Stochastic regularization effects of semi-martingales on random functions

Romain Duboscq ${ }^{1}$ Anthony Réveillac ${ }^{1}$

${ }^{1}$ INSA de Toulouse, Institut de Mathématiques de Toulouse
London Paris Bachelier Workshop,
London, 25-26 September 2015

Stochastic regularization

Itô-Wentzell-Tanaka trick

Stochastic regularization in a nutshell

The following slides are based on the lecture notes of Franco Flandoli (2015) and on his St. Flour lecture Notes "Random Perturbation of PDEs and Fluid Dynamic Models" (2010).

A first example

- Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a non smooth bounded measurable map

A first example

- Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a non smooth bounded measurable map
- Perturb it by adding a Brownian motion $\left(B_{t}\right)_{t}$ as:

$$
\varphi\left(x+B_{t}\right)
$$

A first example

- Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a non smooth bounded measurable map
- Perturb it by adding a Brownian motion $\left(B_{t}\right)_{t}$ as:

$$
\varphi\left(x+B_{t}\right)
$$

- Take expectation and set:

$$
u(t, x):=\mathbb{E}\left[\varphi\left(x+B_{t}\right)\right]
$$

A first example

- Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a non smooth bounded measurable map
- Perturb it by adding a Brownian motion $\left(B_{t}\right)_{t}$ as:

$$
\varphi\left(x+B_{t}\right)
$$

- Take expectation and set:

$$
u(t, x):=\mathbb{E}\left[\varphi\left(x+B_{t}\right)\right]
$$

The map u is smooth and solves the Heat equation:

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u, \quad u(0, \cdot)=\varphi(\cdot),
$$

and

$$
u(t, x)=\int_{\mathbb{R}^{d}} P_{t}^{\text {heat }}(x-y) \varphi(y) d y
$$

A second example

- Consider the following ODE:

$$
d X_{t}=b\left(t, X_{t}\right) d t, \quad X_{0}=x_{0}
$$

for some $b:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.

A second example

- Consider the following ODE:

$$
d X_{t}=b\left(t, X_{t}\right) d t, \quad X_{0}=x_{0}
$$

for some $b:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.

- When b is not smooth, uniqueness may fail...

A second example

- Consider the following ODE:

$$
d X_{t}=b\left(t, X_{t}\right) d t, \quad X_{0}=x_{0}
$$

for some $b:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.

- When b is not smooth, uniqueness may fail...
- Take for instance $d=1$ and $b(t, x):=b(x):=2 \operatorname{sgn}(x) \sqrt{|x|}$ and $x_{0}:=0$, then every function of the form

$$
X_{t}:= \pm\left(t-t_{0}\right)^{2} \mathbf{1}_{t \geq t_{0}}, \quad t_{0} \geq 0
$$

is solution.

A second example

- Consider the following ODE:

$$
d X_{t}=b\left(t, X_{t}\right) d t, \quad X_{0}=x_{0}
$$

for some $b:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.

- When b is not smooth, uniqueness may fail...
- Take for instance $d=1$ and $b(t, x):=b(x):=2 \operatorname{sgn}(x) \sqrt{|x|}$ and $x_{0}:=0$, then every function of the form

$$
X_{t}:= \pm\left(t-t_{0}\right)^{2} \mathbf{1}_{t \geq t_{0}}, \quad t_{0} \geq 0
$$

is solution.
What is then a good solution?

A second example

- Add some noise:

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma d B_{t}, X_{0}=x_{0}
$$

where $\left(B_{t}\right)_{t}$ is a Brownian motion and $\sigma>0$.

A second example

- Add some noise:

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma d B_{t}, X_{0}=x_{0}
$$

where $\left(B_{t}\right)_{t}$ is a Brownian motion and $\sigma>0$.

- Why is it useful?

A second example

- Add some noise:

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma d B_{t}, X_{0}=x_{0}
$$

where $\left(B_{t}\right)_{t}$ is a Brownian motion and $\sigma>0$.

- Why is it useful?
- Selection of solutions: Assume that for any σ there exists a unique solution, then let \mathbb{P}_{σ} denotes its law. Then prove that $\left(\mathbb{P}_{\sigma}\right)_{\sigma>0}$ is tight and converges in law (as σ tends to 0) to some measure supported on the set of solutions to the ODE.

For instance, Bafico and Baldi (81') proved that for $b(x)=2 \operatorname{sgn}(x) \sqrt{|x|}$ and $x_{0}=0$ it converges to:

$$
\frac{1}{2} \delta_{+t^{2}}+\frac{1}{2} \delta_{-t^{2} .} .
$$

A second example

- Add some noise:

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma d B_{t}, X_{0}=x_{0}
$$

where $\left(B_{t}\right)_{t}$ is a Brownian motion and $\sigma>0$.

- (Veretennikov 81') If b is bounded then the equation admits pathwise uniqueness.

A second example

- Add some noise:

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma d B_{t}, X_{0}=x_{0}
$$

where $\left(B_{t}\right)_{t}$ is a Brownian motion and $\sigma>0$.

- (Veretennikov 81') If b is bounded then the equation admits pathwise uniqueness.
- (Krylov-Röckner 05') If b belongs to $L^{q}\left([0, T] ; L^{p}\left(\mathbb{R}^{d}\right)\right)$ with $\frac{d}{p}+\frac{2}{q}<1(p, q \geq 2)$ then the equation admits pathwise uniqueness.

A second example

- Add some noise:

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma d B_{t}, X_{0}=x_{0}
$$

where $\left(B_{t}\right)_{t}$ is a Brownian motion and $\sigma>0$.

- (Veretennikov 81') If b is bounded then the equation admits pathwise uniqueness.
- (Krylov-Röckner 05') If b belongs to $L^{q}\left([0, T] ; L^{p}\left(\mathbb{R}^{d}\right)\right)$ with $\frac{d}{p}+\frac{2}{q}<1(p, q \geq 2)$ then the equation admits pathwise uniqueness.
- How does it work?

A second example

- Recall that:

$$
X_{t}=x_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\sigma B_{t}
$$

We try to get regularity of the blue term using the Itô-Tanaka Trick.

A second example

- Recall that:

$$
X_{t}=x_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\sigma B_{t}
$$

We try to get regularity of the blue term using the Itô-Tanaka Trick.

- Example: use the celebrated Itô-Tanaka formula for $b=\delta_{a}$ and for B :

$$
\int_{0}^{t} \delta_{a}\left(B_{s}\right) d s=\left|B_{t}-a\right|-|a|-\int_{0}^{t} \operatorname{sgn}\left(B_{s}-a\right) d B_{s}
$$

A second example

- Recall that:

$$
X_{t}=x_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\sigma B_{t}
$$

We try to get regularity of the blue term using the Itô-Tanaka Trick.

- Example: use the celebrated Itô-Tanaka formula for $\boldsymbol{b}=\delta_{a}$ and for B :

$$
\int_{0}^{t} \delta_{a}\left(B_{s}\right) d s=\left|B_{t}-a\right|-|a|-\int_{0}^{t} \operatorname{sgn}\left(B_{s}-a\right) d B_{s} .
$$

- Idea: to express $\int_{0}^{t} b\left(s, X_{s}\right) d s$ by means of more regular objects

The Itô-Tanaka trick

- Apply Itô's formula with a smooth mapping U :

$$
\begin{aligned}
U\left(t, X_{t}\right) & =U\left(T, X_{T}\right)-\int_{t}^{T}\left(\frac{\partial U}{\partial t}+b \cdot \nabla U+\frac{1}{2} \sigma^{2} \Delta U\right)\left(s, X_{s}\right) d s \\
& -\sigma \int_{t}^{T} \nabla U\left(s, X_{s}\right) d B_{s}
\end{aligned}
$$

The Itô-Tanaka trick

- Apply Itô's formula with a smooth mapping U :

$$
\begin{aligned}
U\left(t, X_{t}\right) & =U\left(T, X_{T}\right)-\int_{t}^{T}\left(\frac{\partial U}{\partial t}+b \cdot \nabla U+\frac{1}{2} \sigma^{2} \Delta U\right)\left(s, X_{s}\right) d s \\
& -\sigma \int_{t}^{T} \nabla U\left(s, X_{s}\right) d B_{s}
\end{aligned}
$$

- So if U is solution to the Fokker-Planck (Backward) PDE

$$
\frac{\partial U}{\partial t}+b \cdot \nabla U+\frac{\sigma^{2}}{2} \Delta U=-b, \quad U(T, x)=0
$$

then

$$
\int_{t}^{T} b\left(s, X_{s}\right) d s=-U\left(t, X_{t}\right)+\sigma \int_{t}^{T} \nabla U\left(s, X_{s}\right) d B_{s}
$$

and so

$$
X_{t}=x_{0}+U\left(0, x_{0}\right)-U\left(t, X_{t}\right)+\sigma \int_{0}^{t}\left(\nabla U\left(s, X_{s}\right)+I d .\right) d B_{s}
$$

Applications of the Itô-Tanaka trick to SPDEs

- The Itô-Tanaka Trick can be used to obtain new results in linear transport equations by introducing a stochastic perturbation (see Flandoli, Gubinelli, Priola; 10'; Invent. Math.).

Applications of the Itô-Tanaka trick to SPDEs

- The Itô-Tanaka Trick can be used to obtain new results in linear transport equations by introducing a stochastic perturbation (see Flandoli, Gubinelli, Priola; 10'; Invent. Math.).
- Limitation to other problems: (Flandoli et al.)
"The generalization to nonlinear transport equations, where b depends on u itself, would be a major next step for applications to fluid dynamics but it turns out to be a difficult problem. Specifically there are already some difficulties in dealing with a vector field b which depends itself on the random perturbation W. There is no obvious extension of the Itô-Tanaka trick to integrals of the form $\int_{0}^{T} f\left(\omega, s, X_{s}^{\times}(\omega)\right) d s$ with random f."

Stochastic regularization

Itô-Wentzell-Tanaka trick

Generalizations to random mappings

The problem pointed out previously is to provide an expression for:

$$
\int_{0}^{T} f\left(s, \omega, X_{s}\right) d s
$$

where f is now random (previously we had $f=b$ where b was deterministic) in a predictable way.

- If we reproduce the ideas before we need to consider the Fokker-Planck SPDE:

$$
U(t, x)=-\int_{t}^{T}\left(\frac{1}{2} \Delta+b(s, \omega, x) \cdot \nabla\right) U(s, x) d s-\int_{t}^{T} f(s, \omega, x) d s
$$

Generalizations to random mappings

The problem pointed out previously is to provide an expression for:

$$
\int_{0}^{T} f\left(s, \omega, X_{s}\right) d s
$$

where f is now random (previously we had $f=b$ where b was deterministic) in a predictable way.

- If we reproduce the ideas before we need to consider the Fokker-Planck SPDE:

$$
U(t, x)=-\int_{t}^{T}\left(\frac{1}{2} \Delta+b(s, \omega, x) \cdot \nabla\right) U(s, x) d s-\int_{t}^{T} f(s, \omega, x) d s
$$

- But: in that case $U(t, x)$ is not adapted (even if the data b, f are adapted) so you can not use classical Itô calculus and the previous approach fails.

Generalizations to random mappings

- Idea: make it adapted, and consider rather the following Fokker-Planck BSPDE:

$$
\begin{aligned}
& U^{a}(t, x)=-\int_{t}^{T} \mathcal{L}_{s} U^{a}(s, x) d s-\int_{t}^{T} f(s, \omega, x) d s-\int_{t}^{T} Z(s, x) d B_{s} \\
& \quad \text { with } \mathcal{L}_{s}:=\frac{1}{2} \Delta+b(s, \omega, x) \cdot \nabla
\end{aligned}
$$

If solvable, U^{a} and Z are two predictable processes.

Itô-Wentzell-Tanaka trick

Theorem (Duboscq, R.)

Assume that U^{a} and Z exist and are regular enough, then

$$
\begin{aligned}
\int_{0}^{T} f\left(s, \omega, X_{s}\right) d s= & -U^{a}\left(0, X_{0}\right)-\int_{0}^{T}\left(\nabla U^{a}\left(s, X_{s}\right)+Z\left(s, X_{s}\right)\right) d B_{s} \\
& -\int_{0}^{T} \nabla Z\left(s, X_{s}\right) d s, \mathbb{P}-\text { a.s.. }
\end{aligned}
$$

Itô-Wentzell-Tanaka trick

Theorem (Duboscq, R.)

Assume that U^{a} and Z exist and are regular enough, then

$$
\begin{aligned}
\int_{0}^{T} f\left(s, \omega, X_{s}\right) d s= & -U^{a}\left(0, X_{0}\right)-\int_{0}^{T}\left(\nabla U^{a}\left(s, X_{s}\right)+Z\left(s, X_{s}\right)\right) d B_{s} \\
& -\int_{0}^{T} \nabla Z\left(s, X_{s}\right) d s, \mathbb{P}-\text { a.s.. }
\end{aligned}
$$

Now we need to study the BSPDE and the regularity of $\left(U^{a}, Z\right)$.

Analysis of the BSPDE

Theorem (Duboscq, R.)

Let $p, q \geq 2$. Assume that b, f are adapted and that f belongs to a " $L^{p}-L^{q}$ space" and is Malliavin differentiable. There exists a unique strong (predictable) solution to the Fokker-Planck BSPDE

$$
\left(U^{a}, Z\right) \in\left(" L^{p}-L^{q} \text { space } "\right)^{2} .
$$

Futhermore, we have the following representation of U^{a}

$$
\begin{equation*}
U^{a}(t, x)=\mathbb{E}\left[-\int_{t}^{T} P_{t, r}^{X} f(r, x) d r \mid \mathcal{F}_{t}\right] \tag{1}
\end{equation*}
$$

In addition, for a.e. $(t, x), U^{a}(t, x)$ is Malliavin differentiable, and for a.e. $x \in \mathbb{R}^{d}$, a version of the process $(Z(t, x))_{t \in[0, T]}$ is given by

$$
\begin{equation*}
Z(t, x)=D_{t} U^{a}(t, x)=\mathbb{E}\left[-\int_{t}^{T} D_{t} P_{t, r}^{X} f(r, x) d r \mid \mathcal{F}_{t}\right] . \tag{2}
\end{equation*}
$$

Analysis of the BSPDE

Theorem (Duboscq, R.)

... Finally, U U^{a} admits the following mild (a.k.a. Duhamel's formula) representation

$$
\begin{equation*}
U^{a}(t, x)=-\int_{t}^{T} P_{t, r}^{X} f(r, x) d r-\int_{t}^{T} P_{t, r}^{X} Z(r, x) d B_{r} \tag{3}
\end{equation*}
$$

where $P^{X} \phi$ is the unique solution to:

$$
P_{s, t}^{X} \phi(x)=\phi(x)-\int_{s}^{t} \mathcal{L}_{r} P_{r, t}^{X} \phi(x) d r, \quad 0 \leq s \leq t
$$

Analysis of the BSPDE

Remarks

- We are not working in L^{2}
- We provide an explicit representation which is a counterpart of the one for linear BSDEs (no reversibility of the semigroup)
- Malliavin differentiability in $L^{p}-L^{q}$ spaces is not completely trivial...there are catches
- Duhamel's formula in that context is new

