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Stochastic resonance driven by time-modulated correlated white noise sources

Claudio J. Tessone,1,* Horacio S. Wio,1,† and Peter Ha¨nggi2,‡
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We analyze the effects caused by the simultaneous presence of correlated additive and multiplicative noises
for stochastic resonance. Besides the standard potential modulation we also consider a time-periodic variation
of the correlation between the two noise sources. As a foremost result we find that stochastic resonance, as
characterized by the signal-to-noise ratio and the spectral amplification, becomes characteristically broadened.
The broadening can be controlled by varying the relative phase shift between the two types of modulation
force.
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I. INTRODUCTION

There is evidence from many recent theoretical and
perimental studies that fluctuations are essential and pl
constructive role in a variety of intriguing noise-induce
phenomena. Some key examples are problems related to
organization and dissipative structures@1,2#, noise-induced
transitions@3#, noise-inducedphasetransitions@4#, thermal
ratchetsor Brownian motors@5#, combinations of the latte
two phenomena@6#, noise sustained patterns@7#, and sto-
chastic resonance in zero-dimensional and spatially exten
systems@8,9#.

The last phenomenon, that is,stochastic resonance~SR!,
has attracted considerable interest in the last decade
among other aspects, to its potential technological appl
tions for optimizing the transmission of information such
the output signal-to-noise ratio~SNR! and amplification fac-
tor (h) in nonlinear dynamical systems. The phenomen
shows the counterintuitive role played by noise in nonlin
systems as it harnesses the fluctuations to enhance the o
response of a system subjected to a weak external sig
There is a wealth of papers, conference proceedings,
reviews on this subject; for a comprehensive recent rev
see Ref.@9#, showing the large number of applications
science and technology, ranging from paleoclimatology
electronic circuits, lasers, and noise-induced informat
flow in sensory neurons in living systems, to name a few

Several recent papers have aimed at achieving an
hancement of the system response~that is, obtaining a large
output SNR! by means of the coupling of several SR un
@10–14# in what forms an ‘‘extended medium’’@15#. Yet
another aspect that has attracted interest is the constru
of systems or arrangements where the SNR becomes m
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independent of external parameters such as the noise in
sity ~SR without tuning! @12,16#.

In this work we focus on the latter aspect. For this w
study a bistable system which is subject to both an addi
and a multiplicative noise source but—at variance with
work in Ref. @17#—we consider the case when both noi
sources arecorrelated. In addition to the modulation of the
bistable potential by a weak external signal, we consider
this very correlation between both noises is modulated
well. We have found that this extra noise correlation contr
utes to a remarkable widening of the SNR’s maximum a
function of the additive noise intensity, making the detecti
of the signal less sensitive to the actual value of that noise
previous preliminary work@19# we analyzed the case whe
both modulation frequencies are equal; here we extend
study to the most general case; i.e., when~i! both frequencies
are equal and possess either zero or a finite relative p
shift fÞ0, or ~ii ! there are different driving frequencies. W
have also done numerical simulations and have consid
the evaluation of not only the SNR, but also another char
terization of the SR phenomenon that relates SR to stocha
synchronization, namely, the spectral amplification fac
@18#. It is worth remarking here that the additive~external!
noise can be assumed to be white, while the~internal! mul-
tiplicative noise source generally involves time scales ch
acteristic of the system; therefore it is generally far fro
being white. However, as discussed previously in@20#, as a
first step we can approximate the multiplicative color
noise by a white one.

The organization of the paper is as follows. In the ne
section we set up the model. In Sec. III we present the res
for the case of unequal modulation frequencies, while S
IV contains the case of equal frequencies with both a z
and a finite relative phase shift. In Sec. V we present
results of our numerical simulations while in Sec. VI w
discuss the spectral amplification factor. The last sect
contains the final discussion and some conclusions.

II. THEORETICAL APPROACH

The model system we consider here corresponds to
overdamped bistable system described by the Lange

s:
4623 ©2000 The American Physical Society
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equation~written in properly scaled, dimensionless variable
see@9#!

ẋ5«~ t !1x2x31j«~ t !1xjr~ t !, ~1!

where«(t)5«0 cos(V«t), and «0 and V« are, respectively,
the intensity and frequency of the dipole-type poten
modulation2x«(t). The additive and multiplicative Gauss
ian white noise sources, indicated byj«(t) andjr(t), respec-
tively, obey

^j i~ t !&50, i 51,2,

^j«~ t !j«~ t8!&52D«d~ t2t8!,
~2!

^jr~ t !jr~ t8!&52Drd~ t2t8!,

^j«~ t !jr~ t8!&52AD«Drr~ t !d~ t2t8!.

The strength of the correlation between the two noise
measured by the parameterr(t), fulfilling the condition
ur(t)u<1. The associated Fokker-Planck equation~in the
Stratonovich prescription! reads@21–23#

] tP~x,t !52]x$@x2x31Drx1r~ t !ADrD«2«~ t !#P~x,t !%

1D«]x
2$@11Rx212r~ t !AR#P~x,t !%. ~3!

Here we have definedR5Dr /D« . In what follows we as-
sume thatr is a time dependent periodic function of the for
r(t)5r0cos(Vrt1f), wheref is an arbitrary but fixed rela
tive phase. In previous work@19# we studied the case wher
Vr5V« . We shall shortly review this situation but wi
mainly elaborate on the most general case withVrÞV« .

In order to evaluate the correlation function and thepower
spectral density~PSD! to obtain the SNR, we exploit the
results of the two-state approach@9,24,25#. The problem of
obtaining the SNR of a nonlinear and essentially bista
symmetric system subject to a weak periodic signal is t
reduced to a description where the transitions occur betw
the two minima of the deterministic potential. Besides us
linear response theory the main approximation involves
adiabatic approximation in the sense that the relaxation t
around each minimum is much shorter than the character
time for transitions between the two stable states and
corresponding slow driving periods.

In the absence of any signal, the deterministic potentia
the system has two minima located at the pointsx6561.
Let n6(t) be the populations in each state, defined
n1(t)5*0

1`P(x,t)dx, and n2(t)512n1(t), respectively.
It has been shown that these minima do not coincide with
maxima of the steady state probability distribution@26#.
However, ifr(t)ADrD« is sufficiently small it is justified to
neglect this fact.

To apply the two-state approach, let us introduceW1(t)
andW2(t), these being the~adiabatic! nonstationary transi-
tion rates from the statex1 to x2 and from the statex2 to
x1 , respectively. Then we can write the followingmaster
equationfor the probability distribution:

dn2

dt
52

dn1

dt
5W1~ t !n12W2~ t !n2 . ~4!
;
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The reduction from a bistable continuous system, wh
probability density evolves through a Fokker-Planck eq
tion, to a discrete system driven by a master equation suc
Eq. ~4! is well known @27#. To evaluate the statistical mo
ments within such an approximation, the probability dens
has the formp(x,t)5n1(t)d(x2x1)1n2(t)d(x2x2).

Usually, the time dependence ofW6 is such that the exac
solution for Eq. ~4! cannot be found. If, however, bot
modulations are small compared with the barrier height, i
r0ADrD«!V(0)2V(61) and «0!V(0)2V(61), then it
is possible to make a Taylor expansion of the functio
W6(t) aroundr05«050. We thus obtain within linear re
sponse theory the result

W6~ t !5W01
dW6

d« U
r05«050

«~ t !1
dW6

dr U
r05«050

r~ t !

1O~«0
2!1O~r0

2!1•••, ~5!

where W0 is the transition rate evaluated in absence
modulation (r05«050). The latter may be calculated b
means of the mean first-passage timeT(R,r0 ,«0) @20#, yield-
ing

1

W0
5T~R!ur05«050

5
1

DE
21

1

dxH~x!exp@F~x!/D#

3E
2`

x

dyH~y!exp@2F~y!/D# ~6!

with the functionH(x)[@11Rx212r(t)ARx#21/2. The de-
termination of the effective potentialF(x) is from the adia-
batic asymptotic~nonstationary! probability density; yielding

F~x!5E
2`

x

H~x8!2@x82x831«~ t !12r~ t !ADrD«#dx8.

For the chosen sinusoidal form of the modulations
expansion has the explicit form

W6~ t !5 1
2 @W07a« cos~V«t !7ar cos~Vrt1f!

1O~«0
2!1O~r0

2!1•••#, ~7!

The factorsar anda« are given by

a«

2
52

dW6

d« U
r05«050

«0 and
a«

2
52

dW6

dr U
r05«050

r0;

~8!

with

dW6~R!

d«
52

1

T~R!2

dT~R!

d«
, ~9!

dW6~R!

dr
52

1

T~R!2

dT~R!

dr
. ~10!
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After a somewhat cumbersome calculation for the deri
tives of T(R) we end up with

D«
2 dT

d« U
r,«50

52E
21

1

dxH~x!exp@F~x!/D«#

3S H~x!2xE
21

x

dyH~y!exp@2F~y!/D«#

1E
21

x

dyH~y!exp@2F~y!/D«#

3E
21

y

dzH~z!2zD ~11!

for the contribution of the potential modulation. The corr
sponding contribution of the correlation modulation is

D«
2

ADrD«

dT
dr
U

r,«50

52E
21

1

dxH~x!exp@F~x!/D«#3H H~x!2xF12H~x!

1H~x!2x2S x2

2
21D G E

21

x

dyH~y!exp@2F~y!/D«#

2
1

D«
E

21

x

dyH~y!3y exp@2F~y!/D«#

3F11H~y!1H~y!2y2S y2

2
21D G J . ~12!

It is also important to note here that, if the modulation
made around a valuer0Þ0, it becomes necessary to exte
the two-state approach in order to take into account the
of symmetry of the potential@28#.

In order to simplify the notation, let us defineY«(t) and
Yr(t) as

Y«~ t !5a«

«~ t !

AWo
21V«

2
, Yr~ t !5ar

r~ t !

AWo
21Vr

2
. ~13!

Integrating Eq.~4! up to first order in the variablesr0 and
«0, we obtain

n1~ tux0 ,t0!512Y«~ t !2Yr~ t !1e2Wout2t0u

3@Y«~ t0!1Yr~ t0!12dx0121#, ~14!

where n1(tux0 ,t0) is the conditional probability thatx(t)
5x1 , given thatx(t0)5x0. The funtiondx01 is equal to 1 if

the particle is initially located atx1 and 0 otherwise, and
similarly for n2(tux0 ,t0).

From Eq.~14!, all the moments of the distributionp(x,t)
may be determined and the conditioned autocorrelation fu
tion, averaged over noisê&, and uniformly over timê & t ,
reads
-

-

k

c-

K~t,t0!5^x~ t !x~ t1t!ux0 ,t0& t

ª

1

TE0

T

^x~ t !x~ t1t!ux0 ,t0ux0 ,t0&dt

5e2Woutu2e2WoutuY«~ t0!22e2WoutuYr~ t0!2

22e2WoutuY«~ t0!Yr~ t0!1Y«~ t0!Y«~ t01t!

1Yr~ t0!Yr~ t01t!1Yr~ t0!Y«~ t01t!

1Y«~ t0!Yr~ t01t!. ~15!

In Eq. ~15! it is possible to see that the autocorrelation fun
tion depends explicitly on the modulation frequenciesV«

andVr , as well as ont0. Here,t0 represents the time whe
the output PSD of a system is measured and the data ac
sition begins. The PSDS(V), is the time-averaged Fourie
transform~over the time spanT) of the autocorrelation func-
tion K(t,t0),

^S~V!& t5
1

2p K E
2`

`

K~t,t0!exp iVtdtL
t0

ª

1

TE0

T

S~V,t !dt. ~16!

By means of the two-state approach, using Eq.~15! and Eq.
~16!, the general expression for the PSD is

S~V!5S 2Wo

Wo
21V2D S 12

a«
2«0

2

2~Wo
21V«

2!
2

ar
2r0

2

2~Wo
21Vr

2!
D

1
pa«

2«0
2

2~Wo
21V«

2!
@d~V2V«!1d~V1V«!#

1
par

2r0
2

2~Wo
21Vr

2!
@d~V2Vr!1d~V1Vr!#

1dV«2Vr

p

2 S 2arr0a««0 cos~f!

~Wo
21V«

2!
D

3@d~V2V«!1d~V1V«!#, ~17!

wheredx51 if x50 and 0 otherwise.
Hence, we can distinguish between two distinct cases

cording to the relation between the frequencies, i.e.,~i! dif-
ferent frequencies and~ii ! equal frequencies.

To determine the output SNR, denoted byR, we use the
standard definition

R510 log10
S EV2D

V1D

S~v!dv

Sn~v5V!
D . ~18!

HereSn is the PSD in absence of the signal. The parame
D is introduced in order to tune the theoretical result whe
is compared with a numerical simulation or an experime
Such a parameter is related to the bandwidth of samp
frequencies.
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III. DIFFERENT MODULATION FREQUENCIES

In spite of the result being the same, when the frequen
are unequal the calculations differ slightly depending
whether the ratio between driving frequencies is rationa
irrational. This difference in the calculation procedure aris
due to the evaluation ofT. If the ratio between the modula
tion frequencies is a rational number, that is,V« /Vr5q/p,
with q,pPN, thenT52pq/V«52pp/Vr , while when the
ratio is an irrational numberT increases without limit (T
→`). However, as we have already remarked, the final
sult remains the same, and using Eq.~16! the PSD emerges
as

S~V!5S 2Wo

Wo
21V2D S 12

a«
2«0

2

2~Wo
21V«

2!
2

ar
2r0

2

2~Wo
21Vr

2!
D

1
pa«

2«0
2

2~Wo
21V«

2!
@d~V2V«!1d~V1V«!#

1
par

2r0
2

2~Wo
21Vr

2!
@d~V2Vr!1d~V1Vr!#. ~19!

Introducing an arbitrary phase shift between the sign
leads to the same result, namely, the appearance of twodis-
tinct SR effects, each one due to a different modulation.
in the case when only one parameter is modulated
Lorentzian-like dependence arises in the output PSD du
the noisy dynamics of the system. The signals are amplifi
yielding d functions at the modulation frequencies. This is
counterintuitive result since~as is already known! SR is a
consequence of the nonlinearity of the system. In spite of
latter fact, it is apparent that the indicated effect on SR
pears via two separate—linearly superimposed—events, sug
gesting that there is no cooperative effect between the
modulations, no matter how similar they are. One mig
think that this fact is due to the linear response approxim
tion we have used within the two-state approach and to
fact that the modulation amplitude we used is very sm
Indeed, the numerical simulations support this result, as
be shown later.

The expressions for each independent contribution to
are

R«510 log10Fp2a«
2«0

2

WoD S 12
a«

2«0
2

2~Wo
21V«

2!

2
ar

2r0
2

2~Wo
21Vr

2!
D 21G , ~20!

Rr510 log10Fp2ar
2r0

2

WoD S 12
ar

2r0
2

2~Wo
21Vr

2!

2
a«

2«0
2

2~Wo
21V«

2!
D 21G . ~21!

Of particular interest is the case in which there is a sin
modulation of either«(t) or r(t). For instance, in Fig. 1 we
depict the SNR when only the potential is modulated, a
es
n
r
s

-

ls

s
a
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R

e

a

function of D« andDr . It is apparent that the SR phenom
enon disappears for large noise intensities. Indeed, if
multiplicative noiseDr is kept constant, andD« is increased,
the SNR starts from a small value, increases reachin
maximum ~for an additive noise intensityD«;1021), and
afterwards decreases. It is also possible to see that ifDr

becomes large enough (Dr;10) the phenomenon of SR
vanishes. In the opposite limit,Dr→0, we recover the well
known SR with an additive noise only, and in this caseR
reaches its maximum.

From Fig. 1, and for fixedDr , we can see that it is pos
sible to associate a characteristic width to the SNR as a fu
tion of D« . This width indicates the range of values of a
ditive noise intensitiesD« where the SR phenomenon
more apparent. As indicated in the Introduction, it is of i
terest to widen this range as much as possible because th
will be possible to find a great insensitivity to external p
rameters, such as the additive noise intensityD« . As shown
in Fig. 1, the maximum of the SNR is lower for largeDr

intensities, while its width increases.
In Fig. 2,R is depicted as a function ofD« andDr when

the signal is introduced only through a modulation on t
correlation. In this case, the SR phenomenon exhibits a m
localized behavior in (D« ,Dr) parameter space. In fact, th
effect vanishes not only when the additive noise intens
approaches infinity~i.e., D«→1`) or zero ~i.e., D«→0),
but also whenDr→1` or Dr→0.

This aspect of the phenomenon is explained through
Fokker-Planck equation@Eq. ~3!#. Both signals enter tha
equation as contributions to the convective term. Therefo
the potential modulation contributes as«(t), while the cor-
relation modulation contributes asr(t)ADrD«. Then ~if «0
50), the signal disappears only if at least one of the no
intensities is zero.

In Fig. 2 we also show the curvesR(D«), for different
values ofDr . Here it is apparent that the characteristic wid
of SNR is modified when the multiplicative noise intensity

FIG. 1. We show the SNR (R«) as a function of the additive
and multiplicative noise intensitiesD« andDr , when only the po-
tential is modulated. We fixed«050.05 andV«50.008. In the lim-
iting caseDr→0, the usual SR phenomenon is recovered. It is e
to see that, whenDr;1021, the typical width of SR increase
greatly.
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varied. We may note that, depending on this intensity,
width of R may change by nearly three orders of magnitu
In spite of this, as the width of the SNR grows, its maximu
falls.

It is worthwhile remarking that the functional dependen
on the modulation frequency is small. When the modulat
is applied simultaneously for«(t) and r(t), all the results
shown thus far remain robust. This fact is due to theunex-
pectedlinear superposition of both modulation effects.

IV. EQUAL MODULATION FREQUENCIES

When both driving frequencies are equal (V«5Vr) we
can distinguish two possibilities: the signals possess eith
zero or a finite relative phase shiftf. The general form for
the modulations is

r~ t !5r0 cos~V«t1f!,

«~ t !5«0 cos~V«t !,

with the period beingT52p/V« . The PSD is given by

S~V!5S 2Wo

Wo
21V2D

3S 12
a«

2«0
21ar

2r0
212a««0arr0 cos~f!

2~Wo
21V«

2!
D

1
p

2 S a«
2«0

21ar
2r0

212a««0arr0 cos~f!

~Wo
21V«

2!
D

3@d~V2V«!1d~V1V«!#. ~22!

and the output SNR reads

FIG. 2. In this three-dimensional plot we show the output SN
(Rr) as a function ofD« and Dr . Here, only the correlation pa
rameter is modulated; thus,r050.08 andVr50.008. The SR phe-
nomenon diminishes when both noises disappear or incr
enough, at variance with the previous case.
e
.

n

a

R510 log10Fp@a«
2«0

21ar
2r0

212a««0arr0 cos~f!#

DWo

3S 12
a«

2«0
21ar

2r0
212a««0arr0 cos~f!

2~Wo
21V«

2!
D 21G .

~23!

A. Signals with zero relative phase shift

From Eq. ~22!, the corresponding expression forf50
emerges as

S~V!5S 2Wo

Wo
21V2D S 12

~a««01arr0!2

2~Wo
21V«

2!
D

1
p

2 S ~a««01arr0!2

~Wo
21V«

2!
D @d~V2V«!1d~V1V«!#.

~24!

From this expression, we note that the two SR phenom
associated with each separate modulation become indi
guishable: the system behaves as if only one signal acte
it. The expression for the SNR thus reads

R510 log10Fp2~a««01arr0!2

WoD S 12
~a««01arr0!2

2~Wo
21V«

2!
D 21G .

~25!

To simplify notation, we shall call the output PSD due to t
potential modulationS« , while the output PSD due to modu
lation of the correlation will be indicated asSr .

When there is no relative shift between the signals,
two SR phenomena are linearly superimposed. This is a q
interesting fact because~as indicated above! the SR peak is
wider when the correlation is modulated than when there
only a modulation of the potential. Thus, by modulating bo
parameters simultaneously, the total SR effect may achie
greater independence relative to the~external! additive noise
intensityD« .

In Fig. 3 we show SNR surfaces in (D« ,Dr) parameter
space when both modulations are simultaneously pres
with the same driving frequency and withf50. It is appar-
ent that~keeping the noise intensityDr constant! we obtain a
widening of the SNR function. This effect is larger if th
phenomena due to both modulations are of similar am
tude. Indeed, ifS«@Sr , the characteristic peak in the SN
function is approximately the same as that obtained if
signal is injected through the potential. In the opposite ca
Sr@S« , the effect is more dependent on the noise inten
ties.

If Sr>S« , a ~very! considerable widening of the SNR
function is found. It is seen that for multiplicative noise in
tensities around 0.8 the characteristic peak ofR increases its
width up to three orders of magnitude in comparison with
case of modulation of the potential.

When the two signals have a phase shift off5p we find
a different behavior. The linear superposition of the sign
then weakens the total SR phenomenon. An interesting

se
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pect is that, for specially chosen modulation intensities,
SR exhibitstwo peaks vsD« , instead of the usual situatio
with only one peak.

B. Signals with a finite relative phase shift

The second case is when there is a finite relative ph
shift f between the signals. We will consider only the ca
f5p/2. The PSD becomes

S~V!5S 2Wo

Wo
21V2D S 12

a«
2«0

21ar
2r0

2

2~Wo
21V«

2!
D

1
p

2 S ~a«
2«0

21ar
2r0

2!

~Wo
21V«

2!
D @d~V2V«!1d~V1V«!#,

~26!

i.e., the PSD splits into two separate contributions. In t
case, thepowersof both signals are added, at variance w
the previous case in which themodulationswere added. This
is due to the fact that the two signals are orthogonal~in
Fourier space!. The SNR is given by

R510 log10S p2
a«

2«0
21ar

2r0
2

WoD F12
a«

2«0
21ar

2r0
2

2~Wo
21V«

2!
G21D .

~27!

It is also worth remarking thatR is independent of the sign
of the amplitudes«0 , r0, unlike in the case withf50, @see
Eq. ~25!#.

V. NUMERICAL SIMULATIONS

In order to verify our analytic predictions of the previou
section, Eq.~1! was numerically integrated. We have us

FIG. 3. Here we show the SNR (R) in (D« ,Dr) space. We
have fixed«050.05,r050.08,V«5Vr50.005, andf50. A con-
tribution between the two phenomena depicted in the previous
ures is apparent.
e

se
e

s

the Runge-Kutta-Helfand@29# method for solving stochastic
differential equations. Such a method is fast enough, an
higher order in the integration steph @in fact O(h3) @30##.
The integration gives a trajectory whose statistical mome
are the same as those for the formal solution of the equa

When modulating the correlation parameter, the same
namical behavior as that obtained with a potential modu
tion was observed. This phenomenon has been previo
studied in Ref.@17#. By means of numerical simulations, w
verified the existence of SR when a modulation is appl
only over the correlation parameter between the two nois

A prediction of our approach is that, when both para
eters are modulated with different driving frequencies,
two contributions seem to appear independently from e
other. However, as indicated previously, this counterintuit
result is due to the linear response simplifications ma
within the two-state approach. In Figs. 4~a! through 4~d!, we
depict the PSDS(V) obtained from numerical experiment
where the independent contributions from the two sepa
effects are apparent. Clearly, this is due to the smallnes
the modulation amplitudes, and for larger values of«0 and
r0 we do find not only peaks corresponding to the harmon
but also those associated with the sum or difference of
two frequencies.

When both frequencies are equal, with zero relative ph
shift between the signals, a net contribution due to the t
signals arises with an enhanced SR effect. In Fig. 4~e! we
depict the case when both frequencies are equal and
f50. Finally, Fig. 4~f! allows us to verify another featur
predicted by the two-state approach: when the modula
frequencies are equal, but withf5p, a weakening in the
output spike atV5V«5Vr indeed occurs.

The characterization of the SR phenomenon given by
output SNRR, is depicted in Fig. 5. In part~a! of this figure
we compareR versus the additive noise intensityD« when
there is a modulation«(t). In contrast, in Fig. 5~b! we show
R when the correlationr(t) is varied periodically. Although
the functional dependence onD« looks the same in both
plots, it is important to remark that the characteristic width
each of the two cases is quite different. When a modulat
is simultaneously applied in both parameters~with f50),
we can expect that the effects reinforce each other. Fig
5~c! shows the existence of such behavior corroborating
SNR dependence as a function of the additive noise inten
D« for fixed Dr .

Lastly, Fig. 6 shows the dependence of the output SNR
multiplicative noise intensity. Note that the functionR(Dr)
increases for smallDr intensities and assumes a maximum
Dr;0.2. Thus, we can conclude that in the presence o
correlation modulation SR can become enhanced thro
correlated (rÞ0) multiplicative noise.

In order to analyze the possibility of using the simult
neous modulation of potential and correlation as a way
controlling SR@32#, it is important to study the behavior o
the SNR as a function of the relative phase shiftf when both
modulation frequencies are equal. The numerical results
given in Fig. 7, and as predicted by the two-state appro
the maximum in SNR occurs whenf50.

g-
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FIG. 4. We show the output PSD of the system when both amplitudes are different from zero. In all the plots,D«50.1, Dr50.1, «0

50.04, V«52.531023, andr050.06. In the plots~a! through~e! there is no relative phase shift between the signals (f50), while in ~f!
f5p. The values of the frequency modulation of the correlation parameter are~a! Vr52.031023, ~b! Vr52.331023, ~c! Vr52.4
31023, ~d! Vr52.931023, ~e! and ~f! Vr52.531023.
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VI. SPECTRAL AMPLIFICATION FACTOR

The previous results, based on the two-state approach
not contain the whole dynamics. Furthermore, they are
stricted to an adiabatic regime and to small modulation a
plitudes. This fact motivated researchers to propose o
characterizations of the SR phenomenon. A particularly
teresting point of view was proposed in Ref.@18#, exploiting
a Floquet expansion for the steady state solution of the a
ciated~nonstationary! Fokker-Planck equation@see Eq.~3!#.
For large times, and independently of the initial distributi
P(x,t0), the Fokker-Planck equation tends asymptotically
a periodic functionPas(x,t). This asymptotic solution may
be expanded into Floquet states: a basis of time-depend
periodic eigenfunctions of such an equation. The same
proach can be used with the asymptotic expression of
autocorrelation function. For such an expansion to be p
sible, a common characteristic frequency~which we denote
V̄) must exist in the system so that the function can
written as an expansion in its higher harmonics,

K̄as~t!5 (
n52`

`

uMnu2 exp~ inV̄t!52(
n50

`

uMnu2 cos~nV̄t!.

~28!
do
-
-

er
-

o-

o

nt,
p-
e

s-

e

Projecting this expression on the first harmonic of the ser
we obtain

E
0

1`

K̄as~t!cos~V̄«t!dt52puM1u2. ~29!

This expression will be used to evaluateuM1u2. Hence we
obtain

P154puM1u2, ~30!

while the total power at the input@by inspection of the
Fokker-Planck equation~3!# is

Pin5p~«01r0AD«Dr!2. ~31!

The spectral amplification factor~SAF! h is defined as

h~V̄,D« ,Dr ,«0 ,r0!5
P1

Pin

54S uM1u

«01r0AD« Dr

D 2

.

~32!

This SAF is an indicator for the SR phenomenon@18#, indi-
cating to what extent the signal is able to entrain the no
~stochastic synchronization!.
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In order to verify the results obtained by means of t
output SNR for the system under study, we have also ev
ated this SAFh. The numerical results can be obtained by
discrete version of the asymptotic autocorrelation funct
from Eq. ~29!. We restrict our analysis to the case when t
two modulation frequencies are equal. For this reason,
consider in the present section only the case withf50.

In Fig. 8 we depict the results forh as a function ofD«

when the potential@case~a!# and the noise correlation@case
~b!# are modulated. Once again, the characteristic width

FIG. 6. SNR as a function of multiplicative noise intensit
when modulating the potential («050.04) and the noise correlatio
parameterr(t) (r050.02). The remaining parameters areD«

50.1, V«5Vr52.531023, andf50. In this plot we see that the
output SNR may grow even with increasing multiplicative no
intensity. The numerical result~squares! is in good agreement with
the two-state theory~lines!.

FIG. 5. SNR vsD« when modulating both parameters with th
same driving frequencyV«5Vr52.531023, and with relative
phase shiftf50. In the three plots, we compare the theoreti
predictions~lines! with the numerical simulations~filled squares!.
In plot ~a!, the multiplicative noise intensity isDr50.1, and only
the potential is modulated:«050.06. In plot~b! there is modulation
only over the correlation parameter,Dr50.1, r050.03. Finally,
plot ~c! shows the case in which there is a signal injected thro
both parameters. In this figure,Dr50.8 «050.05, r050.07, and
f50. It is important to remark here that we used a different sc
in case~c! due to the large widening obtained in the SR pe
compared with the ones obtained in plots~a! and ~b!.
u-

n
e
e

f

the numerically evaluated SR phenomenon becomes br
ened when we haver0Þ0 as compared to the caser050.
However, we observed that the functional shape ofuM1u2

remains numerically~mostly! unaffected by the value of the
modulating strength. Thus, the observed widening is due
the fact thath depends inversely on the productDrD« .
Hence, whenD«→0, uM1u2 increases more when modula
ing the correlationr(t) than when modulating«(t). Finally,
Fig. 8~c! shows theh factor when both parameters are mod
lated simultaneously. It corroborates our previous result,
its width is notably larger than in the case of Fig. 8~a!. As
was observed in the SNR results, this yields a higher ma
mum in the SR indicator~in this caseh).

FIG. 8. Behavior of the spectral amplification factor. In~a!, only
the bistable potential is modulated, i.e.,r(t)50 and«050.05. In
~b!, the correlationr(t) is the only modulated parameter (r0

50.04). In this case as in the previous one, the driving frequenc
V05V«52.531023, and the multiplicative noise intensity isDr

50.1. In ~c! we depict the case when both parameters are mo
lated with amplitudes«050.05, r050.7, while Dr50.8, andV«

5Vr52.531023. The scaleD« is enlarged to emphasize visibl
the widening of the SR peak.

l

h

e
,

FIG. 7. Dependence of output SNR on phase shiftf between
the two modulations«(t) and r(t). We have fixedD«50.1, Dr

50.7, «050.05, r050.07, andV«5Vr52.531023. We observe
that the maximum occurs forf50, when no relative phase shif
exists between the signals, while a minimum is assumed fof
5p. As in the previous plots, we compare the numerical res
~black squares! with our theoretical predictions~solid line!.
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VII. CONCLUSIONS

In this work we have studied a bistable symmetric syste
driven by two white Gaussian noise sources that are co
lated: one of them is associated with an additive white no
and the other with a multiplicative white noise. As in oth
systems exhibiting SR, a periodic signal was introduc
through a weak potential modulation. In systems that exh
SR, the phenomenon depends strongly on the tuning o
external ~noise! parameter, which usually cannot be co
trolled. In order to improve this effect we have added a s
ond signal to the system, in the form of a modulation of t
correlation between the two white noises. In this way
obtain a SR effect similar to that when the potential is mo
lated.

Through the two-state approach, the output SNR was
culated as a function of the various parameters of the sys
Numerical simulations of the system under study were c
sistent with all theoretical results, including the evaluation
the SAF, a synchronization measure of the SR in our syst
The results are briefly summarized as follows.

On modulating only the noise correlationr(t) the SR
phenomenon becomes less sensitive to the external add
noise. This is the reason why, when modulatingsimulta-
neouslyboth parameters with signals that have the sa
driving frequency and with a relative phase shift off50,
what we find is a large degree of independence of the ex
nal parameter. As a consequence, by appropriately tuning
~internal! multiplicative noise intensity, the range where t
SR appears~as a function of the external additive noise! can
be extended by almost two orders of magnitude. This as
was found in both the SNR and the spectral amplificat
measure. Unfortunately, such behavior occurs only when
two driving frequencies are equal. It is interesting to no
that, for some multiplicative noise intensities, the SR p
nomenon can increase with increasing multiplicative no
intensityDr .

A fact worth remarking is the prominent prediction o
tained within the two-state approach: when both parame
are modulated with different driving frequencies, the two S
phenomena associated with each driving source can ap
independently of each other. One might think that this co
e
.

,

x

,
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terintuitive result is due to the linear response approximat
we have used within the two-state approach and to the
that the modulation amplitude we used is very small. Inde
the numerical simulations support this view.

Regarding the physical relevance of the present results
Ref. @20# some examples of realistic models showi
bistable behavior plus the possibility of correlated addit
and multiplicative noise sources were discussed. Howeve
those cases the modulation of the correlation does not s
to be at all that simple. A simpler way to physically realiz
the situation we have described here is by means of an e
tronic circuit with two different white noise sources. Nois
sources could be combined in such a way as to produc
third correlated one. Hence, one of the original sources
gether with the engineered one can be used to produce
two correlated noises. In addition, the modulation of th
correlation can be appropiately introduced through the
rameter defining the correlation@31#. Furthermore, using this
method it should be possible to introduce the very idea
scribed here into other experimental situations where mu
plicative and additive noise have been introduced previou

What we intend to point out in this work is the fact th
with an appropriate design it is possible to achieve a rema
able widening of the range of values of the fluctuation p
rameter where the SR phenomenon can be detected. Al
remarkable aspect of our present findings indicates an a
native route of controlling the SR phenomenon along
reasoning put forward in Ref.@32#. We hope that the presen
results can awaken the interest of theoreticians and exp
mentalists in the search for alternative forms of the SR p
nomenon that can produce effects similar to those indica
above and contribute to different ways of controlling t
phenomenon.
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