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Stochastic Resonance in Neuron Models 

Andr6 Longtin 1 

Periodically stimulated sensory neurons typically exhibit a kind of "statistical 
phase locking" to the stimulus: they tend to fire at a preferred phase of the 
stimulus cycle, but not at every cycle. Hence, the histogram of interspike 
intervals (ISIH), i.e., of times between successive firings, is multimodal for 
these neurons, with peaks centered at integer multiples of the driving period. 
A particular kind of residence time histogram for a large class of noisy bistable 
systems has recently been shown to exhibit the major features of the neural data. 
In the present paper, we show that an excitable cell model, the Fitzhugh- 
Nagumo equations, also reproduces these features when driven by additive 
periodic and stochastic forces. This model exhibits its own brand of stochastic 
resonance as the peaks of the ISIH successively go through a maximum when 
the noise intensity is increased. Further, the presence of a noise-induced limit 
cycle introduces a third time scale in the problem. This limit cycle is found to 
modify qualitatively the phase-locking picture, e.g., by suppressing certain peaks 
in the IS1H. Finally, the role of noise and possibly of stochastic resonance (SR) 
in the neural encoding of sensory information is discussed. 
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1. I N T R O D U C T I O N  

This  pape r  examines  the c o n n e c t i o n  be tween  sensory  n e u r o n  ac t iv i ty  a n d  

the d y n a m i c s  of b i s tab le  a n d  exci table  systems in  the  presence  of no ise  a n d  
per iod ic  forcing. O u r  theore t ica l  s tudy  is m o t i v a t e d  by  expe r imen ta l  s tudies  
of the f ir ing ac t iv i ty  of  n e u r o n s  in  va r ious  sensory  moda l i t i e s  (vision,  
aud i t i on ,  touch ,  etc.). (2-5) The  goal  of those s tudies  was to shed l ight  on  the 

sensory  e n c o d i n g  m e c h a n i s m  used by  the n e r v o u s  system. The  ac t iv i ty  of 
these n e u r o n s  in  the presence  of  a pe r iod ic  s t imu lus  (e.g., a m e c h a n i c a l  
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vibration or a pure acoustic tone) exhibits various degrees of phase locking 
to the stimulus, depending on the stimulus characteristics. The firing occurs 
near a preferred phase of the external stimulus, but there can be a random 
number of cycles "skipped" between two successive firings. This leads to a 
multimodal distribution of interspike intervals (ISis) with peaks centered 
around the integer multiples of the period of the stimulus (see Fig. 1). 
Apart from the phase preference, the firing appears aperiodic. A return map 
of successive ISis reveals a lattice structure which appears symmetric about 
the 45-deg line, an indication that there is no apparent correlation between 
successive ISis. Connecting the successive points also does not reveal any 
obvious deterministic pattern. 

It has been shown recently that the histogram of interspike intervals 
(ISIH) is similar in many respects to that of residence times in bistable 
system. (1'6'7) These studies demonstrate that model bistable systems can 
easily and robustly reproduce the neural data, provided little or no 
switching between the wells occurs in the absence of stochastic driving. 
This finding leads to the exciting possibility that stochastic resonance, 
which is an amplification of the signal by the noise, could play a role in the 
encoding process. While various forms of bistability have been exhibited by 
neurons as well as by neuron models (see Sections 2 and 3), the most 
generic behavior of neurons is best characterized as "excitable" rather than 
bistable: when a certain threshold state (membrane voltage) is reached, 
there occurs a large excursion in the state variable, followed by a recovery 
to a resting state (Section 4). The large excursion-reset event occurs on a 

20 200 

,gE~2 

_c 

.~ 
Z 4 .  

(a) 

~ , t ~ . .  , . 

~.4.'~'-.-'. :'. 
r %--... ,, : 

' ~ - ~ .  �9 . . .  

, , L ' I'0 I ' I ~ 2fl 

C u r r e n t  I n t e c v c l  ( m s e c s )  

I 00  

(b) 

10 20 
riME(MS) 

Fig. 1. Interspike interval data from extracellular recording of cat auditory nerve fibers. The 
stimulus was a pure 800-Hz tone. (a) Return map  (or joint interval histogram) of the inter- 
spike interval times series. The stimulus intensity is 60 dB. (b) Interspike interval histogram 
(ISIH) for the same data as in (a). This is a plot of the number  of interval events versus the 
interval duration. 
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very fast time scale, and appears as a spike in the time course of the state 
variable. The obvious questions raised in this context and addressed in this 
paper are: (1) under what conditions can a periodically forced excitable 
neuron model exhibit the skipping phenomenon, and (2) what is the 
equivalent of "stochastic resonance" in such an excitable system which is 
not bistable? 

The outline of the paper is as follows. In Section 2, we give some back- 
ground on the neural data of interest and give a brief review of previous 
modeling efforts. Section 3 presents numerical simulations of a simple 
bistable model to illustrate how this class of models captures the main 
features of the neural data. A generic excitable cell model is then shown in 
Section 4 to also account for these features. This physiologically more 
appealing model is then studied from the point of view of stochastic 
resonance in Section 5, and a discussion follows in Section 6. 

2. B A C K G R O U N D  

Physical stimuli produce time-dependent ionic currents in the neuron 
membrane, which give rise to action potentials ("firings" or "spikes") when 
the membrane voltage is sufficiently depolarized. Neurons in the auditory 
fiber of the squirrel monkey,(2~ in mechanoreceptive afferents of the hand 
of the macaque monkey, (3~ and in the primary visual cortex of the cat (5) are 
among the classes of cells which exhibit multimodel ISIHs when subjected 
to a periodic stimulus (see Fig. 1). The peaks of these ISIHs are located at 
integer multiples of the driving period T and, except for the first few peaks, 
the envelope of the peaks decays exponentially. The exception is due to the 
fact that the mode of the ISIH shifts away from the first peak at high 
frequency and/or low amplitude of the stimulus. The ISI first-return map 
(Fig. 1) suggest that there is little if any correlation between successive 
firing times, although sophisticated data analysis techniques have 
uncovered clustering and long-term correlations between the 'spikes in 
auditory data. (8) Recent work,(1) aimed at elucidating the simplest physical 
mechanisms which can exhibit the basic features of the data, has shown 
that this can be achieved by a wide class of periodically and stochastically 
driven bistable systems. This result hinges on the careful association of 
"residence time in wells" with the ISI measured in the physiological systems 
(see Section 3). 

The problem of phase locking of noisy bistable systems to a periodic 
input has received attention especially in the context of stochastic 
resonance. ~ The imperfect phase locking is seen as a coherence between 
the noise-induced switching between the wells and the deterministic 
intrawell motion. Phase locking has also received considerable attention in 
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the biomathematics literature, namely in the context of periodically forced 
autonomous and integrate-and-fire-type (IF) oscillators. ~1~ Gerstein and 
Mandelbrot ~1~ briefly describe, in the context of the response of cat 
auditory fibers to short pulses (clicks), how the ISIH peaks of a peri- 
odically modulated random walk to an absorbing threshold fall at the 
integer multiples of the driving period. Glass and Mackey (12) have studied 
phase locking in a simple integrate-and-fire model with the intent of 
explaining entrainment in higher functions such as respiratory control. A 
study of phase locking in a similar model in the presence of noise has 
shown that, between regions of phase space with stable phase-locking 
patterns, there are unstable zones with no phase locking./~3) These unstable 
dynamics consist of quasiperiodic dynamics, arising for low-amplitude 
periodic input, and patterns with irregular skipped or intercalated beats at 
higher amplitude. Keener e t  al. (14) have also carried out a very thorough 
study of the phase-locking dynamics of a (deterministic) leaky IF model 
with periodic forcing. The case of periodically forced cells which do not 
oscillate autonomously, such as the Purkinge fibers in the heart, (15) has 
also received attention. In fact, Feingold e t  a/. (16) have shown, for an 
excitable system of the type considered here (though without noise), that 
phase-locking, quasiperiodic, and chaotic motion are possible, and that an 
Arnol'd tongue structure arises through the interaction of the external 
rhythm and an "effective intrinsic frequency" of the system. Finally, 
Alexander e t  al. ~17) have investigated, using analytical and numerical 
techniques, the detailed phase-locking dynamics of the (deterministic) 
Fitzhugh-Nagumo equations (see Section 4). 

Most of the aforementioned studies focus on the phase-locking 
patterns in the time domain, and the statistical distribution of the intervals 
between firings has received little attention, apart from brief discussions in 
refs. 11 and 13. We now consider interval distributions in a noisy bistable 
system, which will serve as a stepping stone toward the main focus of this 
paper, the existable model. 

3. M O D E L S  OF N E U R O N A L  BISTABIL ITY 

Landahl e t  al. ~18~ were among the first to consider neurons as bistable 
devices driven by noise (see ref. 19 for a review of stochastic neural 
modeling). This simple description of the neuron attests simply to its main 
nonlinear property, namely the presence of a threshold which gates the 
influence of the input to the neuron on its output. Much theoretical and 
experimental work has been done on the effect that an external periodic 
forcing has on the switching behavior of a bistable system, especially in the 
context of stochastic resonance (see ref. 9 for a review). This leads in 
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particular to the study of systems governed, in the limit of large damping, 
by the flow 

dx dU(x) 
- -  + ~(t) + m sin(cot) (1) 

d t -  dx 

where U(x) is a double-well potential and ~(t) is a white Gaussian 
noise process of zero mean and correlation (~(t)r 
In what follows, the behavior of Eq. (1) is investigated numerically, with 
the process ~(t) replaced by an Ornstein-Uhlenbeck process governed by 

d~ 
- - =  -2;7(t) + 2~(t) (2) 
dt 

in order to have control over the correlation time r c = 2 -~ of the noise. 
This Gaussian process has zero mean, and its autocorrelation is given by 

C(t,s)=C(It--sl)=<tl(t)~l(s))=(D/~,3exp(-It-si/~) (3) 

and thus its variance is C(0)=  D/z c. Various analytical results concerning 
mean first passage times (MFPT)  and the distribution of residence times T 
within a given well of the double-well potential U(x) have been 
obtained. (9, 20) 

Bistable systems as elementary as the Schmitt trigger have been shown 
to exhibit the basic features of the biological data. 0'6'7) These results may 
be summarized as follows. Denote the two states of the bistable system by 
A and B, and assume that the amplitude of the periodic input is not suf- 
ficient to cause a state transition. In the absence of any noise, this system 
would remain confined to its initial state. In the presence of noise, state 
transitions will occur (with or without the periodic input), and the two- 
state output of the trigger will be a random telegraph signal. Distributions 
of intervals between these transitions are similar to those shown in Fig. 1 
when an interval corresponds to the time between two successive A ~ B 
transitions (or B ~ A for a symmetric potential). 

This description in which an interval is made up of two successive 
residence times is valid if both "states" of the neuron are locally stable as 
in the simple bistable model. The identification of "states" in the neural 
system is trickier, however, than for this simple model. It has been argued 
in ref. 1 that the typical excitable neuron has a characteristic current-  
voltage relation which is N-shaped, as is the flow associated with a bistable 
potential. One can thus identify the resting state of the neuron with the 
equilibrium point of the left well; both are stable in the absence of forcing 
,(the cells of interest then simply fire spontaneously and randomly). The 
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other state may correspond to an "excited state" (above threshold) which 
does not immediately reset to the resting state (certain excitable cells are 
known to exhibit such "long plateaus"--see ref. 21), to a "recovery state" 
characterized by layperpolarization. In either case, a resetting event (which 
allows the vicinity of the resting state eventually to be reached) must 
occur between successive spikes. It is in this spirit that one is led to the 
association of interspike interval with a "back-and-forth" event in the 
bistable system. 

Figure 2 is a plot of the ISIH for transition times generated by the 
standard quartic potential: 

dx 
- -  = x - x 3 + m sin(cot) + t/(t) (4) 
dt 

where t/(t) is again the Ornstein-Uhlenbeck process. The parameters are 
such that no deterministic switching occurs. The decay of the ISIH is 
exponential (data not shown). Very fast events are seen to occur (in the 
first bins), due to rapid successive crossings of the metastable state. At very 
high amplitude, the skipping behavior of the model becomes replaced by 
1 : 1 firing. If the forcing amplitude or the noise intensity is too small, or the 
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Fig .  2. I S I H  obtained from the solution of the standard quartic system [ E q .  ( 4 ) ]  w i t h  a 

forcing frequency of 250 Hz .  A n  interval corresponds to the time between successive A ~ B 

transitions. Parameters are m = 1.0, D = 0.1, z c = 0.1, co = 500~.  
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forcing frequency is too high, "spikes" preferably occur every second or 
third cycle, each stimulus cycle bringing the particle closer to the barrier. 
In this case, the envelope decay is asymptotically exponential. (1'6) 

4. AN EXCITABLE M O D E L  

The Hodgkin-Huxley equations ~22~ capture the basic regenerative 
firing mechanisms of nerve cells. This model and certain lower-dimensional 
variants of it exhibit bistability between two fixed points over certain 
parameter ranges. (21) They can also exhibit bistability between a fixed point 
and a limit cycle (periodic autonomous firing). Hence, in principle, they 
can be made to exhibit the phenomena of the simple bistable models. While 
it is possible that these kinds of bistability, in conjunction with periodic 
and stochastic forcing, underlie the skipping phenomenon, it would be 
interesting to find another mechanism which is perhaps more robust and 
typical of excitable models. We now investigate the behavior of a generic 
excitable cell model, the Fitzhugh-Nagumo (FHN) equations~22'23/: 

dv e-~=v(v-a)(1-v)-oo+~(t)  (5) 

d(D 
- -  = v - de) - [b + r sin(f/t)] (6) 
dt 

This system of two ODEs, which still has a cubic (or N-shaped) non- 
linearity as in the model of the previous section, captures the basic 
mechanism of action potential generation. It automatically resets from 
the excited state to the resting state, which is not the case for the one- 
dimensional bistable models investigated above. The FHN equations 
account for a recovery current which has the effect of hyperpolarizing the 
neuron membrane potential, i.e., making it temporarily more negative 
than the resting potential (with respect to the extracellular space), thus 
rendering the cell refractory to the generation of another spike for about a 
millisecond. This model allows, as do the HH equations [but not the 
models based on Eq. (1)], for repetitive firing in the absence of periodic 
forcing, through a supercritical Hopf bifurcation. (22) 

The variable v(t) is the fast "voltagelike variable," while w(t) is the 
slower "recoverylike" variable. In Eqs. (5)-(6), the periodic forcing has 
been added to the dynamics of the recovery variable, while the stochastic 
forcing has been added to the dynamics of the voltage variable. The reason 
for this is to allow comparison with the deterministic picture, studied by 



316 Longtin 

Alexander et  al., (17) in which the periodic forcing is added to the slow 
dynamics. It is argued in ref. 17 that the transformation from 

dv 
e --~ = v(v  - a)(1 - v) - co + A sin(fit) + ~(t) (7) 

do) 
d-~ = v - dco - b (8) 

to Eqs. (5)-(6) is valid, and further holds in the singularly perturbed limit 
~ 0 as long as fl < 1/5. When fl is O(1/e), the forcing cannot be isolated 

on the slow variable uniformly in e; in fact, new phenomena arise when the 
frequency is comparable to the relaxation rate of the fast variable. The 
transformation from Eqs. (7)-(8) to Eqs. (5)-(6) can be accomplished by 
a change of variable. Consider the system 

dv 
e - ~ = p ( v ) - q ( c o ,  ~ ( t ) )  + r  (9) 

dco 
dt - g ( v ,  w, ~(t))  (10) 

If a q / ~ c o r  then the change of variable ~b=q(co, ~b) and its inverse 
c o = h ( ~ , ~ )  can be used, with help from 
Eqs.(5)-(6)  as 

dv 

de5 ~q 
~=~g(v ,  h(~, ~), 0 ) + - - - -  

the chain rule, to rewrite 

,~q dO(t) 
~ dt 

In the case of interest here, ( ~ ( t ) = I ( t ) = A s i n ( f l t ) ,  

(11) 

(12) 

(5 = q = w - I(t), 
O(t) = 0, and g =-g(v,  co) = v - dco - b. The equation for the new recovery 
variable cb becomes 

dcb 
- v - d ~  - b - d I ( t )  - I ' ( t )  (13) 

dt 

The term - d I ( t ) - I ' ( t )  is equivalent to harmonic forcing such as I ( t )  

defined above when A = r/(d2+ fl2)1/2. We have verified (data not shown) 
that, when the amplitudes in Eqs. (5)-(6) and Eqs. (7)-(8) are related by 
this expression, the numerical simulation results for the parameter ranges 
in our study are identical to within the expected statistical fluctuations. All 
the F H N  simulations presented here are done on Eqs. (5)-(6). The corn- 
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plexity of this flow warrants the use of (digital) numerical simulations to 
investigate the spiking dynamics and stochastic resonance in the F H N  
equations. All our simulations are done using the Ornstein-Uhlenbeck 
noise [Eq. (2)] with correlation time set to 0.01. 

We focus our attention on whether the periodically forced F H N  equa- 
tions can exhibit an ISIH of the type shown in Fig. 1. It turns out that the 
answer is yes when parameters are such that the deterministic F H N  is 
below but near the supercritical Hopf bifurcation at b -- bo, and that noise 
is added to the system as in Eqs. (5)-(6). A realization of this stochastic 
process is shown in Fig. 3. The ISis are now computed from the times 
between positive-going crossings of a threshold, chosen as 0.5, which is 
approximately half the peak height in the absence of noise. The peak 
structure of the ISIH becomes more visible when the stimulus modulates 
the bifurcation parameter b [as in Eqs. (5)-(6)]  in such a way that b > b0 
during part of the forcing cycle. (7~ Figure 4 plots the spontaneous ISIH for 
the F H N  model, i.e., when the stimulus amplitude is zero. The ISIH has 
the shape of a gamma distribution, which also characterizes the experimen- 
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Fig. 3. A realization of the stochastic process given by Eqs. (4) (5) corresponding to the 
Fitzhugh Nagumo equations. The mean spiking period is 1.40 sec. The positive-going spikes 
are. considered as action potentials when they reach a min imum amplitude (set at 0.5 in our 
study). Typical return maps  are similar to that shown in Fig. la. Parameters are /~= 15, 
a=0 .5 ,  b=0.15 ,  d =  1.0, e=0.005,  D =  10 s, zc=0.01,  integrated using fourth-order Runge- 
Kut ta  with an integration time step of 0.0025. 
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tal spontaneous ISIHs. The bifurcation parameter is set at b = 0.15, a value 
below the deterministic bifurcation point of b0 = 0.35 for the parameters 
used in our study. The spontaneous ISIH is nevertheless relatively sharp, 
and becomes peaked toward the limit cycle period as b increases (data not 
shown), owing to entrainment of the motion to the limit cycle. 

The ISIHs are computed for four different noise intensities D in Fig. 5. 
Low noise intensities bring out many peaks, and the probability concen- 
trates into the first peaks at the noise intensity increases. The ISIHs present 
the same features as the experimental ones, including the broad skirts on 
the peaks. At very large noise levels, the background stochastic firings 
dominate the ISIH (the space between the peaks fills in). The buildup of 
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the background noisy firing is also evident from the increasing peak widths 
with the noise intensity. 

Figure 6 shows similar results, except that the frequency is now twice 
its value in Fig. 5, and the bifurcation parameter is set closer to b0. The 
interesting point here is that the first peak corresponding to the forcing 
period (0.42) appears suppressed, even at large noise intensity. In fact, the 
second peak (i.e., at 2To) always dominates, even though it goes through 
a maximum. The reason for this may be that the period of the limit cycle 
which affects the dynamics for b < b0 due to the noise), which is 0.77, is 
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quite close to 2To; in other words, the dynamics entrains to the period of 
the noise-induced limit cycle, and skipping every other beat is a highly 
probable event. For large noise, the peak structure is seen to yield to the 
background stochastic firing in a clearer manner than in Fig. 5. 

Figure 7 illustrates the effect of the stimulus amplitude on the ISIH. 
At low amplitude many noisy peaks are noticeable. As the amplitude 
increases, the rate of decay of the ISIH also increases, and the peaks 
become in fact narrower, a behavior seen in Fig. 5 for low noise levels. As 
the amplitude increases even further, the behavior tends to a 1:1 phase 
locking. Note finally that the ISIHs corresponding to low-amplitude 
stimuli and/or to high noise intensities exhibit many fast events, i.e., 
random high-frequency spiking. 

5. S T O C H A S T I C  RESONANCE:  INTERACTION OF THREE 
T I M E  SCALES 

Classical stochastic resonance (SR) occurs when the time scale 
imposed by the external periodic modulation becomes commensurate with 
an appropriately defined switching rate for the bistable system. Residence 
time histograms (RTHs) provide the natural context in which to 
investigate SR in our system. (~'6'71 For bistable systems, the height of the 
second (or third, or fourth,...) peak goes through a maximum as a function 
of noise intensityJ 2~ While this effect is a signature of a resonance, in the 
sense that the maximum implies a preferred switching interval, its precise 
relationship to SR as measured by the signal-to-noise (SNR) ratio has not 
been characterized completely. Many results indicate, however, that this 
resonance occurs at the same noise intensity as does that measured using 
the SNR (see, e.g., ref. 24). 

Before addressing the issue of whether or not the excitable FHN 
model exhibits SR, it is important to understand in what sense (if any) the 
model is bistable. The Hopf bifurcation in the FHN equations is super- 
critical, implying no bistability, even though the limit cycle amplitude 
increases abruptly, reminiscent of a subcritical bifurcation. However, there 
is a noise-induced limit cycle. Thus, in some sense, the bistability can be 
seen as arising between a fixed point (the resting potential) and an 
oscillatory state which produces spikes at a mean rate dependent on the 
noise, in analogy to bistability between a fixed point and a repetitively 
firing state seen in some neuron models. (21~ SR would then occur when the 
mean time the voltage takes to go from the resting value to the threshold 
for spiking in the presence of noise becomes commensurate with the forcing 
period. This situation is also analogous to that studied by Fletcher et  al. (25~ 
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in which an escape time to an absorbing threshold for a particle under- 
going a random walk in some potential becomes minimal in the presence 
of a commensurate periodic modulation. The "neural mean first passage 
time" to the threshold can be evaluated simply as the mean of the ISIH 
(MFPTs for neuron models are discussed in ref. 19). 

The behavior of the peak heights as a function of D and r is shown in 
Figs. 8 and 9, respectively. While the height of the first peak is seen to 
increase monotonically with D or r, the second peak goes through a maxi- 
mum, as observed by Zhou e t  al. (2~ for the single-well RTHs. However, the 
first peak can go back down at large D (not shown), suggesting that SR 
may occur at the maximum of this peak. This further depends on what one 
measures, since the position of the first peak will be affected the most by 
the growing background firing distribution on which it becomes super- 
imposed (see also ref. 26). The second peak achieves its maximum value (as 
a function of D) well before it is reached by the first peak. I t  is possible 
that, by the time the first peak dominates the others, much of the coherence 
between the input and the firings may be lost, since the high noise level 
causes the switchings to occur over a whole range of times during each half 
cycle of the stimulus. (27) Thus, as for bistable systems, the coherence 
between signal and switching in the F H N  model may be maximum when 
the second peak is maximum. 

We are also confronted with two different views of resonance: that in 
which the peaks are unnormalized, and that in which they are. We have 
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Fig. 9. Height of the first three peaks in the ISIHs of Fig. 7 as a function of forcing 
amplitude r. Note the exponential increase of the first and second peaks at low amplitude. 

found for the parameter range investigated (data not shown) that if our 
ISIHs are normalized, Figs. 8 and 9 are qualitatively different. Also, if the 
number of events in the bins corresponding to T O and 2To were used, 
regardless of whether these bins correspond to peak maxima, Fig. 8 would 
then show the second peak decreasing monotonically and the first peak 
going through a maximum. One can have the situation where one peak has 
less probability at one value of D than at another, even though in absolute 
numbers it has more events, all simulations lasting the same number of 
stimulus cycles. So even though, relatively speaking, the events in this peak 
are less probable than at the other noise value, more firings take place, and 
more information about the stimulus appears conveyed to the neuron's 
output. The area under the peak may then be the important quantity. One 
hopes that the issues will be settled by future investigations. 

The mean of the ISIH for the F H N  system is about 1-1.5 sec when 
D ~  10 .5 (see Fig. 4 for b=0.15;  similar values were obtained for b=0 .12  
used for the ISIH computation with r r 0). The stimulus frequencies used 
are 1.2-2.4 (corresponding to fl-- 7.5-15). Hence we are already in a range 
where resonance can in principle occur, if it occurs by a mechanism similar 
to that in one-dimensional bistable systems. A maximum in the height of 
the second peak of the ISIH is in fact seen for D ~  10 -5. The presence of 
the third time scale, i.e., the limit cycle, implies that as the model operates 
closer to its Hopf bifurcation point, the mean of the spontaneous activity 
becomes strongly determined by the limit cycle period. The mean firing 
time being close to this period, resonance will ensue especially when the 

822/70/1-2-21 
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neuron is stimulated at this frequency, which is a preferred frequency for 
the system. Thus, as the vicinity of the bifurcation point is approached, the 
description shifts from stochastic resonance to normal resonance since 
the FHN equations behave as an underdamped oscillator driven by noise. 

6. D I S C U S S I O N  

The motivation for this work is to understand the generic properties 
of bistable and excitable models with respect to the encoding of sensory 
information, and in particular to stochastic resonance. The connection 
between the biology and the models is made plausible by identifying the 
fixed points of the flow with those derived from the N-shaped current- 
voltage relation of the neurons. The models studied here reproduce the 
data when their parameters are such that deterministic switching is 
minimal or nonexistent. Hence the noise is necessary to transfer the signal 
from the neuron's input to its output firing activity. 

Another possibility is that the ISIHs arise out of chaotic behavior of 
the neurons, corresponding to chaotic solutions of Eqs. (5)-(6) known to 
occur for certain parameters. An ISIH built from such a chaotic solution 
is shown in Fig. 10a, along with its return map in Fig. 10b. It certainly does 
not reproduce the data as convincingly as the models considered up to 
now. The peaks have a different shape and do not line up very well with 
integer multiples of the driving period. Further, a slight parameter change 
can drastically modify the ISIH, as a different chaotic solution or even a 
simple or complicated phase-locked solution can arise. Additive noise does 
smoothe out the ISIH and the return map, as shown in Figs. 10c and 10d, 
but again a small change, e.g., in frequency can yield quite a different 
picture. This sensitivity of the ISIHs to small parameter variations was not 
present in the bistable nor in the excitable models studied here. On the 
other hand, it appears difficult to obtain ISIHs for the FHN system with 
many peaks when the first peak is the highest; this behavior is most common 
in the (auditory) neural data, and easily reproduced by the bistable model. 
Possible reasons for this are: (1) the frequencies investigated are too high; 
(2) there is entrainment to the intrinsic period of the limit cycle which lies 
nearby in parameter space; and (3) the mechanism for skipping is not the 
one studied here. It is possible, for example, that a good or better fit to the 
data can result from operating the FHN model in a parameter range where 
one has many periodic phase-locked solutions in close proximity (and 
possibly multistability between them) rather than chaos or a noise-induced 
limit cycle/26) Results concerning this point will be reported elsewhere. 

Noiseless neural models typically have a very limited dynamic encoding 
range. If a constant stimulus is subthreshold, no spikes occur; if it is 
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suprathreshold, firing at a constant and usually high rate occurs. This rate 
does not depend sensitively on the value of stimulus. Various authors (28'29~ 
have shown that noise can linearize the firing-frequency vs. stimulus- 
amplitude relation of the neuron, thereby increasing the dynamic encoding 
range. Although it is still far from clear whether the encoding uses mean 
spike rate, the ISIH, or the precise timing of the ISis in a spike train, it is 
interesting that the linearization property arises naturally in the neuron 
models considered in this work. 

It is interesting that there is practically no predictability, linear or non- 
linear, in ISI data of the type considered here. (7] Hence, one is tempted to 
conclude that the temporal features of the data are not so important as its 
statistical features, reflected namely in the ISIH. However, there is evidence 
(for the auditory fibers at least) for clustering and long-term correlations in 
the data, exhibited through Fano-factor time curves. (8) Finding the proper 
dynamical model then requires proper consideration of the temporal as 
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well as statistical properties of the spiking. Finally,  stochastic resonance in 
the context of residence time histograms seems to depend on the way one 

measures it. Theoret ical  work is still needed to clarify the relat ion between 
SR and  the peak heights, as well as the sense in which there is resonance. 
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