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Abstract. Stochastic resonance is studied in a one-dimensional array of overdamped bistable oscillators in
the presence of a local subthreshold periodic perturbation. The system can be treated as an ensemble of
pseudospins tending to align parallel which are driven dynamically by an external periodic magnetic field.
The oscillators are subjected to a dynamic white noise as well as to a static topological disorder. The latter
is quantified by the fraction of randomly added long-range connections among ensemble elements. In the
low connectivity regime the system displays an optimal global stochastic resonance response if a small-world
network is formed. In the mean-field regime we explain strong changes in the dynamic disorder strength
provoking a maximal stochastic resonance response via the variation of fraction of long-range connections
by taking into account the ferromagnetic-paramagnetic phase transition of the pseudospins. The system
size analysis shows only quantitative power-law type changes on increasing number of pseudospins.

1 Introduction

Stochastic resonance is one of the most interesting phe-
nomena that have been studied in the relation to the re-
sponse of stochastic nonlinear systems driven by weak ex-
ternal periodic forcing. In particular, the response of the
system exhibits a resonance-like dependence on the noise
intensity. This intriguing and apparently paradoxical phe-
nomenon has led, even after nearly three decades since its
discovery, to a general and prolonged interest (for a com-
prehensive review see [1,2]). Initial works within the con-
text of stochastic resonance have been related to the anal-
ysis of the response of a stochastic overdamped bistable
system [3]. Afterwards, the mechanism of stochastic res-
onance has been widely extended to several other situa-
tions, whereby the most prominent example is excitable
systems (for a comprehensive review see [4]).

A particular interest has been devoted to the
understanding of constructive effects of noise in cou-
pled systems. Seminal investigations were focused on the
stochastic resonance in coupled nonlinear overdamped os-
cillators [5–7]. In this context Neiman et al. [8] provided
a general theory based on linear response theory, which
serves for the explanation of conventional and aperiodic
stochastic resonance in ensembles of stochastic resonators.
Later on, similar systems served for several other reports
about non-trivial effects of noise, such as array-enhanced
stochastic resonance [9–12], system size resonance [13] and
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diversity-induced resonance [14]. Besides bistable systems,
noise-induced phenomena in spatially extended systems
have also been extensively studied in several other set-ups
(for a comprehensive review see [15]). While in the past
the majority of scientific research dealing with the dynam-
ics of spatially extended systems was devoted to the study
of regular networks, recently, the focus has been shifting
towards ensembles characterized with complex interaction
topologies, as constituted by small-world or scale-free net-
works [16,17]. Such networks appear to be excellent for
modelling of interactions among units in complex systems,
since many natural, social, and technological systems can
be described in terms of complex networks, in which ver-
tices represent interacting units and the edges are the in-
teractions among them. Examples range from ecological
networks [18], scientific-collaboration and other social net-
works [19], to biological networks [20–22].

Notably, the influence of heterogeneous interaction
networks on stochastic resonance and other noise-induced
phenomena has already attracted considerable attention
in the last few years, whereby in general advantages of
complex topologies have been emphasized [23,24]. Fur-
thermore, several studies have been devoted to the weakly
driven Ising model studied in the context of stochastic
resonance [25–29]. It was shown that the system’s re-
sponse could exhibit two maxima just above and below
the dynamic phase transition temperature T

(dyn)
c [25–27],

whereby the phenomenon was explained by means of the
time scaling matching condition [26]. Namely, the intrin-
sic time scale is given by the dominant relaxation time
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τr of the system of pseudospins. Thus, at the resonance
condition, τr should match the extrinsic time scale τe

of the external driving field. Because τr diverges at the
critical temperature and decreases as the temperature
is raised or lowered from T

(dyn)
c the presence of double

peaks is expected to appear at temperatures where the
condition τr = τe is fulfilled. Obviously, stochastic reso-
nance need not be observed only in one-dimensional Ising
systems that are characterized with short-range interac-
tions with the first neighbours. In such systems a second
order phase transition does not exist and consequently
the condition τr < τe might be obeyed for all temper-
atures. However, it has been shown that the introduc-
tion of random long-range connections into such ensembles
drives the system towards the mean-field type behaviour
and thus the emerged small-world network structure leads
to the existence of a paramagnetic-ferromagnetic transi-
tion at a finite critical temperature Tc in the thermody-
namic limit [30,31]. In the view of that, Hong et al. [27]
studied the stochastic resonance phenomenon of a driven
Ising model on small-world networks. They revealed that
rewiring in a one-dimensional lattice with local interac-
tions leads to double resonance peaks, as reported previ-
ously for two- and three-dimensional or globally coupled
one-dimensional systems.

A particularly lively study appears to be the appli-
cation of localized pacemaker activity in diverse natural
systems, even though most of the studies thus far were
focused on biological systems [32–34]. Due to the rec-
ognized importance of pacemakers, their functioning has
widely been theoretically investigated in different situa-
tions, including networks with complex interaction topolo-
gies [35,36]. Recently, studies focusing on stochastic reso-
nance, complex interaction networks and localized driving
have emerged, which in general provide evidence that be-
sides an optimal noise intensity, also an optimal network
configuration exists, at which the best global outreach of
the pacemaker is obtained [37–41].

In this paper, we extend previous studies by examining
the stochastic resonance in a system of coupled bistable
oscillators that is locally excited by a weak periodic exter-
nal field. We consider the influence of topological disorder
by tuning the fraction of randomly added long-range con-
nections. A non-trivial behaviour is observed in the region
where the fraction of added long-range connections gives
rise to an interaction network with small-world proper-
ties [42,43]. Moreover, we elucidate the increasing noise
intensity that assures an optimal collective response of
the system as the fraction of added links is increasing by
taking into account the ferromagnetic-paramagnetic phase
transition of the pseudospins. We also examine the impact
of system size on the reported phenomenon, and provide
scaling dependencies with respect to the optimal network
topology.

The remainder of this paper is organized as follows.
In Section 2 the mathematical model is introduced and
basic facts about the stochastic resonance and small-world
networks are given. In Section 3 we present and discuss the
results. In the last section we summarize our observations.

2 Mathematical model and methods

2.1 Stochastic resonance

We consider a system of N coupled bistable overdamped
oscillators perturbed by a local periodic external field.
The dynamics of this system is governed by the scaled
Langevin equations of the form:

∂xi

∂t
= xi − x3

i + J
∑

j

εij(xj − xi) + Ei +
√

2Dξi(t). (1)

Dynamical variables xi describe the state of the ith oscil-
lator located at the ith site (vertex of the network), D is
the variance of Gaussian noise with zero mean and auto-
correlation 〈ξi(t1)ξj(t2)〉 = δijδt1t2 . The sum runs over all
the oscillators and we set εij = 1 for coupled oscillators,
whilst otherwise εij = 0. The coupling strength between
any pair of oscillators is determined with the parameter J .
The weak external periodic field (i.e. pacemaker)

Ei = E0δi0i cos(ωt) (2)

is introduced locally at the lattice site i = i0 oscillating
with the frequency ω = 0.01 and amplitude E0 = 0.08. We
note that the frequency and amplitude of the local forcing
are chosen such that in the absence of noise (D = 0) the
pacemaker is subthreshold, meaning it cannot by itself in-
duce transitions between the two stable steady states; not
by the oscillator which is directly exposed and neither by
any other constitutive unit of the network. Instead, the
oscillator directly perturbed by the pacemaker exhibits
small-amplitude oscillations around the minimum of its
potential with the frequency ω. Notably, by adjusting the
forcing closer to the threshold (e.g. by increasing E0), yet
still remaining in the subthreshold regime to satisfy the
traditional setup for stochastic resonance, the noise inten-
sity required for the optimal response of the system ex-
pectedly becomes lower. Below we will therefore consider
D as one of the crucial system parameters, while the role
of the coupling strength J will also be examined.

In order to quantify the collective response of the sys-
tem to the periodic field Ei, we calculate the Fourier co-
efficients Qm for the mean field

X =
1
N

∑

i

xi, (3)

where the coefficients are defined as

Q =
ω

πn

2πn/ω∫

0

X(t)eiωtdt, Qm = |Q| . (4)

Since the spectral power amplification is proportional to
the square of the Fourier coefficients, they represent a suit-
able and commonly used measure for the quantification of
SR. Higher values of Q correspond to a greater extent
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of the input frequency ω in the output signal. In addition
we define also the local Fourier coefficient Qi as

Q′
i =

ω

πn

2πn/ω∫

0

xi(t)eiωtdt, Qi = |Q′
i| , (5)

measuring the quality of the local response to the local-
ized external periodic excitation. In equations (4) and (5)
n = 100 signifies the number of oscillation periods used
for the calculation, after 20 initial periods of the tempo-
ral traces were discarded as transients. All integrals were
evaluated over time for the above-stated frequency of the
pacemaker ω = 0.01. Additionally, all calculations were
averaged over 100 realizations in order to diminish statis-
tical fluctuations originating from the stochastic dynamics
and from randomness incorporated in interaction network
generations.

2.2 Interaction networks

The oscillators are hosted by a linear array having a peri-
odic boundary, i.e. a ring network as depicted in Figure 1.
We consider differently disordered interaction networks,
which we distinguish by a single scalar parameter p. The
quantity p measures the fraction of randomly added long-
range links, where 0 � p � 1. More precisely, the limiting
cases p = 0 and p = 1 represent the regular and the fully
connected network, respectively [43]. In the former case
each unit is connected to its 4 nearest neighbours (the
degree of all vertices in the ring network is k0 = 4) and
in the latter case the oscillators are globally coupled (the
degree of all vertices is k = N − 1). Thus, by the gen-
eration of different topologically disordered networks we
start with a regular ring where each vertex is connected to
its four nearest neighbours, as shown in the left panel of
Figure 1, and then attempt adding to each vertex N − 5
long-range connections, whereby each of them is estab-
lished with a probability p provided it does not already
exist. An illustration of this process is presented in the
right panel of Figure 1 for p = 0.02. Notably, since the
degree heterogeneity of networks generated in this fashion
follows roughly a Poissonian distribution (apart from the
two limiting cases p = 0 and p = 1), the particular placing
of the external field (i = i0) is not of vital importance (see
e.g. [37,39]), and indeed is averaged out over the 100 inde-
pendent realizations that we consider for each value of p.

In interaction networks as considered here small-world
configurations with very specific properties can emerge.
Their existence is characterized by a relatively short av-
erage path length L(p) [42,43], which tells us how many
links on average we need to pass through to travel be-
tween any two nodes. A short average path length is oth-
erwise typically associated with random networks. On the
other hand, the cliquishness of a typical neighbourhood in
small-world networks is large, like in a regular graph. This
characteristic is usually quantified using the clustering co-
efficient C(p) [42]. In order to calculate L(p) one should
count the number of links in the shortest path between

Fig. 1. Examples of considered network topologies. In the left
panel a regular ring having p = 0 with periodic boundary con-
ditions and vertex degree k0 = 4 is shown, whereas in the right
panel the case where long-range links were added with prob-
ability p = 0.02 (note that six were added) is displayed. For
clarity regarding k and p only N = 25 vertices are displayed in
each panel.

any two vertices, and then average the result over all the
pairs. The clustering coefficient is defined as follows. If the
node degree (the number of neighbours) of a vertex i is
denoted by ki, there are ki(ki−1)/2 possible links between
these neighbours. One commonly denotes Ci as the frac-
tion of those links that are really present in the graph and
C(p) is defined as the average of Ci over all the vertices.
In order to determine the onset of an optimal topology for
the noise-supported transmission of weak localized signals
we introduce the quantity

R =
C

L
, (6)

which has been realized as a suitable indicator for this
purpose [37,38], in particular since R(p) has its maximum
in the region of p, where the clustering coefficient is quite
large, whereas the mean path length is relatively low. Ac-
cordingly, a proper ratio between those quantities indi-
cates small-world properties of the network.

3 Results

First, we consider a system of N = 100 coupled oscilla-
tors where the localized periodic excitation is positioned
in the middle (i.e. i0 = N/2) of the array. We focus on the
stochastic resonance response of the system as a function
of D upon increasing p by means of analysing the trans-
mission of localized rhythmic activity via Qm and Qi. On
varying p we roughly distinguish between two qualitatively
different regimes, to which we refer to as the “low connec-
tivity regime” and the “high connectivity regime”. In the
first regime the one-dimensional character of the system
is pronounced. In the second regime the mean field-type
behaviour is observed due to sufficient number of long-
range connections. The crossover between the two regimes
roughly takes place at p = pc ≈ 0.03. Figure 2 features the
two-dimensional variation of the global response Qm upon
increasing D and p for both connectivity regimes. In the
low connectivity regime, Dmax(p), which denotes the opti-
mal noise intensity at which the best response is observed,
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Fig. 2. (Color online) The response of the system quantified via Qm as a function of the noise intensity D and the fraction of
added long-range links p for the low connectivity regime (left panel) and for the high connectivity regime (right panel) (see also
main text for details). The color profile is linear, white depicting 0.0 and blue 0.02 values of Qm. The coupling strength was
J = 0.1 in both panels.

displays relatively weak changes in dependence on p. On
the other hand, in the high connectivity regime, Dmax(p)
increases strongly and monotonously upon increasing p.
In addition, we observe a rather complex behaviour of the
maximal stochastic resonance response Qm (D = Dmax)
as a function of p. In particular, in the low connectiv-
ity regime we notice a nonmonotonous resonance-like re-
sponse in dependence on p, whereas in the high connectiv-
ity region Qm (D = Dmax) is increasing with increasing
values of p. In the following the observed behaviour will
be examined in more detail.

3.1 Low connectivity regime

We first focus on the low connectivity regime, which ex-
tends across the interval p ∈ [0, pc]. For a constant value of
p the Qm(D) dependence exhibits a resonant outlay due to
the existence of an optimal noise intensity, which is typ-
ical for the stochastic resonance phenomenon. Figure 3
features the results for different values of p and two differ-
ent coupling strengths J . Importantly, we can corroborate
that there exists an optimal fraction of added long-range
links p (blue triangles; p ≈ 0.007) at which the best collec-
tive response Qm (D = Dmax) is realized. Furthermore,
the effect is robust on variations of the coupling strength,
except that Dmax increases with increasing values of J ,
which will be further addressed in Section 3.2.

In order to gain more insights into the phenomenon, we
monitor the mean characteristics of interaction networks
for different values of p via the above-introduced quanti-
ties; namely the mean shortest path L(p), the clustering
coefficient C(p) and their ratio R(p). Results are shown
in Figure 4. Upon increasing p the L(p) dependence de-
creases rather fast already for very small values of p (note
the logarithmic scale for p in Fig. 4). On the other hand
C(p) begins to decrease considerably only at higher values
of p. Consequently, the peak of R(p) occurs at an interme-
diate value of p (p = pSW ≈ 0.007), signifying the section,
where the clustering is relatively large by comparison with

Fig. 3. (Color online) The Fourier coefficient of the mean field
Qm as a function of the noise intensity D for different values
of p and for different values of the coupling strength; J = 0.1
(upper panel) and J = 0.2 (lower panel). Evidently, the opti-
mal network topology is unaffected by the coupling strength,
equalling p = pSW ≈ 0.007, only the noise intensity required
for the optimal response increases with increasing values of J .

the average path length. Those are features which signal
the emergence of a small-world network topology [37,38].
It can be inferred that this is network configuration en-
ables an optimal transfer of a locally excited perturbation
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Fig. 4. (Color online) The normalized shortest path (L – red
circles) and clustering coefficient (C – black squares), as well as
the ratio of the two (R = C/L – green triangles) as a function
of p. The peak of R occurs at p = pSW ≈ 0.007 revealing that a
small-world topology is in place. By values of p extending into
the grey-hatched region the mean-field effect becomes domi-
nant and thus R is no longer an appropriate measure. Note
that R has been rescaled to the unit interval for the purpose
of better visualization, but the outlay of the curve has thereby
been completely preserved.

into the surrounding area. Namely, the optimal collective
response that is observed in Figure 3 for p = pSW ≈ 0.007
can be ascribed to the emergence of this particular feature
of the interaction network, in particular since it emerges
by the same value of p where also R(p) has its maximum.

We additionally examine the positional smearing of the
locally excited perturbation by calculating the response of
individual units Qi as a function of D for different values
of p. Results presented in Figure 5 confirm that at p =
pSW the noise-induced outreach of the local perturbation
across the whole array is optimal. Clearly, fine-tuning of
the network structure via p can optimize the phenomenon
of stochastic resonance in an ensemble of locally excited
bistable oscillators.

Aiming to further widen the scope of above-reported
findings, we analyze the role of varying system size on the
reported phenomenon. Figure 6 features Qi as a function
of D for different values of N at the optimal p = pSW . Note
that the results presented in Figure 4 demonstrate clearly
that the optimal topology for the noise-supported trans-
mission of the localized forcing emerges only when the
network has properties that are typical for small-worlds.
Since the specific value of p warranting the small-world
properties depends on N , the optimal p = pSW needs to
be adjusted accordingly (see also the left panel of Fig. 7 be-
low). From results presented in Figure 6 it is evident that
the optimal response region is always centred on the os-
cillator that is directly perturbed by the pacemaker. This
in turn implies that as the system size increases the max-
imally attainable Qm by the optimal values of D and p
decreases because the units that are far away from the
pacemaker contribute increasingly less to the overall co-
herence of the system with the external forcing. This can
be observed clearly by larger N , where the region of opti-
mal response is extremely narrow, especially if compared

to the overall system response further away from the pace-
maker. In comparison, for smaller system sizes the region
of optimally coherent response appears wider, which in
turn implies higher Qm. In what follows, we will investi-
gate the outlined dependencies on N quantitatively.

As it was shown that the optimal stochastic resonance
response is obtained at p = pSW , where the network’s R(p)
has its maximum and thus exhibits small-world properties
(see Fig. 4), we first explore more precisely how pSW varies
with the system size. Results in the left panel of Figure 7
reveal that pSW decreases with increasing system size. No-
tably, the relation is of the form

pSW ∝ N−1. (7)

This relation implies that in the proposed network
model [43] the number of long-range links that have to
be added in order to attain the optimal network structure
does not depend on the system size, whereby of course,
the fraction of required long-range connections decreases
as N is increased. The observed scaling relation has to be
considered by analyzing the role of varying system size,
since p = pSW is directly linked to the emergence of the
small-world topology at each particular N , as evidenced in
Figure 4 for N = 100. Subsequently, we are now equipped
to proceed with calculating the Qm(D) dependence for
N = 50 and N = 800, whereby in both cases we take into
consideration three characteristic values of p. In partic-
ular, we consider the regular network limit (p = 0), the
value of p matching the optimal pSW from the left panel of
Figure 7, and the third value that is higher than pSW but
is still located in the low connectivity regime for any given
N . Results are shown in the middle panel of Figure 7. Ev-
idently, in both cases the optimal response is achieved at
p = pSW , as already presented in Figure 3 where the sys-
tem size was N = 100, which confirms that the reported
phenomenon is qualitatively independent on the system
size. Importantly, however, the overall values of Qm de-
crease notably as N increases, which reflects the fact that
the periodic excitation is applied only to a single oscillator,
so that consequently its relative importance deteriorates
with increasing N . To quantify this effect more precisely
and relevantly, we calculate the degree of stochastic reso-
nance optimisation via the difference in Qm (D = Dmax)
at p = pSW and Qm (D = Dmax) at p = 0 for different sys-
tem sizes. Results in the right panel of Figure 7 indicate
that the absolute difference declines with increasing N .
However, this reduction reflects the decrease in the abso-
lute values of Qm (D = Dmax), whereas importantly, the
relative difference between the maxima at p = pSW and
p = 0 remains practically constant if normalized with it.
In particular, the optimization of the resonant response
attained by a proper addition of long-range connections is
always around 20%, irrespective of the system size.

3.2 High connectivity regime

In the high connectivity region oscillators are rela-
tively strongly coupled due to the substantial number of
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Fig. 5. (Color online) Two-dimensional representation of the response of individual units Qi. From top left to bottom right p
is equal to 0.0, 0.004, 0.007, 0.015, 0.023 and 0.06. Evidently, the weak local perturbation extends at finest across the whole
array at p = pSW ≈ 0.007 (encircled red), where the network has properties that are characteristic of small-worlds. The colour
profile is the same in all panels (see bottom right), whereas the content of horizontal and vertical axes is given in the bottom
left panel.

Fig. 6. (Color online) Two-dimensional representation of the response of individual units Qi for different system sizes at the
optimal network configuration p = pSW , manifesting in the emergence of the small-world topology. From the left to the right
panel N is equal to 50, 140 and 800, while p = pSW is 0.015, 0.006 and 0.0012 (see also the left panel of Fig. 7), respectively.
The colour profile is the same as defined in Figure 5 and is identical in all three panels. The coupling strength was J = 0.1 for
all N .

long-range links connecting them with one another. With
increasing values of p the mean field limit is progressively
approached and herewith the value of Dmax(p), where the
best correlation between the system’s response and the
periodic driving is obtained, increases as well, as outlined
in the main text pertaining to Figure 2. In this section we
focus on the physical reasons behind this finding.

Note that the “interaction part” in equation (1) can be
obtained from the minimization of the scaled Hamiltonian

H =
∑

i

(
−1

2
x2

i +
1
4
x4

i

)
+

J

2

∑

i,j

εij(xi − xj)2−
∑

i

xi Ei

(8)

of a system of pseudospins, the dissipation rate of which
is given by Fdis =

∑
i

1
2 (∂xi/∂t)2. In the thermodynamic

limit the thermal noise contribution (see the last term in
the right side of Eq. (1)) introduces the temperature T into
the system. The 1st (condensation) term in equation (8)
enforces xi = ±1, the second (coupling) term favours xi =
xj for J > 0 and the last (external field) term tends to
align pseudospins along the field direction. Note that the
coupling term 1

2

∑
i,j

εij(xi − xj)2 = −∑
i,j

εijxixj +
∑
i,j

εijx
2
i

slightly differs from the typical Ising interaction term
−∑

i,j

εijxixj [44–47]. However, our analysis shows that or-

dering tendencies of both models are similar as it is shown
in Appendix. For that reason the employed analogy with
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Fig. 7. (Color online) The left panel features the optimal fraction of long-range links pSW in dependence on the system size
N . The slope of the solid line is equal to –1, while the dots are numerically obtained values. The middle panel depicts Qm as a
function of the noise intensity D for N = 50 and N = 800 and for three characteristic values of p. Right panel shows the level
of optimization of the stochastic resonance response (see also main text for details) evoked by the optimal network topology in
dependence on N . The coupling strength in the middle and right panel was J = 0.1.

Fig. 8. The left panel features the relaxation of X(t) towards the ferromagnetic (D = 0.7, black line) and the paramagnetic
(D = 0.8, grey line) equilibrium configuration. In the right panel the relaxation time τr is depicted versus the noise intensity
D. In both panels no external field was applied, p = 0.1 and N = 10 000.

the Ising model, on the basis of which we provide an expla-
nation for the observed behaviour, is completely justified.

As it was shown previously [27,28,30,31], the
one-dimensional kinetic Ising model exhibits a
paramagnetic-ferromagnetic phase transition if long-
range interactions are present in the model. This
transition is static for Ei = 0, taking place at T = Tc

(i.e. D = Dc). In the presence of the external field Ei,
the transition is dynamic and realized at T = T

(dyn)
c

(D = D
(dyn)
c ). However, for weak enough external fields,

it holds Tc ∼ T
(dyn)
c (Dc ∼ D

(dyn)
c ) [27]. The behaviour

of our system is revealed in Figure 8, where we show
for p = 0.1 the relaxations of X(t) towards equilibrium,
starting from a nonequilibrium configuration at t = 0
for D > Dc (i.e. T > Tc) and D < Dc in the absence
of the external driving field. In both cases one observes
exponential-like relaxation that can be characterized
by the relaxation time τr, towards paramagnetic and
ferromagnetic equilibrium configuration, respectively. In
order to evaluate the phenomenon more quantitatively,
we calculate the relaxation time τr as a function of D.

Results presented in the right panel of Figure 8 clearly
indicate the phase transition at D = Dc.

The reported phase behaviour of our system described
above explains the Dmax(p) dependence observed in Fig-
ure 2, where the role of temperature T in the thermody-
namic limit is played by the dynamic noise D. Namely, the
phase transition temperature of our system in the thermo-
dynamic limit is approximately determined by the condi-
tion (see Appendix A).

kbTc ≈ V0 + k J, (9)

where kb stands for the Boltzmann constant, V0 stands for
the typical energy scale of the bistable potential and k̄ is
the average degree of the network. As already mentioned
above, in the presence of an external periodic excitation
field the static phase transition at D = Dc (corresponding
to T = Tc) is replaced by a dynamic phase transition
realized at D = D

(dyn)
c (corresponding to T = T

(dyn)
c ).

Accordingly, equation (9) implies that D
(dyn)
c includes a

term which is proportional with k̄ ∝ p. In particular, by
taking into account that k̄ = k0[1 + p(N − 1 − k0)] and
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D
(dyn)
c ∼ Dc, the relation between phase transition point

Dc and the fraction of added long-range connections p can
be expressed as follows:

Dc ∝ V0 + J k0[1 + p(N − 1 − k0)]. (10)

Furthermore, due to finite size effects (N < ∞) the ex-
pected singularity at D

(dyn)
c is suppressed. However, the

dominant relaxation time τr of our system still displays a
finite maximum at a noise strength Dc, playing the role
of Tc in the limit N → ∞.

The maximal stochastic resonance response is antici-
pated when the condition

τr ≈ τe =
2π

ω
(11)

is fulfilled. Note that in the thermodynamic limit a double
peak just above and below Dc would be expected. How-
ever, within our resolution we observe only a single peak
centred roughly at Dc. Nevertheless, since it is known that
Dmax ∝ Tc ∝ p+constant, it is obvious that consequently
the greatest response of the system Qm (D = Dmax) is
shifted towards higher values of D as p is increased. More-
over, an analogous reflection also explains the increase in
Dmax as the coupling strength J is increased, which has
been observed in Figure 3. Namely, according to equa-
tions (9) and (10), it also holds that Dmax ∝ Tc ∝ J and
hence the optimal response of the system shifts towards
higher intensities of dynamical noise in this case as well.

Finally, we verify theoretical findings presented in this
section by numerical simulations. In Figure 9 we show val-
ues of Dc and Dmax as a function of p. It can be observed
that there is an approximately linear relation between Dc

and p, as indicated in equation (10). Furthermore, val-
ues of Dc and Dmax roughly coincides for different values
of p, which confirms that the maximal stochastic reso-
nance response is indeed linked with the paramagnetic-
ferromagnetic phase transition.

4 Discussion

We have studied the noise-induced dynamics of an en-
semble of coupled bistable oscillators that was excited
by a local subthreshold periodic external field. Thereby
the one-dimensional limit was considered (ring network)
and the level of connectivity was altered by introducing a
topological disorder p into the system. The limiting cases
(i) p = 0, and (ii) p = 1 correspond to ordered interac-
tion networks, where each oscillator is coupled with (i)
its four nearest neighbours, or (ii) with all remaining os-
cillators, whereas 0 < p < 1 indicates a certain degree
of topological randomness. We have monitored the sys-
tem’s collective response as a function of p and dynamical
noise intensity D, whereby we have distinguished between
the low and the high connectivity regime. In the former
regime, the optimal noise intensity Dmax, at which the
greatest synchrony between the localized periodic driving
and the system’s collective response was observed, exhibits

Fig. 9. (Color online) Phase transition point Dc (red circles)
and the optimal noise intensity Dmax (black squares) as a func-
tion of p.

a relatively weak dependence on p. Remarkably, however,
there exists an optimal fraction of randomly added long-
range links p, at which the best outreach of the local-
ized activity was observed, thus indicating also an opti-
mal global response. We have explained the phenomenon
by revealing that small-world properties in the interac-
tion network emerge at optimal values of p. We have also
analysed the role of varying system size and showed that,
on one hand, the best possible global response decreases
with increasing system size, but on the other hand, the
relative level of optimization via added long-range links is
always around 20%, thus leading to the conclusion that
the phenomenon is qualitatively independent on the sys-
tem size. However, as a result of the characteristics of the
network, the optimal value of p scales as given in equa-
tion (7). In the high connectivity regime the mean field
effect prevails and here Dmax(p) monotonously increases
with increasing p. We have attributed this behaviour to
the transition between the paramagnetic and ferromag-
netic phase in the thermodynamic limit, where the sys-
tem roughly corresponds to the ensemble of pseudospins
that are coupled via an Ising-type interaction. Namely,
the maximal response is obtained when the time scaling
matching condition is fulfilled [26], which is roughly real-
ized at the dynamic phase transition temperature T

(dyn)
c

(i.e. at the critical noise intensity). Due to the fact that
T

(dyn)
c increases with the degree of connectivity, we have

observed strong increments of Dmax(p) upon increasing p.
It should be noted resemblances between the continuous
double well system and a discrete two-state Ising-like sys-
tems have already been exploited in the past for the expla-
nation of stochastic resonance related phenomena. While
McNamara and Wiesenfeld [48] provided an exhaustive
theoretical framework for the understanding of stochas-
tic resonance mechanism in individual two-state systems,
Siewert and Schimansky-Geier [49] used this simplification
to derive analytical expressions for the signal-to-noise ra-
tio and the spectral power amplification of a chain of cou-
pled two-state elements. Their results have revealed that
a ferromagnetic-type coupling gives rise to the resonant
response in terms of array-enhanced stochastic resonance.
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Our results provide an inside into the functioning of
coupled bistable devices which are subjected to weak local-
ized activity and noise. Particular interesting examples are
biological neural networks, especially because the under-
standing of weak signal detection and information propa-
gation is of great importance in the domain of computa-
tional neuroscience. It has been observed that in a number
of different cortical, thalamic and spinal populations neu-
ronal activity operates in a bistable regime [50–52]. Fur-
thermore, fluctuations of channel gating, synaptic release
and of background presynaptic activity introduce intrin-
sic noise, which can provide benefits to the functioning of
neurons [51,53,54]. By revealing that only a few long-range
connections are needed to enhance the outreach of local-
ized rhythmic activity, we provide some interesting aspects
to the subject, despite the fact that the employed network
model is very simple. It is worth to mention that in typi-
cal neural architectures neurons are mostly connected with
their neighbors, but also with some long-range links, which
enable a more efficient information transfer [55]. Bista-
bility is also exhibited in mathematical models of social
processes, such as opinion formation models [56], whose
structure bears many similarities with the Ising model.
The options of individuals are considered as binary vari-
ables, which correspond for example to the existence of
two political parties. The constructive roles of noise [57]
and diversity [58] have already been studied in opinion
formation models, as well as the role of small-world topol-
ogy [59]. Our findings might provide some novel insights
to this issue, whereby in contrast to previous studies, the
periodic excitation signifying the so called fashion wave
influences only one individual.

Appendix A: Critical behaviour of the coupling
term

In the Appendix we derive critical behaviour of the model
using the standard mean field approximation approach. In
the absence of an external field the interaction energy is
given by

H = V0

∑

i

(
−x2

i

2
+

x4
i

4

)
+

J

2

∑

i,j

εij(xi − xj)2, (A.1)

where V0 stands for the typical energy scale of the first
term in (A.1). The corresponding free energy reads F =
H−TS, where S stands for the entropy of the system. Let
us assume that in a given configuration of N pseudospins
N+ are in the state xi = 1 and N− in the state xi = −1.
In the limit of large number N the entropy can be ap-
proximately (neglecting correlations among pseudospins)
expressed as [60]

S ≈ kb ln
(

N !
N+!N−!

)
≈ −kbN (c+ ln c+ + c− ln c−) ,

(A.2)

where c± = N±/N . We next assume that pseudospins feel
an average surrounding and the coupling term in equa-
tion (A.1) is rewritten as

Hc ≈
∑

i,j

J

2
εij (xi − x̄)2 ≈ J

2
k̄

×
[
N+ (1 − x̄)2 + N− (1 + x̄)2

]
, (A.3)

where k̄ stands for the average number of neighbours
within the network and x̄ stands for an average value of
xi. Taking into account x̄ = c+ − c− one can express the
average free energy per lattice site f̄ = F̄ /N as

f̄ ≈ V0

(
− x̄2

2
+

x̄4

4

)
+

J

2
k̄

(
1 − x̄2

)
+

kbT

2

[
(1 + x̄)

× ln
(

1 + x̄

2

)
+ (1 − x) ln

(
1 − x̄

2

) ]
. (A.4)

The equilibrium value of x̄ is obtained by minimizing f̄
with respect to x̄. The system exhibits the 2nd order phase
transition at the critical temperature given by

Tc =
V0 + k̄J

kb
. (A.5)

The critical condition of the original Ising model is repro-
duced by setting V0 = 0. Note that Tc is proportional to
k̄ in the limit k̄J/V0 � 1.
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55. G. Buzsáki, C. Geisler, D.A. Henze, X.-J. Wang, Trends

Neurosci. 27, 186 (2004)
56. W. Weidlich, Phys. Rep. 204, 1 (1991)
57. P. Babinec, Phys. Lett. A 225, 179 (1997)
58. C.J. Tessone, R. Toral, Eur. Phys. J. B 71, 549 (2009)
59. M. Kuperman, D. Zanette, Eur. Phys. J. B 26, 387 (2002)
60. P.M. Chaikin, T.C. Lubensky, Principles of condensed

matter physics (Cambridge University Press, Cambridge,
1995)


	Introduction
	Mathematical model and methods
	Results
	Discussion
	Appendix A: Critical behaviour of the coupling term
	References

