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Ray tracing, ray casting, and other forms of point sampling are important techniques in computer 

graphics, but their usefulness has been undermined by aliasing artifacts. In this paper it is shown 

that these artifacts are not an inherent part of point sampling, but a consequence of using regularly 

spaced samples. If the samples occur at appropriate nonuniformly spaced locations, frequencies above 

the Nyquist limit do not alias, but instead appear as noise of the correct average intensity. This noise 

is much less objectionable to our visual system than aliasing. In ray tracing, the rays can be 

stochastically distributed to perform a Monte Carlo evaluation of integrals in the rendering equation. 

This is called distributed ray tracing and can be used to simulate motion blur, depth of field, 

penumbrae, gloss, and translucency. 

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation; 1.3.7 

[Computer Graphics]: Three-Dimensional Graphics and Realism 

General Terms: Algorithms 

Additional Key Words and Phrases: Antialiasing, filtering, image synthesis, Monte Carlo integration, 
motion blur, raster graphics, ray tracing, sampling, stochastic sampling 

1. INTRODUCTION 

Because pixels are discrete, computer graphics is inherently a sampling process. 
The pixel size determines an upper limit to the frequencies that can be displayed. 
This limit, one cycle every two pixels, is called the Nyquist limit. An attempt to 
display frequencies greater than the Nyquist limit can produce aliasing artifacts, 
such as “jaggies” on the edges of objects [6], jagged highlights [26], strobing and 
other forms of temporal aliasing [19], and Moire patterns in textures [6]. These 
artifacts are tolerated in some real-time applications in which speed is more vital 
than beauty, but they are unacceptable in realistic image synthesis. 

Rendering algorithms can be classified as analytic or discrete according to how 
they approach the aliasing problem. Analytic algorithms can filter out the high 
frequencies that cause aliasing before sampling the pixel values. This filtering 
tends to be complicated and time consuming, but it can eliminate certain types 
of aliasing very effectively [3,6,8,9,X5]. Discrete algorithms, such as ray tracing, 
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only consider the image at regularly spaced sample points. Since they ignore 
everything not at these points, they appear by their nature to preclude filtering 
the image. Thus they are plagued by seemingly inherent aliasing artifacts. This 
is unfortunate, for these algorithms are much simpler, more elegant, and more 
amenable to hardware implementation than the analytic methods. They are also 
capable of many features that are difficult to do analytically, such as shadows, 
reflection, refraction [ 13, 241, constructive solid geometry [21], motion blur, and 
depth of field [5]. 

There are two existing discrete approaches to alleviating the aliasing problem: 
supersampling and adaptive sampling. Supersampling involves using more than 
one regularly spaced sample per pixel. It reduces aliasing by raising the Nyquist 
limit, but it does not eliminate aliasing. No matter how many samples are used, 
there are still frequencies that will alias. In adaptive sampling, additional rays 
are traced near edges [24]; the additional rays are traced midway between 
previously traced rays. Unlike supersampling, this approach can antialias edges 
reliably, but it may require a large number of rays, and it complicates an otherwise 
simple algorithm. 

In this paper a new discrete approach to antialiasing called stochastic sampling 
is presented. Stochastic sampling is a Monte Carlo technique [ll] in which the 
image is sampled at appropriate nonuniformly spaced locations rather than at 
regularly spaced locations. This approach is inherently different from either 
supersampling or adaptive sampling, though it can be combined with either of 
them. Stochastic sampling can eliminate all forms of aliasing, including unruly 
forms such as highlight aliasing. 

With stochastic sampling, aliasing is replaced by noise of the correct average 
intensity. Frequencies above the Nyquist limit are still inadequately sampled, 
and they still appear as artifacts in the image. But a highly objectionable artifact 
(aliasing) is replaced with an artifact that our visual systems tolerate very well 
(noise). 

In addition to providing a solution to the aliasing problem, stochastic sampling 
also provides new capabilities for discrete algorithms such as ray tracing. The 
physical equations simulated in the rendering process involve integrals over time, 
lens area, specular reflection angle, etc. Image-synthesis algorithms have usually 
avoided performing these integrals by resorting to crude approximations that 
assume instantaneous shutters, pinhole cameras, mirror or diffuse reflections, 
etc. But these integrals can be easily evaluated by stochastically sampling them, 
a process called Monte Carlo integration. In a ray-tracing algorithm, this involves 
stochastically distributing the rays in time, lens area, reflection angle, etc. This 
is called probabilistic or distributed ray tracing [5]. Distributed ray tracing 
allows the simulation of fuzzy phenomena, such as motion blur, depth of field, 
penumbrae, gloss, and translucency. 

2. UNIFORM POINT SAMPLING 

Before discussing stochastic sampling, we first review uniform sampling and the 
source of aliasing. In a point-sampled picture, frequencies greater than the 
Nyquist limit are inadequately sampled. If the samples are uniformly spaced, 
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these frequencies can appear as aliases, that is, they can appear falsely as low 
frequencies [4, 17, 201. 

To see how this happens, consider for the moment one-dimensional sampling; 
we refer to the dimension as time. Let a signal f(t) be sampled at regular intervals 
of time, that is, at times nT for integer n, where T is the time period between 
samples, so that l/T is the sampling frequency. The Nyquist limit is half the 
sampling frequency, or 0.5/T. This sampling is equivalent to multiplication by 
the shah function III(t/T), where 

III(x) = i 6(x - n), 
n=-‘76 

where 6 is the Kronecker delta function. After sampling, information about the 
original signal f(t) is preserved only at the sample points. The sampling theorem 
states that, if f (t) contains no frequencies above the Nyquist limit, then sampling 
followed by an ideal reconstruction filter reproduces the original signal f(t) 
exactly. 

This situation is shown in Figure 1 for a sine wave. In Figure la, the frequency 
of the sine wave is below the Nyquist limit of the samples, and the sampled 
values accurately represent the function. But, in Figure lb, the frequency of the 
sine wave is above the Nyquist limit of the samples. The sampled values do not 
accurately represent the sampled sine wave; instead they look as if they came 
from a low-frequency sine wave. The high-frequency sine wave appears incor- 
rectly under the alias of this low-frequency sine wave. 

Figure 2 shows this situation in the frequency domain. The Fourier transform 
of f is denoted by F; the Fourier transform of the shah function III(t/T) ‘is 
another shah function (l/T)III(tT). Figure 2a shows the Fourier transform 
of the signal in Figure la, a single sine wave whose frequency is below the 
Nyquist limit. Sampling involves convolving the signal with the sampling grid 
of Figure 2b to produce the spectrum shown in Figure 2c. An ideal reconstruc- 
tion filter, shown in Figure 2d, would extract the original signal, as in Figure 2e. 
In Figures 2f-2j, the same process is repeated for the signal in Figure lb, a single 
sine wave whose frequency is above the Nyquist limit. In this case, the sampling 
process can fold the high-frequency sine wave into low frequencies, as shown in 
Figure 2h. These false frequencies, or aliases, cannot be separated from frequen- 
cies that are a part of the original signal. The part of the spectrum extracted by 
the reconstruction filter contains these aliases, as shown in Figure 2j. 

Sampling theory thus predicts that, with a regular sampling grid, frequencies 
greater than the Nyquist limit can alias. The inability to reproduce those 
frequencies is inherent in the sampling process, but their appearance as aliases 
is a consequence of the regularity of the sampling grid. If the sample points are 
not regularly spaced, the energy in those frequencies can appear as noise, an 
artifact that is much less objectionable than aliasing. In the case of uniform 
sampling, aliasing is precisely defined, in the case of nonuniform sampling, we 
use the term aliasing to mean artifacts with distinct frequency components, as 
opposed to noise. 
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(a) Point sampling within the Nyquist limit 

(h) Point sampling beyond the Nyquist limit 

Fig. 1. Point sampling shown in the spatial domain. The arrows indicate the sample 
locations, and the circles indicate the sampled values. In (a), the sine wave frequency is 

within the Nyquist limit, so the sampled values accurately represent the signal. In (b), the 
sine wave frequency is above the Nyquist limit, and the sampled values incorrectly represent 

a low-frequency sine wave that is not present in the signal. 

3. POISSON DISK SAMPLING 

An excellent example of a nonuniform distribution of sample locations is found 
in the human eye. The eye has a limited number of photoreceptors, and, like any 
other sampling process, it has a Nyquist limit. Yet our eyes are not normally 
prone to aliasing [25]. In the fovea, the cells are tightly packed in a hexagonal 
pattern, and aliasing is avoided because the lens acts as a low-pass filter. Outside 
of the fovea, however, the cells are further apart and thus the sampling rate is 
lower, so we might expect to see aliasing artifacts. In this region, aliasing is 
avoided by a nonuniform distribution of the cells. 

The distribution of cones in the eye has been studied by Yellott [27]. Figure 
3a is a picture of the distribution of cones in an extrafoveal region of the eye of 
a rhesus monkey, which has a photoreceptor distribution similar to that in the 
human eye. Yellott took the optical Fourier transform of this distribution, with 
the result shown in Figure 3b. This distribution is called a Poisson disk distri- 
bution, and it is shown schematically in the frequency domain in Figure 4b. There 
is a spike at the origin (the dc component) and a sea of noise beyond the Nyquist 
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1 ; 1 /!I 

(a) Original signal F(x) (f) Original signal F(r) 

(c) Sampled signal F(r) * III(x) (h) Sampled signal F(x) * III(r) 

(e) Final result (j) Final result 

Fig. 2. Point sampling shown in the frequency domain. The original signal F(x) is 
convolved with the sampling grid III(x), and the result is multiplied by an ideal recon- 
struction filter II(x). The process is shown for a sine wave with a frequency below the 

Nyquist limit in (a)-(e) and above the Nyquist limit in (f)-(j). 

limit. In effect, the samples are randomly placed with the restriction that no two 
samples are closer together than a certain distance. 

Now let us analyze point sampling using a Poisson disk sampling distribution 
instead of a regular grid. Figure 4a shows a signal that is a single sine wave whose 
frequency is below the Nyquist limit. Convolution with the Poisson sampling 
grid of Figure 4b produces the spectrum in Figure 4c. The ideal reconstruction 
filter of Figure 4d would extract the original signal, Figure 4e. Figure 4f shows a 
sine wave whose frequency is above the Nyquist limit. Convolution with the 
Poisson sampling grid produces the spectrum in Figure 4h. An ideal reconstruc- 
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tion filter would extract noise, as shown in Figure 4j. This noise replaces the 
aliasing of Figure 2j. 

The minimum distance restriction decreases the magnitude of the noise. For 
example, film grain appears to have a random distribution [23], but without the 
minimum distance restriction of a Poisson disk distribution. With a purely 
random distribution, the samples tend to bunch up in some places and leave 
large gaps in other places. Film does not alias, but it is more prone to noise than 
the eye. 

One possible implementation of Poisson disk sampling to image rendering is 
straightforward, though expensive. A lookup table is created by generating 
random sample locations and discarding any locations that are closer than a 
certain distance to any of the locations already chosen. Locations are generated 
until the sampling region is full. Filter values that describe how each sample 
affects the neighboring pixels are calculated, and these filter values must be 
normalized. The locations and filter values are stored in a table. This method 
would produce good pictures, but it would also require a large lookup table. An 
alternative method, jittering a regular grid, is discussed in the next section. 

4. JITTERING A REGULAR GRID 

4.1 Theory 

Jittering, or adding noise to sample locations, is a form of stochastic sampling 
that can be used to approximate a Poisson disk distribution. There are many 
types of jitter; among these is additive random jitter, which can eliminate aliasing 
completely [22]. But the discussion in this paper is limited to one particular type 
of jitter: the jittering of a regular grid. This type of jitter produces good results 
and is particularly well suited to image-rendering algorithms. 

The Fourier transform of a jittered grid (shown later in Figure llb) is similar 
to the Fourier transform of a Poisson disk distribution (shown in Figure 4b). An 
analysis like that in Figures 2 and 4 shows that the results are not quite so good 
as those obtained with Poisson disk sampling. The images are somewhat noisier 
and some very small amount of aliasing can remain. We now look at this noise 
and aliasing quantitatively. 

Jitter was analyzed in one dimension (time) by Balakrishnan [2], who calcu- 
lated the effect of time jitter, in which the nth sample is jittered by an amount 
3;, so that it occurs at time nT + ln, where T is the sampling period (see Figure 
5a). If the rE are uncorrelated, Balakrishnan reports that jittering has the 
following effects: 

-High frequencies are attenuated. 

-The energy lost to the attenuation appears as uniform noise. The intensity of 
the noise equals the intensity of the attenuated part of the signal. 

-The basic composition of the spectrum otherwise does not change. 

Sampling by itself cannot be regarded as a filter, because sampling is not a 
linearly shift-invariant process. Balakrishnan showed, however, that the combi- 
nation of jittered sampling plus an ideal reconstruction filter is a linearly shift- 
invariant process, even though the sampling by itself is not [2], so it is in this 
context-that we can talk about frequency attenuation. 
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time 

Fig. 5a. Time jitter. Regularly spaced sample times are shown as dashed lines, and 

the corresponding jittered times are shown as solid lines. Each sample time is jittered 

by an amount {so that the nth sample occurs at time nT + (” instead of at time 0, 

where 2’ is the sample period. 

time 

Fig. 5b. White noise jitter for y = 0.5. Regularly spaced samples, shown as dashed 

lines, are jittered so that every time has an equal chance of being sampled. 

Fig. 6. Attenuation due to jitter. The broken line shows the filter for white noise jitter, 

the solid line for Gaussian jitter. The shaded area is inside the Nyquist limit. 

Uncorrelated jitter is jitter in which any two jitter amounts {,, and {,,, are 
uncorrelated. Balakrishnan analyzed two types of uncorrelated jitter: Gaussian 
jitter and white noise jitter. For Gaussian jitter, the values of { are chosen 
according to a Gaussian distribution with a variance of 2. The gain as a function 
of frequency v is then 

e-(2*.a)2 
(1) 

This function is plotted with a solid line in Figure 6 for u = T/6.5. With white 
noise jitter, the values of ( are uniformly distributed between --yT and yT (see 
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Fig. 7a. The effect of white noise jitter on a sine wave with a frequency below the Nyquist 

limit. Sample n occurs at a random location in the dotted region. The jitter indicated by 

the horizontal arrow results in a sampled value that can vary by the amount indicated by 

the vertical arrow. 

Fig. 7b. The effect of white noise jitter on a sine wave with a frequency above the Nyquist 
limit. The jitter indicated by the horizontal arrow results in a sampled value that is almost 

pure noise. 

Figure 5b). The gain in this case is 

(2) 

as shown with a dashed line in Figure 6 for y = $. 
From this we can see that jittering a regular grid does not eliminate aliasing 

completely, but it does reduce it substantially. The Nyquist limit of 0.5/T is 
indicated in the figure by the shaded area. Notice that the width of the filter can 
be scaled by adjusting y or u. This gives control of the trade-off between decreased 
aliasing and increased noise. 

For an intuitive explanation of these equations, consider the sine wave shown 
in Figure 7a, with samples at regularly spaced intervals X as shown. These 
samples are inside the Nyquist limit and therefore sample the sine wave properly. 
Jittering the location of each sample n by some (” in the range -h/2 < {,, < X/2 
is similar to adding some noise to the amplitude; note that the basic sine wave 
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frequency is not lost. This noise is less for sine waves with a lower frequency 
relative to the sampling frequency. 

Now consider the sine wave shown in Figure 7b. Here the sampling rate is not 
sufficient for the frequency of the sine wave, so regularly spaced samples can 
alias. The jittered sample, however, ‘can occur at any amplitude. If there are 
exactly a whole number of cycles in the range -X/2 < {n < X/2, then the amplitude 
that we sample is random, since there is an equal probability of sampling each 
part of the sine wave. In this case none of the energy from the sine wave produces 
aliasing; it all becomes noise. This corresponds to the zero points of the dashed 
line in Figure 6. If the sine wave frequency is not an exact multiple of A, then 
some parts of the wave will be more likely to be sampled than others. In this case 
there is some attenuated aliasing and some noise because there is some chance 
of hitting each part of the wave. This attenuation is greater for higher frequencies 
because with more cycles of the wave there is less preference for one part of the 
wave over another. Note also that the average signal level of the noise (the dc 
component or gray level) is equal to the average signal level of the sine wave. 
The gray level of the signal is preserved. 

4.2 Implementation 

The extension of jittering to two dimensions is straightforward. Consider a pixel 
as a regular grid of one or more rectangular subpixels, each with one sample 
point. Each sample point is placed in the middle of a subpixel, and then noise is 
added to the x and y locations independently so that each sample point occurs at 
some random location within its subpixel. 

Once the visibility at the sample points is known, the sample values are filtered 
with a reconstruction filter and resampled on a regular grid of pixel locations to 
obtain the pixel values. How to do this reconstruction properly is an open 
problem. The easiest reconstruction filter to compute is a box filter. Each pixel 
value is obtained by simply averaging the sample values in that pixel. Weighted 
reconstruction filters with wider filter kernels give better variance reduction. In 
this case the filter values are a function of the position of each sample point 
relative to the surrounding pixels. The value of each pixel is the sum of the values 
of the nearby sample points multiplied by their respective filter values; this total 
is normalized by dividing by the total of the filter values. 

If the random components of the sample locations are small compared with 
the width of the filter, the effect of the random components on the filter values 
can usually be ignored. The filter values can then be calculated in advance for 
the regularly spaced grid locations. These filter values can be prenormalized and 
stored in a lookup table. Changing filters is simply a matter of changing the 
lookup table. 

5. DISTRIBUTED RAY TRACING 

In the previous section, we applied stochastic sampling to the two-dimensional 
distribution of the sample points used for determining visibility in a z buffer or 
ray-casting algorithm. But the intensity of a pixel on the screen is an analytic 
function that may involve several nested integrals: integrals over time, over the 
pixel region, and over the lens area, as well as an integral of reflectance times 
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illumination over the reflected hemisphere and an integral of transmittance times 
illumination over the transmitted hemisphere. These integrals can be tremen- 
dously complicated. 

Image-rendering algorithms have made certain simplifying assumptions in 
order to avoid the evaluation of these integrals. But the evaluation of these 
integrals is essential for rendering a whole range of fuzzy phenomena, such as 
penumbrae, blurry reflections, translucency, depth of field, and motion blur. 
Thus image rendering has usually been limited to sharp shadows, sharp reflec- 
tions, sharp refractions, pinhole cameras, and instantaneous shutters. Recent 
exceptions to this are the radiosity method [lo] and cone tracing [ 11. 

The rendering integrals can be evaluated with stochastic sampling. If we regard 
the variables of integration as additional dimensions, we can perform a Monte 
Carlo evaluation of the integrals by stochastically distributing the sample points 
(rays) in those additional dimensions. This is called probabilistic or distributed 
ray tracing. 

-Distributing reflected rays according to the specular distribution function 
produces gloss (blurry reflection). 

-Distributing transmitted rays produces translucency (blurry transparency). 

-Distributing shadow rays through the solid angle of each light source produces 
penumbrae. 

-Distributing ray origins over the camera lens area produces depth of field. 

-Distributing rays in time produces motion blur. 

Distributed ray tracing is discussed in detail in a previous paper [5], and others 
have extended the results found there [7, 12, 141 (also personal communications 
from D. Mitchell and from T. Whitted). This section summarizes the distributed 
ray-tracing algorithm from the viewpoint of stochastic sampling. 

5.1 Nonspatial Jittering 

One way to distribute the rays in the additional dimensions is with uncorrelated 
random values. For example, one could pick a random time for each ray or a 
random point on a light source for each shadow ray. This approach produces 
pictures that are exceedingly noisy, owing to the bunching up of samples (as 
illustrated later in Figure lid). We can reduce the noise level by using a Poisson 
disk distribution, ensuring that the samples do not bunch up or leave large gaps 
that are unsampled. As before, we use jittering to approximate a Poisson disk 
distribution. 

To jitter in a nonspatial dimension, we use randomly created prototype patterns 
in screen space to associate the sample points with a range of that dimension to 
sample, then jitter to pick the exact location within each range. In the case of 
sampling in time to produce motion blur, we divide the frame time into slices 
and randomly assign a slice of time to each sample point. The exact time within 
each slice is then determined by jittering. 

For example, to assign times in a pixel with a 4-by-4 grid of sample points, one 
could use a random distribution of the numbers 1-16, such as the one shown in 
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Fig. 8. Example of a prototype time pattern. 

7 11 3 14 

4 15 13 0 

16 1 8 12 

B 10 5 2 

Figure 8. The sample in the xth column and the yth row would have a prototype 
time 

tzy = 
Pxy - 0.5 

16 ’ 

where P, is the value shown in the xth column and the yth row of the prototype 
pattern in Figure 8. A random jitter of a$ is then added to this prototype time 
to obtain the actual time for a sample. For example, the sample in the upper left 
subpixel would have a time 2 5 t 5 2. 

Note that correlation between the spatial locations and the locations in other 
dimensions can cause aliasing. For example, if the samples on the left side of the 
pixel are consistently at an earlier time than those on the right side of the pixel, 
an object moving from right to left might be missed by every sample, whereas an 
object moving from left to right might be hit by every sample. 

5.2 Weighted Distributions 

Sometimes we need to weight the samples. For example, we may want to weight 
the reflected samples according to the specular reflection function, or we may 
want to use a weighted temporal filter. One approach would be to distribute the 
samples evenly and then later weight each ray according to the filter. A better 
approach is importance sampling [ 111, in which the sample points are distributed 
so that the chance of a location being sampled is proportional to the value of the 
filter at that location. This avoids the multiplications necessary for the weighting 
and also puts the samples where they will do the most good. 

In order to use jitter to do importance sampling, we divide the filter into 
regions of equal area, as shown in Figure 9. Each region is sampled by one sample 
point, with the samples spaced further apart for smaller filter values and closer 
together for larger filter values. Each sample point is positioned at the center 
of its region and then jittered to a random location in the region. Note that the 
size of the jitter varies from sample to sample. If the filter shape is known 
ahead of time, a list of the centers and jitter magnitudes for each region can be 
precomputed and stored in a lookup table. 

For example, for the reflection ray, we create a lookup table based on the 
specular reflection function. Given the angle between the surface normal and the 
incident ray, this lookup table gives a range of reflection angles plus a jitter 
magnitude for determining an exact reflection angle within that range. For any 
given reflection ray, the index into this table is determined using its ancestral 
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Fig. 9. Importance sampling. The samples are distributed so that 

they sample regions of equal area under the weighting function. The 

prototype sample location and jitter range is shown for two of the 
sampling regions. 

primary ray in screen space to associate it with a randomly generated prototype 
pattern of table indices. 

5.3 Summary of Distributed Ray Tracing 

The distributed ray-tracing algorithm is illustrated in Figure 10. For each primary 
ray: 

-Determine the spatial location of the ray by jittering. 

-Determine the time for the ray from jittered prototype patterns. 

-Move the camera and the objects to their location at that time. 

-Determine the focal point by constructing a ray from the eye point (center of 
the lens) through the screen location of the ray. The focal point is located on 
this ray so that its distance from the eye point is equal to the focal distance. 

-Determine the lens location for the ray by jittering a location selected from a 
prototype pattern of lens locations. 

-The primary ray starts at the lens location and goes through the focal point. 
Determine the visible point for this ray using standard ray-casting or ray- 
tracing techniques. 

-Trace a reflection ray. The direction of the reflection ray is determined by 
jittering a set of directions that are distributed according to the specular 
reflection function. This is done with a lookup table; the lookup table index is 
based on a screen space prototype pattern that assigns indices to primary rays 
and their descendants. The reflection direction is obtained from the lookup 
table and then jittered. The range of the jitter is also stored in the table. 

-Trace a transparency ray if the visible object is transparent. The direction of 
the transparency ray is determined by jittering a set of directions that are 
distributed according to the specular transmission function. 

-Trace the shadow rays. For each light source, determine the location on the 
light for the shadow ray, and trace a ray from the visible point to that location 
on the light. The chance of tracing the ray to a location on the light should be 
proportional to the intensity and projected area of that location as seen from 
the visible point on the surface. 
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Fig. 10. Distributed ray tracing. 

6. EXAMPLES 

The jitter used in these examples is white noise jitter with y = 0.5. An example 
of this distribution is shown in Figure lla, and the Fourier transform of Figure 
lla is shown in Figure lib. Notice how Figure lib resembles the Fourier 
transform of a Poisson disk distribution (shown in Figure 4b). By contrast, a 
pure Poisson distribution of samples with no minimum distance restriction is 
shown in Figure lld, and the Fourier transform of Figure lld is shown in Fig- 
ure lle. The C code in Figure llc was used to generate Figure lla, and the C 
code in Figure llf was used to generate Figure lid. 

In Figures 12 and 13, a box filter was used for a reconstruction filter to 
accentuate the noise problems. In all of the other examples, the following 
Gaussian filter was used: 

e-d2 _ PE=, 

where d is the distance from the center of the sampling region to the center of 
the pixel, and w = 1.5 is the filter width distance, beyond which the filter was 
set to zero. The effect of jitter on the filter values was ignored. 

Consider the comb of triangular slivers illustrated in Figure 12a. Each triangle 
is 1.01 pixels wide at the base and 50 pixels high. The triangles are placed in a 
horizontal row 1.01 pixels apart. If the comb is sampled with a regular grid, 
aliasing can result as depicted in Figure 12b. A comb containing 200 such 
triangular slivers is rendered in Figures 12c-f. 

In Figure 12~ the comb is rendered with a single sample at the center of each 
pixel. Figure 12d also has one sample per pixel, but the sample location is jittered 
by { = +a pixel in x and y. Figure 12c is grossly aliased: there are just a few large 
triangles spaced 100 pixels apart. This aliasing is replaced by noise in Figure 12d. 
Because there is only one sample per pixel, each pixel can only be white or black, 
but in any given region, the percentage of white pixels equals the percentage of 
that region that is covered by the triangles. Note that the white pixels are denser 
at the bottom, where the triangles are wider. 

In Figure 12e the same comb is rendered with a regular 4-by-4 grid of samples. 
In Figure 12f the regular 4-by-4 grid is jittered by { = ki pixel in x and y. Again 
the regularly spaced samples alias; this time there are a few large overlapping 
triangles spaced y = 25 pixels apart. This aliasing is replaced by noise in the 
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Fig. 12a. Schematic diagram of the comb of triangles example. The

triangles are 50 pixels high and 1.01 pixels apart.

Fig. 12b. The comb of triangles aliases when rendered with a regular

grid of sample points in the manner shown here. Samples are shown

as circles, and pixels are shown as rectangles. Pixels with samples



Stochastic Sampling in Computer Graphics 67

jittered version, Figure 12f. Notice, though, that the noise is greatly reduced

compared with Figure 12d.

Figure 13 shows a small white square moving across the screen. Figure 13a was

rendered with no jitter and one sample per pixel, so the image is still. Figure 13b

was rendered with jitter and one sample per pixel; the image is now blurred but

is extremely noisy because, with only one sample, each pixel can be only one of

two colors-the color of the square or the color of the background. Notice,

though, that in any given region the number of pixels that are white is propor-

tional to the amount of time the square covered that region; thus the percentage

of white pixels is constant in the middle and ramps off at the ends. Figure 13c

was rendered with no jitter and 16 samples per pixel, and Figure 13d with jitter

and 16 samples per pixel. Notice the reduction in the noise level with the

additional samples.

Figure 14a is the ray-traced picture 1984, with a closeup of the 4-ball shown in

Figure 14b. The 4-ball remains stationary for most of the time the shutter is

open and moves quickly to the upper right just before the shutter closes. The

blur is quite extreme, and yet the image looks noisy instead of aliased. This

picture was made with 16 samples per pixel.

Figures 15a and 15b are two frames from the short film The Adventures of

André & Wally B. [18]. These extreme examples of motion blur were rendered
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This cuts down considerably on the noise level and helps avoid needless compu-

tation. Others have since found ways to add more samples adaptively based on

an estimate of the variance of the image in each pixel [12, 14].

Figure 16 shows a frame of a computer-synthesized stained-glass man from

Young Sherlock Holmes [16]. The camera is focused on the sword, with the body
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out of focus. This was also rendered with a scan-line algorithm, but in this case, 
no adaptive method was used to change the number of samples per pixel; instead, 
there were always 16 samples per pixel. The sequence is also motion blurred. 

The paper clip in Figure 17 shows penumbrae and blurry reflection, rendered 
with 16 samples per pixel. Other examples of distributed ray tracing have 
appeared in a previous paper [5]. In all cases, areas of extreme blur become noisy 
instead of aliasing. 

7. DISCUSSION AND CONCLUSIONS 

With correctly chosen nonuniform sample locations, high frequencies appear as 
noise instead of aliasing. The magnitude of this noise is determined by the 
sampling frequency. We have found that using 16 samples per pixel produces an 
acceptable noise level in most situations, with more needed only for high- 
frequency situations, such as frames that are extremely motion blurred or out of 
focus. Stochastic sampling should also work well when integrated with adaptive 
sampling. This has been the subject of some recent research [12, 141. 

The human eye uses a Poisson disk distribution of photoreceptors. A simple 
and effective approximation to a Poisson disk distribution can be obtained by 
jittering a regular grid. When this technique is extended to distributed ray tracing, 
the locations in the nonspatial dimensions can be chosen by jittering randomly 
generated prototype patterns. Weighted functions can be evaluated using impor- 
tance sampling. 

Stochastic sampling involves some additional computation. Because the sam- 
ples are not regularly spaced, forward differencing cannot be used to exploit 
pixel-to-pixel coherence. Compared with standard ray tracing, distributed ray 
tracing requires additional calculations to move objects to their correct location 
for each ray. Moving and out-of-focus objects also require a more sophisticated 
bounding calculation, and these objects must often be intersected with a larger 
number of rays. 

Aliasing has been a major problem for ray-tracing and ray-casting algorithms, 
and this problem is solved by stochastic sampling. The shading calculations, 
which have traditionally been point sampled, are automatically antialiased with 
stochastic sampling, eliminating problems such as highlight aliasing. Another 
potential application is texture map sampling. Extended to distributed ray 
tracing, stochastic sampling also provides a solution to motion blur, depth of 
field, penumbrae, blurry reflections, and translucency. 
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