Stochastic Satisfiability modulo Theories for Non-linear Arithmetic ${ }^{\star}$

Tino Teige and Martin Fränzle
Carl von Ossietzky Universität, Oldenburg, Germany
\{teige|fraenzle\}@informatik.uni-oldenburg.de

Abstract

The stochastic satisfiability modulo theories (SSMT) problem is a generalization of the SMT problem on existential and randomized (aka. stochastic) quantification over discrete variables of an SMT formula. This extension permits the concise description of diverse problems combining reasoning under uncertainty with data dependencies. Solving problems with various kinds of uncertainty has been extensively studied in Artificial Intelligence. Famous examples are stochastic satisfiability and stochastic constraint programming. In this paper, we extend the algorithm for SSMT for decidable theories presented in [FHT08] to non-linear arithmetic theories over the reals and integers which are in general undecidable. Therefore, we combine approaches from Constraint Programming, namely the iSAT algorithm tackling mixed Boolean and non-linear arithmetic constraint systems, and from Artificial Intelligence handling existential and randomized quantifiers. Furthermore, we evaluate our novel algorithm and its enhancements on benchmarks from the probabilistic hybrid systems domain.

1 Introduction

Papadimitriou [Pap85] proposed the idea of uncertainty for propositional satisfiability by introducing randomized quantification in addition to existential quantification. This yields the stochastic propositional satisfiability (SSAT) problem where randomly quantified variables (randomized variables for short) are set to true with a certain probability. The solution of an SSAT problem Φ is a strategy to assign values to the existential variables that maximizes the overall satisfaction probability of Φ. Since the quantifier ordering of Φ, called prefix, allows an alternating sequence of existential and randomized quantifiers, the value of an existential variable depends on the values of the randomized variables with earlier appearance in the prefix. Consequently, in general such a solution is a tree of assignments to the existential variables depending on the values of preceding randomized variables. The SSAT framework is -at least theoreticallyable to tackle many problems from Artificial Intelligence (AI) exhibiting uncertainty, e.g. stochastic planning problems. We just briefly note that there is

[^0]a lot of work done on efficiently transforming AI problems into SSAT formulae, e.g. cf. [LMP01,ML98,ML03]. Littman $[L i t 99] ~^{1}$ proposed an algorithm for SSAT which extends the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [DP60,DLL62] (DPLL is the basic algorithm of most modern propositional satisfiability solver) with acceleration techniques like unit resolution, purification, and thresholding. For a very comprehensive survey about stochastic satisfiability confer [LMP01]. More recently, Majercik further improved the DPLL-style SSAT algorithm by introducing non-chronological backtracking [Maj04].

There are several attempts to extend the stochastic framework beyond the purely propositional case. Doing so yields stochastic constraint programming [Wal02,TMW06,BS06,BS07] in which the domains for all variables, also nonquantified variables, are so far still finite. In [BS07] it was shown that the stochastic constraint satisfaction problem (SCSP) is PSPACE-complete also for multiple objectives by describing an algorithm for SCSPs in non-prenex form. The authors of [FHT08] introduced the stochastic satisfiability modulo theories (SSMT) problem and its application for the reachability analysis of probabilistic hybrid automata. Moreover, they described an algorithm for SSMT for decidable theories, e.g. linear arithmetic over the reals and integers. Although quantified variables in an SSMT problem still have finite domains, this restriction is relaxed for non-quantified variables or, equivalently, the innermost set of existentially quantified variables.

In this paper, we extend and benchmark the ideas from [FHT08]. First, we propose an SSMT algorithm for non-linear arithmetic over the reals and integers. (Note that for the non-linear case the SSMT problem becomes undecidable in general.) Second, we implement this algorithm and prove its concept by presenting empirical results. Third, in addition to the thresholding pruning rules we adapt the promising idea of solution-directed backjumping [Maj04] to our setting. The algorithm described in this paper is strongly based on the iSAT algorithm $\left[\mathrm{FHT}^{+} 07\right]$ for solving non-linear arithmetic constraint systems (involving transcendental functions) with complex Boolean structure over realand integer-valued variables. ${ }^{2}$ The iSAT approach tightly integrates the DPLL algorithm with interval constraint propagation (ICP, cf. [BG06] for an extensive survey) enriched by enhancements like conflict-driven clause learning and nonchronological backtracking. For a very detailed description of the iSAT algorithm the reader is referred to the original paper, in particular to the example on pages 217-219. As the core algorithm, iSAT is implemented in the constraint solver HySAT-II ${ }^{3}$ which has been specifically designed for bounded model checking of hybrid (discrete-continuous) systems.

[^1]

Fig. 1. Semantics of an SSMT formula depicted as a tree

Structure of the paper. In Section 2 we recall the definition of an SSMT problem while Section 3 presents an algorithm for SSMT for non-linear arithmetic theories. An experimental evaluation of that algorithm is given in Section 4. Section 5 concludes the paper and lists some directions for future work.

2 Stochastic satisfiability modulo theories

The satisfiability modulo theories (SMT) problem (cf., e.g., [RT06]) is a decision problem for logical formulae wrt. combinations of background theories. Thus, SMT generalizes the well-known propositional satisfiability (SAT) problem. The stochastic SMT (SSMT) problem extends SMT to support randomized quantification over discrete variables as known from SSAT and SCSP.

Let φ be an SMT formula in conjunctive normal form (CNF) over some quantifier-free potentially non-linear arithmetic theory T over the reals, integers, and Booleans. I.e., φ is a logical conjunction of clauses, and a clause is a logical disjunction of (atomic) arithmetic predicates from T, as in $\varphi=(x>0 \vee 2 a$. $\sin (4 b) \geq 3) \wedge(y>0 \vee 2 a \cdot \sin (4 b)<1)$. An SSMT problem

$$
\Phi=Q_{1} x_{1} \in \operatorname{dom}\left(x_{1}\right) \ldots Q_{n} x_{n} \in \operatorname{dom}\left(x_{n}\right): \varphi
$$

is specified by a prefix $Q_{1} x_{1} \in \operatorname{dom}\left(x_{1}\right) \ldots Q_{n} x_{n} \in \operatorname{dom}\left(x_{n}\right)$ binding the variables x_{i} to the quantifier $Q_{i},{ }^{4}$ and an SMT formula φ, also called the matrix. We require that the domains $\operatorname{dom}(x)$ of quantified variables x are finite (and thus discrete). A quantifier Q_{i}, associated with variable x_{i}, is either existential, denoted as \exists, or randomized, denoted as $\mathrm{U}_{d_{i}}$ where d_{i} is a discrete probability distribution over $\operatorname{dom}\left(x_{i}\right)$. The value of a variable x_{i} bound by a randomized quantifier (randomized variable for short) is determined stochastically by the corresponding distribution d_{i}, while the value of an existentially quantified variable can be set arbitrarily. We usually denote such a probability distribution d_{i} by a list $\left\langle\left(v_{1}, p_{1}\right), \ldots,\left(v_{m}, p_{m}\right)\right\rangle$ of value pairs, where p_{j} is understood as the probability of setting variable x_{i} to v_{j}. The list satisfies $v_{j} \neq v_{k}$ for $j \neq k, \forall j: p_{j}>0, \sum_{j=1}^{m} p_{j}=1$, and $\operatorname{dom}\left(x_{i}\right)=\left\{v_{1}, \ldots, v_{m}\right\}$. For instance,

[^2]$\mathcal{U}_{\{(0,0.2),(1,0.5),(2,0.3)\}} x \in\{0,1,2\}$ means that the variable x is assigned the value 0,1 , or 2 with probability $0.2,0.5$, and 0.3 , respectively.

The semantics of an SSMT problem is defined by the maximum probability of satisfaction. Intuitively, for an SSMT formula $\Phi=\exists x_{1} \in \operatorname{dom}\left(x_{1}\right) \mathcal{U}_{d_{2}} x_{2} \in$ $\operatorname{dom}\left(x_{2}\right) \exists x_{3} \in \operatorname{dom}\left(x_{3}\right) \mathcal{U}_{d_{4}} x_{4} \in \operatorname{dom}\left(x_{4}\right): \varphi$ determine the maximum probability s.t. there is a value for x_{1} s.t. for random values of x_{2} there is a value for x_{3} s.t. for random values of x_{4} the SMT formula φ is satisfiable. (As standard, an SMT formula φ (in CNF) is satisfiable iff there exists a valuation σ of the variables in φ s.t. each clause is satisfied under σ, i.e., iff at least one atom in each clause is satisfied under σ. Otherwise, φ is unsatisfiable.) More formally, the maximum probability of satisfaction $\operatorname{Pr}(\Phi)$ of an SSMT formula Φ is defined recursively by the following rules where φ denotes the matrix.

1. $\operatorname{Pr}(\varphi)=0$ if φ is unsatisfiable.
2. $\operatorname{Pr}(\varphi)=1$ if φ is satisfiable.
3. $\operatorname{Pr}\left(\exists x_{i} \in \operatorname{dom}\left(x_{i}\right) \ldots Q_{n} x_{n} \in \operatorname{dom}\left(x_{n}\right): \varphi\right)$
$=\max _{v \in \operatorname{dom}\left(x_{i}\right)} \operatorname{Pr}\left(Q_{i+1} x_{i+1} \in \operatorname{dom}\left(x_{i+1}\right) \ldots Q_{n} x_{n} \in \operatorname{dom}\left(x_{n}\right): \varphi\left[v / x_{i}\right]\right)$.
4. $\operatorname{Pr}\left(\mathrm{Y}_{d_{i}} x_{i} \in \operatorname{dom}\left(x_{i}\right) \ldots Q_{n} x_{n} \in \operatorname{dom}\left(x_{n}\right): \varphi\right)$
$=\sum_{(v, p) \in d_{i}} p \cdot \operatorname{Pr}\left(Q_{i+1} x_{i+1} \in \operatorname{dom}\left(x_{i+1}\right) \ldots Q_{n} x_{n} \in \operatorname{dom}\left(x_{n}\right): \varphi\left[v / x_{i}\right]\right)$.
For an example see Fig. 1.

3 SSMT algorithm for non-linear arithmetic

In this section we present our algorithm SiSAT for calculating the maximum probability of satisfaction of an SSMT formula. More precisely, for a given SSMT formula Φ and a lower and upper target threshold $t_{l}, t_{u} \in[0,1]$ with $t_{l} \leq t_{u}$, the algorithm returns a witness value $p \leq \operatorname{Pr}(\Phi)$ s.t. $p>t_{u}$ iff $\operatorname{Pr}(\Phi)>t_{u}$, a value $p<t_{l}$ iff $\operatorname{Pr}(\Phi)<t_{l}$, or otherwise (i.e., if $\left.t_{l} \leq \operatorname{Pr}(\Phi) \leq t_{u}\right)$ the value $p=\operatorname{Pr}(\Phi)$. If we wish to compute the exact value of $\operatorname{Pr}(\Phi)$ we may thus simply set $t_{l}=0$ and $t_{u}=1$. SiSAT is an extension of the iSAT algorithm with an additional tightly integrated top layer for dealing with existential and randomized quantifiers. In the iSAT context, and thus in SiSAT, variables are interpreted over interval valuations which are manipulated during the proof search. As the iSAT algorithm is employed as the underlying core engine, we have to decompose all arithmetic predicates into so called primitive constraints by introducing additional auxiliary variables. A primitive constraint consists of exactly one relational operator, at most one arithmetic operator, and at most three variables. Note that for each (arithmetic) SMT formula there is an equi-satisfiable linearly-sized SMT formula in CNF just containing primitive constraints. For the input syntax of iSAT confer [FHT ${ }^{+}$07, Section 2]. As an example, the matrix of Φ from Fig. 1 can be rewritten to, e.g., $\left(x>0 \vee h_{1} \cdot h_{2} \geq 3\right) \wedge\left(y>0 \vee h_{1} \cdot h_{2}<1\right) \wedge\left(h_{1}=\right.$ $2 a) \wedge\left(h_{2}=\sin \left(h_{3}\right)\right) \wedge\left(h_{3}=4 b\right)$. All algorithmic enhancements of iSAT are naturally inherited, such as conflict-driven clause learning \& non-chronological backtracking, the two-watching scheme, as well as the combined unit and inter-

```
Algorithm \(1 \operatorname{SiSAT}\left(\operatorname{Pre}, t_{l}, t_{u}\right)\)
In: A prefix Pre, lower and upper thresholds \(t_{l}, t_{u}\).
Out: The satisfaction probability of the SSMT formula wrt. the thresholds.
    while true do
        while true do
            result \(:=\) deduce(). \{Deducing.\}
            if result \(=\) CONFLICT then
                resolved \(:=\) analyze_conflict () . \{Learning \& Backjumping.\}
                if not resolved then
                    return 0 . \{No solution for subproblem.\}
                end if
            else if result \(=\) SOLUTION then
                return 1. \{Solution found.\}
            else
                    break. \{Leave loop for branching.\}
            end if
        end while
        \{Existential quantifier.\}
        if head (Pre) \(=\exists x \in \operatorname{dom}(x)\) then
            \(v \in \operatorname{dom}(x), \operatorname{set}(x=v), \operatorname{dom}(x):=\operatorname{dom}(x)-\{v\}\).
            \(p_{0}=\operatorname{SiSAT}\left(\right.\) tail \((\) Pre \(\left.), t_{l}, t_{u}\right)\).
            if \(p_{0}>t_{u}\) or \(p_{0}=1\) or \(\operatorname{dom}(x)=\emptyset\) then
            return \(p_{0}\). \{Upper threshold exceeded or maximum possible probability
            reached or all branches investigated.\}
        end if
        \(p_{1}=\operatorname{SiSAT}\left(\right.\) Pre \(\left., \max \left(p_{0}, t_{l}\right), t_{u}\right) .\left\{\right.\) Neglect probabilities less than \(\left.p_{0}.\right\}\)
        return \(\max \left(p_{0}, p_{1}\right)\). \{Return maximum probability.\}
        end if
        \{Randomized quantifier.\}
        if head (Pre) \(=\mathrm{U}_{d} x \in \operatorname{dom}(x)\) then
            \(v \in \operatorname{dom}(x),\left(v, p_{v}\right) \in d, \operatorname{set}(x=v), \operatorname{dom}(x):=\operatorname{dom}(x)-\{v\}\).
            \(p_{\text {remain }}=\sum_{v^{\prime} \in \operatorname{dom}(x),\left(v^{\prime}, p^{\prime}\right) \in d} p^{\prime}\).
            \(p_{0}=\operatorname{SiSAT}\left(\right.\) tail \((\) Pre \(\left.),\left(t_{l}-p_{\text {remain }}\right) / p_{v}, t_{u} / p_{v}\right)\).
            if \(\left(p_{v} \cdot p_{0}\right)>t_{u}\) or \(\left(p_{v} \cdot p_{0}\right)=1\) or \(\operatorname{dom}(x)=\emptyset\) then
            return \(p_{v} \cdot p_{0}\). \{Upper threshold exceeded or maximum possible probability
            reached or all branches investigated.\}
        end if
        if \(p_{\text {remain }}<\left(t_{l}-p_{v} \cdot p_{0}\right)\) then
            return \(p_{v} \cdot p_{0}\). \{Lower threshold cannot be reached by remaining branches.\}
        end if
        \(p_{1}=\operatorname{SiSAT}\left(\right.\) Pre \(\left., t_{l}-p_{v} \cdot p_{0}, t_{u}-p_{v} \cdot p_{0}\right) .\{\) Update thresholds. \(\}\)
        return \(p_{v} \cdot p_{0}+p_{1}\). \{Return weighted sum. \(\}\)
        end if
        \{No quantifier left. Start iSAT branching.\}
        if not decide_next_branch() then
            return 1. \{Approximative solution found.\}
        end if
    end while
```

val constraint propagation. For more details about iSAT the reader is referred to $\left[\mathrm{FHT}^{+} 07, \mathrm{THF}^{+} 07\right]$.

Although we implemented SiSAT in an iterative manner, we present the basic ideas in a more intuitive recursive fashion (cf. Algorithm 1). Let $\Phi=$ Pre : φ be the SSMT formula to be solved and t_{l}, t_{u} be the lower and upper target thresholds, respectively. For the initial call $\operatorname{SiSAT}\left(\operatorname{Pre}, t_{l}, t_{u}\right)$ the matrix φ, i.e. the clauses, of the SSMT formula Φ will be stored in a global database. New learned conflict clauses will be added to this database and, thus, will be public for all subproblems to be solved. The main loop of the SiSAT algorithm consists of the deduction phase, conflict resolution, and branching. Within the deduction phase the algorithm tries to conclude tighter intervals for the variables by chopping off non-solutions, starting from the domains of the variables as initial intervals. This is done by unit propagation and interval constraint propagation. Whenever a conflict occurs during search, i.e. if all constraints in a clause of the matrix are inconsistent with the current interval valuation, SiSAT analyzes the conflict. If the conflict can be resolved without revoking any assignment to a quantified variable then clause learning and backjumping are performed. Otherwise, i.e. if conflict resolution calls for undoing assignments to quantified variables, the function analyze_conflict() returns false indicating unsatisfiability of the current subproblem. Further backtracks concerning quantified variables are handled by the recursive nature of the algorithm. The branching step in the SiSAT framework corresponds to splitting an interval of a non-quantified variable or selecting a value for a quantified variable from its current domain. If a subproblem is decided to be satisfiable or unsatisfiable, the algorithm returns the probability 1 or 0 for that subproblem, resp., according to the semantics of Section 2. For the soundness of Algorithm 1, we require that the deduce() function returns SOLUTION only if the current quantifier prefix Pre is empty, i.e. branching for all quantified variables was performed beforehand.

The quantification issue is mainly treated within the branching step. In conformity with the semantical definition of the maximum probability, the branches for the quantified variables of the prefix are explored from left to right, and the resulting probabilities are combined correspondingly. The functions head(Pre) and $\operatorname{tail}($ Pre $)$ return the leftmost element $Q x \in \operatorname{dom}(x)$ of prefix Pre and the prefix originating from Pre where the leftmost element, i.e. head(Pre), is eliminated, respectively. For a quantified variable x, we first select a value v from $\operatorname{dom}(x)$, assign v to x, and exclude v from $\operatorname{dom}(x)$. Then, we compute the probability for the branch $x=v$ by recursively calling the SiSAT procedure where the head element $Q x \in \operatorname{dom}(x)$ of the prefix is removed and the target thresholds are updated as follows: If x is existential then we simply preserve t_{l}, t_{u}. If x is randomized then we take the probability p_{v} for the value v and the maximum possible remaining probability $p_{\text {remain }}=\sum_{v^{\prime} \in \operatorname{dom}(x),\left(v^{\prime}, p^{\prime}\right) \in d} p^{\prime}$ for all remaining values $v^{\prime} \neq v$ of x into account. I.e., the lower and upper target thresholds for this call are $\left(t_{l}-p_{\text {remain }}\right) / p_{v}$ and t_{u} / p_{v}, resp., since if $t_{l}-p_{\text {remain }}$ cannot be reached by branch $x=v$ then t_{l} cannot be reached at all. (We remark that $t_{l}-p_{\text {remain }}$ can be a negative number and thus the new lower thresholds can
be negative. This fact, however, does not influence the correctness since the termination criterion concerning lower thresholds applies only if the remaining probability $p_{\text {remain }} \geq 0$ is strictly less than the (updated) lower threshold.)

We exploit some pruning rules concerning the target thresholds which allow to return a result without visiting all branches. These rules are generalizations of the thresholding rules for the propositional case from [LMP01]. Let p_{0} be the result of the SiSAT call. Whenever the computed probability for the branch $x=v$, i.e. either p_{0} or $p_{v} \cdot p_{0}$, exceeds the upper threshold t_{u}, we can skip investigation of all other branches and return the (positive) result. Note that the same holds if the domain $\operatorname{dom}(x)$ becomes empty or the maximum possible probability 1 is computed. For the randomized case, it could also happen that the maximum possible probability of all remaining branches $p_{\text {remain }}$ cannot reach the new lower target threshold $t_{l}-p_{v} \cdot p_{0}$. Then we are also allowed to immediately return the (negative) result without further exploration of the remaining subtree. For the remaining subtree, i.e. $\forall v^{\prime} \neq v: x=v^{\prime}$, we set the target thresholds as follows: If x is existential then the new lower and upper thresholds are $\max \left(p_{0}, t_{l}\right)$ and t_{u}, resp., since we can neglect probabilities of the remaining subtree less than the already computed value p_{0}. If x is randomized then both new thresholds decrease by the computed probability $p_{v} \cdot p_{0}$. Let p_{1} be the result of the second SiSAT call, then we combine the computed probabilities in accordance with the SSMT semantics, namely $\max \left(p_{0}, p_{1}\right)$ for the existential and $p_{v} \cdot p_{0}+p_{1}$ for the randomized case, and return the result.

If all quantified variables are currently assigned to some values, i.e. the prefix Pre is empty (Pre $=h e a d($ Pre $)=\emptyset)$, the algorithm applies the usual iSAT branching for all non-quantified (Boolean, integer, and real-valued) variables by splitting their intervals. Note that the iSAT algorithm is in general not able to find a solution of any mixed Boolean and non-linear arithmetic constraint formula or to prove its absence, since search algorithms based on interval splitting and interval constraint propagation over the reals are incomplete deduction systems. In order to avoid a potentially infinite sequence of splitting intervals, branching stops if for each (non-quantified) variable z the width $\omega(z)$ of the current interval of z is less than a predefined value $\varepsilon>0$, i.e. $\omega(z)<\varepsilon$. In such a case, the algorithm found a hull consistent interval valuation (for more details cf. $\left[\mathrm{FHT}^{+} 07\right]$) which we consider as an approximative solution. Thus, we return the probability 1.

3.1 Solution-directed backjumping

For stochastic Boolean satisfiability, solution-directed and conflict-directed backjumping was introduced by Majercik [Maj04]. We note, however, that this idea was first proposed for quantified Boolean satisfiability in [GNT03]. We adapt the promising technique of solution-directed backjumping to the stochastic mixed Boolean and (non-linear) arithmetic framework. The idea of solution-directed backjumping (SDB) is to avoid exploring the remaining branches of a quantified variable x, whenever the truth value of the formula remains the same if the cur-

Fig. 2. Decision tree for Φ
rent value of x changed. I.e., the probability of all such subtrees are the same as for the current branch.

Motivating this heuristics we first consider an example. Given the following SSMT formula

$$
\Phi=\mathcal{U}_{\langle(0,0.3),(1,0.7)\rangle} y \in\{0,1\} \exists x \in\{0,1\}:(\neg b \vee x \geq 1) \wedge(b \vee y<1)
$$

where $b \in \mathbb{B}$ is a Boolean variable ${ }^{5}$. The decision tree for Φ is depicted in Fig. 2. Calling the SiSAT algorithm on Φ, branching for the randomized variable y, say (1) $y=1$, implies that $b=$ true (i.e. $b=1$) by the second clause. Hence, the domain of b is narrowed to $[1,1]$ by SiSAT's deduce () procedure. Then, by the first clause it follows that $x \geq 1$ has to hold, i.e. the domain of x is contracted to $\{1\}$. Thus, the only possibility for branching on the existential variable x is (2) $x=1$. Here, deduce() returns SOLUTION. Consequently, the probability of branch (2) is 1 . Since 1 is the maximum possible probability, SiSAT returns value 1 as the result for branch (1). I.e., the intermediate maximum satisfaction probability of Φ is $0.7 \cdot 1=0.7$. At this point, we take the idea of solutiondirected backjumping into account: The assignment $y=1$ has no impact on the satisfaction of the matrix (cf. Fig. 2). I.e., all other assignments to y also satisfy the formula and lead to the same probability. Hence, also the branch $y=0$ results in probability 1 which means that we are able to conclude that $\operatorname{Pr}(\Phi)=0.7+0.3 \cdot 1=1$ without visiting the subtree for $y=0$.

To be more formal, we first define a reason for a solution (analogously to a reason for a conflict). Given an SSMT formula $\Phi=$ Pre : φ. Let ρ be a satisfying interval valuation of the matrix φ, i.e. $\rho(\varphi)=$ true. If we consider hull consistency as an approximative solution then it is sufficient that ρ is hull consistent with φ, denoted as $\rho(\varphi)=$ hc. We call a set $r \subseteq\{a: a \in c \in \varphi\}$ of atoms from φ a reason for the satisfaction of φ under ρ if the following hold:

1. $\forall c \in \varphi \exists a \in c: a \in r$, and

[^3]2. $\forall a \in r: \rho(a)=$ true (resp. $\rho(a)=\mathrm{hc})$
where $\rho(a)$ for an atom a gives the truth value of a under the interval valuation $\rho(x)$ of its variables x. Note that such a set r exists (while not being unique) whenever $\rho(\varphi)=$ true (resp. $\rho(\varphi)=$ hc) holds. By sat_reasons (φ, ρ) we denote the set of all reasons r for the satisfaction of φ under ρ. In our example above, the only reason for the satisfaction is $\{x \geq 1, b\}$ where ρ is given by $\rho(y)=$ $[1,1], \rho(x)=[1,1], \rho(b)=[1,1]$.

Given a reason $r \in$ sat_reasons (φ, ρ), a quantified variable x, and the current domain \mathcal{D}_{x} of x, the predicate no_impact $\left(r, \rho, x, \mathcal{D}_{x}\right)$ returns true only if the current interval $\rho(x)$ of x has no impact on the satisfaction. More precisely,
no_impact $\left(r, \rho, x, \mathcal{D}_{x}\right)=\left\{\begin{aligned} \text { true } ; & \forall a \in r \forall v_{x} \in \mathcal{D}_{x}: \\ & x \notin \operatorname{vars}(a) \vee \\ & \rho\left[v_{x} / x\right](a)=\text { true }\left(\text { resp. } \rho\left[v_{x} / x\right](a)=\mathrm{hc}\right) \wedge \\ & \forall y \in \operatorname{vars}(a) \text { s.t. } y \neq x: y \notin q \operatorname{vars}(\Phi) \\ \text { false } & \text { otherwise }\end{aligned}\right.$
where $\operatorname{vars}(a)$ gives the set of all variables occurring in atom a, quars (Φ) gives the set of all quantified variables occurring in the SSMT formula Φ, and $\rho\left[v_{x} / x\right]$ is the modified interval valuation ρ defined by $\rho\left[v_{x} / x\right](x)=\left[v_{x}, v_{x}\right]$ and $\forall y \neq x$: $\rho\left[v_{x} / x\right](y)=\rho(y)$.

If no_impact $\left(r, \rho, x, \mathcal{D}_{x}\right)=$ true then each assignment $x=v_{x}$ with $v_{x} \in \mathcal{D}_{x}$ for x also satisfies each atom a from r. If x occurs in an atom $a \in r$ together with another quantified variable y, e.g. $a=(x \geq y)$, the return value is always false. This definition allows to perform solution-directed backjumping for each quantified variable locally without considering the mutual interplay with other quantified variables. For $x \geq y$, the solution $\rho(x)=[1,1], \rho(y)=[0,0]$, and the current domains $\mathcal{D}_{x}=[0,1], \mathcal{D}_{y}=[0,1]$, we could otherwise wrongly conclude that the values 1 for x and 0 for y have no impact on the satisfaction, since $\forall v_{x} \in \mathcal{D}_{x}: v_{x} \geq 0$ and $\forall v_{y} \in \mathcal{D}_{y}: 1 \geq v_{y}$. However, the assignment $x=$ $0, y=1$ does not satisfy $x \geq y$. For our set of benchmarks, the SSMT formulae do not contain atoms with more than one quantified variable as we will see in Section 4. Thus, the definition of no_impact $\left(r, \rho, x, \mathcal{D}_{x}\right)$ is sufficient for our application domain. However, in future work we will develop a more general and more global reasoning mechanism to tackle this issue.

The extended SiSAT algorithm supporting solution-directed backjumping is enriched by two more pruning rules which are only applied if a solution ρ with a fixed reason $r \in$ sat_reasons (φ, ρ) was found. Let x be an existential variable in rule 1 and a randomized variable in rule 2 , $\operatorname{dom}(x)$ be the updated domain of x, and p_{0} be the currently computed probability. If x is randomized then p_{v} is the probability of the currently processed branch and $p_{\text {remain }}$ the sum of the probabilities of the remaining branches (cf. Algorithm 1). The solution-directedbackjumping rules are as follows:

1. if no_impact $(r, \rho, x, \operatorname{dom}(x))$ then return p_{0}.
2. if no_impact $(r, \rho, x, \operatorname{dom}(x))$ then return $p_{v} \cdot p_{0}+p_{\text {remain }} \cdot p_{0}$.

4 Evaluation of the algorithm

In this section, we evaluate our algorithm on SSMT formulae encoding discretetime probabilistic hybrid automata. A probabilistic hybrid automaton (PHA) as described, e.g., in [FHT08] extends the notion of a hybrid automaton, where the non-deterministic selection of a transition is enriched by a probabilistic choice according to a distribution over variants of the transition. I.e., each transition carries a (discrete) probabilistic distribution. Each probabilistic choice within such a distribution leads to a potentially different successor mode while performing some discrete actions. For our case study, we are especially interested in k-bounded model checking (BMC) problems, i.e., we want to prove or disprove whether a given property P is satisfied with probability greater or equal p in a probabilistic hybrid automaton \mathcal{H} along all its traces of length up to k. The automata considered for the experiments are shown in Fig. 3. These benchmarks are hand-made and serve as a first indicator for proving the concept of the approach and showing its current limits as well as the impact of the suggested algorithmic enhancements.

4.1 Description and encoding of the case studies

Let us consider the probabilistic automaton \mathcal{H}_{1} depicted in Fig. 3. \mathcal{H}_{1} is not hybrid since it lacks continuous state components but serves as an illustration of the idea of a probabilistic choice. The initial mode of \mathcal{H}_{1} is s_{1} (indicated by the incoming edge). The system can change its current mode by taking an outgoing transition if its transition guard evaluates to true. In our example, there is just one outgoing transition t_{1} with the trivially satisfied guard true. After nondeterministically selecting a transition, the follower mode and action performed is given by a discrete distribution. Taking t_{1} in \mathcal{H}_{1}, the probability of reaching s_{1} and s_{2} are 0.9 and 0.1 , respectively. For a given reachability property P, say reaching mode s_{2} in \mathcal{H}_{1}, the problem is to determine the maximum probability of satisfying P in k steps. I.e., the underlying problem is to find a strategy s.t. selecting a transition maximizes the probability of satisfying P. For 1 step, the probability Pr of reaching s_{2} obviously is 0.1 , for 2 steps $\operatorname{Pr}=$ $0.1+(0.9 \cdot 0.1)=0.19$, and in general for $k \geq 1$ steps $\operatorname{Pr}=\sum_{i=0}^{k-1}\left(0.1 \cdot 0.9^{i}\right)$. For \mathcal{H}_{1} there are no alternative transitions over which a maximization could be achieved. However, the initial mode s_{1} in \mathcal{H}_{2} has two outgoing transitions. Assume that $k_{y}=1$ and $c=0$, then both transitions are enabled, i.e. the guards $y>c$ of t_{1} and true of t_{3} are true. Thus, we have to opt for either t_{1} or t_{3}. For each step depth, we cannot reach the target state s_{2} without taking t_{1}. Hence, the selection of t_{3} does never yield the maximum probability of satisfying the reachability property.

We encoded the next state relation of $\mathcal{H}_{1}, \mathcal{H}_{2}$, and \mathcal{H}_{3} as SSMT formulae and unwind these up to some depth k. To gain an impression of that encoding, we exemplify it for \mathcal{H}_{1}. For more details confer [FHT08]. Let k be the unwinding depth. Then, for each step $i=1, \ldots, k$ and for the transitions t_{1}, t_{2} we introduce existential variables $e_{t_{1}}^{i}, e_{t_{2}}^{i}$ encoding the nondeterministic choice and

Fig. 3. Probabilistic hybrid automata \mathcal{H}_{1} (top), \mathcal{H}_{2} (middle), and \mathcal{H}_{3} (bottom)
randomized variables $r_{t_{1}}^{i}, r_{t_{2}}^{i}$ encoding the probabilistic choice. ${ }^{6}$ I.e., the prefix of the SSMT formula for step i is given by $\exists e_{t_{1}}^{i} \in\{0,1\} \mathcal{U}_{\langle(0,0.9),(1,0.1)\rangle} r_{t_{1}}^{i} \in$ $\{0,1\} \exists e_{t_{2}}^{i} \in\{0,1\} \mathcal{U}_{\langle(0,1.0)\rangle} r_{t_{2}}^{i} \in\{0\}$. The matrix is constructed as follows. The initial condition is $s_{1}^{0} \wedge \neg s_{2}^{0}$, and the target property is $\left(s_{2}^{0} \vee \ldots \vee s_{2}^{k}\right)$, where s_{n}^{i} is a Boolean variable encoding whether \mathcal{H}_{1} is in mode s_{n} before step $i+1$ is executed. At each point of time, the system has to be in exactly one mode, and exactly one transition has to be taken for a mode change. I.e., $s_{1}^{i}+s_{2}^{i}=1$ and $e_{t_{1}}^{i}+e_{t_{2}}^{i}=1$. The transition relation is encoded as:

$$
\begin{aligned}
& \left(s_{1}^{i-1} \wedge\left(e_{t_{1}}^{i}=1\right) \wedge\left(r_{t_{1}}^{i}=0\right) \wedge s_{1}^{i}\right) \vee \\
& \left(s_{1}^{i-1} \wedge\left(e_{t_{1}}^{i}=1\right) \wedge\left(r_{t_{1}}^{i}=1\right) \wedge s_{2}^{i}\right) \vee \\
& \left(s_{2}^{i-1} \wedge\left(e_{t_{2}}^{i}=1\right) \wedge\left(r_{t_{2}}^{i}=0\right) \wedge s_{2}^{i}\right)
\end{aligned}
$$

Note that an equi-satisfiable linearly-sized formula in CNF can be obtain efficiently. Moreover, we can simply arrange all sub-prefixes in front of the formula

[^4]

Fig. 4. Impact of thresholding for \mathcal{H}_{1} (left) and \mathcal{H}_{2} where $k_{y}=1, c=4$ (right)

Fig. 5. Impact of solution-directed backjumping for \mathcal{H}_{3} : runtime (left) and number of found SAT branches (right)
(in ascending index-order), since all quantified variables in the transition relation for i do not occur in any other transition relation $j \neq i$. This yields an SSMT formula as required in Section 2.

For the hybrid case the encoding follows the same idea but we have to take account of the potentially non-linear real arithmetic guards of the transitions and actions to be performed for the probabilistic distributions. E.g., transition t_{5} of \mathcal{H}_{3} is encoded as:

$$
\begin{aligned}
& \left(s_{3}^{i-1} \wedge\left(e_{t_{5}}^{i}=1\right) \wedge\left(y_{i-1}>\left(x_{i-1}\right)^{2}\right) \wedge\left(r_{t_{5}}^{i}=0\right) \wedge s_{2}^{i}\right) \\
& \left(s_{3}^{i-1} \wedge\left(e_{t_{5}}^{i}=1\right) \wedge\left(y_{i-1}>\left(x_{i-1}\right)^{2}\right) \wedge\left(r_{t_{5}}^{i}=1\right) \wedge\left(x_{i}=x_{i-1} \cdot y_{i-1}\right) \wedge s_{3}^{i}\right)
\end{aligned}
$$

where the real-valued variables x_{i-1} and y_{i-1} represent the values of the realvalued system variables x and y, resp., before step i is executed.

4.2 Experimental results

This subsection compiles empirical results of the implemented algorithm SiSAT for the benchmarks from Subsection 4.1 encoded as SSMT formulae. The property to be checked for all automata is whether the mode s_{2} can be reached.

	exact	$t=0.0$	$t=0.2$	$t=0.4$	$t=0.6$	$t=0.8$	$t=1.0$
unwinding depth 1: 38 vars + 10 quantified vars, 111 clauses							
witness value	0.1	0.006	0.0	0.0	0.0	0.0	0.0
\#SATs	4	1	0	0	0	0	0
\#conflicts	0	0	0	0	0	0	0
runtime (sec)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
unwinding depth 2: 69 vars + 20 quantified vars, 212 clauses							
witness value	0.194	0.000252	0.092944	0.0392	0.0392	0.0042	0.0
\#SATs	136	1	66	24	24	8	0
\#conflicts	0	0	0	0	0	0	0
runtime (sec)	0.04	< 0.01	0.02	< 0.01	< 0.01	< 0.01	<0.01
unwinding depth 3: 100 vars + 30 quantified vars, 313 clauses							
witness value	0.2809	$1.058 \mathrm{e}-05$	0.201	0.1492	0.07734	0.02022	0.0
\#SATs	3,248	1	2,743	1,390	832	320	0
\#conflicts	6	0	6	2	0	0	0
runtime (sec)	1.43	< 0.01	1.22	0.63	0.37	0.15	< 0.01
unwinding depth 4: 131 vars + 40 quantified vars, 414 clauses							
witness value	0.3603	$4.445 \mathrm{e}-07$	> 0.2	0.242	0.1339	0.04349	0.0
\#SATs	67,360	1	16,167	42,891	21,088	8,380	0
\#conflicts	21	0	6	20	10	10	0
runtime (sec)	41.48	< 0.01	9.81	26.42	13.02	5.13	<0.01
unwinding depth 5: 162 vars + 50 quantified vars, 515 clauses							
witness value	0.4323	$1.867 \mathrm{e}-08$	0.2002	0.4001	0.1908	0.0844	0.0
\#SATs	1,322,700	1	213,560	1,126,492	447,616	201,252	0
\#conflicts	35	0	21	35	29	29	0
runtime (sec)	1,044.0	< 0.01	167.7	903.6	352.2	158.6	<0.01

Table 1. Empirical results for \mathcal{H}_{3} where $k_{x}=0, k_{y}=2$

All benchmarks were performed on an 1.83 GHz Intel Core 2 Duo machine with 1 GByte physical memory running Linux. Concerning the issue of the approximative nature of solutions obtained by interval constraint propagation, we remark here that due to the deterministic assignments and the use of rational functions in the considered PHAs (cf. Fig. 3), we have obtained exact solutions on all benchmark runs. Hence, the computed probabilities are exact.

Concerning the performance of the SiSAT algorithm, Fig. 4 and 5 show that the runtimes dramatically grow over the BMC unwinding depths. As one can expect, the length of the quantifier prefix determines the runtimes. One acceleration technique we considered to battle against the high complexity is thresholding. Fig. 4 and Table 1 show a comparison for different thresholding parameters where exact means $t_{l}=0$ and $t_{u}=1$, and $t=k$ means $t_{l}=k$ and $t_{u}=k$. These results empirically prove the expected fact that thresholding leads to significant performance gains if the threshold parameters are not close to the exact maximum probability of satisfaction. Consider, e.g., the results for unwinding depth 5 of \mathcal{H}_{3} in Table 1 . The exact satisfaction probability is 0.4323 . To compute this, SiSAT needed 1044 seconds, thereby visiting more than 1.3 millon satisfying branches. Setting $t_{l}=t_{u}=t=0.4$ yields nearly the same performance while for thresholds $t<0.4$ and $t>0.4$ the runtimes quickly decrease. For the extreme values $t=0$, i.e. finding just one solution, and $t=1$, i.e. randomized quantifiers change to universal quantifiers, SiSAT terminates within fractions of a second.

While the impact of thresholding strongly depends on the pre-defined lower and upper target thresholds, solution-directed backjumping is independent from such settings but exploits the structure of the formula. Surprisingly, solutiondirected backjumping yields performance gains of multiple orders of magnitude. The results for the more complex PHA \mathcal{H}_{3} are illustrated in Fig. 5. For unwinding depth 5 , the speedup factor obtained for the exact version is 567 . This shows that the idea of skipping branches for which the probability remain the same actually works for our case studies. As shown on the right in Fig. 5, an enormous number of satisfying branches to be visited could be skipped when SDB was enabled. While the exact version without SDB was just able to solve the first 5 BMC unwindings of \mathcal{H}_{3} within 100 minutes, the exact version with SDB solved 11 instances in the same time. The SSMT formula for depth 11 contains 110 quantified variables, 348 non-quantified variables, and 1121 problem clauses. Fig. 5 also indicates that on most of the BMC instances the combination of SDB and thresholding further increases the efficiency of the solver.

5 Conclusion and future work

In this paper, we presented an algorithm for stochastic SMT problems for nonlinear arithmetic over the reals and integers together with experimental results from the reachability analysis of probabilistic hybrid automata. We showed that algorithmic enhancements like thresholding and solution-directed backjumping have a significant impact on the performance of the tool.

In future work, we will explore further techniques and heuristics to accelerate the SiSAT tool: For instance, further forms of backjumping within the quantified part of the decision tree. Another important aspect to improve the performance of search algorithms is to find suitable value and variable orderings. In the context of bounded model checking PHAs, we will work on an automatic translation of PHAs into SSMT formulae and bounded-model-checking optimizations like clause reusing and shifting [FH07]. Concerning the issue of approximate solutions, we will modify SiSAT to handle confidence intervals of probabilities instead of values s.t. we are able to obtain safe lower and upper bounds on the satisfaction probability when using also transcendental functions like sin or exp. Within the AVACS project ${ }^{7}$, we will apply the SiSAT solver on benchmarks which deal with the impact of cooperative, distributed traffic management on flow of road traffic. These benchmarks are representative for a large number of hard scheduling and allocation problems and naturally show uncertain behavior.

Acknowledgements

The authors would like to thank Christian Herde, Holger Hermanns, Ralf Wimmer, Joost-Pieter Katoen, and Stephen Majercik for valuable discussions on SMT, probabilistic systems, and stochastic SAT algorithms. Furthermore, the authors are very grateful to the anonymous reviewers for their helpful comments.

[^5]
References

[BG06] F. Benhamou and L. Granvilliers, Continuous and interval constraints, Handbook of Constraint Programming (F. Rossi, P. van Beek, and T. Walsh, eds.), Foundations of Artificial Intelligence, Elsevier, 2006, pp. 571-603.
[BS06] T. Balafoutis and K. Stergiou, Algorithms for Stochastic CSPs, CP (F. Benhamou, ed.), LNCS, vol. 4204, Springer, 2006, pp. 44-58.
[BS07] L. Bordeaux and H. Samulowitz, On the stochastic constraint satisfaction framework, SAC, ACM, 2007, pp. 316-320.
[DLL62] M. Davis, G. Logemann, and D. Loveland, A Machine Program for Theorem Proving, CACM 5 (1962), 394-397.
[DP60] M. Davis and H. Putnam, A Computing Procedure for Quantification Theory, Journal of the ACM 7 (1960), no. 3, 201-215.
[FH07] M. Fränzle and C. Herde, HySAT: An Efficient Proof Engine for Bounded Model Checking of Hybrid Systems, FMSD 30 (2007), 179-198.
$\left[\mathrm{FHT}^{+} 07\right]$ M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure, JSAT Special Issue on SAT/CP Integration 1 (2007), 209-236.
[FHT08] M. Fränzle, H. Hermanns, and T. Teige, Stochastic Satisfiability Modulo Theory: A Novel Technique for the Analysis of Probabilistic Hybrid Systems, Proceedings of the 11th International Conference on Hybrid Systems: Computation and Control (HSCC'08), 2008.
[GNT03] E. Giunchiglia, M. Narizzano, and A. Tacchella, Backjumping for quantified Boolean logic satisfiability, Artif. Intell. 145 (2003), no. 1-2, 99-120.
[Lit99] M. L. Littman, Initial Experiments in Stochastic Satisfiability, Proc. of the 16th National Conference on Artificial Intelligence, 1999, pp. 667-672.
[LMP01] M. L. Littman, S. M. Majercik, and T. Pitassi, Stochastic Boolean Satisfiability, Journal of Automated Reasoning 27 (2001), no. 3, 251-296.
[Maj04] S. M. Majercik, Nonchronological backtracking in stochastic Boolean satisfiability, ictai 00 (2004), 498-507.
[ML98] S. M. Majercik and M. L. Littman, MAXPLAN: A New Approach to Probabilistic Planning, Artificial Intelligence Planning Systems, 1998, pp. 86-93.
[ML03] , Contingent Planning Under Uncertainty via Stochastic Satisfiability, Artificial Intelligence Special Issue on Planning With Uncertainty and Incomplete Information 147 (2003), no. 1-2, 119-162.
[Pap85] C. H. Papadimitriou, Games against nature, J. Comput. Syst. Sci. 31 (1985), no. 2, 288-301.
[RT06] S. Ranise and C. Tinelli, Satisfiability modulo theories, IEEE Intelligent Systems 21 (2006), no. 6.
$\left[\mathrm{THF}^{+} 07\right]$ T. Teige, C. Herde, M. Fränzle, N. Kalinnik, and A. Eggers, A Generalized Two-watched-literal Scheme in a mixed Boolean and Non-linear Arithmetic Constraint Solver, Proc. of EPIA 2007, New Trends in Artificial Intelligence, 2007, pp. 729-741.
[TMW06] A. Tarim, S. Manandhar, and T. Walsh, Stochastic constraint programming: A scenario-based approach, Constraints 11 (2006), no. 1, 53-80.
[Wal02] T. Walsh, Stochastic constraint programming, Proc. of the 15th European Conference on Artificial Intelligence (ECAI'02), IOS Press, 2002.

[^0]: * This work has been partially supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center "Automatic Verification and Analysis of Complex Systems" (SFB/TR 14 AVACS, www. avacs.org).

[^1]: ${ }^{1}$ We remark that the problem in this paper, called P-SAT, additionally contains universal quantification.
 ${ }^{2}$ Note that the input formula of iSAT is rewritten into conjunctive normal form beforehand and all arithmetic constraints are decomposed into primitive constraints $\left[\mathrm{FHT}^{+} 07\right.$, Section 2].
 ${ }^{3}$ A HySAT-II executable, the tool documentation, and benchmarks can be found on http://hysat.informatik.uni-oldenburg.de.

[^2]: ${ }^{4}$ not all variables occurring in the formula φ need to be bound by a quantifier

[^3]: ${ }^{5}$ The Boolean domain \mathbb{B} is represented by the integer interval $[0,1]$, where the values 0 and 1 correspond to the truth values false and true, respectively.

[^4]: ${ }^{6}$ Note that [FHT08] describes an alternative approach where only one existential and one randomized variable are required per step i. For the sake of clarity, we opt for the simpler one here.

[^5]: 7 www. avacs.org

