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Abstract
We outline the historical development of stochastic resonance (SR), a phenomenon in which
the signal and/or the signal-to-noise ratio in a nonlinear system increase with increasing
intensity of noise. We discuss basic theoretical ideas explaining and describing SR, and we
review some revealing experimental data that place SR within the wider context of statistical
physics. We emphasize the close relationship of SR to some effects that are well known in
condensed-matter physics.
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1. Introduction
The term stochastic resonance (SR) is used to describe a group of phenomena in which the
fluctuations of a nonlinear system enhance its response to a regular (e.g. periodic) force.
The response at first increases with increasing noise intensity and then decreases again,
and the same is often true of the signal-to-noise ratio as well. Over the last decade SR
has attracted considerable attention from the scientific community, and about a hundred
papers on the issue have been published. The subject has been discussed at many meetings,
including a topical international conference whose proceedings [1] describe the state of the
art as at mid-1992. Since that time, several interesting new results have emerged, or have
been reported in greater detail, including the observation of synchronization of switchings
between the stable states of a Brownian particle in a bistable optical trap [2], prediction
and observation of SR in an underdamped noise-driven monostable system [3], observation
of SR in a bistable SQUID loop [4] and in a crayfish mechanoreceptor [5], observation of SR
in systems with coexisting periodic attractors [6, 7], theory of SR for a quantum two-level
system with ohmic dissipation in the context of conduction fluctuations in a mesoscopic wire
[8] and observation of the periodic modulation of the conductance in response to modulation
of the temperature or electric field [9], theory and observation of SR for a monostable system
with a cyclic variable [10], SR in a tunnel diode [11], and noise-enhanced heterodyning in
bistable systems [12], a phenomenon closely related to SR.

Stochastic resonance was first discovered [13]-[15] in searching for an explanation of the
earth’s ice-age cycle (see Section 2A, below), and then for a few years the analysis was
concentrated on SR in simple symmetric bistable systems. More recently the context of SR
within the larger scientific enterprise has become clear. It is the main aim of this paper to
explain how SR relates to standard statistical physics, to point out that the phenomenon
becomes analytically tractable when treated through the traditional methods, in particular
linear response theory, and to emphasize the close relationship of SR to earlier results in
condensed matter physics. The paper is not intended to be a review in the conventional
sense, and neither have we attempted to cite every paper published on SR. Rather, we wish
to propose a perspective in which SR can be seen to take its place with other phenomena in
physics.

Section 2 sets the scene by reviewing major events in the relatively recent history of the
subject, i.e. since the term stochastic resonance was introduced. In Section 3, we go back in
time to consider the prehistory of SR, showing how linear response theory (LRT) provides
the simplest and most natural way of approaching the phenomenon under most conditions,
and discussing some precursors of SR in condensed matter physics. There are a number
of interesting SR phenomena that lie outside the range of linear response so that LRT is
inapplicable, however. They can nonetheless still be treated through application of standard
methods of statistical physics: some examples are considered in Section 4. Finally, in Section
5, we draw conclusions and look to the future of SR.

2. An Historical Overview

For historical reasons, the term “stochastic resonance” is used for the two distinct sorts of
effects that arise in fluctuating systems driven by a periodic force A cosΩt: (i) fluctuation-
mediated periodic modulation of the populations of the coexisting stable states, in bistable
systems [13]-[15], and (ii) the increase, with increasing fluctuation intensity, of the periodic
signal in the system [13], and of the signal-to-noise ratio R [16, 17] - a phenomenon by no
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means limited to bistable systems [3, 10]. We briefly review the origins of the idea of SR
in Sec. 2A, and then in Sec. 2B we describe the discovery of SR in a ring laser and how
it resulted in an explosion of interest leading to the observation of SR in different types of
systems.

A. Ice-ages Prelude

The term “stochastic resonance” was introduced by Benzi et al. [13] in the context of
the theory of ice ages. By the mid-seventies it had been established that the data on the
oxygen isotopic composition (relative amount of the 18O-isotope) of planktonic foraminifera,
and some other independent geological data revealing climatic changes (the ice ages), display
periodicity, with a period of ∼ 100,000 years [18]. This period is close to that of the variations
of the eccentricity of the earth’s orbit. As a result of the latter the power of solar radiation
incident on Earth (averaged over a period long compared to a year) varies correspondingly,
and it was hypothesized that this might be responsible for the global climatic changes [19].

A simple model that describes such effects is one in which the climate is described by a
single variable, which might be thought of as a global earth temperature Te, the equation
for Te being the energy balance equation (cf. Refs. [14, 15])

Ce
dTe

dt
= µP [1− α(Te)]− σ̃T 4

e . (1)

Here, P is the average power of the incoming solar radiation, Ce is the thermal capacity of
the Earth, α(T ) is the average albedo, and σ̃ is the average renormalized Stefan constant
that describes cooling of the Earth via infrared emission. The parameter µ characterizes the
eccentricity of the Earth’s orbit: it depends on time periodically with the period 2π/Ω = 105

years,
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Figure 1: The double-well potential U(q). The minima q1, q2 correspond to the stable states
of a system with the dynamical variable q. In the model of climate (1) q is the effective
temperature of the Earth Te, and U(Te) = Φ(Te).
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µ ≡ µ(t) = 1 + A cosΩt (2)

Eq.(1) can be rewritten in the form of an equation of motion of an overdamped particle
with the coordinate Te in a potential Φ(Te):

dTe

dt
= −

∂Φ

∂Te

, Φ(Te) =
∫ Te

dT ′

e C
−1
e

(

−µP [1− α (T ′

e)] + σ̃T ′4
e

)

. (1a)

The stable states of the system correspond to the minima of Φ(Te) (cf. Fig.1). The model (1)
can be relevant to the problem of the ice ages provided there are two stable states coexisting
for µ = 1: one with the temperature Te = Te2 for which the Northern Hemisphere is mostly
free from ice, and the other with the temperature Te = Te1 for which a substantial part of the
Northern Hemisphere is covered by ice. In these two states the reflectivity of the Earth, i.e.,
the value of the parameter α in (1), is different, and therefore they are both self-consistent
(when Te = Te2 > Te1 there is no ice, less energy is reflected, and thus the temperature is

higher, whereas for Te = Te1 < Te2 the ice is in position, hence more energy is reflected, and
the temperature is lower; we notice that the difference Te2 − Te1 ∼ 10K).

In the model (1), switching between the states occurs provided the amplitude A of the
modulation of the parameter µ is large enough, so that for |µ− 1| ≤ A the system has only
one stable state. In other words, when µ as given by (2) varies periodically in time, the
potential Φ changes so that each of the two wells disappears in turn, and the system is then
forced to switch to the other one. However, estimates show that the modulation amplitude
A related to the oscillations of the eccentricity of the Earth’s orbit is not large enough to
provide such a deterministic switching.

It was suggested by C. Nicolis and by Benzi et al. [14, 15] that the periodic modulation of
the populations of the wells can be mediated by fluctuations. These fluctuations, which have
relatively short correlation times, result from atmospheric and oceanic circulation, volcanic
eruptions (dust in the atmosphere can change the albedo noticeably, and for quite a long
time), etc. In the simplest model they can be assumed to be a white noise driving the global
temperature, in which case Eqs.(1), (1a) take the form

q̇ = −
∂U

∂q
+ ξ(t), 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′) (3)

with
q ≡ Te, U(q) = Φ(q),

whereD is the characteristic noise intensity. It is assumed to be small so that the fluctuations
of q (i.e., of Te) about the stable values q1,2 ≡ Te1,2 (U

′(q1,2) = 0, U ′′(q1,2) > 0, cf. Fig.1) are
small compared to q2−q1. Nevertheless, although the noise is weak on the average, there can
occur, occasionally, outbursts large enough to cause switchings between the stable states.
The probability Wnm of a switching from the nth to the mth state for a white-noise driven
system was found by Kramers [20] to be of the activation type,

Wnm = π−1 [U ′′(qn)|U
′′(qs)|]

1/2
exp(−∆Un/D), ∆Un = U(qs)− U(qn) (4)

Here, ∆Un is the depth of the nth well of the potential U(q) measured relative to the
value U(qs) of U(q) at its local maximum qs between the minima of U(q) at q1 and q2
(U ′(qs) = 0, U ′′(qs) < 0, see Fig.1).
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If for µ = 1 the depths ∆U1 and ∆U2 are nearly equal, as they are assumed to be in the
model of the climate (1), the populations of the stable states vary at random in time, and
their average values w1, w2 are of the same order of magnitude:

w1/w2 = W21/W12 ∝ exp [(∆U1 −∆U2) /D] (5)

Let us assume now that the potential is slowly modulated in time so that ∆U1 and ∆U2

oscillate in counterphase, and for a half of the period 2π/Ω one of the potential wells is
relatively deeper, while for the other half of the period it is shallower. Then the average
values of the populations w1,2 will oscillate in time as well, i.e., there will occur periodic
modulation of the populations for a modulation strength that is much less than that needed
to change the potential from a double-well to a single-well. So, a periodic redistribution of
the system over the stable states in response to a periodic forcing comes about via noise.
It was this interesting idea that was suggested in [14, 15] as a plausible explanation of the
periodicity of the ice ages.

We notice that, in the very first paper where the term “stochastic resonance” was intro-
duced, [13] an interesting question was raised: is it possible for the noise-mediated modula-
tion of the populations to be so strong that the instantaneous values of the populations, and
not just their ensemble-averaged values, depend on time periodically? If so, what are the
necessary conditions? Obviously, such a periodicity would arise in the absence of noise for
sufficiently strong driving but, at first glance, for a weak periodic driving in the presence of
noise the transitions between the states occur at random, although with a tendency towards
periodicity. It turns out, however, that even for a weak driving, provided that the driving
amplitude exceeds the properly scaled noise intensity and that the modulation frequency is
small enough, the redistribution over the states is nearly periodic in time: see Sec. 4A.

B. SR in a Ring Laser

The observation of SR in a bidirectional ring laser, reported by McNamara, Wiesenfeld, and
Roy [17], played an important role in attracting the attention of the scientific community
to SR. A bidirectional ring laser is bistable: it can generate modes that propagate either
clockwise or anticlockwise. With the aid of a modulator (an intracavity acousto-optical
modulator) it was possible to switch the operation between the modes. The modulator was
driven by a broad-band (quasi-white) noise and by a sinusoidal voltage, and the intensity
of the radiation of the laser in one direction was detected. In the absence of the periodic
modulation this intensity was fluctuating in time at random. When the sinusoidal voltage
was applied in addition to the noise there occurred a δ-shaped spike in the power spectrum of
the intensity at the frequency Ω of the voltage (there were also spikes at the overtones). Not
only was the intensity of this spike found to increase with increasing intensity of the input
noise, but, quite counter-intuitively, the ratio R of the former to the height of the power
spectrum at the frequency Ω in the absence of the periodic driving (the signal-to-noise ratio)
was found to increase, too, as shown in Fig.2. Similar behaviour had already been observed
by Fauve and Heslot [16] in analog simulations using a Schmitt trigger as the bistable system.

The theory of SR considered in [17] and also in the paper by McNamara and Wiesenfeld
[21] was based on the balance equation for the average populations of the coexisting stable
states of a noise-driven bistable system:

ẇ1(t) = W21(t)w2(t)−W12(t)w1(t), w1(t) + w2(t) = 1 (6)
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Figure 2: Signal-to-noise ratio vs noise intensity as observed for a ring laser in [17].

The transition probabilities Wnm(t) were evaluated in the adiabatic approximation: i.e. it
was assumed that the frequency Ω of the sinusoidal driving was small compared to the
reciprocal relaxation time of the system. In this case the probability Wnm(t) is determined
by the instantaneous value of the potential well depth ∆Ũn(A cosΩt) where ∆Ũn(A) is the
depth of the nth potential well in the potential tilted by the external force, U(q)− Aq. For
small enough amplitude of the force only linear terms need be retained in the potential well
depth. Using Eq.(4), one can then write Wnm(t) in the form [22]:

Wnm(t) = W (0)
nm exp(gn cosΩt), gn = g̃nA/D, g̃n = −

[

∂∆Ũn(A)

∂A

]

A=0

(7)

where W (0)
nm is the value of the transition probability in the absence of the force.

It is evident from Eq.(7) that the parameter which determines the effect of the driving
is proportional to the ratio of the amplitude of the force A to the noise intensity D. Thus,
in agreement with what was said above, for small D we can have strong effects even for
comparatively small A. Moreover, if A is so small that |g1,2| ≪ 1, the probabilities Wnm(t)
can be expanded in gn and Eq.(6) can then be solved analytically. To first order in |g1,2| the
dependence of the populations w1,2(t) on time is sinusoidal.

The solution is particularly simple in the important case of a symmetric potential U(q),
for which ∆U1 = ∆U2, g1 = −g2. An important byproduct of this solution is an interesting
behaviour of the spectral density of fluctuations Q(ω) of the coordinate of the system q(t):

Q(ω) = lim
τ→∞

(4πτ)−1

∣

∣

∣

∣

∫ τ

−τ
dt q(t) exp(iωt)

∣

∣

∣

∣

2

(8)

If the coordinate q(t) is approximated by the sum of its values in the stable states q1,2
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weighted by the populations w1,2(t) (the two-state approximation), then, because of the
sinusoidal dependence of the populations on time a δ-shaped spike occurs in Q(ω) at the
frequency ω = Ω. The ratio of its intensity (area) to the value of the power spectrum Q(0)(Ω)
in the absence of the driving, i.e. the signal-to-noise ratio R, is given by the expression
[17, 21]:

R =
π

4
g2 W (0), g ≡ g1 = −g2, W (0) ≡ W

(0)
12 +W

(0)
21 = 2W

(0)
12 (9)

It follows from (7) and (9) that the signal-to-noise ratio increases exponentially with
increasing noise intensity for small enough D,

R ∝ exp(−∆U/D), ∆U ≡ ∆U1 = ∆U2 (∆U ≫ D)

i.e. SR occurs. As mentioned above, it is this amazing result that has stimulated so much
interest in the phenomenon of stochastic resonance among physicists, biologists, and engi-
neers. In addition to ring lasers, optically trapped Brownian particles, and SQUIDs referred
to above, SR has been observed in various analog electronic circuits (see Refs. [16, 6, 7],
[23]-[25]), in a passive optically bistable system [26] and in a bistable laser with saturable
absorber [27], in a magnetoelastic ribbon [28], in a hybrid device that included an ESR
cavity [29], in single-domain uniaxially anisotropic magnetic particles [30], and in a magne-
toresistive oscillator [31]. It has also been proposed [32, 33] that SR may be relevant to the
transmission of information by sensory neurons. SR has been shown to occur in models of
excitable neurons [34], and the effects on SR of neuron coupling in a neural network have
been analyzed [35].

3. Linear Response Theory and the Prehistory of SR

A. Linear response Theory

A simple theoretical approach to SR that makes it possible to place the phenomenon in
context within statistical physics and condensed matter physics, and to relate it to what
had been done in these areas before, is based on linear response theory (LRT). According
to LRT, if a system with a coordinate q is driven by a weak force A cosΩt (the addition to
the Hamiltonian function of the system is of the form of −Aq cosΩt), there arises a small
periodic term in the ensemble-averaged value of the coordinate, δ〈q(t)〉, oscillating at the
same frequency Ω and with amplitude a proportional to that of the force [36]:

δ〈q(t)〉 = a cos(Ωt+ φ) ≡ Re
[

χ(Ω)Ae−iΩt
]

, A → 0 (10)

a = A|χ(Ω)|, φ = − arctan [Imχ(Ω)/Reχ(Ω)]

The quantity χ(Ω) here is the susceptibility of the system. Eq.(10) holds for dissipative
and fluctuating systems that do not display persistent periodic oscillations in the absence
of the force A cosΩt and where the correlations of fluctuations decay in time. In the more
general case of a system performing phase-locked oscillations with a period 2π/ωF (this case
is of particular interest for systems driven by strong periodic fields with a frequency ωF , e.g.,
by laser radiation) the linear response is described by the expression
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δ〈q(t)〉 = Re
∞
∑

k=−∞

χ(k)(Ω)A exp[i(kωF − Ω)t], A → 0 (11)

In this case a weak force gives rise to vibrations not only at its own frequency, but also at
the combination frequencies |Ω± kωF |, and χk(Ω) are the corresponding susceptibilities.

The function χ(Ω) (or the functions χ(k)(Ω)) contains all information on the response of
the system to a weak driving force. It gives both the amplitude of the signal, a, and its phase
lag with respect to the force, φ (or partial amplitudes and phase lags for the vibrations at
the combination frequencies). In fact, Eqs.(10), (11) still hold even if the force is of a more
general nature than just an “additive” coordinate-independent force described by the extra
term −Aq cosΩt in the Hamiltonian. In particular, the force can be coordinate-dependent
(a multiplicative force), or it can be the intensity of the noise driving the system (e.g., the
temperature, if the noise is of thermal origin) that is modulated periodically. In any case,
if the amplitude of the modulation is weak enough, the response of the system is linear
and is described by (10), (11). The onset of SR in response to a modulation of the noise
intensity (temperature) [37] has been investigated in [8] and [9]. Note that LRT is equally
applicable to “non-traditional” SR-displaying systems such as integrate-and-fire neurons [38]
and threshold detectors [39].

The periodic terms (10),(11) induced by the force give rise to δ-shaped spikes in the
spectral density of fluctuations (SDF) Q(ω) (8) at the frequency of the force Ω (and at the
combination frequencies |Ω± kωF |). The intensity (i.e., the area) of these spikes is equal to
one fourth of the squared amplitude of the corresponding vibrations, i.e., to 1

4
A2|χ(Ω)|2, or

to 1
4
A2|χ(k)(Ω)|2. The signal-to-noise ratio R is thus expressed in terms of the susceptibility

as

R =
1

4
A2|χ(Ω)|2/Q(0)(Ω) (A → 0), (12)

and for periodically oscillating systems the signal-to-noise ratio R(k) at the combination
frequency |Ω− kωF |

R(k) =
1

4
A2|χ(k)(Ω)|2/Q(0)(|Ω− kωF |) (A → 0) (13)

Therefore, the evolution of the susceptibility and of Q(0)(ω) with varying noise intensity D
show immediately whether or not SR (understood as an increase of the signal-to-noise ratio
with increasing D in a certain range of D) is to be expected at a given frequency.

Describing SR in terms of the susceptibility is particularly advantageous for systems that
are in thermal equilibrium or in quasi-equilibrium. In this case the susceptibility can be
expressed immediately in terms of the SDF Q(0)(Ω) in the absence of periodic driving via
the fluctuation-dissipation relations [36]:

Imχ(ω) =
πω

T
Q(0)(ω), Reχ(ω) =

2

T
P
∫

∞

0
dω1Q

(0)(ω1)
ω2
1

ω2
1 − ω2

(14)

where P implies the Cauchy principal value and T is the temperature in energy units. It
follows from (12), (14) that the onset of SR can be predicted from purely experimental data
on the evolution of the SDF of a system with temperature without assuming anything at all
about the equations that describe its dynamics, i.e. for a system treated as a “black box”.
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The relevance of this approach to SR has been demonstrated unambiguously in analog
experiments on electronic systems simulating Brownian motion in a bistable [24] and in
a monostable [3] potential. In [24] the signal-to-noise ratio for quasithermal fluctuations
of a particle with inertia and friction fluctuating in a symmetric double-well potential was
(i) measured directly, with a weak periodic force applied to a system, and (ii) calculated
from experimental measurements of the power spectrum in the absence of periodic forcing,
using Eqs.(12),(14). The dependence of R on the noise intensity exhibited the reversed-
N shape typical of SR in continuous systems (cf. Figs.5, 7 below), and the results of
these two independent experiments were in a perfect qualitative and satisfactory quantitative
agreement with each other. The data obtained in [3] show that, contrary to what had been
commonly accepted, a noise-induced increase of the signal in a system does not require that
it be a bistable one: the effect can arise in monostable systems as well. The particular
mechanism explored [3] is based on the fact that the frequency of vibrations in a nonlinear
system depend on their amplitude (energy). By varying the temperature of the system (the
noise intensity) one varies the distribution of the system over the energy, and hence over the
frequency. It is possible therefore to “tune” the system, and thus to increase the response
at an appropriate frequency. The strong and rather interesting temperature dependence of
the spectral density of the fluctuations Q(0)(ω) of underdamped systems was reviewed in
Ref. [40]. Recent results obtained for a special class of underdamped systems where the
dependence of the eigenfrequency of the vibrations on the amplitude is nonmonotonic – the
upper curve in Fig. 3(b) refers to a system of this sort – are reported in [41]; it is in this
case that the noise-induced increase of the signal-to-noise ratio, not of the signal only, was
observed in an underdamped system [3].

B. Precursors of Stochastic Resonance in Condensed Matter Physics

To the best of our knowledge, analytical results for the susceptibility of a fluctuating sym-
metrical system with two coexisting stable states, which traditionally has been of primary
interest in the context of SR, were first obtained by Debye [43]. Debye analyzed the dielectric
response of polar molecules in a solid (in ice – a material that is somehow magic for SR!). He
assumed that a molecule can switch between two equivalent positions within a unit cell, and
that in these positions the dipole moment of the molecule is pointing in opposite directions.
The expression for the transition probability Wnm he used was equivalent to Eq.(7), with
gn = −Edn/T where E is the amplitude of the electric field and dn is the dipole moment
in the nth position (n = 1, 2; d1 = −d2); he linearized Wnm in Edn/T (however, he did not
specify the form of the transition probabilities W (0)

nm in the absence of the external field).
The well-known expression for the susceptibility Debye derived was, in the present nota-

tion, of the form

χD(Ω) =
d21
T

W (0)

W (0) − iΩ
, W (0) ≡ W

(0)
12 +W

(0)
21 = 2W

(0)
12 . (15)

This expression made it possible to explain the experimental data on the dispersion of the
real part of the dielectric constant of ice. It is straightforward to see from the fluctuation-
dissipation relations (14) that the signal-to-noise ratio R that follows from (12),(15) is pre-
cisely of the form (9) (cf. [24, 42]).

In the context of condensed-matter physics, the quantity of special interest is often the
phase shift between the force and the signal, since it is the phase shift that determines
the absorption of the energy from the force, in particular from the electromagnetic field in
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Figure 3: Peaks of internal friction (normalized phase lag −φ) vs temperature due to Snoek
relaxation in an Fe-C alloy; the curves A to E correspond to the frequencies 2.1; 1.17; 0.86;
0.63; 0.27 Hz (after Wert and Zener [45]).

the case considered by Debye. In the symmetrical two-state model with thermally activated
transitions between the states the phase shift φ as given by (10),(15) decreases monotonically
with increasing temperature [43, 14, 21]:

(φ)two−state = −arctan(Ω/W (0)) (16)

The phase shift is one of the characteristics used to describe the elastic properties of solids:
in this case the force is stress, the signal is strain, and the phase lag is referred to as internal
friction [44]. For finite frequency of the stress there arises a phase shift between the stress
and the strain, even though the stress is linear in the strain (and thus reversible). In some
metal alloys internal friction displays a strong nonmonotonic temperature dependence as
shown in Fig.3 taken from [45]. A simple mechanism of this dependence for body-centered
cubic metals with interstitial impurity atoms was suggested by Snoek [46]. He assumed
that an impurity occupies one of the equivalent interstitial positions in an elementary cell
thus forming an elastic dipole. The dipole can reorient as a result of thermal fluctuations.
Uniaxial stress breaks the symmetry, like an electric field in the case of electric dipoles, and
the response to the stress is given basically by Debye’s theory, slightly modified to allow for
a different number of equivalent stable states.

The strain measured experimentally arises as a combination of the strain related to the
reorientation of the elastic dipoles and the strain due to the deformation of those cells
that are free of impurities. This deformation is characterized by much faster relaxation
than the reciprocal reorientation rate 1/W (0) of the dipoles at room temperature. For low
temperatures the reorientation rate W (0) is negligibly small, and the strain is equal to that
for a crystal with immovable defects and is in phase with the stress (Hooke’s law). Therefore
the phase shift is equal to zero rather than to −π/2 as given by (16). Only for higher T
does the reorientation of the elastic dipoles become “switched on” and the term described
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Figure 4: Phase lag −φ between the coordinate 〈q(t)〉 of an overdamped Brownian particle
oscillating in a potential U(q) = −1

2
q2 + 1

4
q4 and the force of frequency Ω = 0.1 as measured

in the electronic experiment; the force amplitude A = 0.04 (circles) and 0.2 (squares). The
solid line represents the theoretical prediction based on LRT [47] (nonlinear corrections do
not change this curve strongly for the actual value of A). The inset shows the normalized
signal-to-noise ratio in the region of the minimum in R.

by (16) contributes to the phase shift. As a result |φ| sharply increases with temperature
and displays a clearly resolved peak. The position of the peak (see the next subsection) may
be used to determine the activation energy for reorientation of the elastic dipoles [44].

C. Stochastic resonance in continuous dynamical systems

In many cases, the bistable dynamical systems where SR is investigated are continuous rather
than being two-state ones. For such systems, the dependence of the phase lag on the noise
intensity (temperature) is similar to that observed for internal friction in anelastic solids.
This is clearly seen from a comparison of Fig.3 and Fig.4. In the latter case, the data [47]
are from an analog simulation of overdamped Brownian motion (3) in a simple symmetric
bistable potential

U(q) = −
1

2
q2 +

1

4
q4. (17)

The explicit expressions for the phase shift and for the signal-to-noise ratio R of a continuous
system (3) for low noise intensities and for low frequency Ω are of the form:

φ = −arctan[(Ω/Ωr)(Ω
2
rW

(0) + Ω2D)/(ΩrW
(0)2 + Ω2D)]
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R =
πA2

4D2
(Ω2

rW
(0)2 + Ω2D2)/(Ω2

rW
(0) + Ω2D), Ω, D ≪ Ωr, W (0) ≪ D (18)

where Ωr ≡ t−1
rel = U ′′(q1,2) is the reciprocal relaxation time for the intrawell motion (correc-

tions to (18) of the order of Ω/Ωr, W
(0)/Ωr, D/∆U have been dropped). It is straightforward

to see that the maximum of |φ| as given by (18) occurs at the noise intensity Dmax given by
the equation

W (0)(Dmax) = Ω(Dmax/Ωr)
1/2

The value ofDmax therefore depends on the frequency of the signal Ω, as observed in anelastic
solids (cf. Fig.3; the model (3), (17), although similar, is not entirely identical to the one
used in the theory of anelastic relaxation, and therefore the peak in Fig. 4 for the dynamical
system is much broader the corresponding peak in Fig.3).

The response of a continuous system differs markedly from that of a two-state one, not
only in its non-monotonic rather than monotonic variation of φ with D, but also in the
variation of its signal/noise ratio with D: for small D the function R decreases rather than
increases with increasingD [21, 24] (see insert in Fig.4, and also Fig.5 where similar behaviour
is demonstrated in a different system). Such behaviour has a simple explanation [24]. For
small D the interwell transitions are frozen out: the susceptibility is then determined by the
intrawell motion of the system, and is independent of noise, whereas the power spectrum is
formed by the fluctuations about the minima of the potential and increases proportional to
the noise intensity, so that R ∝ 1/D, as seen from (18) for small W (0). The analysis of the
position of the local maximum of R vs noise intensity was performed by Fox and Lu [48].
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Figure 5: The response of a noise-driven underdamped nonlinear oscillator with coexisting
periodic attractors to an extra force A cosΩt (after [7]). The equation of motion of the
oscillator for A = 0 is of the form q̈ + 2Γq̇ + ω2

0q + q3 = F cosωF t. The quantities P and
P represent signal-to-noise ratios at the frequencies Ω and 2ωF − Ω. The data refer to the
kinetic phase transition range, (ωF − ω0)/Γ = 0.236, 3F 2/32ω3

F (ωF − ω0)
3 = 0.0814.
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In general, of course, the motion of a bistable continuous system will not be described by
the simple model (3) of overdamped Brownian motion in a symmetrical double-well potential.
Neither will the noise be white, nor will the system be moving in a static potential. For
example, the stable states of interest may be the states of stable periodic vibrations in a
strong external force (periodic attractors), as is of interest in the context of optical bistability
[49]. Analytic results for the fluctuations and for the response to a weak external force can
be obtained [50] provided the noise intensity is small so that the probabilities, per unit time,
of fluctuational transitions between the states are very much smaller than the reciprocal
intrawell relaxation time, W (0)

nm ≪ t−1
rel , and the fluctuations occur mostly within narrow

vicinities of the stable states. The results hold for systems driven by an arbitrary Gaussian
noise, where, apart from special cases, the dependence of the transition probabilities on the
characteristic noise intensity D is of the activation type, and in the absence of the additional
weak force

W (0)
nm = const× exp(−Rn/D). (19)

The activation energy of the escape from the state n, Rn, is given by the solution of a
variational problem [51]. For certain types of non-white Gaussian noise Rn was found in
Refs. [51, 52].

For small enough D in the case of period-one attractors there are two main contributions
to the susceptibilities χ(k)(Ω) as defined by Eq.(11) [50]. One comes from the motion close
to the stable states where the system spends most of the time. This contribution is given
by the sum of the partial susceptibilities χ(k)

n (Ω) (n = 1, 2) weighted by the populations of

the stable states wn. The other contribution, χ
(k)
tr (Ω), is important in the case where the

frequency Ω of the weak force is small or is close to the frequency ωF of the strong external
force. In this case the weak force modulates the probabilities of the transitions between the
states and thus the populations of the states (see below):

χ(k)(Ω) =
∑

n=1,2

wn χ
(k)
n (Ω) + χ

(k)
tr (Ω), w1 = 1− w2 = W

(0)
21 /W

(0)
12 (20)

The partial susceptibilities χ(k)
n (Ω) can be easily found from the equations of motion

linearized about the stable states in the absence of noise (noise determines the values of the
populations wn via the transition probabilities). They display dispersion on the frequency
scale t−1

rel , and in the range of interest for SR, Ω ≪ t−1
rel or |Ω − ωF | ≪ t−1

rel they are nearly
frequency-independent.

The characteristic frequency scale which determines the dispersion of χ
(k)
tr (Ω) is given by

the relaxation rate of the populations, i.e., by W (0) = W
(0)
21 +W

(0)
12 . A simple way to obtain

χ
(k)
tr (Ω) for Ω ≪ νc or |Ω−ωF | ≪ νc (νc = min(t−1

rel , t
−1
cor) , where tcor is the correlation time of

the noise) is based [50] on the fact that the major effect of the additional weak force A cosΩt
on the populations of the states comes from the modulation of the activation energies of
the transitions between the states Rn. For small Ω one can find this modulation just by
evaluating Rn for a system biased by a constant force A, i.e., by finding Rn ≡ R̃n(A), and
then by replacing A by A cosΩt. In this case the escape probability can be written in the
form similar to (7):

13



Wnm(t) = W (0)
nm exp(gn cosΩt), gn = g̃nA/D, g̃n = −

[

∂R̃n(A)

∂A

]

A=0

(Ω ≪ νc). (21)

In the case of periodic attractors corresponding to forced vibrations in a strong periodic
force F cos(ωF t + φF ) the additional weak force A cosΩt with Ω very close to ωF can be
considered as a modulation of the amplitude of the strong force,

F cos(ωF t+ φF ) + A cosΩt = Re F̃ (t) exp (i (ωF t+ φF ))

F̃ (t) = F + A exp[i(Ω− ωF )t− iφF ]

The activation energies Rn ≡ Rn(F ) are independent of the phase φF , and when the weak
force A cosΩt is applied they take on time-dependent values corresponding to the instanta-
neous value of the amplitude |F̃ (t)|, so that

Wnm(t) = W (0)
nm exp [gn cos ((Ω− ωF ) t− φF )] , gn = g̃nA/D, (22)

g̃n = −
∂Rn(F )

∂F
(|Ω− ωF | ≪ νc, ωF )

Eqs. (21), (22) can be inserted into Eq.(6) for the populations. For small amplitudes
A, when |gn| ≪ 1, one can expand the transition probabilities in gn. Terms linear in gn are
sinusoidal in time, and so also are the corresponding terms in the populations w1,2(t). If we
write the expression for the coordinate in the nth period-one attractor as

qn(t) =
∑

k

q(k)n exp(ikωF t)

then the expression for the susceptibility χ
(k)
tr (Ω) for |Ω− ωF | ≪ νc is of the form (cf. [50])

χ
(k)
tr (Ω) = −

W
(0)
12 W

(0)
21

W (0)

g̃1 − g̃2
D

q
(k−1)
1 − q

(k−1)
2

W (0) − i(Ω− ωF )
eiφF . (23)

The equation for the susceptibility with respect to a low-frequency force, Ω ≪ νc, is very
similar:

χtr(Ω) = −
W

(0)
12 W

(0)
21

W (0)

g̃1 − g̃2
D

q
(0)
1 − q

(0)
2

W (0) − iΩ
(Ω ≪ νc). (23a)

It can easily be seen that in the symmetrical case, W
(0)
12 = W

(0)
21 , g̃1 = −g̃2, q

(0)
1 = −q

(0)
2 , this

expression goes over into Debye’s result (15).
Note that, for a simple model of overdamped Brownian motion in the bistable potential

(3), the expressions for the susceptibility (20), (23a) (and also the explicit form of the partial
susceptibility χn(Ω)) can be obtained at low noise intensities directly from an analysis of
the eigenvalues and eigenfunctions [53] of the Fokker-Planck equation, both in the case of a
symmetric [54](a) and an asymmetric [54](b) potential. Alternatively, one can evaluate the
power spectrum in the absence of periodic driving Q(0)(ω) and use the fluctuation-dissipation
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relations (14). The function Q(0)(ω) was found by Hänggi and Thomas [55]. However, they
failed to get the correct expression for the term χtr in the susceptibility which is responsible
for the onset of SR. A detailed numerical analysis of the Fokker-Planck equation for the
system (3), (17) is [56] in full agreement with the analytic results given above, and in
particular with those for the phase shift shown in Fig. 4. Note also some earlier numerical
work on the Fokker-Planck equation for periodically driven bistable systems [57].

From (21) – (23) (cf. [50]) it is clear : (i) that the susceptibility due to the transitions
between the states increases, for finite frequency, exponentially sharply with noise intensity
D in the range of very small D; (ii) that this susceptibility is greatest within a frequency
range that is extremely narrow compared with the characteristic inverse relaxation time t−1

rel ;
(iii) that the susceptibility is proportional to the reciprocal noise intensity, which is why it
can become large, and (iv) that it becomes large only within the narrow range of the system

parameters for which R1 ≈ R2, and thus the transition probabilities, W
(0)
12 and W

(0)
21 , and the

populations, w1 and w2, are of the same order of magnitude (the range of the kinetic phase
transition). All of these features have been observed in experiments, and are immediately
related to the onset of SR in bistable systems. In particular, the feature (iv) shows that
SR in bistable systems is a kinetic phase transition effect. Some results demonstrating SR
in a system with periodic attractors, obtained from an analog electronic experiment [7], are
shown in Fig.5. The experimental data (points) exhibit an increase of signal-to-noise ratio
both at the frequency of the force Ω and at the combination frequency 2ωF − Ω. The onset
of a strong signal at the latter frequency is a demonstration of a new phenomenon that arises
through the noise-induced interattractor transitions and may be called, using the terms of
nonlinear optics, a “giant noise-mediated four-wave mixing”. The results are clearly seen to
be in a good agreement with the LRT theoretical predictions (curves).

An interesting situation arises if a system displays period-doubling when driven by a
strong enough periodic field. If, in addition, the system is driven by a stationary noise, the
stationary populations of the two co-existing period-two attractors are the same: the only
difference between the attractors is that they are shifted in time by the period of the force
2π/ωF and, because of the symmetry with respect to translation in time by 2π/ωF , there is
no reason for one of them to be occupied for more of the time than the other. Such a system
is therefore a perfect candidate for observing SR and, indeed, SR in an analog electronic
circuit that displayed period doubling has been observed recently [6]. Strictly speaking,
when the system is driven by a weak force A cosΩt in addition to the strong force F cosωF t,
persistent vibrations at the frequencies |Ω± 1

2
ωF | do not arise because of the occurrence of

transitions between the period two attractors. However, since the lifetime of the attractors
(equal to the reciprocal transition probabilities) is large, narrow peaks are to be expected in
the power spectrum of the system at |Ω± 1

2
(2k + 1)ωF |, with a width ∼ W12. The increase

of the intensity of the peak at |Ω− 1
2
ωF | with increasing noise intensity as observed in [6] is

shown in Fig.6.
Our outline of the history of stochastic resonance would be incomplete if we forbore to

mention that, in spite of being so well known in other areas of physics, linear response theory
for the first few years after it was applied to SR [24] faced strong arguments and encountered
serious problems with gaining recognition in this context. The inapplicability of LRT would
imply either that statistical physics as a whole is fatally flawed, or that it does not apply to
the systems that display SR. In fact, the two statements are equivalent, because, generally
speaking, there is nothing special about the dynamics of the continuous fluctuating bistable
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Figure 6: Signal-to-noise ratio for the signals at the frequency of a comparatively weak
driving force Ω = 100 Hz and at the combination frequency 1

2
ωF − Ω = 265 Hz vs effective

intensity of the chaotic signal driving a system that displays period doubling, as obtained in
analog electronic experiments [6].

systems that display SR. We find it unsurprising therefore that the results for SR derived
from LRT are in good agreement with the experiments.

We would point out also that a corollary of LRT is that, for small-amplitude signals, the
signal-to-noise ratio at the output of a system driven by a stationary Gaussian noise does
not exceed that at the input, even if the system displays SR. Indeed, the Fourier components
of the noise are statistically independent and the total power of the noise Ξ(Ω)dΩ in a small
spectral interval dΩ about the frequency of the signal Ω is small. The signal-to-noise ratio
at the input is given by 1

4
A2/Ξ(Ω), whereas that at the output is 1

4
|χ(Ω)|2A2/[|χ(Ω)|2Ξ(Ω)+

Q′(0)(Ω)]. The quantity Q′(0)(Ω) gives the value of the spectral density of fluctuations in the
system at frequency Ω as it would be if there was no signal and the spectral components
of the noise at frequency Ω were suppressed, i.e., the power spectrum of the input noise
had a hole at frequency Ω. By construction Q′(0)(Ω) ≥ 0, which proves the statement (In
linear systems, on the other hand, which do not mix frequencies, Q′(0)(Ω) = 0 and the
signal-to-noise ratio at the output must be the same as at the input).

Another corollary concerns the problem of the response to an incoherent signal fsig(t), i.e.
to a signal which itself is a narrow-band noise, which was addressed recently in [58]. Again,
if this noise is stationary and Gaussian, so that different Fourier-components are statistically
independent,

fsig(t) =
∫

dωf̃sig(ω) exp(−iωt), 〈f̃sig(ω)f̃sig(ω
′)〉 = Φsig(ω)δ(ω + ω′)

the response to this signal in the presence of an independent external noise is described by
LRT, and for small Φsig(ω) the addition to the power spectrum of the system

δQ(ω) = |χ(ω)|2Φsig(ω)
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This term may increase with the intensity of the “independent” noise provided |χ(ω)|2 in-
creases in the appropriate frequency range.

4. Nonlinear Effects in Stochastic Resonance

Although, as shown above, the LRT approach to SR is immensely fruitful and enables
the phenomenon to be described, qualitatively and quantitatively, under a wide range of
conditions for small values of A, there are other parameter ranges lying beyond the regime
of linear response which are also of interest. In one of these, the low-noise limit, analytic
results can still be obtained even when A is not particularly small. It is discussed in Section
4A. A second example of an interesting nonlinear regime for which analytic results can be
derived, the SR-related phenomenon of noise enhanced heterodying, is discussed in Section
4B.

A. Nonlinearity in the low-frequency response of a bistable system

In the publication where the term “stochastic resonance” was originally introduced [13] it
was pointed out that the response of a bistable system to external driving can display strong
nonlinearity. Indeed, according to (7), (21), (22) the probability Wnm(t) of escape from a
metastable state n can change strongly when the amplitude A of the driving force, properly
weighted, exceeds the noise intensity, i.e., when |gn| ≫ 1. For small noise intensities this
can occur even when the force is “dynamically small” so that it does not change the number
or character of the steady states and nor does it move them significantly in the space of
dynamical variables [22, 24, 59]. The nonlinearity is at its strongest for frequencies Ω very

much smaller than the reciprocal relaxation time of the system t−1
rel , or for Ω very close to

the frequency of the strong field ωF in cases where one is present; in what follows we limit
ourselves to systems that are not subject to such a strong periodic field, and only the case
of small Ω will be considered.

The mechanism of the nonlinearity for |g1,2| ≫ 1 is easily understood because the tran-
sition probabilities then vary by orders of magnitude within a period 2π/Ω, according to
(7). This variation may result in a strong modulation of the populations of the stable states
w1,2(t), particularly when the probabilities W12(t), W21(t), depend on time in counterphase,
g1g2 < 0 (as in (7)). Indeed, for |g1,2| ≫ 1 the transitions from a given stable state n are
most likely to occur within a short part of the period 2π/Ω when Wnm(t) is close to its
maximum. At this time Wmn(t) is close to its minimum, for g1g2 < 0. One half-period away
from this time, Wmn(t) will in turn be close to its maximum, and it is then that transitions
to the nth state will be most likely to occur.

The population of the nth state is at its maximal value, wn>, just before gn cosΩt has
reached its maximum, and then, after a short time interval where the system is most likely
to switch, wn(t) drops to its minimal value, wn<. The evolution of wn(t) within this time
interval δt0 is described by the expression [22, 24]

wn(t) ≈ wn> exp
(

−
∫ t

t0−δt0
dt′ Wnm(t

′)
)

, |gn| ≫ 1, g1g2 < 0, |t− t0| ≪ π/Ω (24)

t0 = 2πk/Ω for gn > 0, t0 = π(2k + 1)/Ω for gn < 0
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Figure 7: The results of a digital simulation of the ensemble average coordinate of a fluctu-
ating overdamped symmetrical system (3), (17) with Ω = 3×10−4, A = 0.12, D = 0.03 (full
curve) compared to the simusoidal force scaled to the same amplitude (dashed curve) (after
[22]). The dotted line describes the theory based on (25), (27).

The integral (24) can be evaluated by the steepest descent method, yielding

wn(t) ≈ wn> exp (−λn[1 + erf t̄n(t)]) , λn = W (0)
nm exp(|gn|)

(

2|gn|Ω
2/π

)

−1/2
(25)

where t̄n(t) = (t − t0)/τn. The quantity τn ≡ Ω−1(2/|gn|)
1/2 gives the characteristic time

interval over which wn(t) varies from its maximum value wn> to its minimum value wn< =
wn> exp(−2λn). We are assuming that πΩ−1 ≫ δt0 ≫ τn in which case the integral (24) is
independent of the value of δt0.

The parameter λn in (25) characterizes [24, 59] the nonlinearity of the response. It gives
the probability of the transition from the state n over the time τn where the transition
probability is at its maximal because of the periodic driving.

The values of wn>, wn< can easily be obtained from (25) by noticing that wn> + wm< =
1, n,m = 1, 2 (n 6= m). On a time scale coarse-grained over τ1,2 the dependence of the
populations w1,2(t) on time takes the form of a square wave, with the jumps between the
smaller and larger values occurring every half period of the force. The amplitude of the
jumps

∆w ≡
1

2
(w1> − w1<) ≡

1

2
(w2> − w2<) =

sinhλ1 sinhλ2

sinh(λ1 + λ2)
. (26)

This amplitude is large when both parameters λ1 and λ2 are of the order of, or exceed,
unity. Obviously, this may occur at small noise intensities provided the frequency Ω is small
enough. On the other hand, if λ1, λ2 > 1.5 the value of ∆w exceeds 0.45, i.e., it is close to
the limiting value 0.5. This means, in particular, that for such λ1,2 the switchings between
the states occur nearly every half-period of the force, i.e., the instantaneous values of the
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populations of the states depend on time nearly periodically. The interesting effect of the
periodicity of switchings between the states was nicely demonstrated by Zhou et al. [59]
through measurements of the distribution of escape times in a periodically driven system
(3), (17).

The above arguments provide an answer to the question formulated in [13] about the
possibility of a “quasideterministic” periodic switchings, promoted by noise, in response to
a weak periodic driving and establish the range of the parameters where such switchings
occur.

Strong modulation of the populations gives rise to a strong modulation of the coordinate
of the system. For a dynamically weak force the intrawell response is still described by linear
response theory, and the ensemble-average value of the coordinate

〈q(t)〉 =
∑

n=1,2

wn(t)
(

qn + AReχn(Ω)e
−iΩt

)

(27)

where qn are the equilibrium positions in the states n = 1, 2 and χn(Ω) are the intrawell
susceptibilities. The coordinate 〈q(t)〉 of a fluctuating bistable system driven by a relatively
weak sinusoidal force A cosΩt as obtained from (27) (dotted curve) is compared to the result
of a digital simulation (full curve) in Fig.7 taken from Ref. [22]. It is obvious from Fig.7 that
the time dependence of the coordinate is close to a square wave, as expected. A convenient
numerical algorithm for investigating the redistribution of the system over the stable states
induced by a comparatively weak force valid for arbitrary |g1,2| was considered in [22].

B. Noise-enhanced heterodyning

In heterodyning, two high-frequency fields, one of them a signal and the other a reference
field, are mixed nonlinearly to generate a signal at their difference frequency. The frequency-
selective response and the increase of the signal-to-noise ratio with increasing noise intensity
in bistable systems make it interesting to apply the idea of stochastic resonance to hetero-
dyning so as to obtain a new form of the phenomenon, noise-enhanced heterodyning (NEH),
which will be also highly frequency selective. In other words, the idea behind NEH [12] is to
mix the signal and the reference field via a “dynamical” nonlinearity of a bistable system,
and then to single out the signal at the difference frequency and to enhance its signal-to-noise
ratio via fluctuational transitions between coexisting stable states.

We shall illustrate the effect of NEH on a simple model of an overdamped fluctuating
bistable system (3) driven by high-frequency forces that stand for the reference and input
signals. In the presence of such forces the equation of motion (3) is modified to

q̇ = −U ′(q) + Aref q cosω0t+ Ain cos[(Ω + ω0)t+ φin] + ξ(t) (28)

Here, the term ∝ Aref is the reference signal of a given frequency ω0 (the corresponding force
being applied multiplicatively), and that ∝ Ain is the high-frequency input signal (applied
additively). In the general case the amplitude Ain and the phase φin depend on time, but to
characterize heterodyning one can assume them to be time-independent and investigate the
heterodyne signal in the system at the difference frequency Ω, with Ω ≪ ω0.

Simple analytical results can be obtained provided that the frequency ω0 is high compared
to the reciprocal relaxation time of the system, ω0 ≫ t−1

rel . In this case the motion of the
system consists of fast oscillations at frequency ω0 (and its overtones) superimposed on a
slow motion. The equation for the slowly varying (on the time scale ∼ ω−1

0 ) component
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Figure 8: Noise-induced heterodyning for white (circles) and high-frequency (boxes) noise
(after [12]). The dashed and dotted lines are theory. The potential simulated is the sym-
metrical double-well potential (17). The data refer to the reference frequency ω0 = 1.885.
The heterodyne frequency Ω = 0.008.

of the coordinate q(sm)(t) can be obtained by the standard methods of nonlinear mechanics
[60], which yield

q̇(sm) = −U ′(q(sm)) + A cos(Ωt+ φ̄in) + ξ̄(t), A =
Aref

2ω0

Ain, φ̄in = φin −
1

2
π. (29)

We shall assume that the noise ξ̄(t) in (29) is Gaussian, with correlation time tcor ≪

Ω−1,
[

W (0)
nm

]

−1
where W (0)

nm is the probability of the fluctuational transition n → m for Ain =

0. In fact, the noise ξ̄(t) contains both the low-frequency and the rectified high-frequency
components of the noise ξ(t) in (28) (the latter components are shifted in frequency by ω0

and multiplied by Aref/2ω0; in practice there is often high-frequency noise superimposed on
the input signal, so that these components are important.

Eq. (29) is of precisely the same form as the equation of overdamped periodically driven
motion in a double-well potential considered above. Therefore all the arguments of Secs.1,2
apply, and the signal-to-noise ratio for the signal in the system at the frequency Ω ≪
t−1
rel should increase with the increasing noise intensity in a certain range of the latter. In
particular, if the noise ξ̄(t) is white with intensity D, the dependence of the signal-to-noise
ratio on D for small enough amplitudes A in the case of a symmetric double-well potential
U(q) should be given by Eq.(18).

The above arguments have been tested by means of analog electronic experiments [12].
In Fig.8 measurements of the signal-to-noise ratio in heterodyning are presented for the two
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types of noise ξ(t): a broad-band (white) noise and a noise with a comparatively broad
band centered at the frequency ω0. In both cases a strong enhancement of the heterodyne
signal and, of the signal-to-noise ratio, induced by the noise is clearly seen, and is in good
agreement with the theory.

5. Conclusions

It follows from the results discussed above that stochastic resonance may be understood and
described in terms that are traditional for statistical physics, including linear response theory
in particular, and that SR has its well-known counterparts in condensed-matter physics. In
fact, of course, the possibility of increasing the response of a system to an external forcing by
increasing the intensity of its fluctuations (temperature) is well known from daily experience:
e.g., materials are often heated up prior to processing; light absorption in semiconductors and
dielectrics increases with increasing temperature, in certain frequency ranges, and there are
many other examples of the same kind. However, when thought in terms of signal processing,
and particularly when one considers the noise-induced enhancement not only of a signal, but
also of the signal-to-noise ratio, one can understand the interest SR has attracted.

The use of noise to control the response of a system is particularly effective when the
dependence of the response on the noise intensity is exponentially sharp, as in the case of bi-
and multistable systems where the noise intensity determines the probabilities of transitions
between the states. It is in such systems that a sharp increase, not only in the signal
(by orders of magnitude), but also in the signal-to-noise ratio (by more than an order of
magnitude) has been achieved. This paves the way for the application of SR-displaying
systems to signal processing, and also for revealing the role such systems may play in signal
processing in biological systems.

One of the most interesting problems related to SR is the problem of large fluctuations,
in particular the fluctuations that give rise to transitions between coexisting stable states.
Although this is a traditional problem of condensed-matter physics (it includes nonadiabatic
transitions, small-polaron transport, reorientation of defects and quantum diffusion, etc),
many questions have not been resolved yet and are under active discussion (cf. Ref. [61]).
Even more questions arise when this problem is considered for systems away from thermal
equilibrium (cf. Ref. [62] and references therein). Here, many important problems are to be
found that have not even been addressed to the best of our knowledge, e.g. the possibility
of the onset of SR in systems driven by shot noise. We believe that the investigation of
these problems and, more broadly, the analysis of the interplay of nonlinear dynamics and
fluctuations will constitute an important direction in physics at least until early in the next
century.
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