∫ t

s

e(t−r)C
[
Luxs (r)+ F(r, uxs (r))

]
dr

+
∫ t

s

e(t−r)CG(r, uxs (r))Q dw(r).

We prove a first existence and uniqueness result.

Theorem 5.3. Assume that for any t ≥ 0

sup
ξ∈O

|g(t, ξ, σ )|L(R r ) ≤ �(t)
(

1 + |σ | 1
m

)
, σ ∈ R

r , (5.7)

where � ∈ L∞
loc [0,∞) and m is the constant introduced in Hypothesis 4. Then,

under Hypotheses 1 to 4 for any x ∈ E there exists a unique mild solution uxs of
(5.6) which belongs to Lp(�;C((s, T ];E) ∩ L∞(s, T ;E)), for any p ≥ 1 and
T > s. Moreover

|uxs |Ls,T ,p(E) ≤ cs,p(T ) (1 + |x|E) , x ∈ E, (5.8)

for some continuous increasing function cs,p.

Notice that in the casem = 1 no further condition on the growth of g is assumed.

Proof. If Hypothesis 4 holds, for some function k which fulfills conditions 2 and
3, F(t, ·) is not even defined in H , in general. If we consider F(t, ·) restricted to
E, it is continuous and due to (5.4) bounded on bounded subsets. Unfortunately
it is not Lipschitz-continuous and then we can not proceed by using a contraction
argument.

For any n ∈ N, i = 1, . . . , r and (t, ξ) ∈ [0,∞)× O we define

hn,i(t, ξ, σ ) :=





hi(t, ξ, σ ) if |σ | ≤ n,

hi(t, ξ, nσ/|σ |) if |σ | > n,

and

kn,i(t, ξ, σi) :=





ki(t, ξ, σi) if |σi | ≤ n,

ki(t, ξ, nσi/|σi |) if |σi | > n.

It is immediate to check that fn(t, ξ, ·) := hn(t, ξ, ·) + kn(t, ξ, ·) : R
r → R

r is
Lipschitz-continuous for any n ∈ N, uniformly with respect to ξ ∈ O and t in
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bounded sets of [0,∞), so that the composition operator Fn(t, ·) associated with
fn

Fn(t, x)(ξ) := fn(t, ξ, x(ξ)), ξ ∈ O,
is Lipschitz-continuous, both in H and in E. Moreover, it is easy to check that
all the functions kn fulfill conditions 2 and 3 in Hypothesis 4, for some functions
λi(t, ξ, σi, ρi)which do not depend on n ∈ N. This implies that allFn satisfy (5.3),
(5.4) and (5.5), for common functions � and � in L∞

loc [0,∞). Finally, if n < m

and t ≥ 0 we have

|x|E ≤ n �⇒ Fn(t, x) = Fm(t, x) = F(t, x). (5.9)

Now, if we consider the problem

du(t) = [Au(t)+ Fn(t, u(t))] dt +G(t, u(t))Q dw(t), u(s) = x, (5.10)

as Fn(t, ·) is Lipschitz-continuous both in H and in E, for any x belonging ei-
ther to H or to E there exists a unique mild solution uxn (for simplicity of nota-
tions we do not stress its dependence on s) which belongs respectively either to
Lp(�;C([s, T ];H)) or toLp(�;C((s, T ];E)∩L∞(s, T ;E)), for any p ≥ 1 and
T > s. Actually, the mapping �n defined by

�n(u)(t) := e(t−s)Cx +
∫ t

s

e(t−r)CFn(r, u(r)) dr

is Lipschitz-continuous in Lp(�;C([s, T ];H)) and in Lp(�;C((s, T ];E)∩
L∞(s, T ;E)) and then, due to the results proved in Sections 3 and 4, the mild
solution uxn is easily obtained as the unique fixed point of the mapping

u 	→ �n(u)+ ψ(u)+ γ (u),

with ψ and γ defined respectively in (3.6) and (3.12).
Next, we show that the sequence {uxn} is bounded in Lp(�;C((s, T ];E) ∩

L∞(s, T ;E)).
Lemma 5.4. There exists a continuous increasing function cs,p(t) which is inde-
pendent of n ∈ N such that

|uxn|Ls,T ,p(E) ≤ cs,p(T ) (1 + |x|E) . (5.11)

Proof. If we denote by �(uxn) the solution of the problem

dv(t) = Av(t) dt +G(t, uxn(t))Q dw(t), v(s) = 0, (5.12)

we have that�(uxn) is the unique fixed point inLp(�;C([s, T ];E)) of the mapping

v(t) 	→
∫ t

s

e(t−r)CLv(r) dr +
∫ t

s

e(t−r)CG(r, uxn(r))Qdw(r)

= ψ(v)(t)+ γ (uxn)(t).
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According to (3.7) for X = E, if ε is any strictly positive constant we have

|�(uxn)(t)|E ≤ c

∫ t

s

((t − r) ∧ 1)−
ε+1

2 |�(uxn)(r)|E dr + |γ (uxn)(t)|E.

If we consider the general integral problem

f (t) = c

∫ t

s

g(t − r)f (r) dr + h(t), f (s) = 0,

with h ∈ C([s,∞)) and g ∈ L1(s, T ) non-negative, it is possible to check that
for any T > s the unique solution is given by

f (t) = h(t)+
∫ t

s

h(r) g(t − r) exp
∫ t−r

0
g(σ ) dσ dr.

Thus, if we take in our case

h(t) := |γ (uxn)(t)|E, g(t) := c (t ∧ 1)−
1+ε

2 ,

from a comparison argument we obtain

|�(uxn)(t)|E ≤ |γ (uxn)(t)|E

+c
∫ t

s

((t − r) ∧ 1)−
1+ε

2 |γ (uxn)(r)|E exp c
∫ t−r

0
(σ ∧ 1)−

1+ε
2 dσ dr.

This means that

|�(uxn)(t)|E ≤ |γ (uxn)(t)|E + sup
r∈ [s,t]

|γ (uxn)(r)|E

×
(

exp c
∫ t−s

0
(σ ∧ 1)−

1+ε
2 dσ − 1

)

,

so that

|�(uxn)(t)|E ≤ exp
∫ t−s

0
(σ ∧ 1)−

1+ε
2 dσ sup

r∈ [s,t]
|γ (uxn)(r)|E

=: cs(t) sup
r∈ [s,t]

|γ (uxn)(r)|E. (5.13)

Next, if we set vn(t) := uxn(t)− �(uxn)(t), we have that vn solves the problem

dvn

dt
(t) = Avn(t)+ Fn(t, vn(t)+ �(uxn)(t)), vn(s) = x.

We may assume without any loss of generality that vn is a strict solution, other-
wise we can approximate it by means of strict solutions of suitable approximating
problems, see for example [6, Proposition 6.2.2]. Hence we obtain

d

dt

−
|vn(t)|E ≤ 〈

Avn(t), δvn
〉

E
+ 〈
Fn(t, vn(t)+ �(uxn)(t)), δvn

〉

E
= 〈
Avn(t), δvn

〉

E

+ 〈
Fn(t, vn(t)+ �(uxn)(t))− Fn(t, �(u

x
n)(t)), δvn

〉

E
+ 〈
Fn(t, �(u

x
n)(t)), δvn

〉

E
,

where δvn is the element of ∂|vn(t)|E introduced in (2.3).
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Thus, as Fn satisfies (5.4) and (5.5) for some �(t) and �(t) independent of
n ∈ N, thanks to the Young inequality we get

d

dt

−
|vn(t)|E ≤ �(t)|vn(t)|E + (�(t)+�(t))

(
1 + |�(uxn)(t)|mE

)
.

Recalling that uxn(t) = vn(t)+ �(uxn)(t), by a comparison argument this yields

|uxn(t)|E ≤ |vn(t)|E+|�(uxn)(r)|E ≤ cs(t) |x|E+cs(t)
(

1 + sup
r∈ [s,t]

|�(uxn)(r)|mE
)

,

so that, according to (4.12) with κ = 1/m and to (5.13), for any p ≥ p� we have

E sup
r∈ [s,t]

|uxn(r)|pE ≤ cs,p(t)

(

1 + |x|pE + c
γ
s,p(t)E sup

r∈ [s,t]
|uxn(r)|pE

)

. (5.14)

Now, recalling that as shown in Theorem 4.2 and Remark 4.3 cγs,p(s) = 0 and cγs,p
is continuous, it follows that cs,p(s + t0)c

γ
s,p(s + t0) ≤ 1/2, for some t0 > 0, so

that we obtain (5.11) for T = t0 + s. Next we can repeat the same arguments in the
intervals [s + t0, s + 2t0], [s + 2t0, s + 3t0] and so on and (5.11) follows for any
T > s and p ≥ p�. Finally, if p < p� we have

|uxn|Ls,T ,p(E) ≤ |uxn|Ls,T ,p� (E) ≤ cs,p�(T ) (1 + |x|E) . ��
Now we can conclude the proof of Theorem 5.3. For any n ∈ N and x ∈ E we

define
τxn := inf

{
t ≥ s : |uxn(t)|E ≥ n

}
,

with the usual convention that inf ∅ = +∞. As the sequence of stopping times
{τxn } is non-decreasing, we can define τx := supn∈ N τ

x
n . Thanks to (5.11) we have

clearly that P(τ x = ∞) = 1. Indeed,

P(τ x < ∞) = lim
T→∞

P(τ x ≤ T )

and for each T > s

P(τ x ≤ T ) = lim
n→∞ P(τ xn ≤ T ).

Now, for any fixed n ∈ N and T > s we have

P(τ xn ≤T ) = P

(

sup
t∈ [s,T ]

|uxn(t)|E≥n
)

≤ 1

n
E sup
t∈ [s,T ]

|uxn(t)|E ≤ cs,1(T )

n
(1+|x|E),

so that P(τ xn ≤ T ) goes to zero, as n goes to infinity, and P(τ x = ∞) = 1.
Therefore, for any t ≥ s and ω ∈ { τx = ∞ } there exists n ∈ N such that

t ≤ τxn (ω) and then we can define

uxs (t)(ω) := uxn(t)(ω).
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Notice that this is a good definition, as for any t ≤ τxn ∧τxm we have uxn(t) = uxm(t),
P-a.s. Actually, if we set η := τxn ∧ τxm, with n ≤ m, thanks to (5.9) we have

uxn(t ∧ η)− uxm(t ∧ η) = ψ(uxn − uxm)(t ∧ η)+ γ (uxn)(t ∧ η)− γ (uxm)(t ∧ η)

+
∫ t∧η

s

e(t∧η−r)C
[
Fn(r, u

x
n(r))− Fm(r, u

x
m(r))

]
dr

= ψ(uxn − uxm)(t ∧ η)+ γ (uxn)(t ∧ η)− γ (uxm)(t ∧ η)

+
∫ t

s

I{r≤η}e(t∧η−r)C
[
Fm(r ∧ η, uxn(r ∧ η))− Fm(r ∧ η, uxm(r ∧ η))] dr.

Then, recalling that Fm(t, ·) is Lipschitz-continuous uniformly with respect to t ∈
[s, T ], for any t we easily get

sup
r∈ [s,t]

∣
∣uxn(r ∧ η)− uxm(r ∧ η)∣∣

E
≤ sup
r∈ [s,t]

∣
∣ψ(uxn − uxm)(r ∧ η)∣∣

E

+ sup
r∈ [s,t]

∣
∣γ (uxn)(r ∧ η)− γ (uxm)(r ∧ η)∣∣

E

+cm(T )
∫ t

s

sup
r ′∈ [s,r]

∣
∣uxn(r

′ ∧ η)− uxm(r
′ ∧ η)∣∣

E
dr ′. (5.15)

According to (3.8) with X = E we have
∣
∣ψ(uxn − uxm)(r ∧ η)∣∣

E
≤ cψs (r ∧ η) sup

r ′∈ [s,r∧η]
|(uxn − uxm)(r

′)|E

≤ cψs (r ∧ η) sup
r ′∈ [s,r]

|(uxn − uxm)(r
′ ∧ η)|E.

Moreover, as shown in the proof of Theorem 4.2, [γ (uxn)− γ (uxm)](r ∧ η) can be
rewritten as

[
γ (uxn)− γ (uxm)

]
(r ∧ η)

= cα�

∫ r

s

(r ∧ η − r ′)α�−1e(r∧η−r
′)CI{r ′≤η}vα�(u

x
n, u

x
m)(r

′ ∧ η)dr ′,

where α� is the constant introduced in (4.8), cα� = sin πα�/π and

vα�(u
x
n, u

x
m)(r

′ ∧ η) =
∫ r ′

s

(r ′ ∧ η − ρ)−α�

e(r
′∧η−ρ)CI{ρ≤η}

[
G(ρ ∧ η, uxn(ρ ∧ η))−G(ρ ∧ η, uxm(ρ ∧ η))]Qdw(ρ).

Therefore, we can repeat the same arguments used in the proof of Theorem 4.2 (by
substituting the processes uxs and vxs respectively by the processes uxn(· ∧ η) and
uxm(· ∧ η)) and we obtain

E sup
r∈ [s,t]

| [γ (uxn)− γ (uxm)
]
(r ∧ η)|E ≤ c

γ
s,1(t)E sup

r∈ [s,t]
| (uxn − uxm

)
(r ∧ η)|E.
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Then, collecting all terms, from (5.15) it follows

E sup
r∈ [s,t]

∣
∣(uxn − uxm)(r ∧ η)∣∣

E
≤

(
cψs (t)+ c

γ
s,1(t)

)
E sup
r∈ [s,t]

∣
∣(uxn − uxm)(r ∧ η)∣∣

E

+cm(T )
∫ t

s

E sup
r ′∈ [s,r]

∣
∣(uxn − uxm)(r

′ ∧ η)∣∣
E
dr ′.

If we take t0 > 0 such that cψs (s + t0)+ c
γ
s,1(s + t0) ≤ 1/2, this yields

E sup
r∈ [s,s+t0]

∣
∣(uxn − uxm)(r ∧ η)∣∣

E
≤ 2 cm(T )

×
∫ s+t0

s

E sup
r ′∈ [s,r]

∣
∣(uxn − uxm)(r

′ ∧ η)∣∣
E
dr ′,

so that uxn(t ∧η) = uxm(t ∧η), for any t ∈ [s, s+ t0]. As uxn((s+ t0)∧η)−uxm((s+
t0)∧ η) = 0, we can repeat the same argument in the interval [s + t0, s + 2t0] and
so on and we get

uxn(t) = uxm(t), t ≤ τxn ∧ τxm. (5.16)

Now, recalling that uxs (t) is taken equal uxn(t), if ω ∈ {τx = +∞} and t ≤ τxn ,
thanks to (5.9) we have

uxs (t) = e(t−s)Cx +
∫ t

s

e(t−r)C
[
Luxs (r)+ F(r, uxs (r))

]
dr

+
∫ t

s

e(t−r)CG(r, uxs (r))Q dw(r),

P-a.s., so that uxs is a mild solution of problem (5.6).
Next, we show that such solution is unique. If vxs is another solution of system

(5.6), by proceeding as in the proof of (5.16) it is possible to show that for any
n ∈ N

uxs (t ∧ τxn ) = vxs (t ∧ τxn ), t ≥ s,

and then, as {τxn ≤ T } ↓ {τx ≤ T } for any T > s, we have that uxs = vxs .
Finally, we have to show that uxs ∈ Lp(�;C((s, T ];E) ∩ L∞(s, T ;E)), for

any p ≥ 1 and T > s. Since

sup
t∈ [s,T ]

|uxs (t)|pE = lim
n→+∞ sup

t∈ [s,T ]
|uxs (t)|pEI{T≤τxn } = lim

n→+∞ sup
t∈ [s,T ]

|uxn(t)|pEI{T≤τxn },

from estimate (5.11) and the Fatou lemma we obtain (5.8). Continuity of trajectories
follows from arguments analogous to those used in Theorem 4.2. ��

Next, we show that without assuming condition (5.7) on the growth of g and
assuming a more restrictive condition on the drift f , it is possible to prove an
existence and uniqueness result analogous to Theorem 5.3.



298 S. Cerrai

Theorem 5.5. Assume that the constantm in Hypothesis 4-2 is greater than 1 and
that there exist a > 0 and β ∈ L∞

loc [0,∞) such that for each i = 1, . . . , r

(ki(t, ξ, σi + ρi)− ki(t, ξ, σi)) ρi ≤ −a |ρi |m+1 + β(t)
(

1 + |σi |m+1
)
, (5.17)

for any ξ ∈ O and t, σi, ρi ∈ R. Then, under Hypotheses 1 to 4, for any x ∈ E sys-
tem (5.6) admits a unique mild solution uxs ∈ Lp(�;C((s, T ];E)∩L∞(s, T ;E)),
with p ≥ 1 and T > s. Moreover, uxs satisfies estimate (5.8).

Notice that condition (5.17) is fulfilled for example by the functions ki described
at point 2 in Remark 5.1.

Proof. For any n ∈ N and x ∈ E we define

(Gn(t, x)y)(ξ) := gn(t, ξ, x(ξ))y(ξ), (t, ξ) ∈ [0,∞)× O,
where

gn(t, ξ, σ ) :=





g(t, ξ, σ ) if |σ | ≤ n

g(t, ξ, nσ/|σ |) if |σ | > n.

It is immediate to check that if n < m and t ≥ 0

|x|E ≤ n �⇒ Gn(t, x) = Gm(t, x) = G(t, x)

and
|Gn(t, x)| ≤ �(t) (1 + |x|E) , x ∈ E,

for some � ∈ L∞
loc [0,∞) independent of n ∈ N. Moreover, gn(t, ξ, ·) is Lips-

chitz-continuous and bounded. Then due to Theorem 5.3 for any n ∈ N and x ∈ E

the problem

du(t) = [Au(t)+ F(t, u(t))] dt +Gn(t, u(t))Q dw(t), u(s) = x, (5.18)

admits a unique solution uxn. If we show that an estimate analogous to (5.11) is
verified in this case, then as in the proof of Theorem 5.3 we obtain the existence of
a unique solution ux for system (5.6) which fulfill estimate (5.8).

If �n(uxn) is the solution of the problem

dv(t) = Av(t) dt +Gn(t, u
x
n(t)) dw(t), v(s) = 0,

and vn(t) := uxn(t) − �n(u
x
n)(t), by proceeding as in the proof of Lemma 5.4 we

have

d

dt

−
|vn(t)|E ≤ 〈

Avn(t), δvn
〉

E

+ 〈
F(t, vn(t)+ �(uxn)(t))− F(t, �(uxn)(t)), δvn

〉

E
+ 〈
F(t, �(uxn)(t)), δvn

〉

E
.

Thanks to (5.17), it is not difficult to show that for any x, h ∈ E and t ≥ 0

〈F(t, x + h)− F(t, x), δh〉E ≤ −a |h|mE + β(t)
(
1 + |x|mE

)
, (5.19)
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where δh is the element of ∂|h|E described in (2.3). Thus, by using the Young
inequality we have

d

dt

−
|vn(t)|E ≤ −a

2
|vn(t)|mE + c

(
1 + |�n(uxn)(t)|mE

)
.

By a comparison argument, as uxn(t) = vn(t)+ �n(u
x
n)(t), we obtain

|uxn(t)|E ≤ |vn(t)|E + |�n(uxn)(r)|E ≤ |x|E + c

(

1 + sup
r∈ [s,t]

|�n(uxn)(r)|E
)

.

Thanks to (4.12) and (5.13) we get (5.14) and as in the proof of Lemma 5.4 this
allows to conclude that

|uxn|Ls,T ,p(E) ≤ cs,p(T ) (1 + |x|E) ,

for any p ≥ 1 and the theorem follows. �

We conclude this section by showing that the solution uxs depends continuously
on the initial datum x ∈ E.

Proposition 5.6. Under the same hypotheses of Theorems 5.3 and 5.5, for any
0 ≤ s < T and p ≥ 1 the mapping

x ∈ E 	→ uxs ∈ Ls,T ,p(E)

is continuous, uniformly on bounded sets of E.

Proof. For each n ∈ N the mapping Fn introduced in the proof of Theorem 5.3 is
Lipschitz-continuous. Then, if uxn is the solution of problem (5.10) it is not difficult
to show that for any x, y ∈ E

|uxn − u
y
n|Ls,T ,p(E) ≤ cn,s,p(T ) |x − y|E. (5.20)

Now, let τxn and τyn as in the proof of Theorem 5.3 and assume thatg fulfills condition
(5.7). For any p ≥ 1 and 0 ≤ s < T we have

|uxs − u
y
s |pLs,T ,p(E)

= E sup
r∈ [s,T ]

|uxs (r)− u
y
s (r)|pEI{τxn∧τyn >T } + E sup

r∈ [s,T ]
|uxs (r)− u

y
s (r)|pEI{τxn∧τyn≤T }

≤ |uxn − u
y
n|pLs,T ,p(E) + E sup

r∈ [s,T ]
|uxs (r)− u

y
s (r)|pEI{τxn∧τyn≤T }

≤ |uxn− u
y
n|pLs,T ,p(E)+cp

(
1+|uxs |pLs,T ,2p(E)+|uys |pLs,T ,2p(E)

) (
P
(
τxn ∧τyn ≤ T

)) 1
2 .
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Due to (5.11) we have

P
(
τxn ∧ τyn ≤ T

) ≤ P

(

sup
r∈ [s,T ]

|uxn(r)|E ≥ n

)

+ P

(

sup
r∈ [s,T ]

|uyn(r)|E ≥ n

)

≤ 1

n2

(
|uxn|2Ls,T ,2(E) + |uyn|2Ls,T ,2(E)

)
≤ c2

s,2(T )

n2

(
1 + |x|2E + |y|2E

)

and then, by using once more (5.11), due to (5.20) we obtain

|uxs − u
y
s |pLs,T ,p(E) ≤ c

p
n,s,p(T )|x − y|pE + c̃s,2(T )

n

(
1 + |x|p+1

E + |y|p+1
E

)
.

Therefore, once fixed ε > 0 and R > 0 we first find n̄ ∈ N such that

sup
|x|E,|y|E≤R

c̃s,2(T )

n̄

(
1 + |x|p+1

E + |y|p+1
E

)
≤ ε

2

and then, in correspondence of such n̄, we determine δ > 0 such that

|x − y|E ≤ δ �⇒ c
p
n̄,s,p(T )|x − y|pE ≤ ε

2
.

This concludes our proof under condition (5.7).
Now, we assume that the conditions of Theorem 5.5 are satisfied. We use for

the solution uxn of problem (5.18) what we have just proved above and we have

|uxn − u
y
n|Ls,T ,p(E) ≤ cn,s,p(T ) |x − y|E.

Then, as the processes uxn satisfy the a-priori estimates (5.11), we introduce the
stopping times τxn and τyn and we conclude our proof. �

6. Existence of an invariant measure

In what follows we shall denote by Bb(E) the Banach space of bounded Borel
measurable functions ϕ : E → R, endowed with the sup-norm

‖ϕ‖0 = sup
x∈E

|ϕ(x)|.

Moreover, we shall denote byCb(E) the subspace of continuous functions. Finally,
we shall denote byC1

b(E) the Banach space of differentiable functions ϕ : E → R,
having continuous and bounded derivative, endowed with the norm

‖ϕ‖1 = ‖ϕ‖0 + sup
x∈E

|Dϕ(x)|E�.

Throughout this section we assume that the coefficients F and G in problem
(5.6) do not depend on t . For any x ∈ E, t ≥ 0 and ϕ ∈ Bb(E) we define

Ptϕ(x) = Eϕ(ux(t)),
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where ux is the solution of (5.6) starting from x at time s = 0. Pt is the transition
semigroup associated with system (5.6). Due to Proposition 5.6 Pt is a Feller semi-
group, that is it maps Cb(E) into itself. Actually, if ϕ belongs to C1

b(E), for any
x, y ∈ E we have

|Ptϕ(x)− Ptϕ(y)| ≤ E
∣
∣ϕ(ux(t))− ϕ(uy(t))

∣
∣ ≤ ‖ϕ‖1E |ux(t)− uy(t)|E → 0,

as |x − y|E → 0. If ϕ ∈ Cb(E) we can approximate it in the sup-norm by a
sequence {ϕn} ⊂ C1

b(E) and then, as Pt is a contraction semigroup, we obtain that
Ptϕ ∈ Cb(E).

Our aim here is to prove that Pt has an invariant measure, that is there exists a
probability measure µ on (E,B(E)) such that for any t ≥ 0 and ϕ ∈ Cb(E)

∫

E

Ptϕ(x) dµ(x) =
∫

E

ϕ(x) dµ(x).

As the embedding of Cθ(O; R
r ) into E is compact for any θ > 0, once we prove

that for some θ > 0 and a ≥ 0

sup
t≥a

E |ux(t)|
Cθ (O;R r )

< ∞,

we have that the family of probability measures {Pt(x, ·)}t≥a is tight. Due to the
Krylov-Bogoliubov theorem (for all details and proofs see e.g. [9]), this implies the
existence of an invariant measure.

To this purpose, we start with the following result.

Proposition 6.1. Under the same Hypotheses of Theorem 5.5, for any p ≥ 1

E sup
t≥0

|ux(t)|pE ≤ cp(1 + |x|pE).

Proof. For any λ > 0 we consider the problem

dv(t) = (A− λ)v(t) dt +G(ux(t))Q dw(t), v(0) = 0

and we denote by �λ(ux) its solution. Clearly, �λ(ux) is the unique fixed point of
the mapping ψλ + γλ, with ψλ and γλ defined respectively in (3.10) and (4.13). By
proceeding as in the proof of Lemma 5.4 we obtain

|�λ(ux)(t)|E ≤ cλ sup
r∈ [0,t]

|γλ(ux)(r)|E,

where

cλ := exp
∫ ∞

0
e−λs(s ∧ 1)−

1+ε
2 ds.

Then, due to (4.14) and to Proposition 4.5, for any p ≥ p� and T > 0

E sup
t∈ [0,T ]

|�λ(ux)(t)|pE ≤ c
p
λ |cγ,λ0,p |p∞

(
1 + |ux |pL0,T ,p(E)

)
. (6.1)
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Now, if we set v := ux − �λ(u
x), we have that v solves the problem

dv

dt
(t) = (A− λ)v(t)+ λ ux(t)+ F(ux(t)), v(0) = x.

Therefore, due to (5.19)

d−
dt

|v(t)|E ≤ 〈
(A− λ)v(t), δv(t)

〉

E
+ 〈
F(v(t)+ �λ(u

x)(t))

−F(�λ(ux)(t)), δv(t)
〉

E
+ 〈
F(�λ(u

x)(t))+ λux(t), δv(t)
〉

E

≤ − a
2 |v(t)|mE + c

(
1 + |�λ(ux)(t)|mE

) + λ |ux(t)|E.
By comparison, as in the proof of Lemma 5.4, this yields

|ux(t)|E ≤ |x|E + c

(

1 + sup
r∈ [0,t]

|�λ(ux)(r)|E + λ
1
m sup
r∈ [0,t]

|ux(r)|
1
m

E

)

,

so that, thanks to (6.1) and to the Young inequality

|ux |pL0,T ,p(E)
≤ |x|pE+ 1

4
|ux |pL0,T ,p(E)

+c c pλ |cγ,λ0,p |p∞
(

1 + |ux |pL0,T ,p(E)

)
+c+λ p

m−1 .

According to (4.15) we can find λ̄ > 0 such that

c c
p

λ̄
|cγ,λ̄0,p |p∞ ≤ 1

4

and then we get

|ux |pL0,T ,p(E)
≤ 2 |x|pE + 2

(
c c

p

λ̄
|cγ,λ̄0,p |p∞ + c + λ

p
m−1

)
,

which immediately implies our thesis. �

Now we can prove that the semigroup Pt has an invariant measure.

Theorem 6.2. Under the same hypotheses of Theorem 5.5 there exists an invariant
measure for the transition semigroup Pt .

Proof. As we have already seen, we have only to show that there exist θ̄ > 0 and
a > 0 such that

sup
t≥a

E |ux(t)|
Cθ̄ (O;R r )

< ∞. (6.2)

Due to (3.11), for any λ > 0 and p ≥ p�, if ξ, η ∈ O and θ < 1

E sup
r∈ [0,t]

∣
∣ψλ(u

x)(r, ξ)− ψλ(u
x)(r, η)

∣
∣p

≤ E sup
r∈ [0,t]

∣
∣ψλ(u

x)
∣
∣p
Cθ (O;R r )

|ξ − η|θp ≤ |cψ,λ0,θ |p∞|ux |pL0,t,p(E)
|ξ − η|θp.

Similarly, if θ < θ�, with θ� as in Remark 4.6, due to (4.16) we have

E sup
r∈ [0,t]

∣
∣γλ(u

x)(r, ξ)− γλ(u
x)(r, η)

∣
∣p ≤ |cγ,λ0,p |p∞

(
1 + |ux |pL0,t,p(E)

)
|ξ − η|θp.



Stochastic reaction-diffusion systems 303

Moreover, by using again (2.6), we have

∣
∣
∣
∣

∫ t

0
e(t−r)(C−λ) (F(ux(r))+ λux(r)

)
dr

∣
∣
∣
∣
Cθ (O;R r )

≤ cλ

∫ t

0
e−λ(t−r) ((t − r) ∧ 1)−

θ
2
(
1 + |ux(r)|mE

)
dr

and then

E sup
r∈ [0,t]

∣
∣
∣
∣

∫ r

0
e(r−σ)(C−λ) (F(ux(σ ))+ λux(σ )

)
dσ

∣
∣
∣
∣

p

Cθ (O;R r )

≤ cλ,p

(
1 + |ux |mpL0,t,mp(E)

)(∫ r

0
e−λσ (σ ∧ 1)−

θ
2 dσ

)p

=: c̃λ,p
(

1 + |ux |mpL0,t,mp(E)

)
.

As

ux(t) = et(C−λ)x +
∫ t

0
e(t−r)(C−λ) (F(ux(r))+ λux(r)

)
dr + ψλ(u

x)(t)

+γλ(ux)(t),

thanks to (2.6) and to Proposition 6.1, collecting all terms we find some constant
cλ,p > 0 such that for any ξ, η ∈ O, a ∈ (0, 1) and θ < θ� ∧ 1

E sup
r∈ [a,t]

∣
∣ux(r, ξ)− ux(r, η)

∣
∣p ≤ cλ,p

(
a− θp

2 |x|pE + 1 + |x|mpE
)

|ξ − η|θp.

This means that if we take α < θ we obtain

E
∫∫

O×O sup
r∈ [a,t]

|ux(r,ξ)−ux(r,η)|p
|ξ−η|d+αp dξdη

≤ c
∫∫

O×O |ξ − η|θp−d−αp dξdη < ∞.

Therefore, ux(t) ∈ Wα,p(O; R
r ), P-a.s. and due to the Fatou lemma

E sup
r∈ [a,∞)

|ux(r)|
Wα,p(O;R r )

=: ca,|x|E < ∞.

Thanks to the Sobolev embedding theorem this implies that there exists some
θ̄ > 0 such that ux takes values in Cθ̄ (O; R

r ) and (6.2) holds. By using the
Krylov-Bogoliubov theorem, this allows us to conclude that there exists an invariant
measure. �
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