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Members in ensemble forecasts differ due to the representations of initial uncertainties

and model uncertainties. The inclusion of stochastic schemes to represent model

uncertainties has improved the probabilistic skill of the ECMWF ensemble by

increasing reliability and reducing the error of the ensemble mean. Recent progress,

challenges and future directions regarding stochastic representations of model

uncertainties at ECMWF are described in this paper. The coming years are likely to

see a further increase in the use of ensemble methods in forecasts and assimilation. This

will put increasing demands on the methods used to perturb the forecast model. An area

that is receiving a greater attention than 5 to 10 years ago is the physical consistency of

the perturbations. Other areas where future efforts will be directed are the expansion of

uncertainty representations to the dynamical core and to other components of the Earth

system as well as the overall computational efficiency of representing model uncertainty.
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1. Introduction

Weather forecasting is an initial value problem solved with

numerical models that describe the evolution of the state of the

atmosphere and other Earth system components interacting with

it. Since the seminal work of Edward Lorenz in the 1960s, it is

understood that the equations describing the atmospheric flow

exhibit sensitive dependence on initial conditions that leads to

forecast error growth and eventual loss of predictability (Lorenz

1969; Buizza and Leutbecher 2015).

Some forecast error will be due to model imperfections even

if the model had been initialised with an initial state that

corresponded exactly to the true state of the Earth system. We

propose to define model error as the error in forecasts and model

climate that would be observed had the model been initialised with

the initial state corresponding exactly to the true state. This is not

without subtlety as the map from the physical system to the state

space of the model involves some filter operation on the scales that

are absent in the model. This will render the state of the model

that corresponds exactly to the true state ambigous. By assuming

there is a model state corresponding to the true state of the system,

we include the filtering operation of the initial conditions in our

definition of model error.

Due to the chaotic nature of geophysical fluid dynamics, model

error will limit predictability in addition to initial error. We

expect that for systems exhibiting sensitive dependence on initial

conditions, solutions will also exhibit sensitive dependence on

the models used in the numerical integrations. This becomes

obvious when considering an n-day forecast as an (n− ℓ)-day

forecast initialised from an ℓ-day forecast (ℓ < n). The (n− ℓ)-

day forecast depends sensitively on its initial condition, which is

the ℓ-day forecast, which in turn is model-dependent.

The process of translating the laws of physics governing

the evolution of the Earth system to a numerical code,

i.e. the “model”, inevitably requires many simplifications and

approximations. These arise from incomplete knowledge of a

physical process and its ancilliary data, reduced complexity

to limit computational costs, omission or mis-representation of

processes and system components, from uncertain parameters in
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parametrizations that do not have a directly observable equivalent,

and last but not least from discretisation. Related to the latter are

errors due to the omission of fluctuations on the unresolved scales

as discussed for instance by Palmer (2001).

Quantification of forecast uncertainties became established

in operational numerical weather prediction (NWP) in the

1990s using ensemble forecasting techniques (Lewis 2005). The

physical equations describing the evolution of the atmosphere are

nonlinear and therefore ensemble-based Monte-Carlo approaches

appear as the only feasible way of estimating the future probability

distribution of the state of the atmosphere. Building an ensemble

forecast system requires the specification of the sources of

uncertainties. It seems useful to distinguish between uncertainties

in the initial conditions and uncertainties in the forecast model

both in terms of the methods as well as the implications for

predictability. From now on, for brevity, we will refer to them as

initial uncertainties and model uncertainties, respectively. In this

paper, we distinguish between actual model errors, where there is

only one realisation per model and forecast, and model uncertainty

representations, which sample model perturbations from some

distribution to make a prediction of the forecast uncertainty. The

perturbations should ideally have the same statistics as the error

but are likely to have different statistics in practical applications.

An ensemble that represents only initial uncertainties consistent

with the true distribution of initial condition errors is known to

be underdispersive and therefore will lack reliability (e.g. Wilks

2005; Palmer et al. 2005). This motivates the development of

methodologies to represent model uncertainties.

In the following, we will focus on stochastic representations

of model uncertainties (e.g. Palmer 2012). These are schemes

that sample perturbations from some underlying distribution that

defines the scheme that represents model uncertainties. A key

advantage is that these schemes involve a distribution that can

be adjusted to control the characteristics of the model error

representation. Generally, the aim of stochastic representations

of model uncertainty is to simulate the effect of the random

component of the errors of the model tendencies. However, this

may include flow-dependent systematic errors that appear like

random errors.

ECMWF first introduced a stochastic representation of model

uncertainties in the medium-range ensemble in October 1998

using a scheme that multiplies the total parametrized physics

tendencies with a random number (Buizza et al. 1999). The

scheme was originally referred to as “stochastic physics”. It

is now commonly referred to as the Stochastically Perturbed

Parametrization Tendency scheme (SPPT). Major revisions of

the stochastic representation of model uncertainties took place in

September 2009 and November 2010 (Palmer et al. 2009; Shutts

et al. 2011). These changed aspects of the probability distribution

sampled by the SPPT scheme. In addition, a Stochastic Kinetic

Energy Backscatter scheme (SKEB) was activated in ECMWF

ensemble forecasts in the November 2010 upgrade.

As ensembles are becoming more widely used in forecasting

and assimilation, the need for representations of model

uncertainties is increasingly recognised and this fuels an

expansion of research on this topic. In April 2016, ECMWF

and the World Weather Research Programme (WWRP) jointly

organised a workshop on model uncertainty with over 80

participants. The workshop proceedings (ECMWF/WWRP 2016)

contain summaries of the talks as well as the recommendations

from the three working groups. Looking at the research presented

at the workshop and reviewing the literature reveals that a range

of alternative approaches to represent model uncertainties have

been explored and are currently developed across the wider

community (see references in Secs. 2, 3 and 7.2). The main

reasons for the multitude of approaches are that: (i) it is difficult

to accurately characterise model error and (ii) there are many

different sources of model error. Thus, it is not straighforward

to decide whether one way of representing model error is better

than another. A related challenge is the difficulty in disentangling

initial uncertainties from model uncertainties as the estimation of

the initial state involves the use of a forecast model.

This paper is based on a special topic paper prepared for

the ECMWF Scientific Advisory Committee held at ECMWF

in October 2016. Its purpose is to (i) report on progress that

has been made since the last special topic paper on stochastic

parametrization prepared for the ECMWF Scientific Advisory

Committee in 2009 (Palmer et al. 2009) and to (ii) discuss ideas

that influence plans for future work on the representation of model

uncertainties in ECMWF’s prediction system. Forecast errors also

arise from systematic errors that lead to biases. Such errors and

work on identifying their root causes are beyond the scope of this

paper. However, the impact of stochastic representations of model

uncertainties on the model climate will be covered. This paper will

also look at the use of model uncertainty representations in data

assimilation.

The outline of the paper is as follows. The operational

stochastic representations of model uncertainties used at ECMWF

are described in Section 2. Work on developing a process-

oriented representation of model uncertainties is summarized in

Section 3. The impact of model uncertainty representations on

a range of applications at ECMWF is documented in Section 4.

Unrepresented sources of model uncertainty in the Earth system

are discussed in Section 5. Future directions for work on model

uncertainty are presented in Section 6. We conclude with a brief

discussion and summary in Sections 7 and 8.

2. Operational methods in the IFS

The Integrated Forecasting System (IFS) is ECMWF’s operational

NWP model. This section is dedicated to the operational

stochastic parametrizations used in the IFS, i.e. SPPT and SKEB.

2.1. The Stochastically Perturbed Parametrization Tendency

scheme

The Stochastically Perturbed Parametrization Tendency scheme

(SPPT) makes the assumption that the dominant error of

the parametrized physics tendency is proportional to the net

physics tendency (Buizza et al. 1999). SPPT generates perturbed

parametrization tendencies p stochastically by multiplying the net

physics tendency pD provided by the physics package with a 2D

random field r

p = (1 + µr)pD. (1)

Here, p denotes the vector of perturbed tendencies of temperature,

specific humidity, and wind components in a model column. The

factor µ is an optional tapering function that depends on the model

level only and has values in the range [0, 1].

The number of NWP models in which a SPPT scheme

has been implemented keeps rising. It is used operationally

in global ensembles by Environment Canada (Charron et al.

2010, Separovic 2016, ECMWF/WWRP workshop) and by Japan

Meteorological Agency. Météo-France uses SPPT in the regional

ensemble based on the Application of Research to Operations

at Mesoscale convection-permitting model (AROME, Bouttier

et al. 2012). It has been tested as well in the Weather Research

and Forecasting model (WRF) in ensembles with parametrized

convection and in convection-permitting ensembles (Berner et al.

2015; Romine et al. 2014). Pegion (2016, ECMWF/WWRP

workshop) reported recent tests of SPPT in the United States

National Centers for Environmental Prediction’s Global Forecast

System model (GFS) and Sanchez et al. (2016) describe tests
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in the Met Office Unified Model. In summary, SPPT has been

found to be effective in generating additional ensemble spread and

improving probabilistic skill in a range of NWP ensembles.

Shutts and Pallarès (2014) diagnosed coarse-grained differ-

ences of tendencies from integrations with different horizontal

resolution and examined the relationship between the width of

the probability distribution and the mean value of the tendency of

the coarser resolution model. They find different relationships for

different physical processes, e.g. convection and radiation. This

finding motivated work by Arnold (2013), who explored the effect

of applying noise independently to the tendencies from radiation,

vertical mixing and orographic drag, convection, cloud processes,

non-orographic drag, and methane oxidation. Christensen et al.

(2016) summarize more recent tests with this so-called indepen-

dent SPPT (iSPPT), which results in an increase in ensemble

spread in regions with significant convective activity. The iSPPT

approach also offers a larger degree of flexibility, which could

facilitate sensitivity studies.

Recently, studies by Davies et al. (2013) and Peters et al.

(2013) raised doubts whether the multiplicative ansatz in SPPT

was consistent with observations of the relationship between

deep convection and the large-scale state. Watson et al. (2015)

examined this relationship for the IFS and found that it can

reproduce the observed relationships in a deterministic integration

as well as in an integration perturbed with SPPT.

2.1.1. The ECMWF methodology

The random field r in (1) is obtained through first order auto-

regressive processes in spectral space. A multi-scale approach is

implemented in IFS with

r =

J
∑

j=1

rj (2)

where the component random fields rj are independent and

represent different scales. Table 1 lists the standard deviation in

grid point space, the spatial auto-correlation scale L and the time

decorrelation scale τ of the components of the three-scale pattern

(J = 3) used in the medium-range, extended-range and seasonal

(System 4) ensemble forecasts since 2010. Shutts et al. (2011)

show an example of a realisation of the three components. The

ensemble of 4D-Var data assimilations (EDA) uses the single-

scale pattern with the fast small-scale pattern only (J = 1) mainly

for reasons of technical simplicity and lack of investigations

assessing the impact of the slower and larger-scale correlations

on the background error structures. A first assessment of using the

three-scale pattern in the EDA is summarized in Section 4.4.

The implementation of SPPT in the Integrated Forecast System

(IFS) uses a tapering function µ which is 1 in the free troposphere

and reduces the amplitude gradually to 0 close to the surface and

in the stratosphere. The latter is done to avoid large amplitude

perturbations of the radiative tendencies in the stratosphere, which

are presumed to be more accurate, and the former to avoid

numerical instabilities in the boundary layer.

Apart from the limiters mentioned below, r samples a

Gaussian distribution with a grid-point space variance of

σ2 =
∑J

j=1 σ
2
j , with σ2

j being the grid-point variance of the

component pattern rj . When r falls outside of the range [−1, 1],

the magnitude of r is reduced to 1. This is required for

numerical stability and avoids sign reversal of the tendencies.

In addition, a supersaturation limiter reduces the magnitude of

r to avoid excessive supersaturation due to the perturbation.

The supersaturation limiter determines a vertically consistent

reduction of the amplitude of the T and q perturbations based on

a mean over the 200 hPa layer requiring the largest reductions.

scale j σ L (km) τ (d)

1 0.52 500 0.25

2 0.18 1000 3

3 0.06 2000 30

Table 1. Characteristics of the three-scale random field used in SPPT: Standard
deviation σ, horizontal decorrelation length scale L, time decorrelation scale
τ . The operational EDA uses only the first scale j = 1.

2.1.2. Global fix for tendency perturbations

In long runs with the EC-Earth climate model version 3.1, SPPT

caused substantial imbalances in the radiative fluxes, the surface

fluxes of precipitation (P) and evaporation (E) and for the radiation

budgets (Davini et al. 2017). The SPPT scheme systematically

reduced humidity in the atmosphere which was compensated

by overly strong evaporation. The global P−E imbalance in the

stochastically perturbed simulations was increased from about

−0.016mm d−1 in the runs without SPPT to about −0.16

mm d−1. This is based on a 10-year mean of simulations with

and without SPPT at TL255L91 resolution∗. In 30-day forecasts

with IFS CY41R1, a qualitatively similar signal is diagnosed with

an increase of the P−E imbalance from a value of 0.03mm d−1

to a value of −0.15mm d−1 when SPPT is activated. It is worth

noting that P and E are the raw model output as provided to users

and consistent with the practices in the forecast evaluation without

accounting explicitly for imbalances introduced by SPPT (see also

Sec. 6.2.2).

SPPT also had a significant impact on the energy fluxes

at the surface and the top of the atmosphere. The 10-year

mean of global top-of-the-atmosphere net flux changed from

−1.71 to −2.77W m−2 through the activation of SPPT while

the surface net flux changed from −0.46 to −3.66W m−2 in the

aforementioned EC-Earth runs. Imbalances exceeding ∼ 1 W m−2

are considered unacceptable for climate models (Mauritsen et al.

2012). For comparison, the present-day radiative forcings due to

anthropogenic well-mixed greenhouse gases is about 3 W m−2

(Myhre et al. 2013).

To address these imbalances, a modification of the SPPT

scheme was developed. A correction is added to the perturbed

tendency, which results in the global integral of the perturbed

tendency being equal to that of the unperturbed tendency. Details

are described in Appendix A. In terms of medium-range and

extended-range ensemble forecast scores, it was found that this

SPPT modification has a neutral to slightly positive impact. In

view of this impact and the fact that it makes the climate of

the forecasts perturbed with SPPT more similar to the climate of

unperturbed forecasts, this modification of SPPT was activated in

the model upgrade (CY43R1) in November 2016.

2.1.3. Discussion

SPPT can be viewed as a “holistic approach” that maintains

the overall balance between the tendencies due to different

physical processes (Tim Palmer, pers. comm.). In the presence of

compensating biases of the tendencies from different processes,

the bias of the total tendency can be smaller than the biases of

individual tendencies. A potential strength of SPPT is that its

formulation results in unbiased perturbations of the physics when

supersaturation limiter, interactions and subsequent nonlinearities

are neglected. The problems with the systematic impact on the

humidity tendencies discussed above indicate that in practice it is

difficult to obtain unbiased perturbations with SPPT.

∗Henceforth, we will refer to triangular truncation at wavenumber NNN using a
linear grid by TLNNN; the L91 refers to the 91 level vertical discretisation with a
model top at 1 Pa.
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The mean and the perturbation structure of the tendencies

are controlled by the IFS physics. In the limit of vanishing

perturbation variance, the scheme converges to the deterministic

IFS physics. The scheme is relatively simple and it is

computationally cheap: less than 2% of total runtime, or less than

4% with the fix described in Sec. 2.1.2. Furthermore, the scheme

requires only modest resources for maintenance. As will be seen

later, it is efficient in generating ensemble spread and contributes

positively to the probabilistic skill of the ECMWF ensemble

forecasts. There are also noticeable impacts on the model climate

(cf. Sec. 4.3) and on the EDA and thus data assimilation in general

(cf. Sec. 4.4).

However, there are also several limitations of SPPT. It assumes

that the error of the physics tendency is always proportional to

the deterministic tendency pD while the true uncertainty is likely

to have also variance in many directions not parallel to pD .

Considering a single time step, the perturbations are confined

to a one-dimensional subspace in a space with a dimension of

a few hundred (4 variables times the number of model levels).

For example, uncertainty in the shape of a heating profile cannot

be captured with SPPT. The validity of the simple multiplicative

ansatz has previously been questioned by Shutts and Palmer

(2007) as well as Shutts and Pallarès (2014). Their coarse-grained

tendencies show evidence of non-vanishing uncertainty when the

parameterised physics tendency vanishes.

The modulation of the amplitude of the perturbation with

the total tendency implies that the same level of uncertainty is

assigned to all processes and all atmospheric situations. This

may not reflect actual variations in model uncertainty well. For

instance, one would expect that on average longwave radiative

cooling in a clear-sky situation is more certain than the heating

associated with parametrized deep convection. Moreover, the

amplitude modulation implies that the error vanishes where the

total tendency is zero while the true error distribution will

also be influenced by non-compensating errors of the individual

processes.

Another drawback of the current formulation of SPPT is

that it does not respect conservation laws. Fluxes at the top of

the atmosphere and the surface are not perturbed. This implies

that local budgets of energy and moisture that are satisfied

by the deterministic parametrizations are violated by the SPPT

perturbations.

All implementations of SPPT share the basic principle that the

parametrized total physics tendency is multiplied by a random

number. However, there are potentially important differences in

detail. These differences include the variance of the perturbations,

the space and time auto-correlation of the random pattern, the

shape of the distribution that is sampled and whether perturbations

are suppressed in some regions of the atmosphere or for some

processes. For example, the implementations of SPPT in the

model of the COnsortium for Small-scale MOdelling (COSMO)

and the WRF model do not use the tapering to zero of the

perturbations in the boundary layer. While these differences

will limit the ability to transfer conclusions obtained with one

model to other models, they may motivate a range of sensitivity

experiments in the future.

2.2. The Stochastic Kinetic Energy Backscatter scheme

Stochastic Kinetic Energy Backscatter scheme (SKEB) aims to

represent model uncertainties associated with scale interactions

that take place in the real atmosphere but are absent in a truncated

numerical model. Motions on scales that would be fully resolved

in the model interact with motions on scales that would be near

grid-scale or subgrid-scale in the model.

Following ideas in Large Eddy Simulation (LES), Shutts (2005)

and Berner et al. (2009) developed a stochastic forcing for the IFS

model targeting this uncertainty. The SKEB scheme is also used

in the Environment Canada and in the United Kingdom MetOffice

(UKMO) global ensembles (Charron et al. 2010; Tennant et al.

2011). Sanchez et al. (2016) propose improvements to the SKEB

scheme used by UKMO. Berner et al. (2011) and Berner et al.

(2015) study the impact of SKEB on WRF ensembles. Pegion

(2016, ECMWF/WWRP workshop) summarizes initial tests of

SKEB in global GFS ensembles. We note in passing that there

are potentially important differences in the detail of the various

implementations of SKEB in different models. For example, the

versions in the Canadian model and in the Met Office model

perturb different ranges of wavenumbers and the implementation

in WRF is purely additive, i.e. state-independent.

Recently, Shutts (2015) introduced a stochastic convective

backscatter scheme, which focusses entirely on the random model

error arising from the interaction of parametrized deep convection

with the model dynamics near the grid scale.

2.2.1. The ECMWF methodology

In the IFS, SKEB introduces a stochastic streamfunction forcing

∂Ψ/∂t given by an evolving 3-dimensional pattern F with an

amplitude modulation determined by a horizontally smoothed

local estimate of kinetic energy sources at the subgrid-scale,

referred to as the dissipation rate D

∂Ψ

∂t

∣

∣

∣

∣

SKEB

= [bD]1/2 F (3)

Here b is the backscatter ratio that controls the global amplitude

of the perturbations. The horizontal structure of the pattern is

determined by a power-law variance distribution in spectral space

while the vertical structure is obtained from random-phase shifts

that decorrelate the structure in the vertical. The dissipation rate

is a 3D field diagnosed from the model state. In the original

version of the scheme, the dissipation rate estimate is obtained

as the sum of three terms describing subgrid-scale energy sources

due to orographic gravity wave drag, numerical dissipation and

parametrized deep convection. The streamfunction perturbations

are tapered to zero in the boundary layer similar to the approach

used by ECMWF for SPPT.

The scheme evolved recently to a version with only

the contribution from deep convection. The dissipation rate

contribution from orographic gravity-wave drag was abandoned as

it generated excessive ensemble spread in lower tropospheric wind

near steep orography, i.e. the Andes. The term linked to numerical

dissipation estimated from the horizontal diffusion resulted in

spurious kinetic energy spectra with the new cubic octahedral

grid (Malardel et al. 2016) implemented in March 2016 due to

the inconsistency in representing horizontal mixing in the model

and in SKEB. Therefore, numerical dissipation was deactivated in

SKEB.

The computational cost of SKEB is higher than that of SPPT

due to requiring spectral transforms of two 3D fields: the pattern

F and the dissipation rate estimate D. The operational version

does not update these fields every model time step to save

computational time.

2.2.2. Discussion

As described above, the IFS implementation of SKEB has

evolved to a scheme that is conceptually similar to the Stochastic

Convective Backscatter algorithm (SCB) proposed by Shutts

(2015). The latter scheme is effective in generating ensemble

spread and introduces strong wind perturbations in the boundary

layer. However, at present it is unknown whether these low-level

perturbations are a good or a bad characteristic and whether they
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target the main model uncertainties associated with deep moist

convection. Another difference between the operational version

of SKEB and Shutts’ SCB is that the latter perturbs the velocity

potential and the streamfunction on synoptic scales in the vicinity

of parametrized deep convection while the former is limited to

streamfunction perturbations.

With increasing spatial resolution, the model is able to represent

more of the scale interactions explicitly and the need for SKEB

should be reduced. This, could be at least partly a justification

for deactivating the numerical dissipation rate contribution with

the higher resolution TCo639 ensemble†. Nevertheless, until

deep convection is explicitly resolved, one may see a need

for including a stochastic convective backscatter. However, the

stochastic convective momentum transport perturbations can also

be introduced in an alternative manner (cf. Section 3). Recent

work by Malardel and Wedi (2016) looking at the energy

transfer in high-resolution, convection-permitting IFS integrations

indicates that backscatter happens through available potential

energy.

There is a generic challenge in keeping the actual perturbations

used by SKEB in line with the spatial scales that can be justified

theoretically — while large-scale perturbation structures appear

to be most effective in generating ensemble spread, the dominant

uncertainty due to the interaction with the unresolved scales

should be at scales close to the truncation scale.

3. Towards process-level representation of model

uncertainties

Parametrizations of physical processes include a number of

tunable parameters, which quantify efficiencies, rates of change,

etc. of phenomena that the parametrizations seek to represent.

Uncertainty in the parameter values leads to a source of model

uncertainty. Sampling values of uncertain key parameters provides

a way to represent uncertainties at their sources and thus links to

individual physical processes.

A scheme with stochastically perturbed parameters has

been developed in the UKMO global ensemble (Bowler

et al. 2008b) and later, applied in the UKMO convection-

permitting ensemble (Baker et al. 2014). The original Random

Parameters (RP) scheme was based on parameters that vary

stochastically, but discontinuously, in time. McCabe et al.

(2016) report improvements of ensemble fog forecasts in the

2.2 km regional UKMO ensemble from implementing the RP

scheme. In their experiments, the parameters vary more gradually

in time (”RP2”) than in previous implementations of the

RP scheme. Highlighting future developments, Tennant (2016,

ECMWF/WWRP workshop) demonstrated further improvement

in global ensemble forecasts from enabling the stochastic

parameters to vary in time and space (”RP3”).

Stochastic parameter perturbations are beginning to be

considered beyond the atmosphere in other Earth system

components. Juricke et al. (2014) have explored the impact

of stochastic perturbations of sea ice strength on sea ice

predictability. Brankart et al. (2015) introduce generic uncertainty

representations in the Nucleus for European Modelling of the

Ocean model (NEMO) that include a form of SPPT as well

as stochastic parameter perturbations. They propose exploring

stochastic parameter perturbations to represent uncertainty in

marine ecosystem modelling that arises from restricting the

diversity of species. In addition, they also propose perturbing

the sea ice strength parameter. Stochastic and fixed parameter

perturbations also start to be explored in the H-TESSEL‡ land

†We refer to triangular truncation at wavenumber NNN using a cubic octahedral
grid by TCoNNN.
‡Revised Hydrology for the Tiled ECMWF Scheme for Surface Exchanges over
Land

Table 2. The parameters and variables perturbed by SPP in the physical
process parametrization schemes.

TURBULENT DIFFUSION & SUBGRID OROGRAPHY

transfer coefficient for momentum (ocean/land)

coefficient in turbulent orographic form drag scheme

stdev. of subgrid orography

length scale for vertical mixing in stable boundary layer

CONVECTION

entrainment rate

shallow entrainment rate

detrainment rate for penetrative convection

conversion coefficient cloud to rain

zonal convective momentum transport

meridional convective momentum transport

adjustment time scale in CAPE closure

CLOUD & LARGE-SCALE PRECIPITATION

RH threshold for onset of stratiform cond.

diffusion coefficient for evaporation by turbulent mixing

critical cloud water content for autoconversion

threshold for snow autoconversion

RADIATION

cloud vertical decorrelation height in McICA

fractional stdev. of horizontal distribution of water content

effective radius of cloud water and ice

scale height of aerosol normalised vertical distribution

optical thickness of aerosol

surface model with the aim of representing model uncertainties

(MacLeod et al. 2016; Orth et al. 2016).

3.1. ECMWF’s Stochastically Perturbed Parametrization

methodology

At ECMWF, work has started on stochastic parameter per-

turbations in the framework of the Stochastically Perturbed

Parametrization scheme (SPP, Ollinaho et al. 2017). SPP provides

a framework in the IFS code to represent some of the key random

errors of the parametrized tendencies close to their sources within

the physical processes. Like SPPT, SPP is strongly guided by

the existing deterministic parametrizations. The proximity of the

uncertainty model to the processes permits the exploitation of

physically consistent relationships between different variables.

For instance, SPP can produce perturbations to the fluxes at

the top of the atmosphere and the surface that are consistent

with the tendency perturbation in the model column. Thus local

budgets of moisture, momentum and energy, which are respected

by the deterministic parametrizations, remain closed. SPP can also

represent uncertainty beyond a simple amplitude error, e.g. the

uncertainty in the shape of a heating profile.

SPP can be seen as a generalisation of the concept of perturbed

parameters as it introduces local stochastic perturbations to

parameters and variables in the parametrizations. Ollinaho et al.

(2017) describe the methodology in detail and give a justification

for the selection of parameters and variables. During the

initial development phase of SPP, experts working on the IFS

parametrization of individual processes identified 20 parameters

and variables that are considered uncertain and when changed

introduce significant changes in the forecast (Tab. 2).

Figure 1 displays the distributions sampled by SPP in the

parametrizations of (a) turbulent diffusion and subgrid orographic

drag, (b) convection, (c) cloud and large-scale precipitation

and (d) radiation. SPP samples the distributions independently

for each parameter and variable. Thus, the perturbations are

uncorrelated. The perturbations evolve using the same type of

auto-regressive AR(1) pattern generator in spectral space as
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Figure 1. Distributions of parameters and variables sampled by SPP in
the parametrizations of (a) turbulent diffusion and subgrid orographic drag,
(b) convection, (c) cloud and large-scale precipitation and (d) radiation. The x-axis
shows the ratio of the perturbed value ξj to the unperturbed value ξ̂j with the index
j referring to the different parameters. The left tail of the distribution for convective
momentum transport extends to negative values and is not shown. The realisations
of different parameters are independent and have prescribed horizontal and temporal
correlations.

SPPT but with correlation scales of 2000 km and 72 h. The

perturbed parameters sample a log-normal distribution except

for the convective momentum transport. The latter samples a

normal distribution that permits sign reversal, which corresponds

to an upgradient momentum transport that can occur in

mesoscale convective systems. For all log-normal distributions,

the probability density for reaching a ratio of zero vanishes.

The parametrization experts helped to define an initial guess

for the degree of uncertainty of these variables. Numerical

experimentation with the medium-range ensemble was used to

refine the estimates.

Ollinaho et al. (2017) report sensitivity experiments with

different spatial and temporal correlation scales; these indicate

the largest impact on ensemble spread for scales of 2000 km

and 72 h. Shorter decorrelation scales (500 km and 6 h) as well

as globally constant parameter perturbations are less effective in

generating ensemble spread and led to lower probabilistic skill in

the medium-range ensemble.

SPP is a more complex scheme than SPPT and therefore

requires more resources to maintain and improve it, which

may be seen as a disadvantage. However, there may also be

synergies as the development of the uncertainty component and

the development of the deterministic component can mutually

inform each other. There is a potential to improve the uncertainty

models by studying uncertainty at the process level which is

not meaningful for SPPT, which follows a uniform approach for

all processes. The work on SPP is still in the early stages of

development and several potential future extensions are being

considered. These will be described in Sections 5.1 and 5.2.

3.2. A look at the tendency perturbations

Representations of model uncertainty generate differences

between ensemble member forecasts through the modification

of the model tendencies. Examining the tendency perturbations

induced by different representations of model uncertainty offers

a way to quantitatively compare schemes. Initially, we have

focussed on a comparison of SPPT and SPP to better understand

in what ways the two schemes differ and to guide future

developments (see also Ollinaho et al. 2017). Ensemble

experiments without initial perturbations, one with SPPT and one

with SPP were run with the IFS at TL399 resolution with 91

levels. Tendency output was produced 3-hourly on model levels.

Figure 2 shows maps of the ensemble standard deviation

of the accumulated temperature tendencies in the first 3 hours

of the forecast for 4 December 2013, 3 UTC. In the mid-

troposphere, the regions with highest standard deviation coincide

for SPPT and SPP (Fig. 2a,b). These regions are those that

are convectively active as can be seen from the ensemble mean

convective precipitation (Fig. 3a). Outside of the convectively

active regions, the standard deviation drops below 0.05 K(3 h)−1

in the experiment with SPP while it is above that value in a

large fraction of the night-time globe with SPPT. This day-night

modulation of the uncertainty in SPPT is consistent with the

unperturbed tendency as well as the ensemble mean tendency.

During night-time, there is a prevalent cooling in the mid-

troposphere with values ranging between 0.1 and 1 K(3 h)−1.

During day-time, the ensemble mean tendency outside the

convectively active regions is closer to zero. This day-night

contrast is due to the radiative tendencies (Fig. 3c). During the day,

the heating due to the solar radiation and the long-wave thermal

emission approximately balance each other while the latter is

dominating the tendencies in a large fraction of the globe at night.

The fact that SPPT attributes a significant level of uncertainty to

the night-time clear-sky cooling is considered as an unrealistic

description of model uncertainty.
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Figure 2. Ensemble standard deviation of 0–3 h accumulated tendencies of temperature (unit: K (3 h)−1) at model levels 64 (∼ 500 hPa) and 91 (10 m above ground) for
experiments perturbed with SPPT (a,c) and SPP (b,d). 4 December 2013, 0 UTC, lead time 3 h.
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Figure 3. Ensemble mean of (a) convective precipitation, (b–d) temperature tendencies: (b,d) total physics temperature tendency at levels 64 and 91; (c) radiative
temperature tendency at level 64. Experiment with SPPT, 4 December 2013, 0 UTC, lead time 3 h. The experiment with SPP shows very similar ensemble means.

In the first three hours of the forecast, SPP generates much

larger tendency perturbations close to the surface than SPPT

everywhere (Fig. 2c,d). The fact that SPPT assumes a high

level of certainty close to the surface is also considered as an

unrealistic aspect. The ratio between the standard deviation of the

perturbations and the mean tendency at low levels is less than 2%

for SPPT in a large fraction of the domain (compare Fig. 2c with

Fig. 3d). Future modifications of SPPT regarding the tapering in

the boundary layer and the treatment of clear-sky radiances may

address these apparent deficiencies.
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By aggregating statistics over a number of cases and over a

region, systematic differences between the two model uncertainty

schemes can be quantified. Ollinaho et al. (2017) compare SPP

and SPPT in this way. Above level 80 (∼ 900 hPa), the SPPT

scheme produces more spread, especially in the extratropics

(consistent with Fig. 2a,b). For tendency perturbations later in the

forecast, say 21–24 h, the difference between the two schemes in

the free-troposphere has increased with SPPT clearly generating

larger tendency perturbations. In the lowest model levels, SPP

still generates larger spread though the standard deviations are

more similar than in the first 3 hours. Even though SPPT

does not directly introduce perturbations in the boundary layer,

the differences in the free-troposphere have by 24 h forced the

boundary layer differently.

4. Impact of stochastic model uncertainty representations in

the IFS

This section summarises the impact of the stochastic model

uncertainty representations SPPT, SKEB and SPP on a range of

applications at ECMWF from the medium-range and extended-

range ensemble forecasts, to the model climate, the EDA and

weak-constraint 4D-Var.

4.1. Medium-range forecasts

First, the impact of the operational versions of SPPT and SKEB

on ensemble forecasts in the medium-range and extended-range

is briefly summarized. Results are based on a sample of 46 30-

day forecasts at TCo255/159L91 resolution and 20 members with

a resolution change from TCo255 to TCo159 at Day 15. Using a

lower resolution and smaller ensemble size than the operational

configuration reduces the cost of numerical experimentation by a

factor of about 25 and makes a range of sensitivity experiments

affordable. The impact of SPPT and SKEB is expected to be not

highly sensitive to the spatial resolution as the fragile numerical

dissipation rate estimate in SKEB had been deactivated. Future

experimentation is planned to quantify the resolution dependence

of the impact of the model uncertainty representations. This

will be useful for guiding the development strategy for model

uncertainty.

The operational model uncertainty representation generates

additional spread in the ensemble with the largest absolute gain

after about 1 week. Figure 4a,b shows changes of ensemble

standard deviation for 200 hPa zonal wind. The impact is larger

in the tropics than in the extratropics reaching more than 20%

spread increase over the experiment with initial perturbations

only (IP only) in the former and less than 10% in the latter.

The spread increase is statistically significant in the first 2 weeks

(beyond 4 weeks) in the extratropics (tropics). Most of the spread

increase is due to SPPT with SKEB adding little additional

spread. An experiment that uses SKEB and initial perturbations

but does not use SPPT confirms the marginal impact of the current

configuration of SKEB.

The model uncertainty representations reduce the ensemble

mean root-mean-square (RMS) error and the continuous ranked

probility score (CRPS) markedly in the tropics with relative

improvements of about 10% (Fig. 4d,f). In the extratropics, skill

is improved moderately but still statistically significantly reaching

reductions of CRPS of up to 2% (Fig. 4c,e). The additional skill

improvements due to SKEB are negligible.

The impact of SPP has been compared with that of SPPT

using the same TCo255/159 setup. The results are consistent with

those of Ollinaho et al. (2017), who used a different resolution

TL399 configuration with a forecast range to 15 days. Figure 5

shows the impact of SPP and SPPT on ensemble spread and

CRPS for 200 hPa zonal wind in the Northern extratropics and

the tropics. SPP is effective in generating considerable additional

ensemble spread. The gain in spread compared to experiment

IP-only reaches 65% (more than 100%) of the gain in spread

due to SPPT in the extratropics (tropics). The probabilistic skill

measured in terms of CRPS improves with SPP though the skill

improvements are generally somewhat lower than those obtained

with SPPT. This is the case also for other upper air variables. A

notable exception is 2-metre temperature in the early lead times

where the ensemble using SPP is more skilful than the ensemble

using SPPT (cf. Ollinaho et al. 2017). This is consistent with the

impact of the schemes on the ensemble spread of the tendencies

discussed in the previous section.

The fact that uncertainty representations for the model physics

are having a more substantial impact on ensemble spread and

skill in the tropics than elsewhere is consistent with earlier

results (Buizza et al. 1999) and more recently with the results

of Reynolds et al. (2011), who investigated constant in time and

space parameter perturbations in the convection scheme and the

boundary layer parametrization.

4.2. Extended-range forecasts and the MJO

At the extended time range (more than 2 weeks, but less than

a season), a key source of predictability is the Madden Julian

Oscillation (MJO), which impacts not only the tropical but also the

European extended-range skill scores (Vitart and Molteni 2010).

This section discusses the impact of stochastic representations of

model uncertainty on predictions of the MJO using the leading 2

principal components (PCs) developed by Wheeler and Hendon

(2004). The PCs are based on combined empirical orthogonal

functions of outgoing long-wave radiation and zonal wind at 850

and 200 hPa. The MJO PCs computed from each experiment are

then verified against the ECMWF global atmospheric reanalysis

ERA-Interim.

Figure 6 shows the evolution with lead time of the ensemble

mean RMS error and ensemble spread of the two MJO PCs for

an experiment with initial perturbations only (IP-only), SPPT

using the global conservation fix, SPP, and SPP using correlation

scales of 500 km and 6 h (SPP short). The spread is computed

as [v1 + v2]
1/2, where the vj denote the ensemble variances of

the two PCs. The ensemble mean RMS error is computed as
[

e21 + e22
]1/2

, where the ej = xj − yj denote the errors of the

two PCs of the ensemble mean with ensemble mean PCs xj
and analysis PCs yj . The MJO ensemble spread is generally

significantly smaller than the RMS error. The experiment with

SPP displays a much larger spread than the other experiments,

but also a slightly increased RMS error, although the difference at

day 26–32 between SPP and IP-only is not statistically significant

at the 90% level of confidence. When the spatial and temporal

correlation scales in SPP are reduced (experiment SPP short),

little spread is added compared to IP-only. Experiment SPPT adds

considerable spread and decreases RMS error compared to IP-

only between day 10 and 20, although the difference in RMS error

is not statistically significant.

Ranked Probability Skill Scores (RPSS, not shown) for SPP

and SPPT are generally higher than for IP-only, particularly for

week 1 in the Tropics. Experiment SPP has a lower skill than

Experiment SPPT for most variables and in particular at 50 hPa

and for velocity potential at 200 hPa.

When SKEB is added to SPPT, its impact is not statistically

significant in terms of the MJO PCs and RPSS scores (not

shown). This is consistent with the minor differences in spread

and probabilistic skill seen in the medium-range (Sec. 4.1).
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Figure 4. Impact of SPPT, SKEB and SPPT+SKEB on 200 hPa zonal wind (m s−1) relative to an experiment with initial perturbations only (IP only). Top panels:
ensemble stdev, middle panels: ensemble mean RMS error, bottom panels: continuous ranked probability score (CRPS). Based on 46 cases covering Dec 2014 to Nov
2015, 20 members, TCo255/159L91 resolution, cycle 42r1. Bars show 95% confidence intervals based on a paired t-test.

4.3. Model climate and systematic errors

In this section, we will look into the impact on the model climate

of SPPT and SPP separately. Although the perturbations applied in

both schemes are drawn from distributions that are centred around

zero, it is not guaranteed that the mean response from the model

will be zero. Non-linear physical processes such as saturation of

humidity (generation of clouds and precipitation) can give rise to

asymmetries in the model response.

Weisheimer et al. (2014) and Subramanian et al. (2017)

documented the impact of SPPT on the ECMWF seasonal

forecasting system 4 (Sys4). They found a positive impact during

DJF on the precipitation bias over the Maritime continent, which

led to an improved Walker circulation and MJO statistics. Since

the implementation of Sys4, several model changes have been

introduced, and the impact of SPPT might have changed. In this

section, we use seasonal re-forecasts from 1981 to 2010 with

3 ensemble members to investigate the impact of the stochastic

schemes on the mean model state. The forecasts have been

initialised on 1 May and 1 November and run for 4 months in

order to enable verification of JJA and DJF. All simulations are

performed with the atmospheric model at TCo255 resolution with

91 vertical levels, coupled to the 1 degree ocean model NEMO.

The model cycle used is 42r1. The SPPT gfix experiment includes

the global conservation fix (discussed in Section 2.1.2). The fix
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Figure 5. Impact of SPP and SPPT on 200 hPa zonal wind (m s−1) relative to an experiment with initial perturbations only (IP only). Top panels: ensemble stdev, bottom
panels: continuous ranked probability score (CRPS). Based on 46 cases covering Dec 2014 to Nov 2015, 20 members, TCo255/159L91 resolution, cycle 42r1.
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Figure 6. Evolution of RMS error (solid lines with dots) and ensemble spread (thin lines) for the leading 2 MJO PCs. Initial perturbations only (black), SPPT with global
conservation fix (red), SPP (blue) and SPP with short correlation scales (green). The grey solid line representes the RMS error of ERA-Interim climatological mean. The
vertical bars represent the 90% level of confidence of the ensemble spread. 32-day reforecasts starting 4 times a year (1st February, May, August and November) over the
period 1989–2014 (104 start dates). The ensemble size is 15, and the horizontal resolution is TCo159 with 91 vertical levels.

reduces the drying of the atmosphere due to standard SPPT and

leads to increased precipitation and also a net warming of the

troposphere.

SPPT, SPPT gfix and SPP have a mixed impact on the model

climate compared to the unperturbed model (Table 3). For

example, SPP clearly improves the 50hPa geopotential (Z50).
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SPPT SPPTgfix SPP

MSLP (eint) −1.0 −1.0 0.3

Z500 (eint) −0.4 −2.5 0.1

Z200 (eint) 3.7 0.4 1.4

Z50 (eint) 15.0 0.6 −9.2

Z10 (eint) 12.2 3.8 −2.8

U925 (eint) −1.9 −1.9 −0.1

U850 (eint) −2.2 −2.2 −0.7

U500 (eint) −1.0 −1.0 −0.1

U200 (eint) −0.8 −0.4 1.0

U100 (eint) −0.8 4.1 0.1

U50 (eint) 1.5 3.0 2.7

U10 (eint) 16.7 14.2 5.9

T925 (eint) −0.5 −1.2 −0.2

T850 (eint) −2.7 −1.0 −1.4

T500 (eint) −2.2 0.9 1.4

T200 (eint) 2.2 −2.0 −3.8

T100 (eint) −1.5 −0.7 −5.6

T50 (eint) 6.5 12.9 0.7

T10 (eint) −5.3 −5.8 −2.0

Precip (gpcp) −4.0 −1.4 −2.3

SSHF (NOC) 3.9 1.3 −4.2

SLHF (NOC) 2.5 0.0 −2.0

TSR (CERES) −0.0 −0.2 1.1

TTR (CERES) −4.7 −4.9 −4.7

TCWV (SSMI) −0.7 −1.9 −1.7

T2m (cru) 0.2 −1.0 0.5

SST (eint) −3.1 −2.4 −1.6

Table 3. Relative difference (in percent) in mean absolute error of seasonal
means with respect to mean absolute error of seasonal means in unperturbed
experiment. Mean sea level pressure (MSLP), geopotential (Z), zonal wind
(U), temperature (T), precipitation (Precip), surface sensible heat flux (SSHF),
surface latent heat flux (SLHF), top of the atmosphere solar radiative flux
(TSR), top of the atmosphere thermal radiative flux (TTR), total column water
vapour (TCWV), 2-metre temperature (T2m) and sea surface temperature
(SST) — all parameters verified against ERA-Interim (eint) and GPCP are
a global mean while against satellite products (NOC, CERES and SSMI) are
from 65◦N–65◦S. The values for CRU and GPCP depend on the distribution
of observations. SSMI and NOC are only over ocean.

However, this improvement is caused by a warming in the

troposphere during JJA on the northern hemisphere. The warming

is degrading the model climate (temperature at 500 hPa) but

compensates a cold bias (in the unperturbed model) in the upper

troposphere and the net effect on Z50 is positive. The warming of

the summer hemisphere has been traced to the perturbations of the

radiation parameters. It is an open question whether introducing

perturbations to an independently tuned model will generally

worsen biases and whether additional tuning of the perturbed

model could result in a less biased model. Superposition of biases

of an unperturbed model with biases caused by perturbation

methods could also explain to some extent how stochastic

schemes may behave differently in different models.

For the surface heat-fluxes (SSHF, SLHF), SPPT (without

fix) is worse than the unperturbed experiment over ocean, while

SPPT gfix degrades the fluxes less and SPP improves the fluxes.

For all experiments, the sensible upward heat-fluxes are too

strong. The difference between the experiments could at least

partly be related to wind speeds (and ocean wave-height) over

the storm tracks. Here SPPT gave a positive bias in the wind

speed that leads to increased (upward) surface-fluxes. On the other

hand, SPP shows reduced winds and weaker fluxes. Whether the

sensitivity in wind speeds are a direct effect of the perturbation

schemes or a result of changes in the general circulation is an open

question.

The largest degradation of the model climate with SPPT and

SPPT gfix is found in the stratospheric winds, especially at 10hPa.

The SPPT scheme and to some degree SPP increases the westerly

bias over the equator, where the quasi-biennial oscillation (QBO)

is the main source of variability. The degraded modelling of

the QBO is of concern for seasonal forecasting as it has been

suggested in the literature that the QBO has teleconnections to

the northern extra-tropical winter temperatures.

The improvement in total precipitation (Figure 7) and top-of-

the-atmosphere thermal radiation (TTR) with both schemes is

linked to a reduction of biases in the tropics. Reduction of the

magnitude of the bias of optically thick clouds is found over the

Maritime continent, the Amazon and tropical Africa, alongside a

reduction in precipitation. A reduction of the precipitation biases

is also present over the north-eastern Indian ocean during the

monsoon season (JJA) for both SPPT and SPPT gfix. However,

the improvement in the precipitation over the Maritime continent

from SPPT gfix is less than was found for Sys4 (Weisheimer

et al. 2014). The difference in impact from SPPT gfix is at least

partly explained by the introduction of the global tendency fix

(Sec. 6.2.2) that increases the precipitation over the Maritime

continent.

The schemes also affect the variability in the model. For

example, both SPPT and SPP increase and thereby improve

the MJO activity, especially over the western Pacific. The

improvement of the MJO by SPPT (without the conservation fix)

was discussed in Weisheimer et al. (2014). Inness et al. (2003)

documented the sensitivity of the MJO to the model mean state

over the Western Pacific and DeMott et al. (2015) provide a

review. SPPT and to a lesser degree SPP have also an impact

on the overall variability, which is evident in the kinetic energy

spectra at 200 hPa (not shown). SPPT increases the activity on

all scales while SPP increases the activity mainly in divergent

planetary scales (probably related to the MJO activity). The

increased activity due to SPPT in synoptic scale and mesoscale

is detrimental — leading to overactivity in comparison to ERA-

Interim. For SPPT gfix, the increase in model activity is not

confined to any specific region but is strongest in the convectively

active tropical regions (Maritime continent, Amazon, central

Africa).

4.4. Ensemble of data assimilations

ECMWF uses an ensemble of data assimilations (EDA) to

estimate background error covariances for 4D-Var and to sample

initial uncertainties for the ensemble forecasts (Fisher 2003a;

Buizza et al. 2008; Isaksen et al. 2010; Bonavita et al. 2014).

Model uncertainty affects forecasts at all lead times and we think

that there is very limited physical justification for using different

approaches for representing model uncertainty at different lead

times, i.e. in assimilation ensembles, medium-range, extended-

range and seasonal forecasts. This does not preclude though

that the relative importance of uncertainty representations may

change for different lead times. Representing uncertainty in

slow processes may be more crucial for the longer lead times.

Insufficient error growth in a model may require additional

perturbations that are relevant for longer lead times and are not

required for the shorter lead times. The overall development of

model uncertainty representations can benefit by being able to

transfer lessons learnt in one application to other applications.

Therefore, the ECMWF strategy is to work towards using the

same representation of model uncertainties in forecasts and

assimilation. The plan is to first explore a consistent representation

in forecasts and assimilation using SPPT and SPP.

Here, recent experimentation is summarized that assesses the

impact of SPP and two versions of SPPT on the EDA. The
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Figure 7. Seasonal mean precipitation error in unperturbed simulation (NoPert) verified against GPCP: (a) DJF, (b) JJA. Mean precipitation difference of experiments
SPPT with global conservation fix and NoPert (c,d) and precipitation difference of experiments SPP and NoPert (e,f) for DJF and JJA, respectively.

SPPT experiments shown here do not include the global fix for

the tendencies yet. Four EDA experiments are run in total: one

experiment without model uncertainty representation (NoPert),

one experiment with the 1-scale SPPT (SPPT1) operational in

the EDA, one experiment with 3-scale SPPT (SPPT3) and one

experiment with SPP (SPP). The outer loop resolution is TL399

with 137 vertical levels. The experiments span the period 1 June

to 11 July 2015.

In experiments SPPT3 and SPP, the random pattern evolves

continuously across consecutive assimilation windows. Due to the

technical overhead, this aspect had been missing in the SPPT1

version that is operational in the EDA. In SPPT1, all perturbed

member nonlinear forecasts initialise the pattern from a random

number seed ignoring the state of the pattern in the preceding

assimilation cycle. However, with the longer de-correlation time

scales of SPPT3 and SPP it was deemed important to correctly

propagate the pattern in the assimilation cycles.

All three representations of model uncertainty lead to a

considerable increase in first guess ensemble variances overall,

e.g. in terms of meridional wind (Fig. 8). The inclusion of the

slower time scales in SPPT and the cycling of the pattern (Exp.

SPPT3) increases the spread compared to the operational version

of SPPT while the spatial distribution remains similar (Fig. 8b and

c).

The SPP scheme is more effective in generating spread in

the tropics and close to the surface than the operational version

of SPPT (Fig. 8b and d). However in the extra-tropics in the

free troposphere, it generates less spread than SPPT. This is

consistent with the differences seen in the standard deviation

of the tendencies (cf. section 3.2). Future plans include an

assessment of the impact of the different model error schemes

on the reliability of EDA variances via observation space

diagnostics, e.g. following the work of Rodwell et al. (2016).

The interpretation of observation space diagnostics applied to the

EDA with and without model error schemes is expected to benefit

from improvements in the characterisation of observation error

statistics, e.g. the efforts described in section 6.1.2.

Representing model uncertainty in the EDA may not only affect

the estimated background error variances, it can also alter the

background error correlation length scales (see Fisher 2003b, for a

description of the covariance model used at ECMWF). Activating

any of the three model uncertainty representations moderately

increases the horizontal correlation length scales. Experiments

SPPT1 and SPPT3 have up to ∼ 10% longer correlation length
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(c) SPPT3 − NoPert

90°S60°S30°S0°N30°N60°N90°N

20

40

60

80

100

120

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 -0.01 0.01 0.1 0.2 0.3 0.4 0.5 0.6

90°S60°S30°S0°N30°N60°N90°N

20

40

60

80

100

120

(d) SPP − NoPert
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Figure 8. Latitude model level section of zonal mean background error standard
deviation for meridional wind (m s−1) estimated from four EDA experiments: Panel
(a) shows the stdev of NoPert while the other panels show differences between the
three experiments with a model error representation and NoPert. Average from 1
June to 11 July 2015.
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Figure 9. Difference of anomaly correlation coefficient between experiments with
model uncertainty representation and NoPert for 500 hPa geopotential in the
northern extratropics. The difference is normalised by one minus the anomaly
correlation of the NoPert experiment. Positive values indicate an improvement with
respect to NoPert ; SPP (orange), SPPT3 (blue) and SPPT1 (red). The bars show
95% confidence intervals. The forecasts are verified against the operational high-
resolution analysis.

scales than NoPert for the unbalanced part of temperature with

the largest increases occurring between 900 and 300 hPa (not

shown). The SPP scheme increases the length scales by up to 15%

with the maximum increase in the boundary layer. The impact

of the model uncertainty representations on the background error

vorticity length scales is smaller — an increase up to 5% (not

shown).

The background error covariances predicted by the EDA can

be globally evaluated by using them in a 4D-Var assimilation

and quantifying the impact on forecast skill. In the operational

EDA and the experiments discussed here, each member uses

the background error covariances predicted in the EDA. The

background error covariance matrix is based on a mixture of a

“climatological” part and a flow-dependent part with errors of

the day (Bonavita et al. 2014). Thus, the deterministic skill of

the 10-day forecast initialized from the control member every

24 hours can be used to indirectly measure the global quality

of the predicted background error covariances. All three model

error representation schemes improve the overall forecast scores

compared to NoPert considerably, e.g. 500 hPa geopotential in the

extra-tropics (Fig. 9). The differences in skill between the three

experiments with a model uncertainty representation are minor in

comparison.

The global fix for the SPPT tendency perturbations was tested

in the EDA separately (not shown). The impact on the background

error variances and correlation length scales computed from the

EDA is minor. In line with this, the impact on the deterministic

forecast skill of the EDA control member is neutral. The fix brings

average values of global integrated moisture and cloud cover of

the perturbed members closer to the unperturbed control member.

4.5. Model error covariances for weak-constraint 4D-Var

In November 2016 (model version CY43R1), ECMWF reintro-

duced the model error term in 4D-Var. It had been turned off in

2013 due to issues with the continuous slow growth of the model

error forcing term over many subsequent assimilation cycles. This
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issue was linked to the vertical resolution upgrade from 91 to

137 levels. In the interim, the operational assimilation scheme at

ECMWF was based on strong-constraint 4D-Var (Rabier et al.

2000; Mahfouf and Rabier 2000; Klinker et al. 2000). As other

aspects of data assimilation processes have advanced, the validity

of the perfect model assumption used in strong-constraint 4D-Var

becomes more questionable and limits the length of the analysis

window to roughly 12 hours. Weak-constraint 4D-Var relaxes the

perfect model assumption by explicitly representing model error

as part of the 4D-Var control variable (Trémolet 2007).

Model error contains both random and systematic (or even

constant) components. To simplify the problem, we consider

the model error to be constant during the 12-hour assimilation

window. The weak-constraint 4D-Var cost function includes a

term that penalises updates of the model forcing η

1

2
(η − ηb)

T
Q

−1(η − ηb), (4)

where ηb is a model error background value that changes slowly

from cycle to cycle and Q is the model error covariance matrix.

Observations and model error are assumed uncorrelated in time

(Trémolet 2007).

In order to calculate the new model error covariance matrix

Q, statistics are generated from a dedicated TL399 ensemble

experiment with identical initial conditions but using the

stochastic model uncertainty representations SKEB and SPPT.

The differences between members after 12 hours of model

integration give an estimate of the integrated effect of model

error over 12 hours; from which statistics appropriate for use in

4D-Var can be calculated. These statistics are used to construct

a covariance model similar to that described by Derber and

Bouttier (1999) for background error covariances. This method

of generating model error covariance statistics provides greater

consistency between the approaches to represent model error in

4D-Var and in ensemble forecasts than previous methods. There

was a need to scale the estimate of Q with a factor of 0.2 to

ensure that the model error Q term has an influence in the cost

function but does not dominate. The minimisation was run several

times with scaling factors between 0 and 1. By looking at the

contribution of each term to the cost function, a value of 0.2 was

chosen for the scaling factor.

Figure 10b shows the average vertical correlations of posteriori

model error estimate (η) for divergence. Its structure disagrees

markedly from the structure of the model error covariance Q

predicted by the ensemble using SPPT+SKEB, (panel a); for

this reason the deep correlations from the posteriori model error

estimate (panel b) were deemed to be suspicious and triggered an

investigation.

By looking at the geographical location of large covariances

between distant levels, we saw a clear pattern over North America

and Europe corresponding to areas with a high number of aircraft

observations. This suggests that 4D-Var is misinterpreting aircraft

observation error or bias as model error. In order to avoid this

interaction with aircraft observations, subsequent experiments

restricted the effect of model error to be active only above 40hPa

(model levels 1 to 44).

A CY41R2 TCo1279 experiment was run to test weak-

constraint 4D-Var active above 40 hPa. Forecast skill scores were

verified against own analysis and also against Global Positioning

System (GPS) Radio Occultation (GPSRO) observations. The

verification against own analysis in the northern hemisphere

showed a significant reduction in RMS error at 100hPa. GPSRO

verification in the stratosphere showed a change in the bias

structure throughout the forecast. In the northern hemisphere,

bias is slightly improved at all levels, in the tropics it is largely

unchanged and in the southern hemisphere the results are mixed
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Figure 10. Divergence model error average vertical correlations for (a) model error
estimate from 12-hour ensemble forecasts perturbed with SKEB and SPPT and (b)
a posteriori weak-constraint 4D-Var model error estimate. Contour interval is 0.1
for both figures.

(but the differences from the control in this region are very small).

This configuration of weak-constraint 4D-Var with model error

forcing above 40 hPa has been implemented in the operational

assimilation in November 2016.

5. Unrepresented uncertainties in the Earth system

Extending and refining the model uncertainty representations

in ECMWF’s ensembles will be guided by knowledge of the

presumed relevant sources of model uncertainties. This section is

an inventory of known sources of uncertainties that are not yet

explicitly represented in ECMWF’s ensembles. Sections 5.1 and

5.2 describe uncertainties in the atmosphere and land surface that

could be included in future extensions of the SPP scheme. Then,

model uncertainties in the ocean and in the dynamical core are

discussed in Sections 5.3 and 5.4, respectively.

5.1. Parametrized atmospheric physical processes

5.1.1. Microphysics and large-scale precipitation

The microphysics perturbations introduced under the initial SPP

implementation do not target the large uncertainties associated

with phase changes, particularly for precipitation and for the ice

phase. Applying SPP perturbations to the uncertain parameters

that affect the evaporation rates for rain and snow, and deposition

and riming rates for the ice phase would modify the phase changes
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and thereby directly perturb humidity and temperature tendencies.

Ideally, perturbations should represent uncertainties as close as

possible to their sources, for example particle size distributions

and ice particle properties in the microphysics, but there is also a

need to represent uncertainties in subgrid variance and covariance

of cloud, precipitation and humidity as well as uncertainties due

to numerical approximations.

5.1.2. Radiation

Atmospheric heating rates due to gaseous absorption in clear-

skies are an unrepresented source of uncertainty in SPP while

they are poorly represented in SPPT (cf. 3.2). Errors arise due to

misrepresentation of the concentrations of atmospheric gases, an

imperfect knowledge of the spectroscopy of the atmosphere and

the use of discrete quadrature points to represent the longwave

(LW) and shortwave (SW) spectra, necessary for computational

efficiency. Comparisons to benchmark high-spectral resolution

radiative transfer models enable estimates of the heating rate

errors in the current configuration

Recent work revealed model sensitivity to the choice of mixing

ratio and horizontal distribution of the background aerosol in

the troposphere. The latest Copernicus Atmosphere Monitoring

Service (CAMS) reanalysis (Flemming et al. 2016) shows that

perturbations of up to 2–3 times the global constant background

aerosol maintain the total aerosol optical thickness within the

limits of the constraints provided by satellite observations.

5.1.3. Vertical mixing

In the initial SPP implementation, perturbations were only applied

to turbulent mixing within stable boundary layers , where large

uncertainties in the degree of mixing are partly responsible for the

notorious difficulties that NWP models have in representing such

conditions (Sandu et al. 2013).

For the convectively unstable boundary layer, the asymptotic

mixing length and the entrainment rate at the top of the boundary

layer have been identified as uncertain parameters. Above the

boundary layer, the addition of perturbations to turbulent mixing

is anticipated to address some of the “missing” spread observed

from SPP in the free troposphere when compared to SPPT.

5.1.4. Atmospheric composition

Given the importance of atmospheric composition for air-quality

forecasts, the IFS was extended by Flemming et al. (2009) to

include atmospheric chemistry and interactive aerosols. This so-

called Composition-IFS (C-IFS) shares the same infrastructure as

IFS except that tracers are added together with meteorological

variables. Work is underway to account for uncertainties in

the modelling of atmospheric tracers in C-IFS. Tracers in C-

IFS are subject to surface fluxes and chemical reactions, and

they are transported by the IFS wind and diffusion. Uncertainty

in atmospheric tracer prediction arises from each of these

processes. SPPT perturbs wind, temperature and humidity and

thus IFS transport is perturbed either directly or indirectly through

geostrophic adjustment. We expect that these perturbations can at

least partially represent tracer transport uncertainties. Uncertainty

in the chemistry is represented with SPPT by perturbing the tracer

chemistry tendency with multiplicative noise. Unlike in standard

SPPT, the perturbations to the tracer tendencies are applied also

throughout the boundary layer.

Massart and Bonavita (2016) report on numerical experimen-

tation of C-IFS with the EDA. An EDA experiment including

SPPT perturbations of two species of the anthropogenic long-lived

greenhouse gas family — carbon dioxide (CO2) and methane

(CH4) — has demonstrated that the ensemble spread for CO2 and

CH4 concentrations is too small compared to the ensemble mean

RMS error, especially in the boundary layer and free troposphere.

Experiments are planned to explore the impact of SPP for C-IFS.

It is expected that the SPP scheme will yield greater spread and

reliability, in particular due to the perturbations of vertical mixing

in the boundary layer and surface fluxes.

5.2. Land surface uncertainties

Ensemble forecasts exhibit a lack of spread in the near-

surface variables (e.g. Balsamo et al. 2014). Recent work

has shown potential for improving ensemble reliability by

simulating uncertainty due to the representation of the land-

surface (MacLeod et al. 2016; Orth et al. 2016).

Uncertainties in the energy exchange between atmosphere and

land surface are not yet represented. In the IFS, the energy

exchange between the lowest atmospheric model level and the

land-surface is simulated via a “skin layer”, which takes account

of heterogeneity in the land-surface type via the H-TESSEL

scheme (IFS documentation CY43R1, Part IV, Chapter 8). For

each of the H-TESSEL tiles, a skin layer conductivity is defined to

control the level of thermal conductivity between the uppermost

level of the surface model (e.g. top soil or snow level) and the

skin layer — the weakest coupling being for e.g. grassland and

the strongest for inland water masses. Stochastic perturbations of

the H-TESSEL skin layer conductivities could account for these

uncertainties.

Uncertainties in the humidity fluxes at the land surface have

the potential to affect atmospheric predictability during events

with considerable land-atmosphere coupling. Some experience in

representing soil moisture related uncertainties has been gained

by MacLeod et al. (2016) using perturbations to hydrological

parameters in the van-Genuchten formulation.

Uncertainties in the representation of vegetation can influence

atmospheric forecast skill through, e.g. evapotranspiration and

albedo errors. At present, vegetation cover is quantified with a

climatological leaf area index. Deviations of the actual vegetation

state from the climatology are a source of error.

5.3. Ocean uncertainties

Ocean model uncertainty is not represented at all in the ECMWF

ensembles. The medium-range, extended-range and seasonal

forecasts are coupled to the NEMO ocean model. Sources of

model uncertainty encompass a wide range from sea ice rheology

(Juricke et al. 2014), to unresolved scales and even missing

diversity in marine ecosystems (Brankart et al. 2015).

The horizontal model resolution of current state-of-the-art

ocean models, especially on timescales of seasons to decades

and including the model version of NEMO at 1◦ horizontal

resolution, is of the order of 100 km (used in the operational

ensemble until November 2016). Mesoscale eddies in the ocean

are, however, about an order of magnitude smaller and are

therefore not resolved. As a consequence of this, the effects of

unresolved eddies on the resolved, large scale circulation need to

be parametrized.

Eddies are just one of many sub-grid scale ocean processes

that are not explicitly resolved in ocean models. Most of

the commonly implemented ocean parametrizations deal with

unresolved horizontal and vertical sub-grid scale mixing processes

that can vary strongly with time and location. Often the parameters

in these schemes are imperfectly constrained due to missing

process understanding or unavailable observations.

Juricke et al. (2017) studied stochastic perturbations to three

mixing parametrizations in NEMO. The perturbations to sub-

grid scale mixing parametrizations in the uncoupled experiments

lead to an increase in low frequency variability in eddy-active

c© 2017 Royal Meteorological Society Prepared using qjrms4.cls



16 M. Leutbecher et al.

regions for a variety of variables, even though the perturbations

themselves exhibit high frequency variability. The interannual

variability for sea surface temperature, sea surface height,

integrated heat content and zonally averaged streamfunction

increases predominantly in the Southern Ocean and along western

boundary currents such as the Kuroshio region. This is in

accordance with missing low frequency variability in these

regions when compared to observations and reanalysis products.

Hence, including high frequency perturbations in parametrizations

of horizontal and vertical mixing improves the representation of

low frequency variability in the ocean model. This could also be

achieved by increased resolution but at greater computational cost.

However, the effect of the stochastic perturbations is not sufficient

to fully compensate for the effects of the missing eddy variability

in the 1◦ model.

First test experiments have recently been run with the coupled

ECMWF seasonal forecasting system based on CY41R1 and

horizontal resolution TL255/1◦ NEMO. As in the uncoupled case,

the stochastic perturbations increase the ensemble spread (see also

Andrejczuk et al. 2016), especially in the eddy-active regions of

the Southern Ocean and the western boundary currents.

Williams et al. (2016) report the reduction of biases in an non-

eddy-permitting ocean model (FAMOUS) due to the introduction

of stochastic perturbations to the temperature in the ocean

and improved variabitility of the strength of the thermohaline

circulation. The noise for the perturbations was informed by

diagnostics of eddy statistics in an eddy-permitting ocean model

(HiGEM).

Another source of model uncertainty that deserves attention is

the coupling method for the atmosphere-ocean-(sea-ice) system.

5.4. Dynamical core

Wedi et al. (2015) have discussed recent advances in the

dynamical core at ECMWF and plans for its further development

with the main focus being on the unperturbed model. Significant

advances have been made in better resolving meso-scale

circulations with the IFS and other global models. However, it

is expected that global and regional NWP models will never have

sufficient spatial resolution to resolve all relevant motions in the

atmosphere. Resolving the motions in the stable boundary layer

may require spatial resolutions of the order of 1 m as indicated by

studies with large eddy simulation (LES) models (Sullivan et al.

2016). Regional and global models will not reach such resolutions

in the foreseeable future and one should expect forecast errors

that originate from partly resolved or un-resolved aspects of the

flow. SKEB can be seen as an attempt to represent such errors.

However, there is no strong theoretical link between SKEB and

the numerical approximations involved in the dynamical core.

Ultimately, representing model error associated with a

dynamical core could become part of its formulation. Hodyss

et al. (2014) describe a stochastic horizontal advection scheme

in the US Navy Global Environmental Model primitive equation

model (NAVGEM) that introduces spread in tropical cyclone

position. The method results in Brownian motion of the cyclone

position and the noise can be informed by past tropical cyclone

track errors. It is too early to judge whether such ideas will be

of benefit in operational ensemble forecasting. The variational

framework to derive stochastic partial differential equations for

fluid dynamics introduced by Holm (2015) could be seen as

a step towards establishing a theoretical basis for developing

stochastic dynamical cores. In Section 6.4, plans for introducing

stochasticity in the IFS dynamical core will be discussed.

Projections of numerical weather forecasting and climate

science envision global cloud-permitting simulations at ≈1 km

horizontal grid intervals in the next decade (Palmer 2014;

Bauer et al. 2015). With deep convection being simulated

rather than parametrized, NWP moves towards the large-eddy

simulation (LES) regime, characterised by substantial flow-related

uncertainty in turbulent small scales. The latter may be correctly

captured as local fluctuations of physically realisable model

solutions or, to the contrary, may represent a new source of

numerical model errors. Consequently, it may be of interest

to quantify the solution adequacy in small scales, convergence

behaviour of the model, and the relative role of small scales

explicitly or implicitly represented in local and global predictions.

Natural stochasticity in small scales is closely linked to

shear-gravitational instabilities and turbulence. Therefore, its

strength can be measured with the turbulent kinetic energy

(TKE) underlying LES subgrid-scale models (Clark 1979).

Alternatively, local-flow physical realisability can be assessed

from the flow Jacobian (Cullen et al. 2000), or the related

“Lipschitz” number (Cossette et al. 2014). Technically, all these

measures represent norms of the 3× 3 Jacobi matrices of local

flow derivatives; namely, the strain rate tensor for TKE, the

Lagrangian displacement gradient tensor for the flow Jacobian,

or the velocity gradient tensor for the Lipschitz number. Although

not entirely exclusive, the three norms carry distinct information

and complement each other.

Regardless of the potential utility of the flow related tensor

norms, evaluating the required tensor entries is not an easily

affordable computational task for the IFS. Generally, semi-

implicit semi-Lagrangian (SISL) spectral transform based NWP

models are not equipped to enable efficient local calculations

of these tensor quantities at high resolution where they may

matter, due to the communication overhead and the non-locality

associated with global spectral transformations. However, this

is a fairly straightforward task with the technologies applied in

the autonomous, all-scale global finite-volume module (FVM)

recently developed under the auspices of the ERC-funded project

PantaRhei hosted at ECMWF (Smolarkiewicz et al. 2015, 2016).

The FVM infrastructure facilitates evaluation of local measures of

IFS solution uncertainty and model errors using methods familiar

from cloud-resolving research models, applied at resolutions

beyond what is possible in global NWP.

For illustration, Fig. 11a displays the magnitude of instan-

taneous subgrid-scale (sgs) velocity fluctuations derived from

the Smagorinsky eddy viscosity (cf. Clark 1979) diagnostically

evaluated in an inviscid FVM simulation of the moist precipitating

Held-Suarez climate with ∼60 km resolution (Kurowski et al.

2015); for reference the vertical component of velocity is shown in

the bottom panel (Fig. 11b). Not surprisingly, local “uncertainties”

as measured by sgs fluctuations are correlated with collapsing

fronts of baroclinic eddies in mid latitudes and with convective

motions in the tropics. While the magnitude of such local uncer-

tainties can be substantial, it remains confined to disjoint areas

with small radii of influence.

The three flow related tensor norms discussed earlier derive

from physical arguments on flow topology, conservativeness and

integrability of the underlying equations (Cossette et al. 2014).

These ideas closely link to the derivation of stochastic partial

differential equations that preserve fundamental invariants of

the flow (Holm 2015). In particular, a promising and practical

approach to maintain physical realisability is to exploit the

uncertainty associated with determining the semi-Lagrangian

departure point (cf. Sec. 6.4). Like semi-Lagrangian schemes,

the FVM transport algorithm integrates the governing partial

differential equations (PDEs) over an element of the 4D time-

space continuum, effectively viewing the governing equations

as physical constraints of arbitrary path or volume integrals

of differential forms in the 4D space (cf. Smolarkiewicz and

Pudykiewicz 1992). As a result, FVM naturally provides measures
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of truncation and residual, spatio-temporal error patterns that

are congruent with the underlying flow statistics. Hence, it

naturally satisfies for example the “proportionality of scales”

(Tsyrulnikov and Gayfulin 2016), i.e. larger spatial perturbation

scales that persist in time longer than smaller spatial scales, and

more generally preserving the non-separability of spatio-temporal

covariances, typical of geophysical data (Gneiting 2002). It is

planned to exploit these features as a means for driving future

stochastic parametrizations towards improving sharpness and

reliability of ensemble forecasts.

6. Future directions

While the previous Section listed so far unrepresented uncertain-

ties in the Earth system, we will now turn to future directions for

work aimed at improving the representation of model uncertain-

ties. The topics covered now will be priorities where resources

will be allocated at ECMWF in the coming years. Section 6.1

describes new efforts in diagnostics and verification. Then, ideas

for improving SPPT and SPP are summarized in Sections 6.2

and 6.3, respectively. Section 6.4 proposes work on introducing

stochastic perturbations in the semi-Lagrangian advection to rep-

resent uncertainties associated with the dynamics. Section 6.5

makes suggestions for potential improvements to the random

fields used by the stochastic model uncertainty representations.

6.1. Diagnostics and verification

Examples of routine diagnostics for ensemble forecasts and

model climate appeared in Section 4. These diagnostics will

play a key role in improving the stochastic model uncertainty

representations. Here, additional efforts are described that are

thought to provide further insight and that have not received much

attention to date.

Experiments with the EDA are a useful framework to evaluate

model uncertainty representations at early lead times using

observations following Rodwell et al. (2016). An advantage of

the EDA configuration at ECMWF is that the spread is a function

of the perturbations to the observations and the representation of

model uncertainties only, there is no additional artificial inflation.

Observation space diagnostics can be applied also to short-range

ensemble forecasts following the work of Yamaguchi et al. (2016).

However, more technical work would be required to enable this as

a routine diagnostic at ECMWF.

6.1.1. Process-oriented evaluation of ensemble forecasts

Stochastic perturbations of physical processes can have a quite

indirect impact on the forecast. For instance, SPPT or SPP

can perturb heating rates in a convective region; through

geostrophic adjustment, this leads to wind perturbations later in

the forecast within a distance that scales with the Rossby radius

of deformation. To better constrain the stochastic perturbations, it

may help to validate the changes in precipitation that are closely

connected to the directly perturbed convection process. Along the

same lines, if SPP introduces perturbations to the cloud-radiation

interaction, the radiative fluxes at the top of the atmosphere will

be immediately affected offering an avenue to better constrain the

perturbations via verification of the fluxes.

Verification procedures developed at ECMWF could aid in

the process-oriented evaluation of ensemble forecasts. These are

the verification of radiative fluxes based on satellite and surface

station data, and the verification of precipitation based on radar

and raingauge data.

Daily averages of the reflected shortwave flux at the top of

the atmosphere (TOA) and the downward shortwave flux at the

surface from the Climate Monitoring Satellite Application Facility

(CM SAF) are used to evaluate forecasts of these fluxes in the

operational model version, and in experimental suites. The metrics

used are common error measures such as RMSE and anomaly

correlation for individual forecasts, and CRPS and spread-error

for ensemble forecasts. Since the evaluation is done for gridded

fields, maps of the above quantities can be generated, highlighting

areas of over- and under-dispersion, the latter most notably in

the tropics along the Inter-Tropical Convergence Zone (ITCZ)

(Haiden et al. 2015). In addition to the verification against satellite

data, downward radiation fluxes (both shortwave and longwave)

at the surface are evaluated against Baseline Surface Radiation

Network (BSRN) observations. While there is limited coverage

(only about 50 active stations globally, some of them reporting

with considerable delay), this high-quality dataset is suitable

for assessing the reliability of the satellite derived downward

radiation products.

Routine verification of precipitation at ECMWF is mostly

based on SYNOP observations. However, recently this has been

enhanced by high-density observations from member states,

providing improved coverage for large parts of Europe (Haiden

and Duffy 2016). The increased observation density reduces

the noise in the computed scores and allows up-scaling of the

point observations onto a regular grid which in turn opens up

the possibility of evaluating skill as a function of spatial scale,

for example by using the Fractions Skill Score (FSS). This has

been tested using Next-Generation Radar (NEXRAD) Stage IV

precipitation observations (radar+raingauge combined) from the

US (Rodwell et al. 2015).

The procedures described above have been demonstrated to

provide useful results but are not yet operational in the sense

of fully-automated verification suites. Also, more development

work is needed to provide a broader range of scores and metrics

specifically relevant for model uncertainty.

Ollinaho et al. (2017) identified differences in the impact of

SPP and SPPT in terms of CRPS of 2-metre temperature verified

against SYNOPs. Additional developments should also include

evaluation of skin temperature using satellite data. This may

help in the improvement of forecasts of 2-metre temperature,

which are diagnostically derived from lowest model level and

skin temperature forecasts, and which currently exhibit substantial

situation-dependent biases.

The effect of observation errors (measurement errors and

representativeness errors) on the verification is not yet being

accounted for in routine verification of the ensemble forecasts.

Methods which have been proposed in the literature (Saetra et al.

2004; Yamaguchi et al. 2016) should be tested and included in the

future process-oriented ensemble verification in order to facilitate

interpretation of the results.

Another avenue that may help to better constrain the random

fields used in the stochastic schemes is to develop and apply

multi-variate verification. For instance, one could explore whether

the horizontal correlation scales in the random fields have an

influence on the predicted ensemble covariances for precipitation

or radiative fluxes. If this is the case, a verification of the ensemble

covariances could help estimate correlation scales used in the

random fields.

6.1.2. Use of an SI traceable observation network to

characterise uncertainty

The Global Climate Observing System (GCOS) Reference Upper

Air Network (GRUAN) aims to provide highly accurate and well

characterised temperature and humidity radiosonde observations,

whose calibration is traceable to Système International (SI)

standards. ECMWF is part of the 18 partner Horizon 2020

GAIA-CLIM project, primarily contributing to a work package
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Figure 11. Magnitude of instantaneous subgrid-scale (sgs) velocity fluctuations (top panel) and the vertical component of the velocity vector (bottom panel) after 3 months
of a FVM N160 simulation of a moist precipitating Held-Suarez climate. Both panels show the result in the xy plane at 1.3 km above sea level; the colour bar show values
in m s−1.

led by the UK Met Office. This aims (amongst other things)

to use these reference observations to provide an absolute

calibration for the ECMWF and UK Met Office NWP background

fields, which should aid the interpretation of biases found in

the calibration/validation of new satellite instruments. More

generally, this should lead to an improved characterisation

of uncertainty across the entire Global Observing System,

which is relevant to model error characterisation through the

link to using data assimilation to estimate model error. One

example is the evaluation of the reliability of the EDA using

observation space diagnostics (cf. Sec. 4.4). The usefulness of

the diagnostic depends on how well observation error statistics

are known (Rodwell et al. 2016). Another example is the weak

constraint formulation described in Section 4.5, which relies

on the availability of so called anchor observations. Some of

the limitations of weak constraint to estimate model error arise

from insufficient knowledge of systematic errors in observations

(e.g. aircraft). Therefore although the goal of GAIA-CLIM is to

characterise observation and background errors, this knowledge

should contribute indirectly to improved characterisation of model

error. The GAIA-CLIM project ends in February 2018, and will

demonstrate how reference in-situ observations can be exploited

to improve satellite instrument calibration and validation. The

project will also identify geographical and temporal gaps in these

reference observations, making the case both for the maintenance

and the improvement of such networks.

6.1.3. Upscale perturbation growth and spectral energy

cascade

Since Lorenz (1969) examined predictability in a fluid with

many scales of motion, it is known that the slope of the kinetic

energy spectrum has implications for the theoretical predictability

limit. In a fluid with a k−3 spectrum, the forecast range when

predictability is lost could be extended in principle to infinity by

reducing the magnitude of initial error further and further while

in a system with a k−5/3 spectrum there is a finite predictability

limit regardless how small the initial error is. Whether errors in

the small scales that grow upscale and in amplitude have practical

implications for predictability given present-day initial errors is a

matter of active scientific debate (Durran and Gingrich 2014; Selz

and Craig 2015a,b; Buizza and Leutbecher 2015).

Perturbation growth experiments similar to the study of

Selz and Craig (2015b) permit understanding of the interaction

between model uncertainty representations that trigger small-scale

perturbations and the dynamics of the model. It is planned to

conduct such perturbation growth experiments with the IFS using

current and future model uncertainty representations.

Malardel and Wedi (2016) diagnosed the transfer of kinetic

energy (KE) and available potential energy (APE) in the IFS

following the method proposed by Augier and Lindborg (2013).

The planetary and synoptic scales constitute an energetically

closed system with very little energy transfer towards or from

the mesoscale. At the mesoscale, the KE cascade in the IFS is
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downscale, the APE cascade is upscale. Both terms are small

in amplitude and partially balance each other for parametrized

convection. In contrast, for permitted convection, both terms

are larger in amplitude and balance each other more. The

energy transfer at different scales is not directly observable. The

connection to observations are atmospheric spectra of wind or

temperature in the free atmosphere (e.g. Nastrom and Gage 1985).

These are limited too as they are based on one-dimensional

observations along aircraft tracks in the upper troposphere and

lower stratosphere in mid-latitudes.

Sensitivity experiments showed that the parametrizations

contribute to the gain and dissipation of energy directly at

all scales. They also showed that the parametrizations strongly

influence the energy transfers across scales in particular through

the control of the surface forcings (orography, friction) in

the boundary layer and associated initiation of divergent and

interacting divergent and rotational modes. At the mesoscale

at wavenumbers larger than about 20, divergent motions and

gravity waves are the main contributors of the upscale APE

cascade and downscale KE cascade. Modifications in the physics,

which increase the activity of the model in terms of divergent

modes, modify substantially the non-linear energy transfers at

the mesoscale. The overall impact of the physical parametrization

leads to a kinetic energy spectrum in IFS that is closer to a k−3

than a k−5/3 spectral slope. Further work will start to evaluate the

potential of these diagnostics to understand the current limitations

of NWP models in their representation of the energy cascades

across scales with a view to optimize the stochastic representation

of model errors.

6.2. Improvements to SPPT

6.2.1. Clear-sky radiation

Analyses of model temperature tendencies from experiments

with SPPT and SPP exposed a relative weakness in the SPPT

formulation with respect to clear-skies radiation (Sec. 3.2).

SPPT applies perturbations, which are proportional to the net

tendencies from the physics parametrizations. Hence, small

(large) net physics tendencies are taken to imply small (large)

uncertainty. In the day-time, outside convectively-active regions,

temperature tendencies due to physics tend to be small due

to the balance between incoming solar radiation and out-going

thermal radiation. Meanwhile, at night-time, thermal radiation in

clear-skies regions dominates yielding relatively large (negative)

temperature tendencies. Consequently, SPPT attributes relatively

large uncertainty to the night-time cooling in clear-sky conditions,

which appears to be unrelated to any real source of model error.

Work is underway to explore the impact of applying SPPT

perturbations to total temperature tendencies that either exclude

the contribution due to clear-sky radiative forcing or assign it a

considerably reduced level of uncertainty. There is good physical

justification for this approach, since the greatest uncertainty in

the radiative forcing integration is due to the treatment of clouds

(see e.g. Morcrette et al. 2008a), while the contribution due to

clear-skies is understood to be relatively accurate unless it is due

to water vapour (or other trace gas) errors. Furthermore, SPPT

already recognises crudely this weakness in its formulation: the

tapering function that reduces uncertainty perturbations to zero in

the stratosphere was imposed for the very purpose of excluding

relatively large tendencies that are dominated by relatively

accurate contributions from clear-skies radiation. Experiments

will determine the impact on ensemble performance from revising

SPPT to remove or reduce contributions due to clear-skies

radiation, thereby enabling the removal of the stratospheric

tapering. Sanchez et al. (2016) report tests of removing the clear-

sky radiation tendencies from their version of SPPT (referred to

as SPT by them). They found a substantial reduction of ensemble

spread in the tropics and extra-tropics (their Fig. 9). We expect that

these findings might not be directly transferrable as the MetOffice

SPT scheme differs in its configuration. For instance, it uses

random patterns with a vertical structure.

6.2.2. Supersaturation treatment

Work is in progress to understand the underlying causes for the

drying of the atmosphere caused by SPPT without the global fix.

There are three elements in SPPT that could be contributing to its

enhancement of the dry bias:

1. the supersaturation limiter (cf. Sec. 2.1.1)

2. the boundary layer tapering (cf. Sec. 2.1.1),

3. the imbalance between perturbed tendencies and unper-

turbed surface fluxes.

Work has started to explore whether SPPT could be improved

by deactivating the supersaturation limiter. Moreover, the

deactivation of the boundary layer tapering is tested. While the

combination of these two modifications shows a promising change

for the vertically integrated moisture, a strong drying immediately

above the boundary layer emerges.

By removing the boundary layer tapering, the imbalance

between the perturbed tendencies and the surface fluxes (point

3 above) is perhaps exacerbated. In the unperturbed model,

conservation of water in each column is achieved by the

parametrized physical processes. When SPPT acts, an imbalance

arises since perturbations are applied to the physics tendencies

without consistent perturbations being applied to the surface

fluxes. It seems plausible that this imbalance will be most

apparent when SPPT perturbations are applied near the surface.

Future efforts will be directed at finding a means to address this

inconsistency. It is expected that humidity conservation should

be achievable if a linear scaling of the surface fluxes consistent

with the random number used for the upper air perturbation could

be implemented and if all tapering of the perturbations could be

deactivated.

6.3. Implementation of new SPP scheme

The SPP scheme has potential as a method to represent model

uncertainties as it is able to generate considerable additional

ensemble spread at all lead times from the EDA to the extended-

range ensemble forecasts (cf. Sec. 4). In general, versions of

SPP tested so far are less active than SPPT in the extratropics

but generate significantly more spread in the MJO principal

components than SPPT. At early lead times, SPP appears to

introduce even too much spread in the large-scale MJO state

and this may cause a potential degradation of extended-range

predictions. It is planned to conduct a range of sensitivity

experiments to better understand how the configuration of SPP

affects MJO predictions.

Initial results at TL399 and TCo255 resolutions also indicate

that SPP is more effective in generating spread in tropical

cyclone intensity than SPPT. Work is planned to evaluate

SPP at the operational resolution of TCo639 and to examine

how the reliability of tropical cyclone intensity predictions is

affected. Gaining a deeper understanding will require a number

of sensitivity experiments with different configurations of SPP.

Further understanding of how SPP modifies forecasts could be

obtained from analysing the tendency perturbations in case studies

and examining the sensitivity of the tendency perturbations to the

SPP configuration. This work could be linked to cases of, for

instance, MJO events, tropical cyclones, meso-scale convective

systems or extra-tropical wind storms.
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Alongside the work to improve on the current configuration of

SPP, work is planned to extend the scope of SPP to also cover

the unrepresented sources of model uncertainties summarized in

Section 5.1.

It may also be necessary to consider a combination of SPP

and SPPT as a representation of model uncertainty to generate

sufficient spread before SPP has included sufficient sources of

uncertainty. However, a combination of both schemes would still

suffer from the physical inconsistencies present in SPPT.

6.4. Semi-Lagrangian advection schemes

There are two sources of error in a semi-Lagrangian advection

scheme: (i) errors associated with poor estimation of the departure

points (DP); and (ii) errors associated with the interpolation

method used. The former would give rise to phase errors while

interpolation “adds” numerical diffusion or unwanted oscillations

resulting in underestimation or overestimation of the amplitude of

the advected waves.

The interpolation error depends on the order of the method used

and the model mesh resolution and it is of purely numerical origin.

Errors associated with the departure points are more complex. The

reason for this is that the accurate estimation of the DP requires an

accurate numerical scheme for solving the DP kinematic equation

and an accurate “prescribed” wind field. The latter is subject to

model errors arising from any model process contributing to its

prediction – inaccuracies due to the transport scheme itself, as

well as from the parametrized physics processes. Uncertainty in

these processes implies a degree of inherent uncertainty in the DP

estimation which would be desirable to represent in ensembles.

In the IFS, the accuracy of the DP estimation is sensitive to

the complexity of the local flow. Convergence of the iterative DP

algorithm is slowest for regions of strong shear and large vorticity

where the norm of the difference between successive DP estimates

shrinks slowly (Diamantakis and Magnusson 2016). Hence, as

such differences are indicative of the magnitude of model error,

flow-dependent uncertainty can be incorporated into the semi-

Lagrangian advection scheme by adding random perturbations to

the estimated position of the DP scaled by the difference from two

different iterations. Appendix B describes the proposed method

in more detail. Work is planned to develop the methodology for

stochastic DP perturbations in the IFS.

DP perturbations have previously been explored with the UK

Met Office forecast model. Bowler et al. (2008a) demonstrated

that by using a multianalysis (2-member) ensemble, the RMSE at

early lead times (up to 3 days) could be significantly improved

compared to a single high-resolution forecast. Of the perturbation

methods explored, the greatest skill improvement was found from

including a member with uncorrelated random perturbations to the

DP estimation. Though their approach was considerably different

to that proposed here, their work confirms the sensitivity of

forecast skill to the DP estimation; and hence, further highlights

the potential for representing model uncertainty associated with

DP estimation.

6.5. Random fields

Most stochastic representations of model uncertainty require noise

that is correlated in space and time. At present, time series of

(pseudo-)random fields (“patterns”) are generated in the IFS using

AR(1) processes in spectral space. Spectral transforms provide the

random fields in grid point space. This results in homogeneous

isotropic correlations on the sphere with a correlation function

on the sphere that approximate a Gaussian with a specified

correlation length scale (Weaver and Courtier 2001). Sensitivity

experiments such as those described by Ollinaho et al. (2017)

together with advances in diagnostics and ensemble verification

may help to better constrain the space-time correlations of the

random fields.

Work on the random field generators is considered important

both for reasons of increasing computational efficiency as well

as the need for exploring wider classes of space-time correlation

models. Schlather (2012) and Kroese and Botev (2013) give recent

overviews of fast algorithms to simulate stationary or isotropic

random fields. The efficient generation of non-stationary Gaussian

random fields at high spatial resolution is discussed by Kleiber

(2016).

One potential avenue to reduce the cost of generating random

fields is to exploit multi-grid approaches. Both SPPT as well as

SPP specify random fields with a high correlation at distances

of at least 5 times the model grid spacing ∆x. A multi-scale

approach that generates the fields first on a coarse grid, say with a

resolution of 5∆x, and then uses horizontal interpolation to obtain

the random field on the model grid would appear viable and may

reduce the computational cost of pattern generation significantly.

Moreover, there is scope to further reduce cost by evolving the

random fields with a time step that is longer than the model time

step as the decorrelation time is much longer than a typical model

time step.

Previous studies in other fields have made the link between

random processes in space and time and solutions of stochastic

partial differential equations. The potential advantages of viewing

random fields as approximate solutions of stochastic partial

differential equations is that a wider class of space-time

correlations can be introduced and that more efficient solution

methods may emerge. This approach could also deal with complex

geometries such as those encountered in ocean models. Lindgren

et al. (2011) discuss how the solution of the linear stochastic

PDE for advection-diffusion can be used to generate a large class

of non-separable non-stationary models. Approaches based on

solutions to stochastic PDEs also start to be explored in the field

of post-processing ensemble forecasts (Sigrist et al. 2015). Even

with the current spectral random field generator, it may be possible

to explore some non-seperable covariance models, e.g. ones that

obey the “proportionality of scales” advocated by Tsyrulnikov and

Gayfulin (2016).

Development of the infrastructure for the future dynamical

core will facilitate efficient solution algorithms for implementing

random fields based on solutions of stochastic partial differential

equations. The Atlas library (Deconinck et al. 2016) will

provide the framework for local derivatives and more generally

dynamically evolving local differences on coarse and fine

resolution representations of the same parameter. This could be

exploited for coarse-graining of tendencies as well (Shutts 2013).

7. Discussion

7.1. Initial uncertainties

In Section 4, results were based on a fixed representation of

initial uncertainties corresponding to the operational configuration

of the ECMWF medium-range/extended-range ensemble. The

initial perturbations are based on perturbations constructed

from the EDA and singular vectors (Buizza et al. 2008;

Leutbecher and Lang 2014). The perceived optimal model

uncertainty representation will under(over)-estimate the effect

of actual model errors if the initial perturbations sample a

wider (tighter) distribution than the distribution of actual initial

errors. Following an approach that uses the same representation

of model uncertainties at all lead times and evaluating its

impact from analyses to extended-range will help to avoid gross

compensating errors between the ensemble variance generated by

initial perturbations and the ensemble variance generated by the

model uncertainty representation.
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However, future changes to the representation of initial

uncertainties are likely to influence the development of the

model uncertainty representation. For instance the MJO prediction

with an ensemble using initial perturbations only is quite

underdispersive (Sec. 4.2). The MJO spread may also be sensitive

to the ocean initial perturbations, which are currently provided

by uncoupled ocean assimilations. The effectiveness of ocean

initial perturbations may change when the initial perturbations

are produced with a coupled data assimilation system. This

development for the initial conditions may then influence the

future development of the model uncertainty representation.

Work on the representation of uncertainties in data assimilation

can improve the seamlessness of the prediction from initial state

to short-range and medium-range forecasts in three ways: firstly,

by developing a consistent representation of model uncertainties

for the EDA and the ensemble forecasts. This aspect could be

further strengthened by initialising the random fields used in

the model error representation of the ensemble forecasts from

their state in the EDA at initial time. Secondly, by starting the

ensemble forecasts directly from an EDA instead of re-centring

the initial conditions on the unperturbed high-resolution analysis

(Lang et al. 2015). Thirdly, improvements in the description of the

sources of uncertainty in the EDA may lead to a reduced need for

singular vector initial perturbations, this could pave the way for

creating an ensemble prediction system that starts directly from

the EDA without a need for further additional or inflated initial

perturbations and yet still exhibiting a good calibration of the

ensemble spread.

7.2. Alternatives for representing model uncertainties

Across the research community and NWP centres additional

methods to represent model uncertainties are pursued. A short

overview follows, which for the sake of brevity cannot be

comprehensive. Broadly speaking, the alternatives fall into

four categories: (i) multi-model and multi-parametrization, (ii)

schemes that account for the stochasticity of the subgrid-scale

forcing for a given resolved-scale state, (iii) flow-independent

additive perturbations or multiplicative inflation informed by data

assimilation, (iv) ensemble postprocessing/calibration techniques.

(i) Multi-model and multi-parametrization A pragmatic way

of accounting for model uncertainty is to construct ensembles

with members that use different numerical models (Iversen et al.

2011; Weisheimer et al. 2011) or different parametrizations for

physical processes. The global ensemble forecasts at Environment

Canada, Météo-France and the regional US Air-force Weather

Agency ensemble employ such a “multi-physics” approach

(Berner et al. 2011; Charron et al. 2010; Descamps et al. 2015).

Using different models or different physics parametrizations can

increase ensemble spread but the sampling of uncertainty is

discrete and some of the spread increase is simply due to different

model biases, which is not desirable as different biases can lead to

a clustering of members by model or by parametrization scheme.

For instance, in the Canadian ensemble prediction system, some

members use the Kain-Fritsch convection scheme and others

the Kuo convection scheme. For some variables, e.g. 250 hPa

temperature in the tropics this leads to a noticeable bi-modality

of the ensemble distribution with all members using the Kuo

scheme being colder than the members using the Kain-Fritsch

scheme (Separovic et al. 2016). Related to multi-parametrization

approaches are parameter perturbations that are fixed in time

and space. The limited-area model ensemble of the German

Weather Service (DWD) follows this approach to represent model

uncertainties (Theis et al. 2016; Gebhardt et al. 2011). Similar

to a multi-physics ensemble, members are not exchangeable and

are likely to exhibit different biases. Some members may be on

average considerably less skilfull than others.

(ii) Schemes accounting for subgrid-scale stochasticity Plant

and Craig (2008) introduced a stochastic scheme for deep

convection based on the Kain-Fritsch scheme. Separovic et al.

(2016) reported tests that extended this work to a stochastic

version of the Tiedtke-Bechtold scheme, which is the convection

scheme used in the IFS (Bechtold et al. 2008). The results

indicated that the scheme introduces white noise at the grid-

scale that does not show signficant upscale growth compared to

perturbations from SPPT.

Kober and Craig (2016) developed stochastic perturbations of

the tendencies due to vertical mixing in the boundary layer to

account for the stochasticity of large eddies therein. Their scheme

is targeted at initiating convection in convection-permitting

ensembles.

If new evidence emerges that perturbations from such schemes

can have upscale effects that are still relevant in the presence

of realistic initial perturbations, it could be explored whether

the perturbation methodologies of these schemes could be

incorporated into SPP. An alternative avenue to address subgrid-

scale stochasticity of convection could be in the iSPPT framework

using a kind of square-root scaling proposed by Shutts and

Pallarès (2014).

(iii) Flow-independent additive perturbations and multiplica-

tive inflation Driven by the needs of data assimilation, numer-

ous methods for additive or multiplicative inflation have emerged.

Météo-France uses a multiplicative inflation in their EDA system

to account for lack of spread (Raynaud et al. 2012). Cardinali

et al. (2014) have tested an additive model error representation

based on perturbations sampling a Gaussian distribution with a

covariance given by a scaled background error covariance matrix.

Piccolo and Cullen (2016) explore using a random sample from

weak-constraint 4D-Var analysis increments as representation of

model uncertainties.

While these methods are efficient in generating spread, there

appears to be no obvious way to make them dependent on the

resolved-scale state or to ensure physical consistency, e.g. energy

and moisture budget of fluxes and state perturbations.

(iv) Ensemble postprocessing/calibration Reliability could

also be obtained through post-processing alone (Gneiting

2014). Stochastic representations of model uncertainty could

be viewed as in-model-ensemble-calibration. It is an emerging

area of research to examine the added benefits of a stochastic

representation of model uncertainty after ensemble outputs have

been calibrated. Berner et al. (2015) examine this question for

ensemble forecasts with the WRF model.

One would expect that perturbations in the model have the

potential to generate flow-dependent physically consistent spatial

fields and multi-variate covariances. This will make it easier

for post-processing techniques as they will have to add less

flow-independent variance and can then exploit the multi-variate

dependency structure of the ensembles using e.g. ensemble copula

coupling (Schefzik et al. 2013).

7.3. Estimating model uncertainties

Initial work on using the stochastic representation of model

uncertainty to estimate a model error covariance matrix for

weak-constraint 4D-Var was reported in Sec. 4.5. The posteriori

model error estimates obtained with weak-constraint 4D-Var

may provide useful information to further refine stochastic

representations of model uncertainty. Using idealized systems,
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work is on-going to establish under what conditions weak-

constraint 4D-Var is able to estimate the true statistics of model

error that is prescribed and therefore known in the idealized

experiments (Todling 2015a,b; Bowler 2017; Bishop 2016).

A way to estimate characteristics of model error due

to parametrized moist convection is to compare integrations

of cloud-resolving models with models with parametrized

convection. Coarse-graining of tendencies has been proposed

to obtain proxies for model error (Shutts and Palmer 2007).

Global cloud-resolving simulations are an emerging capability

but experimentation will be strongly limited by available

computational resources for many years to come.

Super-parametrization (SP) could also provide opportunities

to gain insights into the effects of model error associated

with parametrized deep convection in the coming years and

at a significantly lower computational cost than global cloud-

resolving simulations. SP includes effects of moist convection in

global models through cloud resolving model arrays embedded

within the global model (Grabowski and Smolarkiewicz 1999;

Khairoutdinov and Randall 2003; Randall et al. 2003). A SP

scheme has been implemented and tested in the IFS over the last

year. The SP component of the SP-IFS is a modified version of

a three-dimensional cloud-resolving model described in detail by

Khairoutdinov and Randall (2003).

7.4. Computational efficiency gains

Hierarchies of complexity are a promising idea in the context

of scalability, where ensembles clearly offer a high level of

parallelisation that can naturally be exploited on many-core

supercomputers. Already, coarsening of the radiation calculations

in time and in space has been used to reduce the cost of the

ensemble (Morcrette et al. 2008b; Hogan and Bozzo 2015). An

interesting question to investigate is if the knowledge of model

error or its existence could be exploited to improve either the

scalability and/or the time-to-solution of individual ensemble

members. Aspects that are explored in this context are bounds on

numerical accuracy for a given process, which would allow lower

precision to be used on suitable future hardware; considering some

processes to be executed concurrently (hence modifying their

coupling to each other and exploring the associated uncertainty);

and/or executing processes on a different physical grid. For

instance, stochastic approaches for simulating the momentum

transport by gravity waves have been proposed by Eckermann

(2011) and Lott et al. (2012). Single precision for the entire

medium-range ensemble was explored by Váňa et al. (2017).

In the future, there may also be opportunities to harness more

computing resources through the use of imprecise hardware

(Palmer 2014).

In view of higher resolution ensembles in the future, work will

be required to address data mining and data reduction, together

with I/O strategies on future high-performance computing

platforms.

8. Summary

Advancing the representation of model uncertainties is a

challenging task due to the difficulty in characterising model

errors and since forecast errors are always due to model error

and initial condition error. While simple schemes, such as

SPPT, continue to be highly effective, some of their short-

comings, such as lack of conservation and assumed uncertainty

of clear-sky radiative cooling, have received more attention.

Current and future work will explore ways to at least partially

address identified deficiencies. Future progress may also happen

through better understanding of these simple schemes via

sensitivity experiments, i.e. repeating tests performed with

different models. It seems premature though to initiate a model

uncertainty intercomparison project. Considering standard upper

air probabilistic skill metrics, the currently operational schemes

like SPPT and to a lesser extent SKEB are still providing a

challenging target to improve on.

Work is progressing to develop uncertainty representations for

the model physics close to the assumed sources of model error

with the advantage of obtaining perturbations that maintain the

physical consistency imposed by the model’s parametrizations.

Such process-oriented representations of uncertainty, as in the new

SPP scheme, are desirable. However, they will also pose larger

challenges during initial development and testing of future model

upgrades due to this higher complexity with respect to simpler

schemes like SPPT. This may not be a negative aspect though as

there is a growing interest in the academic community to work

on stochastic representations of model uncertainties. There are

many interesting research questions to tackle from understanding

how stochastic perturbations to the tendencies grow in the forecast

to identifying ways to better constrain their parameters. It is

expected that the representation of model uncertainties remains

an active area of research for the foreseeable future and that ample

opportunities for collaboration between the academic community

and operational NWP centres will arise in this context.

In the coming years, ECMWF plans to extend the scope of

stochastic representations of model uncertainty. It is proposed to

consider stochastic terms in other parts of the forecast model,

for instance the dynamical core, the ocean, the land surface and

the sea ice components. There are some promising initial efforts

within the research community on which the developments at

ECMWF can build.

Quantifying uncertainty is a dominant driver of computational

cost at ECMWF: about 56% of the computational resources for

all operational suites is consumed by the medium-range and

extended-range ensemble forecasts. The main reason being the

need for many integrations instead of a single one. Therefore,

the efficiency of running the ensemble forecasts is important.

The aim of current and future developments in stochastic

representations of model uncertainty is to develop schemes

that are computationally highly efficient and contribute only

moderately to the overall computational cost of the operational

ensembles. An objective criterion to justify the computational

cost of a stochastic representation of model uncertainty could be

based on a comparison of the skill increase due to activating it

and the skill increase due to adding members to the ensemble

with the number of further members determined by matching

the computational cost. Efforts will be devoted to identifying

areas in the code and algorithms where efficiency gains could be

made in the future. The random pattern generators are a promising

candidate where savings may be feasible.

Developing a model error representation that is consistent at

all lead times appears to remain a viable long-term goal. Work

towards having a consistent representation in assimilation and

forecasts is taking place in the context of the EDA and weak-

constraint 4D-Var. The latter is a field that deserves further

investigations. Some progress could be made by research with

intermediate complexity models where the truth is known and thus

model error is directly observable.

In the next 2 to 4 years, ECMWF resources for the

area of model uncertainty will be primarily focused (i) on

developing a configuration of SPP that is suitable for operational

implementation, (ii) on extending SPP to include more aspects

of model uncertainty, (iii) on developing model uncertainty

representations for the dynamical core, (iv) on improving SPPT

assuming that it will remain a useful element in uncertainty

representation and (v) on increasing computational efficiency in

the model uncertainty representations.
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A. Details for global fix of tendency perturbations in SPPT

The P−E problem of the SPPT scheme (operational until

November 2016) is demonstrated in Figure 12a for results from

monthly forecast experiments. The value of P−E in the ensemble

mean is significantly lower than in the control forecast.

To address these imbalances a modification of the SPPT scheme

was developed. A correction is added to the perturbed tendency,

which results in the global integral of the perturbed tendency being

equal to that of the unperturbed tendency. The corrected perturbed
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tendency p∗ is given by

p∗ = p1 + w (〈p0〉 − 〈p1〉) (5)

w =
|p0 − p1|

〈|p0 − p1|〉
(6)

with p0 being the unperturbed physics tendency and p1
being the tendency after applying the stochastic perturbations

and the limiters described in Sec. 2.1.1. The operator 〈. . .〉

denotes a global spatial average of the mass-weighted vertically

integrated quantity. The local weights w distribute the correction

proportional to the amplitude of the local tendency perturbation.

The modification eliminates the drying of the atmosphere on

the global scale (Fig 12b). The globally conserving SPPT scheme

also modifies the model climate as diagnosed from a set of

seasonal hindcasts. While the unperturbed coupled model without

SPPT rains too much compared to GPCP over the convectively

active regions in the tropics on seasonal time scales, the SPPT

scheme without the global fix reduces the convective activity

leading to smaller precipitation biases. With the SPPT scheme

using the global fix, the global mean difference between the

perturbed and unperturbed simulations become smaller leading

to a smaller reduction of the wet precipitation bias. In terms

of medium-range forecast scores, it was found that the SPPT

modification has a neutral to slightly positive impact. In view of

this impact on the ensemble forecasts and the fact that it makes the

climate of the forecasts perturbed with SPPT more similar to the

climate of unperturbed forecasts, this modification of SPPT was

implemented in November 2016.

B. Semi-Lagrangian departure point perturbations

A stochastic scheme to represent departure point (DP) uncertainty

could adopt the following algorithm. For advection of a scalar field

φ,
Dφ

Dt
≡

∂φ

∂t
+V · ∇φ = 0, (7)

where V = (u, v, w) is the wind field, the semi-Lagrangian

approximation for the solution at time t is

φ(rA, t) = φ(rD, t−∆t), (8)

where rA denotes the coordinates of the “arrival points” (the

gridpoints of the discretization mesh) and rD denotes the

coordinates of the irregularly spaced DP mesh which is computed

at each timestep.

The proposed method for representing the uncertainty of the

advection scheme is to add a small “noise” term ε to the estimated

DP rD to obtain

φ(rA, t) = φ(rD + ε, t−∆t) (9)

where the stochastic term ε contains flow-dependent information.

The perturbed DP method of Eq (9) can be regarded as the

semi-Lagrangian scheme “analogue” of the method proposed by

Hodyss et al. (2014). This can be seen by taking a first order

Taylor expansion around (rA, t) of the stochastically perturbed

advected field as follows:

φ(rA, t) = φ(rD + ε, t−∆t)

= φ(rA −V∆t+ ε, t−∆t)

≈ φ(rA, t) + (ε−V∆t) · ∇φ−∆t
∂φ

∂t
. (10)

Rearranging (10), it is seen that stochastically perturbing the DP

estimate can be expressed as a stochastic perturbation to the
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Figure 12. Global mean precipitation (P) minus evaporation (E) in mm d−1 for two
different configurations of SPPT (a) default, (b) global fix of perturbed tendency.
Ensemble mean (thin) and control forecast (thick line); average over 20 years of
hindcasts, February start dates 1989–2008, CY41R1.

advection of φ:

∂φ

∂t
+V · ∇φ ≈

1

∆t
ε · ∇φ

which shows that the proposed method approximates the

“Stratonovich” stochastic parametrization of advection proposed

by Hodyss et al. (2014).

Flow-dependent uncertainty can be incorporated into the

perturbed DP estimate by multiplying the difference between DP

estimates from two different iterations with a random field γ:

rD + ε = rD
(l) + γ

(

rD
(l) − rD

(l−m)
)

where rD
(j) is the unperturbed estimate of the DP after the j-th

iteration; and l refers to final iteration and (l −m) to one of the

earlier iterations. In this way, the horizontal and vertical structure

of the adjustments to the DP estimate are inherited by the noise

term.
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