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Stochastic Resonance in Continuous and Spiking
Neuron Models With Levy Noise

Ashok Patel and Bart Kosko

Abstract—Levy noise can help neurons detect faint or sub-
threshold signals. Levy noise extends standard Brownian noise
to many types of impulsive jump-noise processes found in real
and model neurons as well as in models of finance and other
random phenomena. Two new theorems and the Itô calculus show
that white Levy noise will benefit subthreshold neuronal signal
detection if the noise process’s scaled drift velocity falls inside
an interval that depends on the threshold values. These results
generalize earlier “forbidden interval” theorems of neuronal “sto-
chastic resonance” (SR) or noise-injection benefits. Global and
local Lipschitz conditions imply that additive white Levy noise can
increase the mutual information or bit count of several feedback
neuron models that obey a general stochastic differential equation
(SDE). Simulation results show that the same noise benefits still
occur for some infinite-variance stable Levy noise processes even
though the theorems themselves apply only to finite-variance Levy
noise. The Appendix proves the two Itô-theoretic lemmas that
underlie the new Levy noise-benefit theorems.

Index Terms—Levy noise, jump diffusion, mutual information,
neuron models, signal detection, stochastic resonance (SR).

I. STOCHASTIC RESONANCE IN NEURAL SIGNAL DETECTION

S
TOCHASTIC RESONANCE (SR) occurs when noise ben-

efits a system rather than harms it. Small amounts of noise

can often enhance some forms of nonlinear signal processing

while too much noise degrades it [12], [13], [22], [27], [45],

[49], [58], [60], [61], [69], [71], [72], [84]. SR has many useful

applications in physics, biology, and medicine [5]–[7], [11],

[14], [17], [18], [21], [23], [32], [40], [41], [43], [52], [53], [55],

[56], [62], [70], [75], [83], [85], [89], [91]. SR in neural net-

works is itself part of the important and growing area of sto-

chastic neural networks [9], [10], [38], [86]–[88], [90]. We show

that a wide range of general feedback continuous neurons and

spiking neurons benefit from a broad class of additive white

Levy noise. This appears to be the first demonstration of the SR

effect for neuron models subject to Levy noise perturbations.

Fig. 1 shows how impulsive Levy noise can enhance the

Kanisza square visual illusion in which four dark-corner figures

give rise to an illusory bright interior square. Each pixel is the

thresholded output of a noisy bistable neuron whose input sig-

nals are subthreshold and quantized pixel values of the original

noise-free Kanizsa image. The outputs of the bistable neurons

do not depend on the input signals if there is no additive noise
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because the input signals are subthreshold. Fig. 1(a) shows that

adding infinite-variance Levy noise induces a slight correlation

between the pixel input and output signals. More intense Levy

noise increases this correlation in Fig. 1(b) and (c). Still more

intense Levy noise degrades the image and undermines the

visual illusion in Fig. 1(d) and (e). Fig. 2 shows typical sample

paths from different types of Levy noise. Fig. 3 shows the

characteristic inverted-U or nonmonotonic signature of SR for

white Levy noise that perturbs a continuous bistable neuron.

We generalize the recent “forbidden interval” theorems [50],

[51], [61], [65], [66] for continuous and spiking neuron models

to a broad class of finite-second-moment Levy noise that may

depend on the neuron’s membrane potential. The original for-

bidden interval theorem [50], [51] states that simple threshold

neurons will have an SR noise benefit in the sense that noise

increases the neuron’s mutual information or bit count if and

only if the noise mean or location parameter does not fall

in a threshold-related interval: SR occurs if and only if

for threshold where for

bipolar subthreshold signal . The theorems below show that

such an SR noise benefit will occur if the additive white Levy

noise process has a bounded scaled drift velocity that does not

fall within a threshold-based interval. This holds for general

feedback continuous neuron models that include common signal

functions such as logistic sigmoids or Gaussians. It also holds

for spiking neurons such as the FitzHugh–Nagumo, leaky inte-

grate-and-fire, and reduced type I neuron models. We used the

Itô stochastic calculus to prove our results under the assumption

that the Levy noise has a finite second moment. But Fig. 1 and

Figs. 3(c), 4(c), 5(c), 6(c), 7(c), and 8(c) all show that the SR

noise benefit still occurs in the more general infinite-variance

case of some types of -stable Levy noise. So the SR effect is

not limited to finite-second-moment Levy noise. We were not

able to prove that these stable infinite-variance SR effects must

occur as we did prove with simpler neuron models [50], [51],

[65].

Levy noise has advantages over standard Gaussian noise

in neuron models despite its increased mathematical com-

plexity. A Levy noise model more accurately describes how

the neuron’s membrane potential evolves than does a simpler

diffusion model because the more general Levy model includes

not only pure-diffusion and pure-jump models but jump-diffu-

sion models as well [35], [74]. Neuron models with additive

Gaussian noise are pure-diffusion models. These neuron models

rely on the classical central limit theorem for their Gaussian

structure and thus they rely on special limiting case assumptions

of incoming Poisson spikes from other neurons. These assump-

tions require at least that the number of impinging synapses
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Fig. 1. SR in the Kanisza square illusion with symmetric�-stable noise (� � ���) in a thick-tailed bell curve with infinite-variance but finite intensity or dispersion
�[30]. The Kanisza square illusion improves as the noise dispersion � increases from 0.047 to 0.3789 and then it degrades as the dispersion increases further. Each
pixel represents the output of the noisy bistable potential neuron model (1)–(2) and (5) that uses the pixel values of the original Kanisza square image as subthreshold
input signals. The additive �-stable noise dispersions are as follows: (a) � � �����, (b) � � ������, (c) � � ����	�, (d) � � �, and (e) � � ����
�.

Fig. 2. Sample paths from 1-D Levy processes: (a) Brownian motion with drift � � ��� and variance � � ����; (b) jump diffusion with � � ���, � �
��

�, Poisson jump rate � � �, and uniformly distributed jump magnitudes in the interval ����
� ��
� (and so with Levy measure �	
� � ������	
 for

 � ����
���
� and zero else); (c) normal inverse Gaussian (NIG) process with parameters � � 
�, � � �,  � ���, and � � �; (d) infinite-variance �-stable
process with � � ��� and dispersion � � ���
�
 [� � �, � � �, and �	
� is of the form ���
� �	
].

be large and that the synapses have small membrane effects

due to the small coupling coefficient or the synaptic weights

[28], [47]. The Gaussian noise assumption may be more ap-

propriate for signal inputs from dendritic trees because of the

sheer number of dendrites. But often fewer inputs come from

synapses near the postsynaptic neuron’s trigger zone and these

inputs produce impulses in noise amplitudes because of the

higher concentration of voltage-sensitive sodium channels in

the trigger zone [29], [46], [64]. Engineering applications also

favor the more general Levy model because physical devices

may be limited in their number of model-neuron connections

[59] and because real signals and noise can often be impulsive

[30], [63], [76].

II. NOISY FEEDBACK NEURON MODELS

We study Levy SR noise benefits in the noisy feedback neuron

models of the general form

(1)

(2)
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Fig. 3. Mutual information Levy noise benefits in the continuous bistable neuron (1)–(2) and (5). Additive white Levy noise �� increases the mutual information
of the bistable potential neuron for the subthreshold input signals � � ���� and � � ���. The types of Levy noise �� are as follows: (a) Gaussian with
uniformly distributed jumps, (b) pure-jump normal inverse Gaussian (NIG), and (c) symmetric �-stable noise with � � ��� (thick-tailed bell curve with infinite
variance [63]). The dashed vertical lines show the total min–max deviations of the mutual information in 100 simulation trials.

Fig. 4. Mutual information SR Levy noise benefits in the logistic continuous neuron (1)–(2) and (4). Additive white Levy noise �� increases the mutual infor-
mation of the logistic neuron for the subthreshold input signal � � ����, � � ����, and � � �. The types of Levy noise �� are as follows: (a) Gaussian with
uniformly distributed jumps, (b) pure-jump normal inverse Gaussian (NIG), and (c) symmetric �-stable noise with � � ���	 (thick-tailed bell curve with infinite
variance [63]). The dashed vertical lines show the total min–max deviations of the mutual information in 100 simulation trials.

with initial condition . Here is the addi-

tive net excitatory or inhibitory input forcing signal—either

or . The additive noise term is Levy noise with

mean or location and intensity scale (or dispersion for

symmetric -stable noise where with characteristic

function ). The neuron feeds its activa-

tion or membrane potential signal back to itself through

and emits the (observable) thresholded or

spike signal as output. Here is a static transformation

function. We use the threshold

if

else
(3)

for continuous neuron models. We use a related threshold

in spiking neuron models where determines the spike occur-

rence. The neuronal signal function of (1) can be of quite

general form for continuous neuron models [66].

• Logistic. The logistic signal function [48] is sigmoidal and

strictly increasing

(4)

for scaling constant . We use . This signal

function gives a bistable additive neuron model.

• Hyperbolic Tangent. This signal function is also sigmoidal

and gives a bistable additive neuron model [2], [15], [37],

[48]

(5)

• Linear Threshold. This linear-threshold signal has the form

[48]

(6)

for constant . We use .

• Exponential. This signal function is asymmetric and has

the form [48]

if

else
(7)

for constant . We use .

• Gaussian. The Gaussian or “radial basis” signal function

[48] differs in form from the signal functions above be-

cause it is nonmonotonic

(8)

for constant . We use .
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Fig. 5. Mutual information Levy noise benefits in the linear-threshold continuous neuron (1)–(2) and (6). Additive white Levy noise �� increases the mutual
information of the linear-threshold neuron for the subthreshold input signal � � ����, � � ���, and � � �. The types of Levy noise �� are as follows: (a)
Gaussian with uniformly distributed jumps, (b) pure-jump normal inverse Gaussian (NIG), and (c) symmetric �-stable noise with � � ���� (thick-tailed bell curve
with infinite variance [63]). The dashed vertical lines show the total min–max deviations of the mutual information in 100 simulation trials.

Fig. 6. Mutual information Levy noise benefits in the Gaussian or “radial basis” continuous neuron (1)–(2) and (8). Additive white Levy noise �� increases the
mutual information of the Gaussian neuron for the subthreshold input signal � � ����, � � ���, and � � �. The types of Levy noise �� are as follows:
(a) Gaussian with uniformly distributed jumps, (b) pure-jump normal inverse Gaussian (NIG), and (c) symmetric �-stable noise with � � ���� (thick-tailed bell
curve with infinite variance [63]). The dashed vertical lines show the total min–max deviations of the mutual information in 100 simulation trials.

The above neuron models can have up to three fixed points

depending on the input signal and the model parameters. The

input signal is subthreshold in the sense that switching it from

to or vice versa does not change the output of (22).

There exist and such that the input is subthreshold when

. The values of and depend on the

model parameters. Consider the linear-threshold neuron model

(1)–(2) and (6) with . A simple calculation shows that if

the input signal satisfies

then the linear-threshold neuron has two stable fixed points (one

positive and the other negative) and has one unstable fixed point

between them. The Gaussian neuron model (1)–(2) and (8) has

only one fixed point if . So the input is subthreshold

because switching it from to or vice versa does not change

the output . Fig. 3 shows the mutual information noise benefits

in the bistable neuron model (1)–(2) and (5) for three different

additive white Levy noise cases when the input signals are sub-

threshold. Note the signature nonmonotonic shape of all three

SR noise-benefit curves in Fig. 3.

The membrane potential dynamics (1) is 1-D for all our

neuron models except for the 2-D FitzHugh–Nagumo (FHN)

spiking neuron model below. So next we briefly describe

multidimensional Levy processes and set up a general mul-

tidimensional Levy stochastic differential equation (SDE)

framework for our feedback continuous and spiking neuron

models.

III. LEVY PROCESSES AND STOCHASTIC

DIFFERENTIAL EQUATIONS

Levy processes [68], [77] form a wide class of random

processes that include Brownian motion, -stable processes,

compound Poisson processes, generalized inverse Gaussian

processes, and generalized hyperbolic processes. Fig. 2 shows

some typical scalar Levy sample paths. Levy processes can ac-

count for the impulsiveness or discreteness of both signals and

noise. Researchers have used Levy processes to model diverse

phenomena in economics [4], [78], physics [81], electrical

engineering [1], [4], [63], [67], biology [80], and seismology

[82]. A Levy process for in a

given probability space is a stochastic

process taking values in with stationary and independent

increments (we assume that with probability 1). The

Levy process obeys the following three properties:
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Fig. 7. Mutual information Levy noise benefits in the leaky integrate-and-fire (IF) spiking neuron model (40). Additive white Levy noise �� increases the mutual
information of the IF neuron with parameters � � ��� and � � ���� for the subthreshold input signal � � ����� and � � �����. The types of Levy noise ��
are as follows: (a) Gaussian, (b) Gaussian with uniformly distributed jumps, and (c) symmetric �-stable noise with � � ���� (thick-tailed bell curve with infinite
variance [63]). The dashed vertical lines show the total min–max deviations of the mutual information in 100 simulation trials.

Fig. 8. Mutual information Levy noise benefits in the FHN spiking neuron (42)–(43). Additive white Levy noise �� increases the mutual information of the
FHN neuron for the subthreshold input signal � � ������� and � � ������. The types of Levy noise �� are as follows: (a) Gaussian, (b) Gaussian with
uniformly distributed jumps, and (c) symmetric �-stable noise with � � ��� (thick-tailed bell curve with infinite variance [63]). The dashed vertical lines show
the total min–max deviations of the mutual information in 100 simulation trials.

1) is independent of sigma-algebra for

;

2) has the same distribution as ;

3) in probability if .

The Levy–Khintchine formula gives the characteristic func-

tion of as [3]

for and (9)

where is the Euclidean inner product (so ).

The characteristic exponent or the so-called Levy exponent is

(10)

for some , a positive–definite symmetric

matrix , and measure on Borel subsets of

or . Then is a Levy measure

such that

(11)

A Levy process combines a drift component, a Brownian

motion (Gaussian) component, and a jump component. The

Levy–Khintchine triplet completely determines these

components. The Levy measure determines both the average

number of jumps per unit time and the distribution of jump

magnitudes in the jump component of . Jumps of any size

in a Borel set form a compound Poisson process with rate

and jump density if the closure

does not contain . gives the velocity of the drift component.

is the covariance matrix of the Gaussian component. If

and then (9) becomes .

Then is a simple -dimensional deterministic motion

(drift) with velocity vector . If and then is an

-dimensional Brownian motion with drift because (9) takes

the form and because this

exponential is the characteristic function of a Gaussian random

vector with mean vector and covariance matrix . If

and then is a jump-diffusion process while

and give a compound Poisson process.

If and then is a purely discontinuous

jump process and has an infinite number of small jumps in any

time interval of positive length.

We consider only the Levy processes whose components

have finite second moments: . This excludes
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the important family of infinite-variance -stable processes

(including the Levy stable case) where

measures the tail thickness and where symmetric -stable dis-

tributions have characteristic functions [30],

[50], [63], [76]. But a finite-moment assumption does not

itself imply that the Levy measure is finite: .

Normal inverse Gaussian NIG distributions are

examples of semithick-tailed pure-jump Levy processes that

have infinite Levy measure and yet have finite moments of all

order [33], [73]. They can model the risks of options hedging

and of credit default in portfolios of risky debt obligations

[42], [79]. They have characteristic functions of the form

, where

and

Let be a Levy process that

takes values in , where are real-valued in-

dependent Levy processes for . We denote the

Levy–Itô decomposition [3] of for each and

as

(12)

(13)

Here determines the velocity of the deterministic drift

process while the are real-valued independent stan-

dard Brownian motions. Then and

. The are independent Poisson

random measures on with compensated (mean-sub-

tracted) Poisson processes and intensity/Levy measures .

Define the Poisson random measure as

for (14)

for each Borel set in . The Poisson random measure gives

the random number of jumps of in the time interval

with jump size in the set . is a Poisson random

variable with intensity if and if we fix and

. But is a measure if we fix and .

This measure is not a martingale but the compensated Poisson

random measure

(15)

is a martingale and gives the compensated Poisson integral (12)

[the second term on the right-hand side of (12)] as

for (16)

We assume again that each has a finite second moment

. But if is a Levy process with triplet

then has a finite moment for if

and only if [77]. The drift velocity

relates to the expected value of a Levy process by

and . So if

is a standard Brownian motion then , ,

and .

The variance of the Levy process in (12) is

(17)

because the underlying processes are independent. The variance

terms on the right-hand side of (17) have the following form [3]:

(18)

(19)

(20)

The last equality follows from the Itô isometry identity [19,

Prop. 8.8]. Then (17) and (18)–(20) imply that the

if and only if and

We can rewrite (1)–(2) as a more general Itô SDE [3]

(21)

(22)

with initial condition . Here

is a Lipschitz continuous drift term, is a bounded Levy

diffusion term, and is a white Levy noise with noise scale

.

Our continuous neuron models are again 1-D but the spiking

FHN neuron model is 2-D. So consider the general -dimen-

sional SDE in the matrix form with -dimensional Levy noise

(23)

which is shorthand for the system of SDEs

for

(24)

with initial conditions . Here ,

, and is a matrix

with rows . The functions

: are locally or globally Lipschitz measurable

functions. The functions : are bounded globally

Lipschitz measurable functions such that .
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The terms are independent Levy processes as in (13) with

for . Then

(25)

where , ,

, and are

all globally Lipschitz functions. This equation has the integral

form with initial condition

(26)

IV. LEVY NOISE BENEFITS IN CONTINUOUS NEURON MODELS

We now prove that Levy noise can benefit the noisy contin-
uous neurons (21)–(22) with signal functions (4)–(8) and sub-
threshold input signals. We assume that the neuron receives a
constant subthreshold input signal for time .
Let denote the input signal and let denote the output signal

for a sufficiently large randomly chosen time .
Noise researchers have used various system performance

measures to detect SR noise benefits [8], [17], [45], [52], [58],
[60], [61], [65], [72]. These include the output signal-to-noise
ratio, cross correlation, error probability, and Shannon mutual
information between input and output signals. We use Shannon
mutual information to measure the Levy noise benefits. Mutual
information measures the information that the neuron’s output
conveys about the input signal. It is a common detection per-
formance measure when the input signal is random [8], [39],
[61], [84].

Define the Shannon mutual information of the dis-
crete input random variable and the output random variable

as the difference between the output’s unconditional and con-
ditional entropy [20]

(27)

(28)

(29)

(30)

So the mutual information is the expectation of the random vari-
able

(31)

Here is the probability density of the input , is
the probability density of the output , is the condi-
tional density of the output given the input , and
is the joint density of the input and the output . An SR noise
benefit occurs in a system if and only if an increase in the input
noise variance or dispersion increases the system’s mutual in-
formation (31).

We need the following lemma to prove that noise improves
the continuous neuron’s mutual information or bit count. The
Appendix gives the proof of Lemma 1.

Lemma 1: Let and in (23) and
(24) be measurable functions that satisfy the global Lipschitz
conditions

(32)

(33)

and

(34)

for all and for and .
Suppose

(35)

(36)

where is a Levy noise with and finite second mo-
ments. Then, for every and for every

as and

for all (37)
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and hence

as and

for all (38)

because mean square convergence implies convergence in prob-
ability.

We prove the Levy SR theorem with the stochastic calculus
and a special limiting argument. This avoids trying to solve for
the process in (21). The proof strategy follows that of the
“forbidden interval” theorems [50], [51], [65]: what goes down
must go up. Jensen’s inequality [20] implies that .
Random variables and are statistically independent if and
only if . Hence implies some degree
of statistical dependence. So the system must exhibit the SR
noise benefit if and if when noise
parameters and . Theorem 1 uses Lemma 1 to
show that when noise parameters and

. So some increase in the noise parameters must increase
the mutual information.

Theorem 1: Suppose that the continuous neuron models
(21)–(22) and (4)–(8) have a bounded globally Lipschitz
Levy diffusion term and that the additive Levy
noise has drift velocity . Suppose also that the input signal

is subthreshold: and that
there is some statistical dependence between the input random
variable and the output spike-rate random variable so that

. Then the neuron models (21)–(22) with signal
functions including (4)–(8) exhibit the nonmonotone SR effect
in the sense that as the Levy noise parameters

and if .
Proof: Let be any decreasing sequence of

Levy noise parameters such that and as
. Define and as solution processes of the

continuous neuron models with Levy noise parameters and
instead of and .

Suppose that . We can absorb the drift into
the input signal because the Levy noise is additive in the
neuron models. Then the new input signal
and it does not affect the Lipschitz continuity of in (21).
Note that is subthreshold if

. So we lose no generality if we consider the noise
with and let be subthreshold in the

continuous neuron models (21). This allows us to use Lemma
1.

Let the symbol “ ” denote the input signal and the
output signal . Let the symbol “ ” denote the input signal

and the output signal . Assume that
to avoid triviality when or . We show that

and are asymptotically independent by using the fact that
if and only if and are statistically independent

[20]. So we need to show only that
or as and as for
signal symbols and . The theorem of total proba-
bility and the two-symbol alphabet set give

so we need to show only that as
and for . We prove the case for

only: since the
proof for is similar. Then the desired limit goes to zero
because

for large

for large

for large

by Lemma 1 and the assumption that

for

Figs. 4(a) and (b), 5(a) and (b), and 6(a) and (b) show sim-
ulation instances of Theorem 1 for finite-variance jump-diffu-
sion and pure-jump additive white Levy noise in logistic, linear-
threshold, and Gaussian neuron models. Small amounts of ad-
ditive Levy noise in continuous neuron models produce the SR
effect by increasing the Shannon mutual information
between realizations of a random (Bernoulli) subthreshold input
signal and the neuron’s thresholded output random variable

. The SR effect in Figs. 3(c), 4(c), 5(c), and 6(c) lies outside
the scope of the theorem because it occurs for infinite-variance

-stable noise. Thus the SR effect in continuous neurons is not
limited to finite-second-moment Levy noise.

V. LEVY NOISE BENEFITS IN SPIKING NEURON MODELS

We next demonstrate Levy SR noise benefits in three pop-

ular spiking neuron models: the leaky integrate-and-fire model

[17], [28], the reduced type I neuron model [54], and the FHN

model [26], [16]. This requires the use of Lemma 2 as we dis-

cuss below. These neuron models have a 1-D or 2-D form of

(1). A spike occurs when the membrane potential crosses a

threshold value from below. We measure the mutual information

between the input signal and the output spike-rate
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response of theses spiking neuron models. We define the av-

erage output spike-rate response in the time interval

as

(39)

where is the number of spikes in the time interval

.

A. The Leaky Integrate-and-Fire Neuron Model

The leaky integrate-and-fire neuron model has the form [17]

(40)

where is the membrane voltage, and are constants,

is the barrier height of the potential, is an input signal, and

is independent Gaussian white noise in the neural literature

but here is Levy white noise. The input signal is subthreshold

when . The neuron emits a spike when the membrane

voltage crosses the threshold value of 1 from below to above.

The membrane voltage resets to just after the neuron

emits a spike.

B. The Reduced Type I Neuron Model

The reduction procedure in [31], [36] gives a simple 1-D

normal form [54] of the multidimensional dynamics of Type I

neuron models

(41)

where is the membrane potential, is the value of input signal,

and is the standard deviation of Gaussian white noise in

the neural literature but here is Levy white noise. This reduced

model (41) operates in a subthreshold or excitable regime when

the input

C. The FHN Neuron Model

The FHN neuron model [16], [26], [28] is a 2-D simplifica-

tion of the Hodgkin and Huxley neuron model [34]. It describes

the response of a so-called type II excitable system [28], [55]

that undergoes a Hopf bifurcation. The system first resides in

the stable rest state for subthreshold inputs as do multistable

systems. Then the system leaves the stable state in response to

a strong input but returns to it after passing through firing and

refractory states in a manner that differs from the behavior of

multistable systems. The FHN neuron model is a limit-cycle os-

cillator of the form

(42)

(43)

where is a fast (voltage) variable, is slow (recovery)

variable, is a constant (tonic) activation signal, and .

is a white Levy noise and is a subthreshold input

signal—either or . We measure the neuron’s response to

the input signal in terms of the transition (firing) rate .

We can rewrite (42)–(43) as

(44)

(45)

where is a positive constant parameter that corresponds to

the distance that the input signal must overcome to cross

the threshold. Then is the signal-to-threshold distance

and so is subthreshold when . Our simulations

used and hence .

The deterministic FHN model [ in (44)] performs re-

laxation oscillations and has an action potential that lies be-

tween and . The system emits a spike when crosses

the threshold value . We use a low-pass-filtered version of

to avoid false spike detections due to the additive noise. The

low-pass filter is a 100-point moving-average smoother with a

0.001 second time step.

We rewrite (42)–(43) as

(46)

(47)

Here and . The corresponding matrix Itô SDE is

(48)

where ,

and

Thus all of the above spiking neuron models have the SDE

form (23). Note that the drift term of the leaky integrate-and-fire

neuron model is globally Lipschitz while the drift term of the

reduced type I neuron model is locally Lipschitz. The Lipschitz

condition is not easy to verify in the FHN model.

We now show that the drift term in the preceding

equation does not satisfy the global Lipschitz condition. Note

that is differentiable on because the partial deriva-

tives of exist and are continuous on . Suppose

that satisfies the following global Lipschitz condition:

There exists a constant such that

for all and and . Then the mean value

theorem gives

(49)
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for some between and in . Then

because

choosing

and such that

for some and because

is unbounded and continuous on and

so there is a domain such that for

all . Thus is not globally Lipschitz. So we cannot

use Lemma 1 to prove the sufficient condition for the SR effect

in the FHN neuron model (44)–(45).

But is locally Lipschitz. The partial derivatives of

exist and are continuous on . So and

achieve their respective maxima on the compact set

. Then (49) gives the required local Lips-

chitz condition

for all and such that , , and

. Lemma 2 extends the conclusion of Lemma 1 to the

locally Lipschitz drift terms .

Theorem 2 gives a “forbidden-interval” sufficient condition

for a Levy SR noise benefits in spiking neuron models such as

the leaky integrate-and-fire model [17], [28], the reduced type I

neuron model [54], and the FHN model [26], [16]. It shows that

these neuron models enjoy SR noise benefits if the noise mean

falls to the left of a bound. Theorem 2 requires Lemma 2 to

extend the conclusion of Lemma 1 to the locally Lipschitz drift

terms . The Appendix gives the proof of Lemma 2.

Lemma 2: Let and in (23)–(24)

[(40)–(43) for spiking neuron models] be measurable functions

that satisfy the respective local and global Lipschitz conditions

(50)

when and

(51)

(52)

for all and , and for and .

Suppose

(53)

(54)

where is a Levy noise with and finite second mo-

ments. Then for every and for every

as and

for all (55)

and hence

as and

for all (56)

because mean square convergence implies convergence in prob-

ability.

We can now state and prove Theorem 2.

Theorem 2: Suppose that the spiking neuron models

(40)–(41) and (42)–(43) have the form of the Levy SDE

(23) with a bounded globally Lipschitz Levy diffusion term

and that the additive Levy noise has drift ve-

locity . Suppose that the input signal is

subthreshold: . Suppose there is some statistical

dependence between the input random variable and the

output spike-rate random variable so that . Then

the spiking neuron models (40)–(41) and (42)–(43) exhibit

the SR effect in the sense that as the Levy noise

parameters and if .

Proof: Let be any decreasing sequence of

Levy noise parameters such that and as

. Define and as the respective solution

process and spiking rate process of the FHN spiking neuron

model (48) with Levy noise parameters and instead of

and .

Suppose that . We can absorb the drift into the

input signal because the Levy noise is additive in all the

neuron models. Then the new input signal

and this does not affect the Lipschitz continuity of in

(21). is subthreshold because

where . So we lose no generality if

we consider the noise with and let be

subthreshold in the continuous neuron model (21). This allows

us to use Lemma 2.

Recall that if and only if and are statistically

independent [20]. So we need to show only that

or as and for

signal symbols and for all . Here is the

joint probability density function and is the conditional

density function. This is logically equivalent to as

and as where is the conditional

distribution function [25]. Again the theorem of total probability

and the two-symbol alphabet set give

(57)

(58)
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So we need to show that

for all . This holds if and only if

(59)

We prove that for and

. Note that if for (48) then must cross the

firing or spike threshold . Then

Then Lemma 2 shows that the required limit goes to zero

because converges to the FHN fixed point

for large

by Lemma 2

Figs. 7(a) and (b) and 8(a) and (b) show simulation instances

of Theorem 2 for finite-variance diffusion and jump-diffusion

white Levy noise in the leaky integrate-and-fire and the FHN

neuron models. Small amounts of additive Levy noise in these

spiking neuron models produce the SR effect in terms of the

noise-enhanced Shannon mutual information between

realizations of a random (Bernoulli) subthreshold input signal

and the neuron’s thresholded output random variable . The SR

effects in Figs. 7(c) and 8(c) again lie outside the scope of The-

orem 2 because they occur for infinite-variance -stable noise

and because Theorem 2 requires noise with finite second mo-

ments. Thus the SR effect in spiking neurons is not limited to

finite-second-moment Levy noise.

VI. CONCLUSION

Levy noise processes can benefit several continuous and

spiking neuron models because general forms of the SR

“forbidden interval” theorem hold for several types of Levy

noise. The generality of Levy noise extends simple Brownian

models of noise to more complex and realistic Poisson jump

models of noise that can affect biological and model neurons.

But both Levy SR theorems require the finite-second-moment

restrictions of the two lemmas. This rules out the important

class of stable noise distributions in all but the Gaussian or

pure-diffusion case.

Relaxing the second-moment assumption may produce SDEs

that are not mathematically tractable. Yet the simulation evi-

dence of Fig. 1 and Figs. 3(c), 4(c), 5(c), 6(c), 7(c), and 8(c)

shows that the SR noise benefit continues to hold for several

stable models where the noise has infinite variance and infinite

higher order moments. It is an open research question whether

a more general Levy SR result can include these and other ob-

served noise benefits in continuous and spiking neuron models.

APPENDIX

PROOFS OF LEMMAS

The proof of Lemma 2 relies on the proof technique of

Lemma 1 in which we bound a mean squared term by four

additive terms and then show that each of the four terms goes

to zero in the limit.

Lemma 1: Let and in (23)–(24)

be measurable functions that satisfy the global Lipschitz condi-

tions

(60)

(61)

and

(62)

for all and for and .

Suppose

(63)

(64)

where is a Levy noise with and finite second mo-

ments. Then for every and for every

as and

for all (65)

and hence

as and

for all (66)

because mean square convergence implies convergence in prob-

ability.

Proof: The Lipschitz conditions (60) and (61) ensure that

the process exists [3] for in (63). Then the proof

commences with the inequality

(67)

which implies that

(68)

Equations (26) and (63)–(64) imply

(69)
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This gives an upper bound on the squared difference as

(70)

because . The

Cauchy–Schwartz inequality gives

(71)

Now put (71) in the first term of (70) and then take expectations

of the supremum on both sides to get four additive terms as an

upper bound

(72)

We next show that each of the four terms goes to zero. Con-

sider the first term on the right-hand side of (72)

by the Lipschitz condition (60)

(73)

The second term

because is a martingale and so we can

apply Doob’s inequality [57]:

if is a real-valued martingale,

is a bounded interval of , , and if

( in our case). But

by Itô isometry [3]

if where is the space of all

real-valued measurable -adapted processes such that

. Then

by definition of

because

(74)

Note that

by Doob's inequality

by definition of

because

(75)
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by Itô isometry and (20). Similar arguments and (19) give

(76)

Substituting the estimates (73)–(76) in inequality (72) gives

(77)

Inequalities (68) and (77) imply that we can write

where

(78)

and . Then we get by Gron-

wall’s inequality [24]: for all and for

real continuous in such that

where and . Note that as and

. Hence

as and (79)

for each . This implies the claim (66).

Lemma 2: Let and in (23)–(24)

[(40)–(43) for spiking neuron models] be measurable functions

that satisfy the respective local and global Lipschitz conditions

(80)

when and

(81)

(82)

for all and , and for and .

Suppose

(83)

(84)

where is a Levy noise with and finite second mo-

ments. Then for every and for every

for all (85)

and hence

as and

for all (86)

because mean square convergence implies convergence in prob-

ability.

Proof: Define the function such that

i) for ;

ii) for ;

iii) for .

We then show that the function is globally Lipschitz:

for all , .

Consider the function . Write

if

if
(87)

where

and (88)

The definition of implies that it is Lipschitz continuous on

the region

for all (89)

We first show that is Lipschitz continuous on the region

. For

by definition of

(90)

and

by definition of (91)

because for all

and is Lipschitz continuous on (92)

because

(93)
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Hence

(94)

(95)

(96)

by choosing on the line segment between and

such that

(97)

(98)

where we define

(99)

where

(100)

So is Lipschitz continuous on .

We next show that is Lipschitz continuous on and

. Choose , , and a point of on the line

segment between and . Then

(101)

(102)

(103)

because and . So is

Lipschitz continuous with coefficient on . Choose

, and a point of

on the line segment between and . Then

(104)

(105)

(106)

(107)

Then (89), (100), (103), and (107) show that is Lipschitz

continuous with coefficient on .

Consider next the SDE

(108)

Lemma 1 holds for (108) and so we can write

as (109)

for all where

and we choose such that for all . Now define

and

. Then and satisfy (83)

on . Note that and are stopping times and thus is

also a stopping time. So arguments similar to those of the proof

of Lemma 1 ((68)–(76) with appropriate modifications) give

(110)

Then

(111)

by Gronwall’s inequality. Hence holds almost surely

on . This result and (109) give

as and (112)

for all .

We need to show only that almost surely

as to prove (86). Let be the value

of the process at time . Note first that

. Then

because . Therefore

(113)

Applying Itô’s lemma [3] to gives

(114)

Thus

(115)

by Gronwall’s inequality where and do not depend on

because we do not use the Lipschitz condition in the derivation

of (114). Then (113) and (115) imply that

as (116)

Thus almost surely as . This implies the claim

(85).
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