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STOCHASTIC RESPONSE OF ENERGY BALANCED 

MODEL FOR VORTEX-INDUCED VIBRATION 

S.R.K. Nielsen 

Department of Building Technology and Stroctuml Engineering, 

Aalbo1"!} University , Sohngaardsholmsvej 57, DK-.9000 Aalborg, Denma1·k 

S. Kre nk 

Division of M echanics, Lund Unive1·sity, S-z21 00 Lund, Sweden 

ABSTRACT: A double oscillator model for vortex-induced oscillations of structural elements 

based on exact power exchange between fluid and structure, recently proposed by the authors, 

is extended to include t he effect of the turbulent component of the wind. In non-turbulent flow 

vortex-induced vibrations of lightly damped structures are found on two branches, with the high

est amplification on the low-frequency branch. The effect free wiliCl turbulence is to destabili;~<· 

t he vibrations on the high amplifi cation branch, thereby reducing the oscillation ampli tude. The 

effect is most pronounced for very lightly damped structures. The character of the structural 

vibrations changes with increasing turbulence and damping from nearly regular harmonic oscil

lation to typical narrow-banded stochastic response, closely resembling observed behaviour in 

experiments and full -scale structu res. 

1 INTRODUCTION 

\'ort.cx-induced oscillations play an important role in the design of slender structures ex

posed to fluid flow. It is commonly observed that if the natural vortex shedding frequency, 

determined by the flu id flow velocity via the Strouhals relation and the e igenfrequen cy 

of the structure arc close, t he structure may develop oscillations that control the vortex 

shedding frequency, and this syncronization may lead to large osci llation amplitudes in the 

so-called lock-in interval. The resonance amplitude depends on the structural clamping, 

the free t urbulence, and for smooth st ructural shapes on the Reynolds number. It has 

been found experimentally e.g. by van Kotcn (1984) that in turbulent flow very lightly 

damped cylindrical structures may develop amplitudes up to around half the diameter in 

nearly harmonic oscillation. With increasing damping the amplitude is decreased and the 

response changes gradually towards nearly linear Gaussian response. 

Vickery & Basu ( 1983) have proposed a model equation for the stochastic response during 

lock- in. The wind exci tation is assumed in the form of a narrow-band Gaussian process, 

and the self-limiting amplitude is obtained by assuming t hat the aerodynamic damping is 



negative for small osci llations and increases quadratically with amplitude. This model ha 

been fitted to full scale observtions on chimneys by Daly (1986) and is used in simplifie 

form in the National Building Code of Canada (1990). An important point is the modt 

parameters, and thei r dependence on Reynolds number and turbulence. In the study b 

Dal) (1986) only dependence on the Reynolds number was assumed. However, it appear 

that structures that have de\·eloped severe vortex- induced vibrations may have experience, 

ye'l-rs of service without vibration problems. The incidents of severe vortex-induced vi bra 

tions seem to be associated with atmospheric conditions with low turbulence intensit) 

Dyrbye & Han~en (1997). 

The present paper extends a double osciallator model for vortex-induced vibrations, re 

cently developed by t he authors fo r non-turbulent free flow, I<renk & Nielsen ( 1996), t • 

fiow with free turbulence representing e.g. natural wind. The double oscillator model i 

based on exact energy exchange between fluid and structure, and it predicts two clifferett 

modes of osci llation in the lock-in regime leading to hysteresis effects when the wind spcec 

passes up and down through the lock-in interval. This behaviour is also observed in ex 

periments e.g. by Feng (1968) and Brika & Laneville (1993). The effect of the tu rbuleno 

is to destabilize the mode with the highest amplification, thereby reducing the respons• 

amplitude, and for higher turbulence intensity to change the self-excited harmonic respons• 

to stochastic narrow-banded response with changing amplitude. 

2 DOUBLE OSCILLATOR MODEL 

Figure 1 shows cylinder of length l and diameter D suspended by linear springs in < 

fluid flow with mass density p and total fluid velocity Ut = U + u(t), where U is the 

undisturbed mean-flow velocity a.nd u(t) is the turbulent velocity component.. The cylinde1 

can move in the transverse direction with displacement X(t). The sum of the structura: 

and added fluid mass is m 0 . The structural stiffness is represented via the unclampec 

circular eigenfrequency of the oscillator w0 . The structural damping is modelcd as a lineat 

viscous with the damping ratio (o. 

x(L) 

~D/2S 

FIG . 1. Vortex-induced ,·ibrations of cylinder in cross-flow. 

The oscillating fluid in the near wake of t he cyl inder is modelled pbenomenologi cally as a 
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single degree of freedom non-linear oscillator of the van der Pol type, where the sign of the 

damping term, which serves as the power supply to the integrated system, is controlled 

by the mechanical energy of the fluid as proposed by Hartlen & Currie ( 1970). Several 

proposals have been made for the form of coupling between the solid an fluid oscillator, 

e.g. Iwan & Blevins (1974). Recently the authors proposed a model in which the coupling 

is prescribed such that the energy exchange between the two oscillators is balanced at 

all times, Krenk & Nielsen (1996). The governing equations for non-turbulent flow were 

derived from dimensional analysis in the form 

mo[ X + 2(owoX + w6X] ( I ) 

I 2 X 
--pU Dl- "" 

2 [/ I 
(2) 

1 is a non-dimensional coupling parameter, and the quantity 'YW j[' may be considered as 

a time-dependent lift-coefficient. The velocities X and W are normalized with respect to 

the wind velocity U. m., is a generalized mass proportional to the fluid mass density p and 

the volume of the cylinder. The proportionality factor can be absorbed in W and "'f , so t he 

equivalent mass can be set to m, = pD2 1. The natural frequency of the cylinder is defined 

as the circular Strouhals frequency w. = 21rSUj D, where S-:::: 0.2 is the Strouhals number , 

indicating the circular shedding frequency on a fixed cylinder in laminar How. In this case 

the exact solution to the fluid oscillator equation is W(t) = w 0 sin(w.t + 1/> ), with the ar

bitrary phase 1/J. Hence wo is the amplitude of the fluid oscillations on a fixed cylinder i11 

laminar flow. The power supplied to the mechanical oscillator becomes ~pU 1 2 DIW X 'Y j U, 

which exactly balance the power extracted from the fluid oscillator. Previous double oscil

lator models have not met this power flow condition. 

:1.1 Equations for ttt7·bulenl flow 

The effect of the turbulence is to modify the right-band side of the equat ions by introduction 

of the in s t<~.nta.neous wind pressure ~pU 1
2 and by evaluating the Strouhals frequency in tlw 

fluid oscillator stiffness term by use of the instantaneous wind velocity U1 , whereby t he 

fluid 'stiffness' takes the form w;(l + u(t)/U))2
. The fluid damping term was devised to 

supply a typical rate of energy and is not known in sufficient detail to warrant more detail. 

The equations including turbulence then are 

.. . 2 
mo[ X + 2(awaX + w0 X ] ' U2Dl( u(t))21¥ (3) 

2P I+ V [j'Y 

3 



The• following nOII-dilncnsiona.l variabl!'s it)'(' int.rodue<!U for t.lw st.ruct.mal and rluid di s· 

pla.('C'Ill!'ll t. 

)" 
X 

\t 
w 

(r. ' 
/) 

.) , 

111o 

'l'h<' e•quat.ions (:I)-( If) can t.h<'u lw writf.c·n 

)'·· + 2(owo ):· + w~ Y Jl 3 CW,,(I + /l(/. )) \f 

(7) 

wit.h t.lw fo llowing uou-di1ue•usioual qua.ut.it.ie·s 

'lOo 711_., {J !Jll 
'Po = JL , = /) 1110 111 0 

(~) 
'IIIo I 

!l( I) 
·> u( I) 

(' = = /) 111rS 
~ {I 

fL,, is t h<' llla .~s rat io, a.ud r· is a. n•sca.l<'d couplinp; rodficic·u t. proport.iou<tl t.o t.h<' <l.lllplit.ud!' 

or l.h!' lift. rol'fficii'Jlf,. Ju ((i)-(7) t he• I.UJ'hllle•ll('(' int.e'IISit.y is <I.~Slllll<'d sulficic•u!.ly Slllall I.O 

justify Lh<' o1nissiou of q ua.dmt.i c Lc•m•s in '1L(i), <tnd t.h <' t u rhnlcnn• is t.lwrdon• re• tm•sc•nt.C'd 

hy t.IIC' non-dilll<'IISiona.l st.orl1a.st.ir proc!'ss /?(1). 

> n 1/annonit rcsprmsr· for 71011.-lu1'1mlnl.! .flow 

In t.h<' ahsc·n n · of t.urhu l<'un·, i. c•. for 1t{l) = 0, t.lw r<'spons<' eau lw n ·pn·se•ut.C'd by !.lw 

ha.riii OII ic approxin1a.t.ion 

y = !I sin (w/) ·p = /J sin(w/) (!J) 

The· frc•epwry or OSC'i llat.ioll w is dct.e•rtlliiiC'd by t.h<' Stronha.ls frc•que·ury w . 'l'hC' illWJ'S(' 

re·la t. ion giving w., a . ~ fuui'Lion o f w is, 1\r<'llk lv. Nic·ls<'u ( I!J!JG), 

w ) 1 w ( r· ) 
1 

w ( - (-)1 + tJ(d( - )1 - JI.,, - (-)1 I 
Wo Wu '/Ju Wo 

'l'h<' a.m pl it.ude•s ra.n t.he11 lw fouud illi 

!I 

( 

• 'l 2) (uwo w.,- w 
I - - - - - - -

. 'l 2 (,w,, w0 - w 

w." w 
Jl., l' - - /J 

Wo wu 

( 10) 

( 11 ) 

( 12) 
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Fl<;. 2. H.<'SJH>nsc frcqu<'nry bmnrlws. 

H.<'pr<'S('nl.a.Livc values of t.lw mod<· I paramct.<·rs a.re <'::::: 0.10 a.nd (., ::::: 0.0 I 0. Figure 2 shows 

t.ypiral frcqtwncy brandws for a. Vl'ry lightly danlJH'd sysl.<'lll wil.h fL_, = 0.0!\ (u = O.OOO!i, 

and Pu = 0.2fi. Tlw I'OI'I'I'SJH>IHiing a.111plit.nde curv<·s <H<' shown in Fig. :L 

Tlw fignn·s show l.wo solutions with disl.incl.i ve r<•sona.nn· when the Stroulmls frequ<·nry 

is close t.o l.lw ua.tma.l slnll'tura.l freq<·ncy. Tlw solutions a.re lin1il.ed by tlw condition 

/J~ ~ 0. /1. sl.a.hilil.y i\.IHdys is nt.rri<·d out in J..:renk .'\.•. Ni<·lsen ( I!J!J(i ) shows th;il. l.lw low 

frcqu<·ncy bmnch is only stahl<· for fr<:<JIH'IICi<'s lowl'l' than 1111 uppn l imit approxi111at<'ly 

<'qual l.o l.lw JH'a.k i\.111plitude frcqt11:nry. Si111ila.rly Llw high fn•qu<•nry hranrl1 is only sta.bl<· 

for frequ<'lll'i<·s a.hov<' a. frequency ('orn•sponding <tpprox illla.t<·l y to tlw JH'it.k a.111 plitude of 

!.his hra.nrh. 

3 THE TURBULENCE PROCESS 

The non-dinwnsionalturhul<·nn· pro<'<'ss /((/)is IH'I'<' used to n ·p res<·nL t.lw rapidly flncl.ll 

<t.ting pa.rl. of t.lw na.tura.l (.urhulenre. This is thl' pa.rt of l.h<' l.urbnl<'nl'e !.ha.!. I<'<His l.o a 

nlOd ifi<·d s(.al.iona.ry rspolJS<', whil<• low frequ<'nry !'OIIIJH>IH'IJ!.s lllit.y l<·a.d l.o l.ransi<'nts wlwn 

<·nt<·ring and le<wing lock- i11 intervals of l i111iL('(I length. Tlw l.mbulence pron·ss /((/ ) is 

introduced ill th<· forlll or i\.11 Ornstcin- llhlc•niH·rk p1'0('('SS with l.lw sta.!.iona.ry rova.ria.nn· 

function 

(1:1) 

wh<·r<' a11 is tlw standard d<·via.t.ion and r,. the rorrda.Lion tinll' snt.l<·. T lw turhtll<'lln' 

iut<•nsity is defin<•d by / 11 = au/11 = 1atl· 

The r< 'SJIOII S<' it.llidysis is ba.sc·d on Monte ( :a.rlo si n~t!l a. tio n . The broa.d-lmnded turl>tll<·n<·<· 
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0.15 

FIG. 3. Harmonic amplitude versus frequency. 

process R(t) is simulated from the !to-differential equation 

1 {f-dR(t) = --R(t)dt + - aRdW(t) 
Tr Tc 

(14) 

where dW(t) is the increment of a unit intensity Wiener process. 

The reference time is the 'Strouhals period' T. = 27r /w., representing a typical oscilla

tion period. The correlation time Tc is chosen to be 'short' relative to T., Tc = T,/50. 
The simulation interval /::,.t of the process dW(t) was .:':!.t = T,/250, corresponding to 

/::,.t = kTc, and the simulated points connected by a broken line as suggested by Clough 

& Penzien (1975). The response was obtained by introducing the state space vector 

[Y(t), Y(t), V(t), V(t),R(t)] and integrating the differential equations (6), (7) and (14) 

with a 4th order Runge-Kutta scheme using the time-step /::,.l. By this integration scheme 

the response to rapid Auctutions are represented with good accuracy. The probability den

sity Jy(y) and the standard deviation ay are obtained from ergodic sampling over a t ime 

interval of length 105T., following an initial interval of length 3 · 10 3 7~ to allow for decay 

of transients due to initial conditions. The probability density function was sampled with 

301 classes of equal length covering the interval (-4ay, 4ay] for an estimated value of av. 

4 RESPONSE CHARACTERISTICS 

In the absense of turbulence two near-harmonic solutions exist in the frequency interval 

between the peaks of the amplitude curves in Fig. 3. The effect of turbulence is illust rated 

in Figs. 4 and 5, showing the simulated probability density function f>-(y) at mean wind 

speeds corresponding to the Strouhals frequencies w,/w0 = 0.9, 0.95, 1.0, 1.05, l.l , 1.15 for 

turbulene intensities a,J[J = 0.02 and 0.10, respecively. At low turbulence intensity the 

6 
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30 
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····· 
0 0 

-0.1 0 0.1 -0.1 0 0.1 

FIG. 4. Probability densities, (o = 0.0005, <7u/U = 0.02. 

response retains a nearly harmonic cha.rader and around the resonance frequecy two so

lutions exist, as in the non-turbulent case. In the imulation study the two solutions arc• 

obtained by using the initial conditions Y(O) = V(O) = V(O) = 0 together with either 

Y(O) = 1 or 0. Segments of the corresponding time histories are shown in Figs. fia and 

6b for w,fw0 = 1.05. The mean amplitudes correspond closely to the deterministic val

ues predicted by Fig. 3. The resonant solut.ion remains most regular. This confirms the 

experienta.l observa.ion of Goswami et al. ( 1993), who found only liit.le effect. of turbu

lence of this low intensity. When the turbulence intenity is increased the upper branch 

is destabilized and the response changes character from slightly perturbed harmonic to 

narrow-banded stocha.stic response containing also very small amplitudes as shown in the 

probability density functions h(y) in Fig. 5 and the time history show in Fig. fie. 
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FIG. 5. Probabi lity densities, (o == 0.0005, au/U == 0.10. 

5 CONCLUSIONS 

A recently developed energy balanced double osci llator model has been used to investigate 

the effect of turbulence. Two effects were identified: tu rbulence tends to decrease the re

sponse by destabilising t he most resonant branch, and with increasing tu rbulence intensity 

t he response changes to typical stochastic narrow-banded with varyi ng a mplitudes. 
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