
Stochastic Satisfiability modulo Theories for

Non-linear Arithmetic⋆

Tino Teige and Martin Fränzle

Carl von Ossietzky Universität, Oldenburg, Germany
{teige|fraenzle}@informatik.uni-oldenburg.de

Abstract. The stochastic satisfiability modulo theories (SSMT) prob-
lem is a generalization of the SMT problem on existential and random-
ized (aka. stochastic) quantification over discrete variables of an SMT
formula. This extension permits the concise description of diverse prob-
lems combining reasoning under uncertainty with data dependencies.
Solving problems with various kinds of uncertainty has been extensively
studied in Artificial Intelligence. Famous examples are stochastic satisfi-
ability and stochastic constraint programming. In this paper, we extend
the algorithm for SSMT for decidable theories presented in [FHT08] to
non-linear arithmetic theories over the reals and integers which are in
general undecidable. Therefore, we combine approaches from Constraint
Programming, namely the iSAT algorithm tackling mixed Boolean and
non-linear arithmetic constraint systems, and from Artificial Intelligence
handling existential and randomized quantifiers. Furthermore, we evalu-
ate our novel algorithm and its enhancements on benchmarks from the
probabilistic hybrid systems domain.

1 Introduction

Papadimitriou [Pap85] proposed the idea of uncertainty for propositional satisfi-
ability by introducing randomized quantification in addition to existential quan-
tification. This yields the stochastic propositional satisfiability (SSAT) problem
where randomly quantified variables (randomized variables for short) are set to
true with a certain probability. The solution of an SSAT problem Φ is a strategy
to assign values to the existential variables that maximizes the overall satisfac-
tion probability of Φ. Since the quantifier ordering of Φ, called prefix, allows
an alternating sequence of existential and randomized quantifiers, the value of
an existential variable depends on the values of the randomized variables with
earlier appearance in the prefix. Consequently, in general such a solution is a
tree of assignments to the existential variables depending on the values of pre-
ceding randomized variables. The SSAT framework is –at least theoretically–
able to tackle many problems from Artificial Intelligence (AI) exhibiting un-
certainty, e.g. stochastic planning problems. We just briefly note that there is

⋆ This work has been partially supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

2 T. Teige and M. Fränzle

a lot of work done on efficiently transforming AI problems into SSAT formu-
lae, e.g. cf. [LMP01,ML98,ML03]. Littman [Lit99]1 proposed an algorithm for
SSAT which extends the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
[DP60,DLL62] (DPLL is the basic algorithm of most modern propositional sat-
isfiability solver) with acceleration techniques like unit resolution, purification,
and thresholding. For a very comprehensive survey about stochastic satisfiability
confer [LMP01]. More recently, Majercik further improved the DPLL-style SSAT
algorithm by introducing non-chronological backtracking [Maj04].

There are several attempts to extend the stochastic framework beyond the
purely propositional case. Doing so yields stochastic constraint programming
[Wal02,TMW06,BS06,BS07] in which the domains for all variables, also non-
quantified variables, are so far still finite. In [BS07] it was shown that the
stochastic constraint satisfaction problem (SCSP) is PSPACE-complete also for
multiple objectives by describing an algorithm for SCSPs in non-prenex form.
The authors of [FHT08] introduced the stochastic satisfiability modulo theories
(SSMT) problem and its application for the reachability analysis of probabilistic
hybrid automata. Moreover, they described an algorithm for SSMT for decidable
theories, e.g. linear arithmetic over the reals and integers. Although quantified
variables in an SSMT problem still have finite domains, this restriction is relaxed
for non-quantified variables or, equivalently, the innermost set of existentially
quantified variables.

In this paper, we extend and benchmark the ideas from [FHT08]. First, we
propose an SSMT algorithm for non-linear arithmetic over the reals and inte-
gers. (Note that for the non-linear case the SSMT problem becomes undecid-
able in general.) Second, we implement this algorithm and prove its concept
by presenting empirical results. Third, in addition to the thresholding prun-
ing rules we adapt the promising idea of solution-directed backjumping [Maj04]
to our setting. The algorithm described in this paper is strongly based on the
iSAT algorithm [FHT+07] for solving non-linear arithmetic constraint systems
(involving transcendental functions) with complex Boolean structure over real-
and integer-valued variables.2 The iSAT approach tightly integrates the DPLL
algorithm with interval constraint propagation (ICP, cf. [BG06] for an extensive
survey) enriched by enhancements like conflict-driven clause learning and non-
chronological backtracking. For a very detailed description of the iSAT algorithm
the reader is referred to the original paper, in particular to the example on pages
217–219. As the core algorithm, iSAT is implemented in the constraint solver
HySAT-II3 which has been specifically designed for bounded model checking of
hybrid (discrete-continuous) systems.

1 We remark that the problem in this paper, called P-Sat, additionally contains uni-
versal quantification.

2 Note that the input formula of iSAT is rewritten into conjunctive normal form be-
forehand and all arithmetic constraints are decomposed into primitive constraints
[FHT+07, Section 2].

3 A HySAT-II executable, the tool documentation, and benchmarks can be found on
http://hysat.informatik.uni-oldenburg.de.

Stochastic SMT for Non-linear Arithmetic 3

(0, 0.6)(0, 0.6)

x = 0

Pr = 0 Pr = 1 Pr = 1 Pr = 1

Pr = 0.6 · 1 + 0.4 · 1 = 1

2a · sin(4b) ≥ 3
2a · sin(4b) < 1

2a · sin(4b) ≥ 3
2a · sin(4b) < 1

x

unsat satsat

Pr = 0.6 · 0 + 0.4 · 1 = 0.4

(1, 0.4)

sat

(1, 0.4)

y y

x = 1

Pr(Φ) = max(0.4, 1) = 1

Φ = ∃x ∈ {0, 1}

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1} : (x > 0 ∨ 2a · sin(4b) ≥ 3) ∧ (y > 0 ∨ 2a · sin(4b) < 1)

Fig. 1. Semantics of an SSMT formula depicted as a tree

Structure of the paper. In Section 2 we recall the definition of an SSMT prob-
lem while Section 3 presents an algorithm for SSMT for non-linear arithmetic
theories. An experimental evaluation of that algorithm is given in Section 4.
Section 5 concludes the paper and lists some directions for future work.

2 Stochastic satisfiability modulo theories

The satisfiability modulo theories (SMT) problem (cf., e.g., [RT06]) is a decision
problem for logical formulae wrt. combinations of background theories. Thus,
SMT generalizes the well-known propositional satisfiability (SAT) problem. The
stochastic SMT (SSMT) problem extends SMT to support randomized quantifi-

cation over discrete variables as known from SSAT and SCSP.
Let ϕ be an SMT formula in conjunctive normal form (CNF) over some

quantifier-free potentially non-linear arithmetic theory T over the reals, integers,
and Booleans. I.e., ϕ is a logical conjunction of clauses, and a clause is a logical
disjunction of (atomic) arithmetic predicates from T , as in ϕ = (x > 0 ∨ 2a ·
sin(4b) ≥ 3) ∧ (y > 0 ∨ 2a · sin(4b) < 1). An SSMT problem

Φ = Q1x1 ∈ dom(x1) . . . Qnxn ∈ dom(xn) : ϕ

is specified by a prefix Q1x1 ∈ dom(x1) . . . Qnxn ∈ dom(xn) binding the vari-
ables xi to the quantifier Qi,

4 and an SMT formula ϕ, also called the matrix.
We require that the domains dom(x) of quantified variables x are finite (and
thus discrete). A quantifier Qi, associated with variable xi, is either existential,
denoted as ∃, or randomized, denoted as

R

di
where di is a discrete probabil-

ity distribution over dom(xi). The value of a variable xi bound by a random-
ized quantifier (randomized variable for short) is determined stochastically by
the corresponding distribution di, while the value of an existentially quantified
variable can be set arbitrarily. We usually denote such a probability distribu-
tion di by a list 〈(v1, p1), . . . , (vm, pm)〉 of value pairs, where pj is understood
as the probability of setting variable xi to vj . The list satisfies vj 6= vk for
j 6= k, ∀j : pj > 0,

∑m

j=1 pj = 1, and dom(xi) = {v1, . . . , vm}. For instance,

4 not all variables occurring in the formula ϕ need to be bound by a quantifier

4 T. Teige and M. Fränzle

R

{(0,0.2),(1,0.5),(2,0.3)}x ∈ {0, 1, 2} means that the variable x is assigned the value
0, 1, or 2 with probability 0.2, 0.5, and 0.3, respectively.

The semantics of an SSMT problem is defined by the maximum probability

of satisfaction. Intuitively, for an SSMT formula Φ = ∃x1 ∈ dom(x1)

R

d2
x2 ∈

dom(x2) ∃x3 ∈ dom(x3)

R

d4
x4 ∈ dom(x4) : ϕ determine the maximum proba-

bility s.t. there is a value for x1 s.t. for random values of x2 there is a value for
x3 s.t. for random values of x4 the SMT formula ϕ is satisfiable. (As standard,
an SMT formula ϕ (in CNF) is satisfiable iff there exists a valuation σ of the
variables in ϕ s.t. each clause is satisfied under σ, i.e., iff at least one atom in
each clause is satisfied under σ. Otherwise, ϕ is unsatisfiable.) More formally,
the maximum probability of satisfaction Pr(Φ) of an SSMT formula Φ is defined
recursively by the following rules where ϕ denotes the matrix.

1. P r(ϕ) = 0 if ϕ is unsatisfiable.

2. P r(ϕ) = 1 if ϕ is satisfiable.

3. P r(∃xi ∈ dom(xi) . . . Qnxn ∈ dom(xn) : ϕ)
= maxv∈dom(xi) Pr(Qi+1xi+1 ∈ dom(xi+1) . . . Qnxn ∈ dom(xn) : ϕ[v/xi]).

4. P r(

R

di
xi ∈ dom(xi) . . . Qnxn ∈ dom(xn) : ϕ)

=
∑

(v,p)∈di
p · Pr(Qi+1xi+1 ∈ dom(xi+1) . . . Qnxn ∈ dom(xn) : ϕ[v/xi]).

For an example see Fig. 1.

3 SSMT algorithm for non-linear arithmetic

In this section we present our algorithm SiSAT for calculating the maximum
probability of satisfaction of an SSMT formula. More precisely, for a given SSMT
formula Φ and a lower and upper target threshold tl, tu ∈ [0, 1] with tl ≤ tu, the
algorithm returns a witness value p ≤ Pr(Φ) s.t. p > tu iff Pr(Φ) > tu, a value
p < tl iff Pr(Φ) < tl, or otherwise (i.e., if tl ≤ Pr(Φ) ≤ tu) the value p = Pr(Φ).
If we wish to compute the exact value of Pr(Φ) we may thus simply set tl = 0 and
tu = 1. SiSAT is an extension of the iSAT algorithm with an additional tightly
integrated top layer for dealing with existential and randomized quantifiers. In
the iSAT context, and thus in SiSAT, variables are interpreted over interval val-

uations which are manipulated during the proof search. As the iSAT algorithm
is employed as the underlying core engine, we have to decompose all arithmetic
predicates into so called primitive constraints by introducing additional auxil-
iary variables. A primitive constraint consists of exactly one relational operator,
at most one arithmetic operator, and at most three variables. Note that for
each (arithmetic) SMT formula there is an equi-satisfiable linearly-sized SMT
formula in CNF just containing primitive constraints. For the input syntax of
iSAT confer [FHT+07, Section 2]. As an example, the matrix of Φ from Fig. 1
can be rewritten to, e.g., (x > 0 ∨ h1 · h2 ≥ 3) ∧ (y > 0 ∨ h1 · h2 < 1) ∧ (h1 =
2a) ∧ (h2 = sin(h3)) ∧ (h3 = 4b). All algorithmic enhancements of iSAT are
naturally inherited, such as conflict-driven clause learning & non-chronological

backtracking, the two-watching scheme, as well as the combined unit and inter-

Stochastic SMT for Non-linear Arithmetic 5

Algorithm 1 SiSAT(Pre, tl, tu)

In: A prefix Pre, lower and upper thresholds tl, tu.
Out: The satisfaction probability of the SSMT formula wrt. the thresholds.
1: while true do

2: while true do

3: result := deduce(). {Deducing.}
4: if result = CONFLICT then

5: resolved := analyze conflict(). {Learning & Backjumping.}
6: if not resolved then

7: return 0. {No solution for subproblem.}
8: end if

9: else if result = SOLUTION then

10: return 1. {Solution found.}
11: else

12: break. {Leave loop for branching.}
13: end if

14: end while

{Existential quantifier.}
15: if head(Pre) = ∃x ∈ dom(x) then

16: v ∈ dom(x), set(x = v), dom(x) := dom(x) − {v}.
17: p0 = SiSAT(tail(Pre), tl, tu).
18: if p0 > tu or p0 = 1 or dom(x) = ∅ then

19: return p0. {Upper threshold exceeded or maximum possible probability
reached or all branches investigated.}

20: end if

21: p1 = SiSAT(Pre,max(p0, tl), tu). {Neglect probabilities less than p0.}
22: return max(p0, p1). {Return maximum probability.}
23: end if

{Randomized quantifier.}
24: if head(Pre) =

R

dx ∈ dom(x) then

25: v ∈ dom(x), (v, pv) ∈ d, set(x = v), dom(x) := dom(x) − {v}.
26: premain =

P

v′∈dom(x),(v′,p′)∈d p′.

27: p0 = SiSAT(tail(Pre), (tl − premain)/pv, tu/pv).
28: if (pv · p0) > tu or (pv · p0) = 1 or dom(x) = ∅ then

29: return pv ·p0. {Upper threshold exceeded or maximum possible probability
reached or all branches investigated.}

30: end if

31: if premain < (tl − pv · p0) then

32: return pv ·p0. {Lower threshold cannot be reached by remaining branches.}
33: end if

34: p1 = SiSAT(Pre, tl − pv · p0, tu − pv · p0). {Update thresholds.}
35: return pv · p0 + p1. {Return weighted sum.}
36: end if

{No quantifier left. Start iSAT branching.}
37: if not decide next branch() then

38: return 1. {Approximative solution found.}
39: end if

40: end while

6 T. Teige and M. Fränzle

val constraint propagation. For more details about iSAT the reader is referred to
[FHT+07,THF+07].

Although we implemented SiSAT in an iterative manner, we present the
basic ideas in a more intuitive recursive fashion (cf. Algorithm 1). Let Φ =
Pre : ϕ be the SSMT formula to be solved and tl, tu be the lower and upper
target thresholds, respectively. For the initial call SiSAT(Pre, tl, tu) the matrix
ϕ, i.e. the clauses, of the SSMT formula Φ will be stored in a global database.
New learned conflict clauses will be added to this database and, thus, will be
public for all subproblems to be solved. The main loop of the SiSAT algorithm
consists of the deduction phase, conflict resolution, and branching. Within the
deduction phase the algorithm tries to conclude tighter intervals for the variables
by chopping off non-solutions, starting from the domains of the variables as initial
intervals. This is done by unit propagation and interval constraint propagation.
Whenever a conflict occurs during search, i.e. if all constraints in a clause of
the matrix are inconsistent with the current interval valuation, SiSAT analyzes
the conflict. If the conflict can be resolved without revoking any assignment
to a quantified variable then clause learning and backjumping are performed.
Otherwise, i.e. if conflict resolution calls for undoing assignments to quantified
variables, the function analyze conflict() returns false indicating unsatisfiability
of the current subproblem. Further backtracks concerning quantified variables
are handled by the recursive nature of the algorithm. The branching step in
the SiSAT framework corresponds to splitting an interval of a non-quantified
variable or selecting a value for a quantified variable from its current domain. If
a subproblem is decided to be satisfiable or unsatisfiable, the algorithm returns
the probability 1 or 0 for that subproblem, resp., according to the semantics
of Section 2. For the soundness of Algorithm 1, we require that the deduce()
function returns SOLUTION only if the current quantifier prefix Pre is empty, i.e.
branching for all quantified variables was performed beforehand.

The quantification issue is mainly treated within the branching step. In con-
formity with the semantical definition of the maximum probability, the branches
for the quantified variables of the prefix are explored from left to right, and the
resulting probabilities are combined correspondingly. The functions head(Pre)
and tail(Pre) return the leftmost element Q x ∈ dom(x) of prefix Pre and the
prefix originating from Pre where the leftmost element, i.e. head(Pre), is elim-
inated, respectively. For a quantified variable x, we first select a value v from
dom(x), assign v to x, and exclude v from dom(x). Then, we compute the proba-
bility for the branch x = v by recursively calling the SiSAT procedure where the
head element Q x ∈ dom(x) of the prefix is removed and the target thresholds
are updated as follows: If x is existential then we simply preserve tl, tu. If x is
randomized then we take the probability pv for the value v and the maximum
possible remaining probability premain =

∑

v′∈dom(x),(v′,p′)∈d p′ for all remaining

values v′ 6= v of x into account. I.e., the lower and upper target thresholds for
this call are (tl − premain)/pv and tu/pv, resp., since if tl − premain cannot be
reached by branch x = v then tl cannot be reached at all. (We remark that
tl − premain can be a negative number and thus the new lower thresholds can

Stochastic SMT for Non-linear Arithmetic 7

be negative. This fact, however, does not influence the correctness since the
termination criterion concerning lower thresholds applies only if the remaining
probability premain ≥ 0 is strictly less than the (updated) lower threshold.)

We exploit some pruning rules concerning the target thresholds which allow
to return a result without visiting all branches. These rules are generalizations
of the thresholding rules for the propositional case from [LMP01]. Let p0 be
the result of the SiSAT call. Whenever the computed probability for the branch
x = v, i.e. either p0 or pv · p0, exceeds the upper threshold tu, we can skip
investigation of all other branches and return the (positive) result. Note that
the same holds if the domain dom(x) becomes empty or the maximum possible
probability 1 is computed. For the randomized case, it could also happen that the
maximum possible probability of all remaining branches premain cannot reach
the new lower target threshold tl−pv·p0. Then we are also allowed to immediately
return the (negative) result without further exploration of the remaining subtree.
For the remaining subtree, i.e. ∀v′ 6= v : x = v′, we set the target thresholds as
follows: If x is existential then the new lower and upper thresholds are max(p0, tl)
and tu, resp., since we can neglect probabilities of the remaining subtree less than
the already computed value p0. If x is randomized then both new thresholds
decrease by the computed probability pv · p0. Let p1 be the result of the second
SiSAT call, then we combine the computed probabilities in accordance with the
SSMT semantics, namely max(p0, p1) for the existential and pv · p0 + p1 for the
randomized case, and return the result.

If all quantified variables are currently assigned to some values, i.e. the pre-
fix Pre is empty (Pre = head(Pre) = ∅), the algorithm applies the usual iSAT
branching for all non-quantified (Boolean, integer, and real-valued) variables by
splitting their intervals. Note that the iSAT algorithm is in general not able
to find a solution of any mixed Boolean and non-linear arithmetic constraint
formula or to prove its absence, since search algorithms based on interval split-
ting and interval constraint propagation over the reals are incomplete deduction
systems. In order to avoid a potentially infinite sequence of splitting intervals,
branching stops if for each (non-quantified) variable z the width ω(z) of the
current interval of z is less than a predefined value ε > 0, i.e. ω(z) < ε. In such
a case, the algorithm found a hull consistent interval valuation (for more details
cf. [FHT+07]) which we consider as an approximative solution. Thus, we return
the probability 1.

3.1 Solution-directed backjumping

For stochastic Boolean satisfiability, solution-directed and conflict-directed back-

jumping was introduced by Majercik [Maj04]. We note, however, that this idea
was first proposed for quantified Boolean satisfiability in [GNT03]. We adapt the
promising technique of solution-directed backjumping to the stochastic mixed
Boolean and (non-linear) arithmetic framework. The idea of solution-directed
backjumping (SDB) is to avoid exploring the remaining branches of a quantified
variable x, whenever the truth value of the formula remains the same if the cur-

8 T. Teige and M. Fränzle

x = 0 x = 0

(0, 0.3)

Pr = 1
x x

b b b b

y

Pr = 1Pr = 0 Pr = 1 Pr = 0Pr = 1 Pr = 0

false false true false falsetrue true true

x = 1 x = 1

(1, 0.7)

Pr(Φ) = 1

Pr = 0

Pr = 1

Pr = 1

Fig. 2. Decision tree for Φ

rent value of x changed. I.e., the probability of all such subtrees are the same as
for the current branch.

Motivating this heuristics we first consider an example. Given the following
SSMT formula

Φ =

R

〈(0,0.3),(1,0.7)〉y ∈ {0, 1} ∃x ∈ {0, 1} : (¬b ∨ x ≥ 1) ∧ (b ∨ y < 1)

where b ∈ B is a Boolean variable5. The decision tree for Φ is depicted in Fig. 2.
Calling the SiSAT algorithm on Φ, branching for the randomized variable y, say
(1) y = 1, implies that b = true (i.e. b = 1) by the second clause. Hence, the
domain of b is narrowed to [1, 1] by SiSAT’s deduce() procedure. Then, by the
first clause it follows that x ≥ 1 has to hold, i.e. the domain of x is contracted
to {1}. Thus, the only possibility for branching on the existential variable x
is (2) x = 1. Here, deduce() returns SOLUTION. Consequently, the probability
of branch (2) is 1. Since 1 is the maximum possible probability, SiSAT returns
value 1 as the result for branch (1). I.e., the intermediate maximum satisfaction
probability of Φ is 0.7 · 1 = 0.7. At this point, we take the idea of solution-
directed backjumping into account: The assignment y = 1 has no impact on
the satisfaction of the matrix (cf. Fig. 2). I.e., all other assignments to y also
satisfy the formula and lead to the same probability. Hence, also the branch
y = 0 results in probability 1 which means that we are able to conclude that
Pr(Φ) = 0.7 + 0.3 · 1 = 1 without visiting the subtree for y = 0.

To be more formal, we first define a reason for a solution (analogously to
a reason for a conflict). Given an SSMT formula Φ = Pre : ϕ. Let ρ be a
satisfying interval valuation of the matrix ϕ, i.e. ρ(ϕ) = true. If we consider
hull consistency as an approximative solution then it is sufficient that ρ is hull
consistent with ϕ, denoted as ρ(ϕ) = hc. We call a set r ⊆ {a : a ∈ c ∈ ϕ} of
atoms from ϕ a reason for the satisfaction of ϕ under ρ if the following hold:

1. ∀c ∈ ϕ ∃a ∈ c : a ∈ r, and

5 The Boolean domain B is represented by the integer interval [0, 1], where the values
0 and 1 correspond to the truth values false and true, respectively.

Stochastic SMT for Non-linear Arithmetic 9

2. ∀a ∈ r : ρ(a) = true (resp. ρ(a) = hc)

where ρ(a) for an atom a gives the truth value of a under the interval valuation
ρ(x) of its variables x. Note that such a set r exists (while not being unique)
whenever ρ(ϕ) = true (resp. ρ(ϕ) = hc) holds. By sat reasons(ϕ, ρ) we denote
the set of all reasons r for the satisfaction of ϕ under ρ. In our example above,
the only reason for the satisfaction is {x ≥ 1, b} where ρ is given by ρ(y) =
[1, 1], ρ(x) = [1, 1], ρ(b) = [1, 1].

Given a reason r ∈ sat reasons(ϕ, ρ), a quantified variable x, and the current
domain Dx of x, the predicate no impact(r, ρ, x,Dx) returns true only if the
current interval ρ(x) of x has no impact on the satisfaction. More precisely,

no impact(r, ρ, x,Dx) =

true ; ∀a ∈ r ∀vx ∈ Dx :
x /∈ vars(a) ∨
ρ[vx/x](a) = true (resp. ρ[vx/x](a) = hc)∧
∀y ∈ vars(a) s.t. y 6= x : y /∈ qvars(Φ)

false otherwise

where vars(a) gives the set of all variables occurring in atom a, qvars(Φ) gives
the set of all quantified variables occurring in the SSMT formula Φ, and ρ[vx/x]
is the modified interval valuation ρ defined by ρ[vx/x](x) = [vx, vx] and ∀y 6= x :
ρ[vx/x](y) = ρ(y).

If no impact(r, ρ, x,Dx) = true then each assignment x = vx with vx ∈ Dx

for x also satisfies each atom a from r. If x occurs in an atom a ∈ r together
with another quantified variable y, e.g. a = (x ≥ y), the return value is always
false. This definition allows to perform solution-directed backjumping for each
quantified variable locally without considering the mutual interplay with other
quantified variables. For x ≥ y, the solution ρ(x) = [1, 1], ρ(y) = [0, 0], and the
current domains Dx = [0, 1],Dy = [0, 1], we could otherwise wrongly conclude
that the values 1 for x and 0 for y have no impact on the satisfaction, since
∀vx ∈ Dx : vx ≥ 0 and ∀vy ∈ Dy : 1 ≥ vy. However, the assignment x =
0, y = 1 does not satisfy x ≥ y. For our set of benchmarks, the SSMT formulae
do not contain atoms with more than one quantified variable as we will see
in Section 4. Thus, the definition of no impact(r, ρ, x,Dx) is sufficient for our
application domain. However, in future work we will develop a more general and
more global reasoning mechanism to tackle this issue.

The extended SiSAT algorithm supporting solution-directed backjumping is
enriched by two more pruning rules which are only applied if a solution ρ with
a fixed reason r ∈ sat reasons(ϕ, ρ) was found. Let x be an existential variable
in rule 1 and a randomized variable in rule 2, dom(x) be the updated domain
of x, and p0 be the currently computed probability. If x is randomized then pv

is the probability of the currently processed branch and premain the sum of the
probabilities of the remaining branches (cf. Algorithm 1). The solution-directed-
backjumping rules are as follows:

1. if no impact(r, ρ, x, dom(x)) then return p0.
2. if no impact(r, ρ, x, dom(x)) then return pv · p0 + premain · p0.

10 T. Teige and M. Fränzle

4 Evaluation of the algorithm

In this section, we evaluate our algorithm on SSMT formulae encoding discrete-
time probabilistic hybrid automata. A probabilistic hybrid automaton (PHA) as
described, e.g., in [FHT08] extends the notion of a hybrid automaton, where the
non-deterministic selection of a transition is enriched by a probabilistic choice
according to a distribution over variants of the transition. I.e., each transition
carries a (discrete) probabilistic distribution. Each probabilistic choice within
such a distribution leads to a potentially different successor mode while per-
forming some discrete actions. For our case study, we are especially interested in
k-bounded model checking (BMC) problems, i.e., we want to prove or disprove
whether a given property P is satisfied with probability greater or equal p in
a probabilistic hybrid automaton H along all its traces of length up to k. The
automata considered for the experiments are shown in Fig. 3. These benchmarks
are hand-made and serve as a first indicator for proving the concept of the ap-
proach and showing its current limits as well as the impact of the suggested
algorithmic enhancements.

4.1 Description and encoding of the case studies

Let us consider the probabilistic automaton H1 depicted in Fig. 3. H1 is not
hybrid since it lacks continuous state components but serves as an illustration
of the idea of a probabilistic choice. The initial mode of H1 is s1 (indicated
by the incoming edge). The system can change its current mode by taking an
outgoing transition if its transition guard evaluates to true. In our example,
there is just one outgoing transition t1 with the trivially satisfied guard true.
After nondeterministically selecting a transition, the follower mode and action
performed is given by a discrete distribution. Taking t1 in H1, the probability of
reaching s1 and s2 are 0.9 and 0.1, respectively. For a given reachability property
P , say reaching mode s2 in H1, the problem is to determine the maximum
probability of satisfying P in k steps. I.e., the underlying problem is to find
a strategy s.t. selecting a transition maximizes the probability of satisfying P .
For 1 step, the probability Pr of reaching s2 obviously is 0.1, for 2 steps Pr =
0.1 + (0.9 · 0.1) = 0.19, and in general for k ≥ 1 steps Pr =

∑k−1
i=0

(

0.1 · 0.9i
)

.
For H1 there are no alternative transitions over which a maximization could
be achieved. However, the initial mode s1 in H2 has two outgoing transitions.
Assume that ky = 1 and c = 0, then both transitions are enabled, i.e. the guards
y > c of t1 and true of t3 are true. Thus, we have to opt for either t1 or t3. For
each step depth, we cannot reach the target state s2 without taking t1. Hence,
the selection of t3 does never yield the maximum probability of satisfying the
reachability property.

We encoded the next state relation of H1, H2, and H3 as SSMT formulae
and unwind these up to some depth k. To gain an impression of that encoding,
we exemplify it for H1. For more details confer [FHT08]. Let k be the unwind-
ing depth. Then, for each step i = 1, . . . , k and for the transitions t1, t2 we
introduce existential variables ei

t1
, ei

t2
encoding the nondeterministic choice and

Stochastic SMT for Non-linear Arithmetic 11

1.0

0.9

0.1

s2

t1 t2

s1

true true

H1

1.0

y = y + 1

1.0
0.9

0.1

s2

t1t3 t2

s1

y > c

y = ky

true true

H2

y = ky

x = kx

x = x · y

1.0

y = y + 1
x = kx

1.0
0.7

0.2

0.1

0.88

y = y2 · x x = x · y

0.5

0.5

0.12

s2

s3

t1t3

t4

t2

t5

s1

y > x

y > x2

x = kx

true

true true

H3

Fig. 3. Probabilistic hybrid automata H1 (top), H2 (middle), and H3 (bottom)

randomized variables ri
t1

, ri
t2

encoding the probabilistic choice.6 I.e., the prefix
of the SSMT formula for step i is given by ∃ei

t1
∈ {0, 1}

R

〈(0,0.9),(1,0.1)〉r
i
t1

∈
{0, 1} ∃ei

t2
∈ {0, 1}

R

〈(0,1.0)〉r
i
t2

∈ {0}. The matrix is constructed as follows. The

initial condition is s0
1 ∧ ¬s0

2, and the target property is (s0
2 ∨ . . . ∨ sk

2), where si
n

is a Boolean variable encoding whether H1 is in mode sn before step i + 1 is
executed. At each point of time, the system has to be in exactly one mode, and
exactly one transition has to be taken for a mode change. I.e., si

1 + si
2 = 1 and

ei
t1

+ ei
t2

= 1. The transition relation is encoded as:

(si−1
1 ∧ (ei

t1
= 1) ∧ (ri

t1
= 0) ∧ si

1) ∨
(si−1

1 ∧ (ei
t1

= 1) ∧ (ri
t1

= 1) ∧ si
2) ∨

(si−1
2 ∧ (ei

t2
= 1) ∧ (ri

t2
= 0) ∧ si

2)

Note that an equi-satisfiable linearly-sized formula in CNF can be obtain effi-
ciently. Moreover, we can simply arrange all sub-prefixes in front of the formula

6 Note that [FHT08] describes an alternative approach where only one existential and
one randomized variable are required per step i. For the sake of clarity, we opt for
the simpler one here.

12 T. Teige and M. Fränzle

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35

ru
nt

im
e

[s
ec

]

unwinding depth

Pr > 0.6 Pr > 0.8
exact
t=0.0
t=0.2
t=0.4
t=0.6
t=0.8
t=1.0

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

ru
nt

im
e

[s
ec

]

unwinding depth

Pr > 0.4 Pr > 0.6
exact
t=0.0
t=0.2
t=0.4
t=0.6
t=0.8
t=1.0

Fig. 4. Impact of thresholding for H1 (left) and H2 where ky = 1, c = 4 (right)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

ru
nt

im
e

[s
ec

]

unwinding depth

Pr > 0.25 Pr > 0.5 Pr > 0.73

no SDB, exact
SDB, exact

SDB, t=0.25
SDB, t=0.5

SDB, t=0.75 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 2 4 6 8 10 12 14

S

A
T

 b
ra

nc
he

s

unwinding depth

Pr > 0.25 Pr > 0.5 Pr > 0.73

no SDB, exact
SDB, exact

SDB, t=0.25
SDB, t=0.5

SDB, t=0.75

Fig. 5. Impact of solution-directed backjumping for H3: runtime (left) and number of
found SAT branches (right)

(in ascending index-order), since all quantified variables in the transition relation
for i do not occur in any other transition relation j 6= i. This yields an SSMT
formula as required in Section 2.

For the hybrid case the encoding follows the same idea but we have to take
account of the potentially non-linear real arithmetic guards of the transitions
and actions to be performed for the probabilistic distributions. E.g., transition
t5 of H3 is encoded as:

(si−1
3 ∧ (ei

t5
= 1) ∧ (yi−1 > (xi−1)

2) ∧ (ri
t5

= 0) ∧ si
2) ∨

(si−1
3 ∧ (ei

t5
= 1) ∧ (yi−1 > (xi−1)

2) ∧ (ri
t5

= 1) ∧ (xi = xi−1 · yi−1) ∧ si
3)

where the real-valued variables xi−1 and yi−1 represent the values of the real-
valued system variables x and y, resp., before step i is executed.

4.2 Experimental results

This subsection compiles empirical results of the implemented algorithm SiSAT
for the benchmarks from Subsection 4.1 encoded as SSMT formulae. The prop-
erty to be checked for all automata is whether the mode s2 can be reached.

Stochastic SMT for Non-linear Arithmetic 13

exact t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

unwinding depth 1: 38 vars + 10 quantified vars, 111 clauses

witness value 0.1 0.006 0.0 0.0 0.0 0.0 0.0
#SATs 4 1 0 0 0 0 0
#conflicts 0 0 0 0 0 0 0
runtime (sec) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

unwinding depth 2: 69 vars + 20 quantified vars, 212 clauses

witness value 0.194 0.000252 0.092944 0.0392 0.0392 0.0042 0.0
#SATs 136 1 66 24 24 8 0
#conflicts 0 0 0 0 0 0 0
runtime (sec) 0.04 < 0.01 0.02 < 0.01 < 0.01 < 0.01 < 0.01

unwinding depth 3: 100 vars + 30 quantified vars, 313 clauses

witness value 0.2809 1.058e-05 0.201 0.1492 0.07734 0.02022 0.0
#SATs 3,248 1 2,743 1,390 832 320 0
#conflicts 6 0 6 2 0 0 0
runtime (sec) 1.43 < 0.01 1.22 0.63 0.37 0.15 < 0.01

unwinding depth 4: 131 vars + 40 quantified vars, 414 clauses

witness value 0.3603 4.445e-07 > 0.2 0.242 0.1339 0.04349 0.0
#SATs 67,360 1 16,167 42,891 21,088 8,380 0
#conflicts 21 0 6 20 10 10 0
runtime (sec) 41.48 < 0.01 9.81 26.42 13.02 5.13 < 0.01

unwinding depth 5: 162 vars + 50 quantified vars, 515 clauses

witness value 0.4323 1.867e-08 0.2002 0.4001 0.1908 0.0844 0.0
#SATs 1,322,700 1 213,560 1,126,492 447,616 201,252 0
#conflicts 35 0 21 35 29 29 0
runtime (sec) 1,044.0 < 0.01 167.7 903.6 352.2 158.6 < 0.01

Table 1. Empirical results for H3 where kx = 0, ky = 2

All benchmarks were performed on an 1.83 GHz Intel Core 2 Duo machine with
1 GByte physical memory running Linux. Concerning the issue of the approxima-

tive nature of solutions obtained by interval constraint propagation, we remark
here that due to the deterministic assignments and the use of rational functions
in the considered PHAs (cf. Fig. 3), we have obtained exact solutions on all
benchmark runs. Hence, the computed probabilities are exact.

Concerning the performance of the SiSAT algorithm, Fig. 4 and 5 show that
the runtimes dramatically grow over the BMC unwinding depths. As one can
expect, the length of the quantifier prefix determines the runtimes. One acceler-
ation technique we considered to battle against the high complexity is threshold-
ing. Fig. 4 and Table 1 show a comparison for different thresholding parameters
where exact means tl = 0 and tu = 1, and t = k means tl = k and tu = k. These
results empirically prove the expected fact that thresholding leads to significant
performance gains if the threshold parameters are not close to the exact maxi-
mum probability of satisfaction. Consider, e.g., the results for unwinding depth 5
of H3 in Table 1. The exact satisfaction probability is 0.4323. To compute this,
SiSAT needed 1044 seconds, thereby visiting more than 1.3 millon satisfying
branches. Setting tl = tu = t = 0.4 yields nearly the same performance while for
thresholds t < 0.4 and t > 0.4 the runtimes quickly decrease. For the extreme
values t = 0, i.e. finding just one solution, and t = 1, i.e. randomized quantifiers
change to universal quantifiers, SiSAT terminates within fractions of a second.

14 T. Teige and M. Fränzle

While the impact of thresholding strongly depends on the pre-defined lower
and upper target thresholds, solution-directed backjumping is independent from
such settings but exploits the structure of the formula. Surprisingly, solution-
directed backjumping yields performance gains of multiple orders of magnitude.
The results for the more complex PHA H3 are illustrated in Fig. 5. For unwinding
depth 5, the speedup factor obtained for the exact version is 567. This shows
that the idea of skipping branches for which the probability remain the same
actually works for our case studies. As shown on the right in Fig. 5, an enormous
number of satisfying branches to be visited could be skipped when SDB was
enabled. While the exact version without SDB was just able to solve the first 5
BMC unwindings of H3 within 100 minutes, the exact version with SDB solved
11 instances in the same time. The SSMT formula for depth 11 contains 110
quantified variables, 348 non-quantified variables, and 1121 problem clauses.
Fig. 5 also indicates that on most of the BMC instances the combination of SDB
and thresholding further increases the efficiency of the solver.

5 Conclusion and future work

In this paper, we presented an algorithm for stochastic SMT problems for non-
linear arithmetic over the reals and integers together with experimental results
from the reachability analysis of probabilistic hybrid automata. We showed that
algorithmic enhancements like thresholding and solution-directed backjumping
have a significant impact on the performance of the tool.

In future work, we will explore further techniques and heuristics to accel-
erate the SiSAT tool: For instance, further forms of backjumping within the
quantified part of the decision tree. Another important aspect to improve the
performance of search algorithms is to find suitable value and variable orderings.
In the context of bounded model checking PHAs, we will work on an automatic
translation of PHAs into SSMT formulae and bounded-model-checking optimiza-
tions like clause reusing and shifting [FH07]. Concerning the issue of approximate
solutions, we will modify SiSAT to handle confidence intervals of probabilities
instead of values s.t. we are able to obtain safe lower and upper bounds on the
satisfaction probability when using also transcendental functions like sin or exp.
Within the AVACS project7, we will apply the SiSAT solver on benchmarks
which deal with the impact of cooperative, distributed traffic management on
flow of road traffic. These benchmarks are representative for a large number of
hard scheduling and allocation problems and naturally show uncertain behavior.

Acknowledgements

The authors would like to thank Christian Herde, Holger Hermanns, Ralf Wim-
mer, Joost-Pieter Katoen, and Stephen Majercik for valuable discussions on
SMT, probabilistic systems, and stochastic SAT algorithms. Furthermore, the
authors are very grateful to the anonymous reviewers for their helpful comments.

7 www.avacs.org

Stochastic SMT for Non-linear Arithmetic 15

References

[BG06] F. Benhamou and L. Granvilliers, Continuous and interval constraints,
Handbook of Constraint Programming (F. Rossi, P. van Beek, and T. Walsh,
eds.), Foundations of Artificial Intelligence, Elsevier, 2006, pp. 571–603.

[BS06] T. Balafoutis and K. Stergiou, Algorithms for Stochastic CSPs, CP (F. Ben-
hamou, ed.), LNCS, vol. 4204, Springer, 2006, pp. 44–58.

[BS07] L. Bordeaux and H. Samulowitz, On the stochastic constraint satisfaction

framework, SAC, ACM, 2007, pp. 316–320.
[DLL62] M. Davis, G. Logemann, and D. Loveland, A Machine Program for Theorem

Proving, CACM 5 (1962), 394–397.
[DP60] M. Davis and H. Putnam, A Computing Procedure for Quantification Theory,

Journal of the ACM 7 (1960), no. 3, 201–215.
[FH07] M. Fränzle and C. Herde, HySAT: An Efficient Proof Engine for Bounded

Model Checking of Hybrid Systems, FMSD 30 (2007), 179–198.
[FHT+07] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, Efficient

Solving of Large Non-linear Arithmetic Constraint Systems with Complex

Boolean Structure, JSAT Special Issue on SAT/CP Integration 1 (2007),
209–236.

[FHT08] M. Fränzle, H. Hermanns, and T. Teige, Stochastic Satisfiability Modulo

Theory: A Novel Technique for the Analysis of Probabilistic Hybrid Systems,
Proceedings of the 11th International Conference on Hybrid Systems: Com-
putation and Control (HSCC’08), 2008.

[GNT03] E. Giunchiglia, M. Narizzano, and A. Tacchella, Backjumping for quantified

Boolean logic satisfiability, Artif. Intell. 145 (2003), no. 1-2, 99–120.
[Lit99] M. L. Littman, Initial Experiments in Stochastic Satisfiability, Proc. of the

16th National Conference on Artificial Intelligence, 1999, pp. 667–672.
[LMP01] M. L. Littman, S. M. Majercik, and T. Pitassi, Stochastic Boolean Satisfia-

bility, Journal of Automated Reasoning 27 (2001), no. 3, 251–296.
[Maj04] S. M. Majercik, Nonchronological backtracking in stochastic Boolean satisfi-

ability, ictai 00 (2004), 498–507.
[ML98] S. M. Majercik and M. L. Littman, MAXPLAN: A New Approach to Prob-

abilistic Planning, Artificial Intelligence Planning Systems, 1998, pp. 86–93.
[ML03] , Contingent Planning Under Uncertainty via Stochastic Satisfiabil-

ity, Artificial Intelligence Special Issue on Planning With Uncertainty and
Incomplete Information 147 (2003), no. 1-2, 119–162.

[Pap85] C. H. Papadimitriou, Games against nature, J. Comput. Syst. Sci. 31 (1985),
no. 2, 288–301.

[RT06] S. Ranise and C. Tinelli, Satisfiability modulo theories, IEEE Intelligent Sys-
tems 21 (2006), no. 6.

[THF+07] T. Teige, C. Herde, M. Fränzle, N. Kalinnik, and A. Eggers, A Generalized

Two-watched-literal Scheme in a mixed Boolean and Non-linear Arithmetic

Constraint Solver, Proc. of EPIA 2007, New Trends in Artificial Intelligence,
2007, pp. 729–741.

[TMW06] A. Tarim, S. Manandhar, and T. Walsh, Stochastic constraint programming:

A scenario-based approach, Constraints 11 (2006), no. 1, 53–80.
[Wal02] T. Walsh, Stochastic constraint programming, Proc. of the 15th European

Conference on Artificial Intelligence (ECAI’02), IOS Press, 2002.

