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Abstract 

In this paper we investigate non-complete Sawtooth reconnection in ASDEX Upgrade  tokamak. 

Such reconnection phenomena are associated with internal m/n=1/1 kink mode which does not 

vanish after the crash phase (as would be the case for complete reconnection). It is shown that this 

sawtooth can not be fully described by pure m/n=1/1 mode and that higher harmonics play an 

important role during the Sawtooth crash phase. We employ the Hamiltonian formalism and 

reconstructed perturbations to model incomplete Sawtooth reconnection. It is demonstrated that 

stochastization appears due to excitation of low- order resonances which are present in the 

corresponding q-profiles inside the 1q =  surface which reflects the key role of the 0q  value. 

Depending on this value two completely different situations are possible for one and the same 

mode perturbations: (i) the resonant surfaces are present in q-profile leading to stochasticity and 

sawtooth crash ( 0 0.7 0.1q ≈ ± );  (ii) the resonant surfaces are not present which means no 

stochasticity in the system and no crash event (
0 0.9 0.05q ≈ ± ).  Accordingly central safety 

factor value is always less than unity in case of non-complete sawtooth reconnection. Our 

investigations show that stochastic model agrees well with experimental observations and can be 

proposed as a promising candidate for explanation of the sawtooth reconnection. 

 

1. Introduction 

Sawtooth oscillations are a periodic relaxation process of the plasma temperature, density 

and other plasma parameters in the central region of a tokamak [1]. This relaxation 

process is associated with internal (m,n)=(1,1) kink mode. Investigation of sawtooth 

crashes in ASDEX Upgrade shows that in many cases the magnetic reconnection is not 

complete [2]. This means that the (1,1) mode survives the crash and slowly decays after 

it. Such decay includes few tens of rotation periods of the mode what is much longer than 

the crash time itself (hundreds of microseconds). This non-complete reconnection is not a 
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unique feature of ASDEX Upgrade tokamak and was observed also on other tokamaks 

(TEXTOR, Tore Supra, etc.) [3]. There exist several theories which address the sawtooth 

phenomenon. Some of them require flattening of the safety factor profile and 0 1q ≥  after 

the crash (full reconnection model [6], quasi-interchange model [7]). These models are in 

contradiction with experimental measurements after the sawtooth crash, because in case 

of non-complete reconnection one observes instabilities located at 1q =  resonant surfaces 

after the crash phase. Thus, the main condition is not fulfilled and 0q  always less then 

unity. Other models [8] assume that the sawtooth is not triggered by the m=1 helical 

mode and allow that in the central region the safety factor q is lower than unity. At the 

same time, experimental measurements show that the crash events always correspond to 

the maximal amplitude of the internal kink instability. Thus, such theories cannot 

describe sawtooth events observed in ASDEX Upgrade. In this paper, we employ the 

stochasticity hypothesis which was proposed to explain the sawtooth phenomenon 

without a full reconnection [9, 10] assuming the interaction of the  (1,1) mode with other 

periodicities and utilizing on the Hamiltonian formalism. The work consists of five 

sections. In section 2, we analyse experimental data and reconstruct the structure of the 

mode. The basic information about the Hamiltonian formalism and its use in the present 

study are described in section 3. In section 4 we present the results of calculations and 

demonstrate the key role played by the central q-value in the partial reconnection. 

Finally, in section 5 we summarize the main results and outline guidelines for future 

work.    

2. Reconstruction of the MHD modes 

As was mentioned in the previous section, reconnection during sawtooth crashes in 

ASDEX Upgrade in many cases is not complete as seen in Fig.1.  The spectral analysis of 

the mode before and after the crash is also shown in Fig.1. 
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Figure 1. a) Central SXR signal during sawtooth crash and its spectra before (t=4.1336761-

4.1344872s) and after (t=4.13479-4.1354667s) crash for central SXR line J_53. b) Some SXR lines of 

sight with central line J_53.   (Total number of SXR lines is 128.) 

 

The analysis of this signal leads to two important conclusions. First, the mode survives 

the crash and subsequently slowly decays, which means that the reconnection is not 

complete during the crash. Second, the sawtooth oscillations cannot be fully described by 

a single (1,1) helicity. One has to include at least the second (2,2) component before and 

after the crash. The small third component (3,3) is also seen before the crash. In other 

words, instead of representing a displacement in the standard form 

  ( )(1,1) cos( )Sawtoothξ ξ ρ θ ϕ= ⋅ +  (1)  

where θ  is the poloidal angle, ϕ is the toroidal angle and ( )ξ ρ  is radial structure of the 

displacement, we use the following expression to describe the sawtooth crash with 

maximal accuracy: 

 ( ) ( ) ( )(1,1) (2,2) (3,3)cos( ) cos(2 2 ) cos(3 3 )Sawtoothξ ξ ρ θ ϕ ξ ρ θ ϕ ξ ρ θ ϕ= ⋅ + + ⋅ + + ⋅ +  (2) 

All these harmonics are phase locked (i.e. ( ) ( ) ( )1,1 2,2 3,3
2 3f f f= = ) and the temporal 

behaviour due to rotation is trivial. It can be clearly seen in figure 2 that these 

components appear just before the sawtooth crash. 
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Figure 2.  Spectrogram of the SXR signal before the sawtooth crash. The primary (1,1) mode exists in 

the spectrogram well before the crash. The second and third components appear just before the 

crash.  

The second and third components indicate an importance of mode coupling in the 

sawtooth evolution before the crash. Between the crashes only the dominant (1,1) 

component is present. Simple modelling of the experimental signal from the central SXR 

line (J_053, figure 1) helps us to understand the influence of the second harmonic on the 

primary (1,1) mode. This model assumes the existence of two dominant modes, with 

double frequency for the second harmonic (figure 3). We can see that the main features of 

the signal can be reproduced by this simple model. Before the crash, the relative 

amplitude of the second harmonic is only by factor two or three smaller than the first one. 

This model reproduces the main features of the signal (higher harmonics and more 

precise fitting of the growth rates are necessary for complete description of the signal). It 

is interesting to note that higher m-components during Sawteeth were also observed in 

other tokamaks [3,4]. 
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Figure 3. Modelling of the experimental signal are shown. A) Experimental signal for SXR line J_53 

(the same as in figures 1 and 2) is shown. B) Modelled signal is a superposition of two sinusoidal 

signals from the next figure. C) The signals which is used for superposition in figure (B). 

As a next step we reconstruct the radial parts of the displacement eigenfunctions (Eq. 2) 

just before the crash. Here we apply the MHD-Interpretation code (MHD-IC) to 

reconstruct the shapes and relative amplitudes of the displacements [5]. The code 

simulates experimental observations related to a given plasma perturbation for several 

diagnostics (magnetic measurements, ECE and Soft X-ray cameras), accounting for real 

plasma geometry and for measured plasma parameters.  

Sawtooth oscillations are strongly core localized phenomena. In such a situation, 

magnetic measurements are affected by the (2,1) harmonic which is weak but is 

positioned much closer to the plasma boundary. This (2,1) mode is coupled to (1,1) mode 

at the low field side which gives several problems for interpretation of the magnetic 
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signals (for example phase folding problem which is discussed in Ref.[11]). ECE 

measurements are limited by the density cut-off. Thus, SXR cameras are our main source 

of information for sawtooth events. Additional difficulties are related to the fact that only 

a few SXR lines from each camera come through the q=1 resonant surface.  

MHD-IC code models experimental signal for given plasma perturbations. 

Detailed information about the mode structure can be gained if the perturbed part of the 

SXR signal is separated from the background. The main tools for our analysis are the fast 

Fourier transformation (FFT) and the singular value decomposition (SVD). We use these 

algorithms to separate mode perturbations from the background and fit to the 

experimentally measured perturbations [5]. The best fit was obtained for the displacement 

eigenfunctions shown in figure 4. 

 

Figure 4. Displacement eigenfunctions for first three components before the sawtooth crash. 

Amplitudes of the displacements are in meters.  

In this case a good agreement between predictions from MHD-IC code and experimental 

results were obtained. Here we show comparison for FFT amplitudes and SVD 

eigenvectors (figures 5 and 6). Such a comparison allows one to find shapes and relative 

amplitudes of the (1,1) and (2,2) modes. Identification of the (3,3) radial structure is not 
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possible, because the signal for this mode is very close to the noise level (figure 1). We 

use for this mode a shape similar to the (2,2) mode and estimate the relative size of the 

FFT amplitudes to the experimental values. The best fit was obtained by manual variation 

of shape and amplitudes of the displacements. 

 

Figure 5. Comparison of the experimental FFT amplitude with calculated FFT amplitude from 

MHD-IC code. (Positions of the SXR lines for I-camera are shown in figure 1.) 
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Figure 6. SVD eigenvectors for the same sawtooth as in figures 4 and 5. The first eigenvector is not 

shown because it contains equilibrium part of the signal. Second eigenvector corresponds to (1,1) 

component. Third and fourth eigenvectors represent (2,2) and (3,3) modes respectively. (Positions of 

the SXR lines for I-camera are shown in figure 1.) 

The absolute value of the (1,1) displacement was estimated from few points of ECE 

temperature measurements inside Sawtooth inversion radius to be about 6 cm. Relative 

amplitude of the displacements can be estimated from figure 4: 

 
(1,1)

(2,2)

max
4 5

max

ξ
ξ

= −  

The q=1 resonant surface is at about 0.25 0.3ρ ≈ −  (see figure 4, approximate boundary 

for (1,1) displacement). These results can be compared with the tomography 

reconstruction which employs the maximum entropy method [12] and the rotational 

symmetry [13] of the MHD modes. Both options strongly improve the quality of 
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reconstruction and make it possible to reconstruct the two (1,1) and (2,2) modes 

separately (figure 7). The positions of the modes from differential rotation tomography 

are the same as those obtained by means of the MHD-IC code ( 0.25 0.3ρ ≈ − ). 

Determination of the eigenfunctions shapes and absolute values requires derivative of the 

emissivity profile which results in large error bars for these quantities.  

 

Figure 7. Tomography reconstruction of the (1,1) and (2,2) modes. These modes have different 

frequencies and can be reconstructed separately. Tomography reconstruction employs maximum 

entropy method [12] and rotational symmetry of the mode [13]. 

 

3. Hamiltonian formalism and stochasticity 

The mapping technique for Hamiltonian problems has become popular during the 

last years due to higher performance compared to the direct integration methods and due 

to conservation of the flux property which is not the case for integration [14]. The 

sawtooth phenomenon was analysed by means of this technique for the first time in [15]. 

However in that work a single perturbation parameter was used which does not take into 

account the experimental information about the structure of perturbations. In this work 

we apply a more advanced method which allows us to specify experimental perturbations 

for Hamiltonian formalism. In the formalism the equations for magnetic field lines take 

the Hamiltonian form 

,,
ψϕ

ϑ
ϑϕ

ψ
∂
∂

=
∂
∂

−=
H

d

dH

d

d
                     (3) 
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where 
2

22

r

a
ψ = is a toroidal magnetic flux canonically conjugated to the poloidal angleϑ , 

ϕ  is a toroidal angle, and a is a minor radius of the plasma (50 cm at ASDEX Upgrade). 

The Hamiltonian H  

( ) ( )ϕϑψψ ,,10 HHH +=                             (4) 

can be represented as a sum of the unperturbed flux 

( ) ( )∫= ψ
ψψ

q

d
H 0                                             (5) 

 and the perturbed part of the flux 

( ) ( ) ( )∑ +−=
nm

mnmn nmHH
,

1 cos,, χϕϑψϕϑψ        (6) 

Here ( )ψq is the safety factor characterizing the winding of the magnetic field lines, 

( )ψmnH  is the perturbation Hamiltonian which corresponds to the perturbations of the 

modes (m,n) with the phases mnχ .  For our purposes we have chosen the symmetric 

symplectic mapping derived on the basis of the Hamilton-Jacobi method [16]. It is 

obvious that practical implementation of the mapping method requires knowledge of the 

safety factor and of the perturbation Hamiltonian. The relation between the displacement 

and the perturbed flux follows from the Ohm’s law:  

 ( ) ( )
0

1

( )

z
pert

rB n
r r

R q r m
ξ

⎛ ⎞
Ψ = −⎜ ⎟

⎝ ⎠
 (7) 

where, 
zB  is the primary toroidal magnetic field and 0R  is the major plasma radius. Such 

flux is exactly the perturbed part of the Hamiltonian which has the following form in the 

Hamiltonian coordinates: 

 ( ) ( ), ,

0

2 1

( )

z
m n m n

a B n
H

R q m

ψ
ψ ξ ψ

ψ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (8) 

Accurate determination of the central q-profile is not possible in ASDEX Upgrade to the 

degree needed here and we will investigate its influence in the next section.  
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4. Influence of different parameters on stochastization 

In this section we apply the Hamiltonian mapping technique and address the following 

questions: (i) role of the higher harmonics during partial sawtooth crash, (ii) role of the q-

profile, (iii) influence of the perturbation amplitudes. For our first calculations we 

consider a smooth q-profile with central value 0.7.  Position of the q=1 resonant surface 

is about 0.3ρ =  which corresponds to 0.045ψ =  in the Hamiltonian coordinates. We 

show the influence of the second and third harmonics in figure 8.  

 

Figure 8. Poincare plots for displacements from figure 4: a) only (1,1), b) (1,1) and (2,2), c) (1,1), (2,2) 

and (3,3). The (3,3) component only slightly increases the stochasticity compare to the case with 

(1,1)+(2,2). 
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One can clearly see that even the relatively small amplitudes of (2,2) and (3,3) modes 

considerably increase the stochastic region. In the presence of all three modes, a large 

stochastic region develops inside the q=1 resonance surface, with exception of the islands 

themselves. One would expect that such a stochastization destroys the confinement inside 

the q=1 resonance surface and leads to sawtooth crash. At the same time, the island 

structure is not altered by the stochastization and the mode survives the crash. It should 

be remembered that the small (2,2) and (3,3) perturbations are located in the same spatial 

region as the main (1,1) perturbation (figure 4). This leads to a much more effective 

destabilisation of all low order resonances inside the q=1 surface compared to the case of 

two resonances located at the neighbouring resonant surfaces.  

As a next step we investigate influence of the safety factor profile (figure 9). 

 

Figure 9. Poincare plots for the same perturbations (1,1)+(2,2)+(3,3) as in figure 4 but different safety 

factor profiles. Note that stochastization strongly depends on the existence of the low-order rational 

surfaces which are marked on safety factor curves. a) central q-value is 0.7; b) central q-value is 

0.85; c) central q-value is 0.9 

Here Poincare plots are shown together with the corresponding safety factor profiles. The 

low-order rational surfaces are marked on safety factor curves. It can be clearly seen that 

with increasing 0q  stochastic region is reduced and vanishes completely for 0 0.9q = . At 

the same time, a strong reduction of the existing low-order rational surfaces in the q-

profile can be observed. These two observations provide a key for understanding the 
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partial sawtooth reconnection. For conventional tokamak scenarios a monotonically 

increasing q-profile is characteristic. Thus, 0q  determines the number of the low-order 

rational surfaces for a particular q-profile. Stochastization requires the existence of 

several low-order resonant surfaces which can be excited by the overlapping (1,1), (2,2) 

and (3,3) resonances. Without these resonant surfaces, the (2,2) and (3,3) perturbations 

only slightly modify the shape of the (1,1) mode and the system is not stochastic at all 

(figure 9c)! It is interesting to note that for the considered experimental plasma 

perturbations the critical value for avoiding stochastization is 0 0.9q = 0±0.05 (smaller 

than unity!). The critical q0 value to create a stochastic zone is about 0.7±0.1. In order to 

estimate the error bars for 0q , a set of calculations with different safety factor profiles and 

fixed perturbations amplitudes (see figure 4) were done. Threshold of the stochasticity is 

nicely seen from the result Poincare plots. Thus, we conjecture that during the sawtooth 

cycle 0q  changes between 0.7 and 0.9, which is in a very good agreement with the q-

profile measurements during the Sawtooth crashes in other tokamaks ( 00.75 0.95q< < , 

Levinton on TFTR [17]; 00.7 0.85q< < , Yamada on TFTR [18]; 0 0.77 8%q ≈ ± , H. 

Soltwisch on TEXTOR [19]). Exact values of max

0q  (no stochastization inside q=1) and 

min

0q  (complete stochastization inside q=1) depend also on absolute values of the 

perturbation as shown in Fig.10. One can see that small amplitudes (less than 3 cm for 

(1,1) mode) are not sufficient to create 
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stochasticity.

 

Figure 10. Influence of the absolute amplitude of the perturbations on stochasticity. Safety factor 

profile with q0=0.7 is in all cases. All three modes are included. Relative amplitudes are always the 

same as in figure 4. Absolute amplitudes are rescaled such that: (a) (1,1) amplitude is 6 cm; (b) (1,1) 

amplitude is 4 cm; (c) (1,1) amplitude is 3 cm; (d) (1,1) amplitude is 2 cm. 

One can clearly see that the absence of (2,2) and (3,3) modes significantly increase the 

threshold of stochastization as shown in figure 11. To obtain the same degree of 

stochastization as shown in figure 10a for 6 cm displacement, in case of single (1,1) 

mode, the amplitude of the (1,1) mode has to be as large as 9-10 cm.  This clearly 

demonstrates the importance of inclusion of higher components.  
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Figure 11. Influence of the absolute amplitude of the perturbations on stochasticity. Safety factor 

profile with q0=0.7 is in all cases. Only the (1,1) mode is included in the calculations. (a) (1,1) 

amplitude is 10 cm; (b) (1,1) amplitude is 8 cm; (c) (1,1) amplitude is 6 cm; (d) (1,1) amplitude is 3 

cm. 

Dependence on the shear is also present. The shear determines a relative position of the 

low-order rational surfaces. However this dependence is not as important as the 

dependence on 0q  and on the perturbation amplitudes. 

As was mentioned in the previous section, the absolute values of the (1,1) mode 

displacement are about 5-6 cm.  (The radius of the q=1 rational surface is about 13-16 

cm.) Our calculations demonstrate that for these experimental perturbations the main 

parameter is 0q . In Table 1 we have summarized the excited resonant surfaces for 

different values of 0q . 
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Table 1. Excited resonant surfaces for different values of the central safety factor 0q are marked by 

stars. (*- resonance is excited. n/r – not resolved due to high stochasticity. 0 – not present in the 

corresponding q-profile, blank places correspond to non excited resonances) 

q0\mode (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) (9,10) (10,11) (11,12) (12,13)

0.70 * * * * * n/r n/r * n/r n/r 

0.75 0 n/r * * * * * * * * 

0.80 0 0 * * *    *  

0.85 0 0 0   *    * 

 

It is evident that the resonant surfaces with the smallest possible poloidal mode numbers 

(m=3,4,5,6) play the main role in creating stochastization. Excitation of such resonances 

requires significantly smaller perturbation amplitudes compared to the higher m values. 

From mathematical point of view, equilibrium magnetic field in a tokamak is designed 

from close nested toroidal flux surfaces in real 3D vector space and this real space 

toroidal surface is the KAM surface in the 3D phase space of the Hamiltonian system for 

the magnetic field lines. In this formulation, the safety factor profile is the inversion of 

rotational transformation number in the chaos theory [20]. Thus, all formulations from 

chaos theory can be directly applied to the magnetic field structure. For our case this 

means excitation and destruction of the low order rational surfaces in safety factor 

profile, because in phase space all perturbations are coupled and low order rational 

surfaces are easily excited. 

 It is interesting to compare behaviour of the plasma core in our model with 

recently done 2D ECE measurements from TEXTOR [21,22] and results of nonlinear 

MHD simulation. The 2D ECE sawteeth measurements in TEXTOR show that the 

reconnection event has no preferential location along the poloidal magnetic surface and 

the heat flows like a fluid through the narrow gate in X-point. These observations match 

very well with our stochastic picture. According to our model, the sawtooth crash may 

occur at any poloidal position and the flow in the X-point is constrained by the confined 

island region so that the heat flows through the narrow channel (stochastic zone). This 

heat flow equalises temperature between the plasma core and region just outside q=1 

resonant surface. The mode amplitude decays during the crash phase which closes the 
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heat channel in the X-point . The (1,1) island structure is survived during the whole phase 

of the crash. This is different compared to nonlinear theory with secondary reconnection 

which requires: i) complete reconnection during which the (1,1) mode is vanished 

completely; ii) secondary reconnection which creates the (1,1) mode again [23,24]. The 

other, ballooning theory, suggests much broader region for the crash compared to the 

described models and preferable position at the low field side [25]. Both of these points 

are in contradictions with the 2D ECE measurements.   

The ECE measurements also show that the temperature inside the (1,1) island is 

smaller compared to the plasma  core. This is also similar to the stochastic model which 

has hotter plasma in the stochastic region (plasma core) and opposite to the quasi-

interchange model of the sawtooth [7].   

5. Conclusions 

In this paper we have investigated partial sawtooth reconnection in ASDEX Upgrade. 

The mapping technique was applied to trace the field lines of the toroidally confined 

plasma where perturbation parameters are expressed in terms of experimental 

perturbation amplitudes determined from the ASDEX Upgrade tokamak. The analysis 

shows that during a partial sawtooth reconnection the mode structure is complex and 

cannot be described by the (1,1) component alone. The presence of a (2,2) component in 

the analysis is very important. The third (3,3) component is not so important as (2,2), but 

it is necessary for correct representation of the experimental perturbations. It was 

demonstrated that an overlap of all three components is able to create a large stochastic 

region inside the q=1 resonant surface leading to sawtooth crash. At the same time, the 

(1,1) island structure itself is not stochastic which means that the mode survives the 

crash. (The island region becomes stochastic only for extremely large perturbations with 

displacement value higher than the Sawtooth inversion radius, which is impossible.) 

From mathematical point of view, this island structure survives as a result of the KAM 

theorem [26]. We have demonstrated that stochastization appears due to excitation of 

low- order resonances which are present in the corresponding q-profiles inside the q=1 

surface which reflects the key role of the 0q  value. Depending on this value two 

completely different situations are possible for one and the same mode perturbations: (i) 

the resonant surfaces are present in q-profile leading to stochasticity and sawtooth crash 
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( 0 0.7 0.1q ≈ ± );  (ii) the resonant surfaces are not present which means no stochasticity in 

the system and no crash event ( 0 0.9 0.05q ≈ ± ).  It is remarkable that in both cases 0q  is 

lower than unity! Moreover, these values are in a good agreement with safety factor 

measurements performed on other tokamaks (0.75-0.95). This result holds for variation of 

the perturbation amplitudes inside the error bars. Such variations only slightly change the 

critical values for 0q . Our model does not require the interaction of the fundamental (1,1) 

mode with other periodicities, e.g., with (1,0) external error field which is strongly 

screened by the plasma due to high plasma rotation. It was shown that the measured 

plasma perturbations are sufficient to explain the partial sawtooth reconnection in 

ASDEX Upgrade. Thus, the stochastic model agrees well with experimental observations 

and can be proposed as a promising candidate for explanation of the sawtooth 

reconnection. It is also clear that dynamic behaviour of the instability can not be 

described in the frame of the field line tracing approach and we plan further 

investigations of the Sawtooth crash with nonlinear MHD codes. 
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