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Stochastic processes offer a fundamentally different paradigm of dynamics than
deterministic processes that one is most familiar with, the most prominent example of
the latter being Newton’s laws of motion. Here, we discuss in a pedagogical manner a
simple and illustrative example of stochastic processes in the form of a particle undergoing
standard Brownian diffusion, with the additional feature of the particle resetting repeatedly
and at random times to its initial condition. Over the years, many different variants of this
simple setting have been studied, including extensions to many-body interacting systems,
all of which serve as illustrations of peculiar non-trivial and interesting static and dynamic
features that characterize stochastic dynamics at long times. We will provide in this work a
brief overview of this active and rapidly evolving field by considering the arguably simplest
example of Brownian diffusion in one dimension. Along the way, we will learn about some
of the general techniques that a physicist employs to study stochastic processes. Relevant
to the special issue, we will discuss in detail how introducing resetting in an otherwise
diffusive dynamics provides an explicit optimization of the time to locate a misplaced target
through a special choice of the resetting protocol. We also discuss thermodynamics of
resetting, and provide a bird’s eye view of some of the recent work in the field of resetting.
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INTRODUCTION: BROWNIAN MOTION

Brownian diffusionmodels randommotion of a mesoscopic particle that is immersed in a fluid and is
being constantly buffeted by the fluid molecules. Starting from this simple context, the paradigm of
Brownian diffusion has been successfully employed to discuss a wide range of dynamical scenarios in
physics, astronomy, chemistry, biology and mathematics, and even in finance and computer science.
Consider a Brownian particle undergoing diffusion in free space in one dimension. Its dynamics is
conveniently described by the so-called overdamped Langevin equation for the displacement of its
center of mass, and is given by [1]:

dx
dt

� η t( ), (1)

where η(t) is a Gaussian, white noise with the properties

〈η t( )〉 � 0, 〈η t( )η t′( )〉 � 2Dδ t − t′( ). (2)
Here, angular brackets denote average over noise realizations. The parameter D > 0, called the

diffusion coefficient, sets the strength of the noise.
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The dynamics (1) is an example of a Markov process, namely,
a process that evolves in continuous time and for which if one
wants to know at any instant of time the future state of the
process, it suffices to know the state of the process at that instant,
and one does not need to know the entire history of the process
until that instant. Indeed, it is evident from Eq. 1 that to know at
any instant of time t the future state x(t + Δt); Δt > 0, one requires
to know just x(t) and not the entire history from the initial state
x(t = 0) to x(t). Note that the state space spanned by values of x is
continuous.

For a given initial condition x(t = 0) = x0, Eq. 1 may be
integrated to obtain

x t( ) � x0 + ∫t

0
dt′ η t′( ), (3)

which implies that for a given initial condition, the position of the
particle at time t may have many different values depending on
the trajectory of the noise η between times 0 and t. Eq. 1 is an
example of what are known as stochastic processes, in which one
may have many different final outcomes for the same initial
condition. This latter fact may be contrasted with what happens
under deterministic processes, the most prominent example of
which would perhaps be the Newton’s laws of motion, which have
the property of yielding a unique final outcome for a given initial
condition. Eq. 1 is more specifically known as a stochastic
differential equation: a differential equation in which one or
more terms is a stochastic process, and whose solution is
consequently also a stochastic process.

The average position of the particle at time t, averaged over the
different noise trajectories, is obtained from Eq. 3 on using Eq. 2
as 〈x(t)〉 = x0, while the variance, measured with respect to the
initial location of the particle, reads

〈 x t( ) − x0( )2〉 t( ) � ∫t

0
∫t

0
dt1dt2 〈η t1( )η t2( )〉 � 2Dt. (4)

Position Probability Distribution
Now, it is instructive to ask: given that the position of the particle
at time t has many different values, what is the full
distribution of the position at time t? In other words, what
is the form of P(x, t), defined such that P(x, t)dx is the
probability to find the particle between positions x and x +
dx at time t, given that the particle started from position x0 at
time t = 0: P(x, 0) = δ(x − x0). The probability density is of
course normalized as ∫dx P(x, t) = 1 ∀ t. The question just
posed may be answered by writing down and solving the so-
called Fokker-Planck equation for the time evolution of P(x,
t). The equation reads

zP x, t( )
zt

� D
z2P x, t( )

zx2
, (5)

and needs to be solved subject to the initial condition P(x, 0) =
δ(x − x0).

The Fokker-Planck equation may be derived by noting down
the ways in which the probability density P(x, t) changes in a
small time 0 < Δt≪ 1, and finally taking the limit Δt→ 0. One has

P x, t + Δt( ) � P x, t( ) + ∫ d Δx( )P x − Δx, t( )ϕΔt Δx( )

− ∫ d Δx( )P x, t( )ϕΔt Δx( ), (6)

where ϕΔt(Δx) is the probability density for x to change by an
amount Δx in time Δt, and is taken to be independent of x. The
probability density satisfies the normalization ∫d(Δx) ϕΔt(Δx) =
1. Note that Eq. 1 implies that this jump probability is
independent of the value of x from which the jump is taking
place. In Eq. 6, the second term on the right hand side (rhs)
denotes gain in probability due to a change taking place from x −
Δx to x, while the third term on the rhs denotes loss in probability
due to a change taking place from x. Next, noting that the
dynamics (1) implies that for small Δt, the change Δx that x
undergoes is also small, and assuming that P(x, t) is a slowly
varying function of x, we may Taylor expand the left hand side
(lhs) of Eq. 6 in powers of Δt and the second term on the right
hand side in powers of Δx. Executing such an expansion, and
noting that Eq. 1 implies that 〈Δx〉≡∫d(Δx) Δx ϕΔt(Δx) = 0 and
〈(Δx)2〉≡∫d(Δx) (Δx)2 ϕΔt(Δx) = 2DΔt, one obtains Eq. 5.

The solution to Eq. 5 is readily obtained by expressing P(x, t)
in terms of its Fourier component ~P(k, t) �∫∞−∞ dxP(x, t) exp(−ikx) that satisfies a linear differential
equation given by z~P(k, t)/zt � −Dk2 ~P(k, t) subject to the
initial condition ~P(k, 0) � exp(−ikx0); this equation has the
solution ~P(k, t) � exp(−Dk2t − ikx0). On performing inverse
Fourier transformation according to the prescription
P(x, t) � 1/(2π)∫∞−∞ dk ~P(k, t) exp(ikx), one finally obtains

P x, t( ) � 1�����
4πDt

√ e− x−x0( )2/ 4Dt( ), (7)

which is a Gaussian distribution centred at x0. Eq. 7 implies that
the probability of finding the particle at a given distance from its
initial location grows with time. Consequently, as time goes by,
one has an increased probability of finding the particle far off
from its initial location, although at any given time, the most
probable location of the particle is at its initial location. These
features are evident from the plot of P(x, t) at different times
depicted in Figure 1.

The mean-squared displacement (MSD) of the particle about
its initial location is obtained straightforwardly from Eq. 7 as

FIGURE 1 | The distribution (7) at different times, showing the
broadening of the distribution with time. Here, we have taken x0 = 0.0,D = 0.5.
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〈 x − x0( )2〉 t( ) � ∫∞

−∞
dx x − x0( )2P x, t( ) � 2Dt, (8)

matching with the result (4), and which implies that the MSD
grows forever as a function of time. Such a behavior in which the
MSD grows linearly in time is referred to as normal diffusive
behavior.

The aspect of the probability of finding the particle far off from
x0 increasing with time may be traced back to the fact that since
the particle is diffusing in free space, it is no wonder that at longer
times, it would have spread to a larger region of the available
space than at shorter times. Let us then ask this question: Is there
a way to stop this spread? Well, one possible way could be to have
the particle diffuse not in free space but in a bounded domain of
finite extent, say, between points x = − L and x = + L on the x-axis.
In this case, the probability of finding the particle at a given
location would keep increasing with time, until it can increase no
further, that is, until the system attains a stationary state. In this
state, attained in the limit t → ∞, it may be argued that this
probability would be the same at all locations inside the bounded
domain. In other words, the particle would be equally likely to be
found anywhere within the region x ∈ [ − L, L].

BROWNIAN MOTION IN PRESENCE OF
RESETTING

In the above backdrop, one may ask: Is there a way to induce a
stationary state in the system by not tweaking the boundary
conditions but by modifying the dynamics in a way that it
continues to take place in the free space and yet has a
stationary state? Of course, one way could be to subject the
motion of the particle to take place in a bounded potential. In this
respect, tweaking the boundary condition so that the particle
diffuses not in free space but in a bounded domain of finite extent
is tantamount to a potential that is zero everywhere except at the
boundaries where one has an infinitely-high potential barrier. As
an interesting alternative to using a potential, it turns out that
there is a rather simple and instructive way to achieve the goal of
inducing a stationary state, through the introduction of stochastic
resetting in the dynamics [2]. To this end, let us modify the
dynamics of free diffusion by stipulating that the particle in
addition to evolving according to the rule (1) has also the
option of resetting its position to its initial value. More
specifically, at time t, the particle has in the ensuing
infinitesimal time interval dt the following options for
updating its location x(t): with probability rdt, it resets its
position to initial value x0, while with the complementary
probability 1 − rdt, it evolves according to Eq. 1. Thus, we
have [2]:

x t + dt( ) � x0 with prob. rdt,
x t( ) + η t( )dt with prob. 1 − rdt.
{ (9)

Here, r ≥ 0 is a dynamical parameter, whose value when set
to zero reduces the modified dynamics to that of free diffusion.
In practical terms, a typical trajectory of the particle would
involve free diffusion interspersed with events of reset to x0, as

shown in Figure 2. It is evident from Eq. 9 that introducing
resetting into the dynamics (1) retains the Markov nature of
the dynamics.

Position Probability Distribution
Suppose we ask: what is the probability for the next reset to
happen after a certain time t, in the interval [t, t + dt]? Let us
discretize time in equal steps of length 0 < Δt ≪ 1; we will
eventually consider the limit Δt → 0. The number of such steps
during time duration t is obviously given by N � t/Δt. During
each step of length Δt, the probability of reset equals rΔt, while the
same for no reset equals 1 − rΔt. Consequently, the probability
that the next reset happens after time t, in the interval [t, t + Δt], is
given by (1 − rΔt)N rΔt � (1 − rΔt)t/ΔtrΔt. In the limit Δt → 0,
the latter quantity equals exp( − rt) rdt. We thus conclude that the
probability for no reset to occur during a given time duration t
equals exp( − rt), while the probability for the next reset to occur
after time t, that is, in the interval [t, t + dt], equals exp( − rt) rdt.
For latter purpose, let us note that at a given time instant t, the
probability that the last reset happened in the interval [t − τ − dτ,
t − τ], with τ ∈ [0, t], equals exp( − rτ) rdτ.

Note that as mentioned earlier, the dynamics (1) represents
infinitesimal change in x in infinitesimal time interval dt, while
incorporating resetting into the dynamics has in the resulting
dynamics reset events leading to any amount of change in x in
infinitesimal interval dt. Indeed, the reset destination is always the
same, namely, x0, irrespective of the location the particle resets
from, so that the particle may execute a very long jump during a
reset event.

It should be apparent from the aforementioned dynamical
rules that introducing resetting into the dynamics would not let
the particle go at any time, long or short, very far from the initial
location. Is it actually the case? To answer this, we need to study
just as in the case of free diffusion discussed above the time
evolution of the probability density Pr(x, t) in presence of
resetting, which may be derived by writing down the ways in
which Pr(x, t) changes in a small time 0 < Δt≪ 1 and then taking
the limit Δt → 0. One has

FIGURE 2 | The plot shows a typical trajectory of a particle starting at
location x0 = 3.0 and performing free diffusion in one dimension, with
stochastic resets to x0 at random times. The parameter values areD = 0.5, and
r = 0.25. The jumps in x values corresponding to resets are marked
in blue.
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Pr x, t + Δt( ) � Pr x, t( ) + 1 − rΔt( )[∫ d Δx( )Pr x − Δx, t( )ϕΔt Δx( )

−∫ d Δx( )Pr x, t( )ϕΔt Δx( )] − rΔtPr x, t( ) + rΔtδ x − x0( ). (10)

Here, the second and the third term arise from diffusion, while
the fourth and the fifth term are owing to resetting events. While
the former two terms are as in the free diffusion case, Eq. 6, the
latter two terms may be understood as follows. For r ≠ 0, there is a
loss in probability at all locations other than x0 due to resetting
events, which is represented by the fourth term on the rhs of Eq.
10, while the corresponding gain in probability at x = x0, given by
rΔtδ(x − x0)∫dx Pr(x, t) = rΔtδ(x − x0), yields the last term on the
rhs. Here we have used the normalization condition ∫dx Pr(x, t) =
1 ∀ t. Implementing appropriate Taylor expansions on both sides
of Eq. 10, then taking the limitΔt→ 0, the probability Pr(x, t) may
be shown to be satisfying the Fokker-Planck equation [2]

zPr x, t( )
zt

� D
z2Pr x, t( )

zx2
− rPr x, t( ) + rδ x − x0( ). (11)

The initial condition is Pr(x, 0) = δ(x − x0). Eq. 11 may be
solved for Pr(x, t); here, we report only the solution, referring the
reader to Ref. [3] for details of obtaining it:

Pr x, t( ) � e−rt−
x−x0( )2
4Dt�����

4πDt
√ + 1

4

��
r

D

√
e−
�
r
D

√
|x−x0 |Erfc

|x − x0|
2
���
Dt

√ − ��
rt

√( )
−1
4

��
r

D

√
e
�
r
D

√
|x−x0|Erfc

|x − x0|
2
���
Dt

√ + ��
rt

√( ), (12)

where Erfc(x) ≡ 2/( ��
π

√ )∫∞
x
dy e−y2

is the complementary error
function. TheMSD of the particle may be obtained from Eq. 12 as

〈 x − x0( )2〉 t( ) � 2D
r

1 − e−rt( ). (13)

Eq. 12 implies that in the limit t → ∞, one has a stationary-
state form [2]:

Pr, ss x( ) � 1
2

��
r

D

√
e−|x−x0 |

��
r/D

√
. (14)

Correspondingly, the MSD relaxes at long times to the
stationary-state value

〈 x − x0( )2〉r, ss � 2D
r
. (15)

Figure 3 shows the probability distribution Pr(x, t) in
presence of resetting and at four different times, as given by
Eq. 12, showing in particular convergence in time to the
stationary state (14).

The stationary-state distribution is an exponential centred at
the resetting location; since the particle keeps resetting to x0 in
time, it is no wonder that the most likely position of the particle is
x0. More importantly, an exponential profile implies that there is
a characteristic length scale within which the particle is to be
found with significant probability and beyond which one has an
exponentially-small probability of finding the particle. In
conclusion, we have been able to achieve our goal: by
modifying not the boundary conditions but rather the

dynamics of free diffusion, one induces a stationary state in
the system. While we have discussed in the foregoing the case
of resetting at exponentially-distributed random times, the case of
resetting at power-law-distributed random times has also been
considered in the literature, see Ref. [4]. We remark in passing
that resetting creates a source of probability at x0 and a sink at all
other locations x ≠ x0, so that the condition of detailed balance,
which characterizes an equilibrium stationary state [5], is
manifestly violated in the stationary state induced by resetting.
Consequently, the stationary state (14) is a generic
nonequilibrium stationary state [2].

FIRST-PASSAGE TIME DISTRIBUTION

Now that we have seen a stationary state emerging in presence of
stochastic resetting, one may wonder if besides this issue of theoretical
relevance there is any practical utility of the process of stochastic
resetting. Here, we will discuss one very interesting application of
stochastic resetting, namely, in the context of search processes.

The Case of Brownian Motion
In order to discuss the concept and utility of first-passage times,
let us come back to free diffusion. Referring to Figure 4,
suppose we ask: when does a trajectory of free diffusion
starting at x0 > 0 at time t = 0 cross the origin for the first
time? Clearly the time tf that it happens, aptly termed the first-
passage time (FPT), is a random variable that varies from
trajectory to trajectory, and one may ask: what is the form
of its distribution P(x0, tf) ? This distribution would explicitly
depend on x0, a fact encoded in the defining symbol for the
distribution. In order to answer this question, noting that tf is
by definition a positive quantity, it proves convenient to
consider the Laplace transform of P(x0, tf):

~P x0, s( ) ≡ ∫∞

0
dtf e

−stfP x0, tf( ) � 〈e−stf〉, (16)

where the angular brackets denote averaging with respect to the
distribution P(x0, tf), s is the Laplace variable, and tilde denotes

FIGURE 3 | Probability distribution Pr(x,t) in presence of resetting and at
four different times, as given by Eq. 12, showing convergence in time to a
stationary state in which the distribution no longer changes with time. The
latter is given byEq. 14. The parameter values are x0 = 0.0, D = 0.5, and r
= 0.25.
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the function obtained on performing Laplace transform L of a
function f(t), that is, L[f(t)] � ~f(s). Now, let us understand that
a given value of tf corresponds to all trajectories {x(τ)}0≤τ≤tf
between times 0 and tf satisfying x(0) = x0 and x(0 < τ < tf) > 0.
Consequently, averaging with respect to tf is tantamount to
averaging with respect to all trajectories that start at x0 and
propagate for time tf without ever crossing the origin, and such
an averaging is what the angular brackets in Eq. 16 would also
stand for.

In order to proceed, we now derive a differential equation for
~P(x0, s). To this end, following Ref. [6], we split the time interval
[0, tf] into two parts. During the first interval [0, Δτ], the
aforementioned set of trajectories start from x0 and propagate
up to x0 + Δx, where Δx is of course different for different
trajectories. In the second interval [Δτ, tf], these trajectories start
at x0 + Δx and reach 0 at tf. We take Δτ to be a small time interval
with 0 < Δτ≪ 1, and eventually, we would take the limit Δτ→ 0.
We get, to leading order in Δτ, that
~P x0,s( )�e−sΔτ〈 ~P x0+Δx,s( )〉Δx≈ 1−sΔτ( )〈 ~P x0+Δx,s( )〉Δx,

(17)
where the average denoted by the angular brackets is to be
performed over all realizations of Δx. Now, Δτ being small
implies that so is Δx, so that the quantity ~P(x0 + Δx, s) on
the rhs of the above equation may be expanded in a Taylor
series in Δx. One gets

~P x0, s( ) ≈ 1 − sΔτ( )〈 ~P x0, s( ) + ~P′ x0, s( )Δx

+ ~P″ x0, s( ) Δx( )2
2

+/ 〉Δx. (18)

Here, the prime denotes derivative with respect to x0. Now, Eq.
1 gives Δx = η(0)Δτ, so that averaging with respect to Δx is
equivalent to averaging with respect to different realizations of
η(0). Using 〈η(0)〉 = 0 and 〈η2(0)〉 = 2D/Δτ (see Appendix) so
that 〈Δx〉Δx = 0 and 〈(Δx)2〉Δx � 2DΔτ, we get from Eq. 18 on
taking the limit Δτ → 0 that

D ~P″ x0, s( ) − s ~P x0, s( ) � 0. (19)

The above equation, referred to as the backward Fokker-
Planck equation, is to be solved subject to two boundary
conditions: 1) ~P(x0 → 0, s) � 1, since as x0 → 0, we have tf →
0, and 2) ~P(x0 → ∞, s) � 0, since as x0→∞, we have tf→∞. The
solution of Eq. 19 subject to these boundary conditions is

~P x0, s( ) � e−
��
s/D

√
x0 . (20)

On performing inverse Laplace transformation, one readily
gets [6].

P x0, tf( ) � x0����
4πD

√ e−x
2
0/ 4Dtf( )
t3/2f

. (21)

(For x0 < 0, the corresponding FPT distribution is obtained
from the above equation with the replacement x0→ |x0|.)We thus
find that the FPT distribution has a tail ~ t−3/2f , andmoreover, that
the average FPT (the mean first-passage time (MFPT)) given by
〈tf〉 � ∫∞

0
dtf tf P(x0, tf) is infinite ! The latter result implies

that the dynamics (1) allows for trajectories which starting at x0
start to move away from the origin and hence take a very long
time to hit the origin for the first time (e.g., the blue trajectory in
Figure 4). Does repeated resetting to x0 kill these trajectories,
given that it allows the particle to remain effectively in a finite
region around x0? Let us then investigate the distribution of the
FPT in presence of resetting.

The Case of Brownian Motion in Presence
of Resetting
In order to proceed, define Pr(x0, tf) as the FPT distribution in
presence of resetting, and Sr(x0, t) as the so-called survival
probability, that is, the probability that a trajectory starting
at x0 at time t = 0 has not crossed the origin up to time t. Note
that resetting is taking place not to the origin but to the initial
location x0 of the particle. Obviously then one has Sr(x0, t +
Δt) − Sr(x0, t) � Pr(x0, t)Δt for small Δt, which in the

limit Δt → 0 gives Pr(x0, t) � −zSr(x0, t)/zt. In terms of

Sr(x0, t), the mean FPT is given as 〈tf〉r ≡ ∫∞0 dtf tfPr(x0, tf) �
−∫∞

0
dtf tfzSr(x0, tf)/ztf � −[tfSr(x0, tf)]∞0 + ∫∞

0
dtf Sr(x0, tf)

� ∫∞
0
dtf Sr(x0, tf) � ~Sr(x0, s � 0), using Sr(x0,∞) = 0. A trajectory

starting from x0 that reaches the origin for the first time at time tmay

have had no reset at all since the time instant t = 0 ormay have had its

last reset at an earlier time instant in the interval [t− τ− dτ, t− τ], with

τ ∈ [0, t], and has not passed through the origin before that.

Consequently, one has

Pr x0, t( ) � −zSr x0, t( )
zx0

� ∫t

0
dτ Sr x0, t − τ( )re−rτP x0, τ( ) + e−rtP x0, t( ). (22)

Indeed, trajectories that did not have any reset during the time
interval [0, t] (the probability of which, according to our earlier
discussions, is exp( − rt)) give rise to the second term on the rhs of
the second equality above. On the other hand, trajectories that at

FIGURE 4 | Two sample trajectories x(t) corresponding to free diffusion
(1) with initial condition x(0) = x0 = 3.0, and with D = 0.5. Here, the quantity tf is
the first-passage time for the red trajectory.
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time t have had last reset in the interval [t − τ − dτ, t − τ] (the
probability of which is exp( − rτ) rdτ), with τ ∈ [0, t], and have not
hit the origin before that give rise to the first term on the rhs of the
second equality.

Using Eq. 21 in Eq. 22, taking Laplace transform of both sides,
and using Sr(x0, t = 0) = 1, we finally get

~S x0, s( ) � 1 − A

rA + s
, (23)

where the quantity A is defined as

A ≡ A s, r( ) � L x0e−rt−x
2
0/ 4Dt( )������

4πDt3
√⎡⎢⎢⎣ ⎤⎥⎥⎦ � e

−
��������
x20/D( ) s+r( )

√
. (24)

Here, we have used L[t−3/2 exp(−a/(4t))] �
2
���
π/a

√
exp(− ��

as
√ ) for Re(a) > 0. Consequently, we obtain the

MFPT in presence of resetting as [2].

〈tf〉r � ex0
��
r/D

√ − 1
r

. (25)

We see from Eq. 25 that for fixed x0 and D, the MFPT in
presence of resetting is finite for finite r, so that resetting has a
drastic consequence on rendering the MFPT of free diffusion
finite. Moreover, 〈tf〉r diverges in two extreme limits, namely, as
r→ 0 and as r→∞, so it has to be that there exists a value r+ of r
at which 〈tf〉r as a function of r has a minimum. Note that the
limit r → 0 corresponds to free diffusion, so that the fact of a
diverging 〈tf〉r as r → 0 is consistent with what we observed
above regarding the MFPT for free diffusion. The divergence of
MFPT as r→∞may be understood on the basis of the fact that in
this limit, the particle resets so often that it does not effectively get
a chance tomove away from x0 and hit the origin. The quantity r

+

satisfying d〈tf〉r/dr|r�r+ � 0 yields the following transcendental
equation [2].

z+

2
� 1 − e−z

+

; r+ � z+( )2D/x2
0, (26)

which has a unique non-zero solution z+ = 1.593 62 . . .. It then
follows that there is an optimal resetting rate r+, such that the
MFPT in presence of resetting attains its minimum as a function
of r. The variation of 〈tf〉r with r, as given by Eq. 25, is shown in
Figure 5, which clearly shows the existence of a minimum.

Relevance of Resetting in Search
Processes
What has then a minimum MFPT got to do with search
processes? Imagine having misplaced one of your favourite or
essential belongings. It could be your car key or your mobile
phone. After getting into your office, you usually keep the key on
your office table. Having misplaced it, a typical tendency to locate
it is to begin searching in random directions for the key (well, you
do not know beforehand which particular direction to search for,
so random directions would be the best bet!) while starting from
your office. Having searched unsuccessfully for sometime, you
realize that perhaps you did not search well enough in the region

around the table (after all, you usually keep the key on the table
itself), so you return to the table, and re-initiate your search. You
keep repeating the process until you locate the key, and of course
the first time you locate it, you stop searching any further.
Figure 6 models this search strategy in one dimension: the
brown filled circle denotes your misplaced belonging, while
searching in random directions for random times followed by
re-initiation of the search process from your starting position
may be modelled as free diffusion interspersed in time with
stochastic resets to the initial location (the two space-time
trajectories in the plot), namely, what has been our model of
study in this work. Had there been no resets, that is, if you had
continued searching in random directions without ever coming
back to your initial location, we would arrive at the following
conclusion based on our analysis of free diffusion pursued above.
If you had repeated the process over and over again, then, in some
realizations of the process, you would have located the brown
circle in a finite time, while there would be happily a large number
of other realizations in which you fail to locate it in finite time, so
that the MFPT through the brown circle would diverge ! On the
other hand, introducing stochastic resetting into the dynamics

FIGURE 5 | The mean first-passage time in presence of resetting given
by Eq. (25) is shown as a function of r for x0 = 3.0 and D = 0.5. One may
observe the existence of a distinct minimum.

FIGURE 6 | The plot shows a stationary target (misplaced belonging)
denoted by the brown filled circle and located at the origin, and two
space-time trajectories of a particle starting from x0 = 2.5 and executing
stochastic resets to x0 at random times. The parameter values are
D = 0.5 and r = 0.25. From the figure, we see that one of the trajectories has
been able to detect the target, while the other one is yet to locate it.
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would make the MFPT finite, as our theoretical analysis of
diffusion with stochastic resetting has revealed. Not just that,
there exists an optimal value for the rate r at which stochastic
resets are executed such that the corresponding MFPT attains its
minimum value. Thus, stochastic resetting offers a very efficient
way to locate your misplaced belonging. Of course, for resetting
to be efficient, the quantity x0, the initial location of the searcher
to which it repeatedly resets, has to be small enough. In other
words, the location x0 has to be close enough to the target for
resetting to do a good job. Indeed, as is evident from Eq. 25, if x0
is large, the MFPT would be very large, and then resetting would
not help to locate the target in a finite time.

STOCHASTIC THERMODYNAMICS OF
RESETTING

In this section, we review briefly thermodynamics of systems
subject to stochastic resetting, following Refs. [7, 8], and using
basic principles extending thermodynamic laws to
nonequilibrium systems laid down and reviewed in Ref. [9].
Consider first a Markov process in which the state space
instead of being continuous, as in Eq. 1, is discrete. Let us
denote the latter by non-zero integers i. The set of all possible
states spans the state space of the system. Let N be the total
number of states accessible to the system. The dynamics of the
system is dictated by a set of transition rates Wi→j ≥ 0 giving the
probability per unit time for the system to make a transition from
state i to state j. We consider these transition rates to be time-
independent. Define pi(t) to be the probability for the system to be
in state i at time t, with the normalization ∑N

i�1pi(t) � 1 ∀ t.
These probabilities evolve in time following the so-called Master
equation [5]

dpi t( )
dt

�∑N
j�1

Wj→i pj t( ) −Wi→j pi t( )[ ], (27)

where the first term (respectively, the second term) on the right
hand side summarizes all possible ways in which pi(t) increases
(respectively, decreases) in an infinitesimal time interval [t, t + dt]
due to transitions from all states j to the state i in question
(respectively, due to transitions from state i to states j). Note that
the Master Eq. 27 conserves in time the normalization of the
probability pi(t). Let us note that the Brownian motion (1) may be
considered as the continuous-space limit of a discrete-space
continuous-time random walker moving with equal probability
between the nearest-neighbour sites of a one-dimensional lattice
[5]; in the latter case, the state space is constituted by the site
indices, and we have Wi→j = Wj→i.

Now, for a given pair of states i and j, consider the following
situation [8]: 1) Both the forward and backward transitions are
allowed (denote the corresponding transition rates by Wi→j ≡
wi→j > 0 and Wj→i ≡ wj→i > 0). 2) Either the forward or the
backward transition is allowed but not both (i.e., either we have
Wi→j ≡ yi→j > 0 andWj→i ≡ yj→i = 0, or,Wj→i ≡ yj→i > 0 andWi→j

≡ yi→j = 0). The former dynamics is known as the bidirectional
process, while the latter is referred to as the unidirectional process

[8]. The reason we want to focus on this specific situation is that it
models the resetting dynamics considered in this work. Indeed, a
given state x(t) can in an infinitesimal time interval [t, t + dt]
evolve to any other x value allowed by the dynamics (1), just as
any other x value can evolve to the given value x(t) in an
infinitesimal time interval [t, t + dt] provided of course the
dynamics (1) allows that. On the contrary, the resetting
dynamics is such that in an infinitesimal time interval [t, t +
dt], any x value can evolve to the value x0, but the reverse move
from x0 to any other x value via the resetting dynamics is not
allowed (it is allowed only via the Brownian motion dynamics
(1)). The Master Eq. 27 then reads [8].

dpi t( )
dt

�∑N
j�1

wj→ipj t( ) − wi→jpi t( )[ ]
+∑N

j�1
yj→ipj t( ) − yi→jpi t( )[ ], (28)

where the summation in the second term on the right hand side is
considered restricted to those pair of states for which the reverse
transitions are not allowed (i.e., either we have yi→j > 0 and yj→i =
0, or, yj→i > 0 and yi→j = 0).

The (Shannon) entropy of the system at time t is given by (we
work in units in which the Boltzmann constant is set to unity):

Ssys t( ) � −∑N
i�1

pi t( )lnpi t( ), (29)

where pi(t) is to be obtained by solving the Master Eq. 28 subject
to a given initial condition {pi(0)}1≤ i≤N. Differentiating the
above equation with respect to time, using Eq. 28, and the
normalization ∑N

i�1pi(t) � 1 yield straightforwardly the
entropy production rate for the system [8]:

_Ssys t( ) � ∑N
i,j�1

wj→i pj t( )ln pj t( )
pi t( )( ) + ∑N

i,j�1
yj→i pj t( )ln pj t( )

pi t( )( ),
(30)

where the dot denotes derivative with respect to time.
Let us for the moment disregard any resetting-like transitions

in the system. Eq. 30 then reads

_Ssys t( ) � ∑N
i,j�1

wj→i pj t( )ln pj t( )
pi t( )( )

� ∑N
i,j�1

wj→i pj t( )ln wj→i pj t( )
wi→j pi t( )( ) − _Senv t( ); (31)

_Senv t( ) ≡ ∑N
i,j�1

wj→i pj t( )ln wj→i

wi→j
( ). (32)

In the above, we have defined _Senv as the environment entropy
production, related to the change in entropy of the environment
corresponding to the system making transitions from every
state j to every state i. Here, the understanding is that it is the
interaction with the environment that induces transitions
between the states of the system, just as in the dynamics (1),
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the variable x evolves in time due to the noise η(t) arising
because of the presence of the environment constituted by the
surrounding fluid. Eq. 31 then yields the total entropy
production rate as

_S
tot

t( ) ≡ _Ssys t( ) + _Senv t( )
� ∑N

i,j�1
wj→i pj t( )ln wj→i pj t( )

wi→j pi t( )( )
� 1
2
∑N
i,j�1

wj→i pj t( ) − wi→j pi t( )( )ln wj→i pj t( )
wi→j pi t( )( )≥ 0.

(33)
That _S

tot(t)≥ 0 may be understood by noting that (x − y) ln(x/
y) ≥ 0 for any real, positive x, y and that f ln f = 0 for f = 0. The
above expression for _S

tot
is the Schnakenberg’s formula for the

total entropy production of the system [8].
In presence of resetting, Eq. 30 then leads to

_S
tot

t( ) � _Ssys t( ) + _Senv t( ) − _Sreset t( ); (34)
_Sreset t( ) ≡ ∑N

i,j�1
yj→i pj t( )ln pj t( )

pi t( )( ), (35)

where we have defined _Sreset(t) as the entropy production rate due
to unidirectional processes, i.e., resetting-like transitions. For the
case when the system resets to a state i0 from any state j with a
resetting rate rj, we have

_Sreset t( ) �∑N
j�1

rj pj t( )ln pj t( )
pi0 t( )( ) � _S

abs

reset t( ) + _S
ins

reset t( ); (36)

_S
abs

reset t( ) ≡ ∑N
j�1

rj pj t( )ln pj t( )( ), (37)

_S
ins

reset t( ) ≡ − ln pi0 t( )( )∑N
j�1

rj pj t( ). (38)

Here, _S
abs
reset(t) is the absorption entropy rate, corresponding to

the change in the Shannon entropy of the system due to the
probability flux out of every state j owing to resetting. On the
other hand, the quantity _S

ins
reset(t) is the insertion entropy rate that

depends on the probability at the resetting state i0 and the
probability flux out of every other state j [7].

In a stationary state, all the quantities _Ssys, _Senv, _S
tot
, _Sreset, etc

are time independent, and moreover, _Ssys � 0 by construction.
Hence, with _S

tot ≥ 0, we get from Eq. 34 that

_S
tot � _Senv − _Sreset ≥ 0. (39)

In an equilibrium stationary state, which is obtained in the
absence of resetting (see the paragraphs following Eq. 15), one
has the condition of detailed balance, wj→i pj = wi→j pi for all pairs
of states i and jwith time-independent pi’s. Consequently, one has
_S
tot � 0, and Eq. 39 implies that _Senv � 0. One may have time-
independent pi’s (i.e., a stationary state) with violation of detailed
balance; this leads to a non-vanishing _S

tot
, which is thus a

fingerprint of non-equilibrium stationary states. Resetting

induces such a state, and hence, in a nonequilibrium
stationary state induced by resetting, one would have

_Senv − _Sreset > 0, (40)
which is interpreted as the second law of thermodynamics in
presence of resetting [7]. Considering the particular example of a
discrete-space continuous-time random walker, for which one
has wi→j = wj→i, we have _Senv � 0, and hence that _Sreset < 0. This
result should also apply to the dynamics (1) in presence of
resetting, as we will demonstrate in the following.

Eq. 36 when generalized to a Markov process with continuous
state space reads [7].

_Sreset t( ) � ∫ dx r x( )Pr x, t( )ln Pr x, t( )
Pr x0, t( )( ). (41)

For the case r(x) = r, a space-independent resetting rate,
the situation we have considered in this work (see Eq. 9),
we get

_Sreset t( ) � r∫ dx Pr x, t( )ln Pr x, t( )
Pr x0, t( )( ). (42)

In the nonequilibrium stationary state (14), we get

_Sreset � − r

2
∫∞

−∞
dy |y − y0|e−|y−y0 | � −r. (43)

We thus see explicitly that we have _Sreset < 0 in the
nonequilibrium stationary state induced in the Brownian
dynamics due to resetting. That the resetting entropy
decreases in time is a reflection of the fact that what resetting
essentially does is to reduce the uncertainty in the particle
position. To wrap up this part, we mention a few relevant
recent work dealing with thermodynamics of resetting: Ref.
[10] that discusses the validity of the so-called integral
fluctuation theorems in presence of stochastic resetting, Ref.
[11] that considers an overdamped Brownian particle in a
potential well modulated through an external protocol and
subject to stochastic resetting and studies the fluctuations of
the work done on the system, Ref. [12] that derives a
thermodynamic relation for systems with unidirectional
transitions including in particular a random walk subject to
stochastic resetting.

In closing this section, we indicate how resetting may play a
role in optimizing the efficiency of stochastic heat engines. We
first describe briefly the principle of working of a stochastic heat
engine constituted by a Brownian particle of mass m, which is
placed in a fluid medium in equilibrium at a given temperature,
thereby modelling a heat bath or a thermal reservoir [13]. For
simplicity, let us consider the motion of the particle in one
dimension x. The particle is subject to trapping due to an
attractive force derived from a time-dependent potential
U(x(t); t) and is also acted upon by a time-dependent non-
conservative force F(x(t); t). The position x(t) and the velocity
v(t) = dx(t)/dt of the particle evolve in time following the
underdamped Langevin dynamics:
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m
d2x t( )
dt2

� −zU x t( ); t( )
zx

+ F x t( ); t( ) − γ
dx t( )
dt

+ ξ t( ), (44)

where γ is the friction coefficient accounting for the friction that
the particle experiences while moving in the surrounding
medium, while ξ(t) models the random force that the
surrounding fluid molecules impart on the particle. One
models ξ(t) as a Gaussian, white noise with zero mean and
correlations in time given by 〈ξ(t)ξ(t′)〉 = 2γTδ(t − t′), where
T is the temperature of the fluid medium in units of the
Boltzmann constant. Note that in the absence of the potential
U(x(t); t) and the non-conservative force F(x(t); t), when one
considers the limit of large damping (the limit γ/m→∞ at a fixed
and finite m), the dynamics (44) takes the form of the
overdamped Langevin dynamics (1). The dynamics (44) is
what is known to physicists as the Brownian motion, while
mathematicians prefer to refer to the overdamped dynamics
(1) as the Brownian motion.

In using system (44) as a heat engine, one allows the
temperature of the surrounding fluid medium to switch
between a higher temperature Th and a lower temperature Tc,
thus mimicking the hot and the cold thermal reservoir of an
engine, respectively. A prominent example of an engine is the
well-studied Carnot engine. Specifically, in our setup, considering
U to be a harmonic potential, one varies the stiffness of this
potential in time from times 0 to t1 to implement the isothermal
expansion at temperature Th and from times t1 to t1 + t3 to
implement the isothermal compression at temperature Tc of a
Carnot cycle, while the adiabatic expansion and compression
stages of the latter may be implemented by performing an
instantaneous change in the stiffness at time instants t1 and t1
+ t3, with concomitant jump in temperature from Th to Tc and
from Tc to Th, respectively. Heat transfer takes place between the
bath and the particle during the isothermal stages and not during
the adiabatic stages. The aforementioned scenario defines a
stochastic Carnot heat engine at the micro scale, with reasons
of stochasticity being enhanced thermal fluctuations prevalent in
the dynamics at such scales [14].

The heat transfer between the heat bath and the particle in
time t and computed along the trajectory of the particle from x(0)
to x(t) is given by

Q t( ) � ∫x t( )

x 0( )
−γ dx t′( )

dt′ + ξ t′( )( )◦dx t′( ), (45)

where ° implies that the integral on the right hand side is to be
evaluated in the Stratonovich sense [15]. Similarly, the work done
on the particle in time t equals

W t( ) � ∫t

0

zU x t′( ); t′( )
zt′ ◦dx t′( ) + ∫t

0
F x t′( ); t′( )◦dx t′( ).

(46)
Note that both the heat and the work are stochastic functions

of time that fluctuate between trajectories of the particle. Next,
one invokes stochastic definition of efficiency as given by the ratio
of the stochastic work extracted in a cycle to the stochastic heat
transferred Qh(t) from the hot bath to the particle in a cycle, as

η t( ) � −W t( )
Qh t( ), (47)

where t denotes the total duration of the cycle. On considering the
ratio of average quantities, the corresponding efficiency �η(t) �
−〈W(t)〉/〈Qh(t)〉 is bounded on the upper side by the second
law of thermodynamics by ηC = 1 − Tc/Th, with ηC being the
Carnot efficiency. The challenge then is to engineer an optimal
protocol for changing the stiffness of the potential U so as to
maximize the efficiency �η(t). Since the heat Qh and the work W
are functionals of the trajectories of the particle as generated by
the dynamics (44), one may ask: is there a location x(0) or x(t) for
which values of such quantities are optimised? In case it is so, does
it then prove beneficial to implement repeated resetting of the
position of the particle to such locations so as to achieve an
enhanced efficiency of the engine? Considering resetting at
exponential times (the set-up of Eq. 9), an issue of importance
would be: is there an optimal resetting rate r for which one
obtains maximum efficiency? Can one work out the stochastic
energetics of the engine in presence of resetting? In the wake of
recent surge in activity in the field of both stochastic
thermodynamics and stochastic resetting, it is tempting to
speculate that study of such questions, either in the framework
outlined above or suitable modifications thereof, may yield useful
and insightful results on the issue of optimization of thermal
machines at micro scales. The perspectives presented here may
serve as a genesis for future research in this direction.

RESETTINGOF SCALED AND FRACTIONAL
BROWNIAN MOTION

Scaled Brownian Motion
Until now, we have considered standard Brownian motion (1) in
discussing the effects of stochastic resetting. We now discuss
briefly the corresponding effects on the so-called scaled Brownian
motion (SBM) [16, 17], which in appropriate limits reduces to the
standard Brownian motion. SBM is used in such contexts as
fluorescence recovery following photobleaching [18], anomalous
diffusion in biophysics [19, 20], granular gas of viscoelastic
particles [21], etc. In contrast to the standard Brownian
motion (1) that involves a time-independent diffusion
coefficient, the SBM involves a diffusion coefficient that is
time dependent and in fact which scales as a power-law in
time. Thus, the corresponding dynamics is given by [16].

dx
dt

� η t( ), (48)

with η(t) a Gaussian, white noise with properties

〈η t( )〉 � 0, 〈η t( )η t′( )〉 � 2D t( )δ t − t′( ); (49)
here, we have

D t( ) � αKαt
α−1; α> 0, (50)

with Kα a constant. Note that setting α = 1 and K1 = D reduces
the SBM to the standard BM (1). In the case of the SBM, the
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position probability distribution may be shown to have the
form [16].

P x, t( ) � 1������
4πKαtα

√ e− x−x0( )2/ 4Kαtα( ), (51)

which as expected reduces for α = 1 to the result (7). TheMSD for
the SBM reads [16].

〈 x − x0( )2〉 � 2Kαt
α. (52)

The behavior of the MSD as a function of time depends
explicitly on the value of α. Obviously, α = 1, the case of the
standard BM, results in diffusive behavior. For 0 < α < 1, one has a
subdiffusive behavior, while the behavior is superdiffusive for α >
1. For α = 2, one has ballistic growth of theMSD in time, and α > 2
results in superballistic behavior. In the limit α → 0, one has
logarithmic time dependence of the MSD.

In discussing resetting of the SBM, two separate situations
were considered: one in which only the position of the particle
resets to its initial value (referred to as nonrenewal resetting [16]),
and other in which both the position and the diffusion coefficient
reset to their respective initial values (referred to as renewal
resetting [17]). Let us discuss the effects of resetting in the two
cases. In the case of nonrenewal resetting at exponentially-
distributed random times (the set-up of Eq. 9), it was shown
that in the long-time limit (more precisely, for times t satisfying
tα+1 ≫ (x − x0)2/(Kαr)), the position probability distribution in
presence of resetting is given by [16].

Pr x, t( ) ≃ 1
2

����
r

αKα

√
t 1−α( )/2 exp −

����
r

αKα

√
|x − x0|t 1−α( )/2( ). (53)

The above equation implies a probability distribution that is
non-Gaussian and also time-dependent (unless α = 1), with a
cusp at the location of resetting x = x0; For α = 1, the
result yields the stationary-state (14) for the standard BM. The
MSD in presence of resetting is given in the limit of long times
by [16].

〈 x − x0( )2〉 t( ) ≃ 2αKα

r
tα−1. (54)

We thus see that with respect to the result for the SBM in absence
of resetting, Eq. 52, the MSD in presence of resetting has a time
dependence characterized by an exponent that is smaller by unity. For
α=1,Eq. 54 yields the stationary-state result (15) for the standardBM.
For α = 2, when the SBM in absence of resetting shows ballistic
motion, the MSD in presence of resetting exhibits normal diffusive
behavior. Superdiffusive SBM corresponding to α in the range 1 < α <
2 exhibits a subdiffusive behavior in presence of resetting. For 0 < α <
1, when the SBM in absence of resetting shows a subdiffusive behavior,
Eq. 54 shows that theMSD in presence of resetting decays to zero as a
power law, implying thereby that the particle at long times remains in
the close vicinity of the resetting location. We thus see that in the case
of nonrenewal resetting of the SBM at exponentially-distributed
random times, one ends up with a rather rich variety of behavior
of the position probability distribution and theMSDdepending on the
value of α. In the foregoing, we discussed the case of resetting at
exponentially-distributed times; for discussion on the effects of

resetting at power-law-distributed times, the reader is referred to
Ref. [16].

We now turn to the case of renewal resetting of the SBM. In this
case, if there is a resetting at time instant tr, the particle resets its
position to x0, and also the diffusion constant at a later time t > tr
becomesD(t) � αKα(t − tr)α−1 (in the nonrenewal case discussed
above, the diffusion coefficient is by contrast given by D(t) =
αKαt

α−1). The case has been studied in detail for both exponential
and power-law resetting in Ref. [17]. Here, in the spirit of this
review, we discuss only the former scenario, referring the interested
reader to Ref. [17] for discussions on power-law resetting. For
exponential resetting, it was shown that the position probability
distribution relaxes at long times to a stationary state [17].

Pr, ss x( ) ≃
r
�
2

√�������
α α + 1( )√ α

4Kαr
( )1/ α+1( )

|x − x0| 1−α( )/ α+1( )

× exp − x − x0( )2rα
4Kα

( )1/ α+1( )
α1/ α+1( ) + α−α/ α+1( )( )⎡⎢⎣ ⎤⎥⎦.

(55)
Not surprisingly, for α = 1, the above equation reproduces

correctly the result (14) for the standard BM. Corresponding to
the stationary state (55), the MSD attains the value [17].

〈 x − x0( )2〉r, ss � 2Kα

rα
Γ α + 1( ), (56)

where Γ(x) is the Gamma function. Again, for α = 1, one gets back
the result (15) for the standard BM. On the basis of the above
discussions we thus see a drastic difference between the cases of
nonrenewal and renewal resetting. While in the former, resetting
fails to induce a stationary position distribution, see Eq. 53, it does
suffice to induce a stationary distribution in the renewal case, see
Eq. 55. Of course, for α = 1, when the diffusion coefficient has no
dependence on time, there is no difference between the two cases of
resetting, and one has a stationary state. In Ref. [17], the MFPT has
been investigated for the case of renewal resetting. Considering a
stationary target located at the origin and an SBM starting at x0 > 0
and resetting to x0 at exponentially-distributed random times, the
MFPT through the target is given by [17].

〈tf〉r ≃
1
r�����

α + 1
2α

√
exp rα/ α+1( ) x2

0

4Kα
( )1/ α+1( )

α1/ α+1( ) + α−α/ α+1( )( )⎡⎢⎣ ⎤⎥⎦ − 1
⎧⎨⎩ ⎫⎬⎭.

(57)
For α = 1, one recovers the result (25) for the standard BM. As

a function of r, the above MFPT is minimized at r = r+

satisfying [17].

1 −
�����
2α

α + 1

√
exp −B r+( )c( ) � Bc r+( )c;

c ≡
α

α + 1
, B ≡

x2
0

4Kα
( )1/ α+1( )

α1/ α+1( ) + α−α/ α+1( )( ). (58)

The above equation for α = 1 reduces correctly to the result
(26) for the standard BM.
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Fractional Brownian Motion
We now discuss the case of fractional Brownian motion (FBM),
another variant of the standard BM (1). In this case, the dynamics
is given by [22, 23].

dx
dt

� ηH t( ), (59)

with ηH(t) a Gaussian noise with zero mean, which unlike the
standard BM and the SBM is correlated in time:

〈ηH t( )〉 � 0, 〈ηH t( )ηH t′( )〉 ≃ K2H2H 2H − 1( )|t − t′|2 H−1( ),
(60)

whereH ∈ (0, 1) is the so-called Hurst exponent. The concept of FBM
is invoked in discussions of subdiffusive dynamics [24], in
investigating individual trajectories of fluorescently-labelled
telomeres in the nucleus of living human cells [25], in discussing
passive, thermally driven motion of micron-sized tracers in hydrogels
of mucins, the main polymeric component of mucus [26], etc.

In absence of resetting, the MSD of the FBM behaves as

〈 x − x0( )2〉 t( ) � 2K2Ht
2H, (61)

implying thereby normal diffusion forH = 1/2, subdiffusion for 0 <
H < 1/2 and superdiffusion for 1/2 < H < 1. Resetting of FBM has
been considered under the so-called fully-renewal scheme [27],
whereby the memory of noise correlations given in Eq. 60 is
completely erased at each resetting, and this is the case we consider
here. In presence of exponential resetting, the MSD has the above
behavior only for short times, while for times of order (1/r)[Γ(2H +
1)]1/(2H) shows saturation to a plateau (pl) value given by

〈 x − x0( )2〉pl ≈ 2K2HΓ 2H + 1( )
r2H

. (62)

Comparing the above result with the one for renewal resetting
of the SBM at exponentially-distributed times, Eq. 56, we find
that the value is the same as that in the SBM case with α = 2H. In
the same manner, the FBM with exponential resetting has a
stationary state characterized by a time-independent position
probability distribution, which at intermediate-to-large
displacements is given by the result (55) for the renewal
resetting of the SBM, with the substitution α = 2H.

While the definition (61) for the MSD involves averaging at a
given time instant t over ensemble of statistically-independent
values of x(t), it is interesting to ask for the behavior of the MSD
when computed along a single trajectory of x(t) as a function of
time t, and enquire about ensemble-averaged versus time-
averaged mean-squared displacements whose non-equivalence
implies breaking of ergodicity of the underlying dynamics. The
single-trajectory-based averaging along the time series of particle
position x(t) defines the time-averaged-MSD (TAMSD) as

δ2 Δ( ) ≡ 1
T − Δ∫T−Δ

0
dt x t + Δ( ) − x t( )[ ]2, (63)

where Δ is the lag time and T is the length of the time series. On
averaging over N statistically-independent TAMSD realizations,
the mean TAMSD is obtained as

〈δ2 Δ( )〉 � 1
N
∑N
i�1

δ2i Δ( ), (64)

where the angular brackets denote averaging over noise
realizations. Reference [27] performed a detailed study of the
behavior of the TAMSD versus MSD to conclude that for short
times, one has the MSD and the TAMSD behaving respectively as
t2H and Δ2H for 0 < H < 1/2 and as t2H and Δ1 for 1/2 < H < 1, so
that time averaging and ensemble averaging do not coincide for 1/
2 < H < 1, while they do coincide for 0 < H < 1/2. For long times,
however, the two averages coincide for all values of H and have
the behavior as in Eq. 62. While the two averages coincide for the
FBM in the absence of resetting, the foregoing suggests that the
resetting dynamics of originally ergodic FBM for superdiffusive
H > 1/2 exhibits weak ergodicity breaking at short times. For a
more detailed survey of the topic, the reader is referred to
Ref. [27].

STOCHASTIC RESETTING: A BIRD’S EYE
VIEW OF RECENT WORK AND
APPLICATIONS
In this section, we provide a flavor of recent work on the theme of
stochastic resetting through a random selection of a few articles.
For a more exhaustive list, the reader is referred to the review [28].
We will also discuss some applications of the concept of resetting
to physical systems.

Reference [29] addressed resetting of a diffusing particle for a
space-dependent resetting rate, and resetting to a random
position drawn from a resetting distribution, Ref. [30] studied
effects of partial absorption on first-passage time problems in the
case of diffusion with stochastic resetting, Ref. [31] considered in
the setting of first-passage time problems for a diffusive particle
with stochastic resetting the issue of optimal search time when
compared against that of an effective equilibrium Langevin
process with the same stationary distribution, Ref. [32] studied
diffusion in arbitrary spatial dimension in presence of a resetting
process. Reference [33] studied search process in one dimension
by considering an immobile target and a searcher that undergoes
a discrete-time jump process with successive jumps drawn
independently from an arbitrary jump distribution. In Ref.
[34], a simple random walk in one dimension was studied,
wherein at each time step the walker resets to the maximum
of the already visited positions, Ref. [35] considered a continuous-
space and continuous-time diffusion process under resetting to a
position chosen from the dynamical trajectory in the past
according to a memory kernel, Ref. [36] studied stochastic
resetting in the context of the fractional Brownian motion.
Quantum dynamics in presence of stochastic reset was
addressed in Ref. [37], stochastic resetting in the case of a
particle undergoing run and tumble dynamics in one
dimension, whereby its velocity reverses stochastically, was
studied in Ref. [38], the issue of a stochastic process
undergoing resetting in a manner that following each
resetting, there a random refractory period during which the
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process is quiescent and remains at the resetting position was
studied in Ref. [39]. Reference [40] considered several lattice
random walk models with stochastic resetting to previously
visited sites that are shown to exhibit a phase transition
between an anomalous diffusive regime and a localization
regime in which diffusion is suppressed; The transition is a
result of a single impurity site at which the resetting rate is
lower than on other sites, and around which the walker
spontaneously localizes. Close to criticality, the localization
length is shown to diverge with a critical exponent that falls in
the same class as the self-consistent theory of Anderson
localization of waves in random media. The distribution of
additive functions of Brownian motion subject to stochastic
resets was investigated in Ref. [41], while the well-known Ising
model with stochastic resetting was addressed in Ref. [42].
Reference [43] is an experimental exploration of the optimal
mean time for a free diffusing Brownian particle to reach a target
in presence of resetting, while Ref. [44] analysed the non-
equilibrium steady states and first-passage properties attained
with a Brownian particle in an external confining potential that is
switched on and off stochastically, and Ref. [45] computed the
mean perimeter and the mean area of the convex hull of a two-
dimensional isotropic Brownian motion in the presence of
resetting.

Reference [46] studied the stationary state attained with a
Brownian particle diffusing in an arbitrary potential and subject
to stochastic resetting, Ref. [47] considered a Brownian particle
diffusing in presence of time-dependent stochastic resetting,
whereby the rate of resetting is a function of the time elapsed
since the last reset event, Ref. [48] is devoted to developing a
general approach to treat theoretically first passage under
stochastic resetting, while its extension to also include
branching was considered in Ref. [49]. Reference [50]
investigated the dynamics of a Brownian particle diffusing in a
one-dimensional interval with absorbing end points, Ref. [51]
studied local time for a Brownian particle in presence of
stochastic resetting: Given a Brownian trajectory, the local
time is the time the trajectory spends in a vicinity of its initial
position. A Landau-like theory to study phase transitions in
resetting systems was developed in Ref. [52], while stochastic
resetting in the context of the many-particle system of symmetric
exclusion process was studied in Ref. [53]. Reference [54]
considered diffusion with stochastic resetting in which the
diffusing particle resets to the resetting location with a finite
speed. Reference [55] took into account the fact that getting from
place to place takes time, with places further away taking more
time to be reached, in extending the theory of stochastic resetting
to account for this inherent spatio-temporal coupling, while Ref.
[56] reported on experimental realization of colloidal particle
undergoing diffusion and resetting via holographic optical
tweezers, Ref. [57] proposed a method of resetting in the
context of a Brownian particle, whereby non-instantaneous
returns are facilitated by an external confining trap potential
centered at the resetting location. Reference [58] studied
stochastic resetting in the context of the time that it takes to
reach a stable equilibrium point in the basin of attraction of a
dynamical system. Reference [59] studied an overdamped

Brownian particle subject to stochastic resetting in one
dimension in which the particle undergoes a finite-time
resetting process facilitated by an external linear potential,
while Ref. [60] investigated first-passage properties in the
context of one-dimensional confined lattice random walks.

Reference [61] studied the case of stochastic search process in
one, two, and three dimensions in which N diffusing searchers
that all start at the same location search, with each searcher also
resetting to its starting point, Refs. [62, 63] considered first-
passage resetting, whereby the resetting of a random walk to a
fixed position gets triggered by the first-passage event of the walk
itself. Reference [64] studied the dynamics of predator-prey
systems, whereby preys are confined to a region of space and
predators move randomly according to a power-law dispersal
kernel, and additionally, there is stochastic resetting of the
predators to the prey patch, while the dynamics of random
walks on arbitrary networks with stochastic resetting to the
initial position was analysed in Ref. [65], and the case of
resetting to multiple nodes was considered in Ref. [66].
Reference [67] investigated the effects of resetting on the
reaction time between a Brownian particle and a stochastically-
gated target. Reference [68] studied stochastic multiplicative
process with reset events, Ref. [69] analyses large deviations of a
ratio observable in discrete-time reset processes. where the ratio has
the form of a current divided by the number of reset steps, Ref. [70]
studied diffusive motion in presence of stochastic resetting of a test
particle in a two-dimensional comb structure consisting of a main
backbone channel with continuously-distributed side branches,
Ref. [71] considered the Brownian motion with stochastic
resetting of a particle in a bounded circular two-dimensional
domain while searching for a stationary target on the boundary
of the domain, Ref. [72] studied resetting in the context of the
Sisyphus random walk, an infinite Markov chain whose dynamics
is such that at every clock tick, the process can move rightward (or
upward) one step or return to the initial state. A unified renewal
approach to the problem of random search for several targets under
resetting was developed in Ref. [73], while Ref. [74] considered a
generalization of the basic set-up of stochastic resetting to the origin
by a diffusing particle, whereby the diffusing particle may be only
partially reset towards the trajectory origin or even overshoot the
origin in a resetting step. Reference [75] studied stochastic resetting
in the framework of the monotonic continuous-time randomwalks
with a constant drift. In Ref. [76], for stochastic resetting of a
random-walk process, a general perspective through derivation and
analysis of mesoscopic (continuous-time random walk) equations
for both jump and velocity models with stochastic resetting was
offered. Reference [77] explored within the context of resetting the
possibility of observing an interesting dynamics, including phase
transitions for the minimization of the MFPT, for random walks
with exponentially-distributed flights of constant speed, Ref. [78]
studied the effects of a stochastic resetting within the ambit of the
exactly solvable one-dimensional coagulation-diffusion process,
Ref. [79] studied the effects of resetting on random processes
that follow the so-called telegrapher’s equation. Reference [80]
explored first-passage properties resulting from an interplay of
stochastic resetting with trapping due to an external potential, in
the framework of a diffusing particle in a one-dimensional trapping
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potential, while Ref. [81] studied how active transport processes in
living cells can be modelled by using the framework of a directed
search process with stochastic resetting and delays.

The concept of stochastic resetting has been invoked over the
years in many different fields, from biology and ecology to
computer science and psychology, to name a few. Resetting
finds applications in discussing search algorithms in computer
science, e.g., in discussing return to shallow points in a search tree
by backtracking methods [82], and in addressing randomized
search algorithms for hard combinatorial problems [83]; in the
field of psychology, e.g., to discuss pattern learning and
recognition [84], and to optimize visual search [85]; in the
field of quantitative finance, e.g., in discussing reset options
whereby the strike price of the option is reset periodically over
the option’s lifetime, to bring out-of-the-money options back to
being at the money [86], and in deriving a valuation equation for
a European-style bear market warrant with a single reset date
[87]; in biology, e.g., in considerations of a stochastic biophysical
model for the motion of RNA polymerases during transcriptional
pauses [88], and in the context of protein searching and
recognition of targets on DNA [89]; in ecology, e.g., in
addressing relocation of animals to already visited places [90],
and in movement ecology [91].

SUMMARY AND CONCLUSION

Diffusion with stochastic resetting has been extensively studied in
recent times, and Ref. [2] is considered a landmark contribution
in recent times in the arena of nonequilibrium statistical physics,
which has really ushered in a new beginning in studies of
stochastic processes. While ours is a very brief review, with
the contributions of one of the authors of the current article

being Refs. [4, 92–95], we refer the reader to the recent exhaustive
review [28] to get a broader view of this exciting topic of research.
We hope that the current contribution will serve as an invitation
to young minds to delve into the fascinating and exciting world of
stochastic processes in general and stochastic resetting in
particular.
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APPENDIX: DISCRETIZATION OF
GAUSSIAN, WHITE NOISE

Here, we discuss discrete-time representation of the noise η(t)
appearing in Eq. 1. To this end, we discretize time in small steps
of length 0 < Δt≪ 1, so that the ith time step is ti = iΔt, with i ∈ Z.
For an arbitrary function f(t) of continuous time, one may write
by using the definition of the Kronecker delta that the
corresponding discrete-time representation is

fi ≡ f ti( ) � ∑∞
j�−∞

fj δi,j � ∑∞
j�−∞

Δt fj
δi,j
Δt . (65)

Then, in the limit Δt→ 0, identifying ∑∞
j�−∞Δt ≡ ∫∞−∞ dt′, and

with fj = f(t′), fi = f(t), we obtain from Eq. 65 that

f t( ) � ∫∞

−∞
dt′ lim

Δt→0

δi,j
Δt[ ]f t′( ). (66)

From the definition of the Dirac delta function, one has
f(t) � ∫∞−∞ dt′ δ(t − t′) f(t′). Hence, Eq. 66 implies that

δ t − t′( ) � lim
Δτ→0

δi,j
Δt . (67)

On the basis of the above, we may write using Eq. 2 the
following properties for the noise in discrete times:

〈ηi〉 � 0 , 〈ηiηj〉 � 2D
Δtδi,j ; i, j ∈ Z, (68)

with the understanding that the discrete-time representation of
η(t) is ηi ≡ η(ti). In particular, we have 〈η(0)〉 = 0 and 〈η2(0)〉 =
2D/Δt, the properties we use in the main text preceding Eq. 19.
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