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Abstract 

A derivation of a law of large numbers for the highest-scoring matching subse- 
quence is given. Let X,. 1; be i.i.d. q = (q ( i ) ) ,ES  letters from a finite alphabet S a n d  
P - ( ~ ( i ) ) , ~ ~  be a sequence of non-negative real numbers assigned to the letters ofS.  
Using a scoring system similar to that of the game Scrabble, the score of a word 
w = i , .  - a i , , ,  is drfined to be l ' ( w )  = v ( i , )  + - . + v(i,,,). Let l.; denote the value of 
the highest-scoring matching contiguous subsequence between X,.k', . . X, and 
Y,Y2-  . . Y , , .  1nthispaper.weshowthat l',,/Klog(n)- 1 a.s.whercA'=K(q.r).Thc 
method employed here involves 'stuttering' the letters to construct a Markov chain 
and applying previous results for the length of the longest matching subsequence. An 
explicit form for@€ Pr(S). where p ( i )  denotes the proponion of letter i found in the 
highest-scoring word, is given. A similar treatment for Markov chains is also 
included. 

Implicit in these results is a large-deviation result for the additive functional, 
H = I'ncr ~(k',,), for il Markov chain stopped at the hitting time T of some state. We 
give this large deviation result explicitly, for Markov chains in discretc time and in 
continuous time. 

LARGE DEVIATIONS; ADDITIVE FUNCTIONALS; DNA SEQUENCE MATCHING; MARKOV 
CHAINS 

1. Introduction 

This paper gives an extension of the results of Arratia and Waterman [2] on the length 
of the longest matching subsequence, Here we consider the case where a matching 
subsequence, or word HJ, is scored according to the letters appearing in the match. The 
scoring system is similar to that of the board game Scrabble; hence the name stochastic 
Scrabble. 

The motivation for this problem came from the comparison of DNA sequences which 
are sometimes modeled as sequences of i.i.d. letters or as letters of a Markov chain, from 
a four-letter alphabet: A = adenine,C = cytosine, G = guanine, and T = thymine. Given 
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some a priori knowledge of which matching letters signify a hig.,.er degree of similarity, 
scoring techniques provide a measure which can be used to compare different DNA 
sequences. Frequently, runs of letters of a certain type are related to biological signals. 
For example, segments of sequence rich in As and Ts are frequently involved in 
regulation of the transcription of DNA encoding proteins. In comparing two regions of 
DNA which might be of this type, finding matching A/T segments is of great interest. The 
topic of sequence comparison is reviewed in [7] where these and other topics are 
discussed. Obviously it is important to study the probability distribution of the 
maximum score for the case of random sequences. 

Let XI, X 2 , .  - and Y,, Y2,-  - - be i.i.d. letters over a finite alphabet S with common 
distribution q .  Let Y be a non-negative vector assigning scores to the letters of S. The 
score of a word w = i ,  s i ,  is V(w) = v(iJ  + - . + v(i,) so that the value of the 
highest-scoring matching subsequence is 

V =  V, Emax{ V(w): there exists 1 i m i n such that 

w = X, + I .  .X, +,,, = T ,  I . - y / + ,  for some 0 5 i ,  j i n - m}. 

If v ( i )  = 1 for all i ES, then V,, = M,, =length of the longest matching subsequence (Le. 
allowing shifts), given by 

M=M,,  =max{m : Xi+k = T + k ,  for k = 1 to m for some 0 5 i ,  j i n - m}. 

In [2], it is shown that for i.i.d. letters, M, follows an Erdos-Renyi law. That is, 

P lim M,/log,,, (n) = 
( n - m  

where p = P ( X ,  = Y,) and k = 2. Without shifts, this is analogous to the length of the 
longest head-run R,, for which Erdos and Renyi proved K = 1 (see [4] and [6 ] ) .  [2] also 
treated the case where the Xi, Yi are independent Markov chains (irreducible and 
aperiodic), with transition probabilities [ pol. The result is 

(1) 

where p is the largest eigenvalue of the substochastic matrix P = [( P ~ ) ~ ] .  

P((M,, - 2 logllp (n))/log,,p logllp ( n ) E (  - 4 - E ,  1 + E)  eventually) = 1, 

In Section 3, we show that 

P((V,  - 2 logllp (n))/log,lp logllp ( n ) E (  - 4 - E ,  1 + E )  eventually) = 1, 

where p is the largest solution to the equation: 

1 - ( q * ) 2 A - w )  - ( & ) 2 A - W  - . . . - ( q d ) 2 L - m  = 0 (2) 

Our method is to transform the problem from V, to M,, by ‘stuttering’ the letters into 
Markov chains and applying (1). In Section 4, we show that a slight modification in the 
form of condition (2) occurs when stuttering is applied to already existing Markov 
chains; however, the result remains basically unchanged. In both cases a discussion on 
the composition of the highest scoring word is given. 
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The case where the sequences are i.i.d. but with different distributions or different 
lengths, is handled in [ 11 using large-deviation methods. Results from [ I ]  are used when 
deriving flEPr(S), where /3(i) denotes the proportion of letter i found in the highest- 
scoring word. 

2. Transformation to a Markov process 

Let XI, X,,. and Y,,  Y2,-  be i.i.d. random sequences over a finite alphabet 
S =  {1,2,-~-,d}withcommondistributionq =(ql, . . - ,qd).Letv =(v(l) , . . . ,  v(d))be 
a sequence of positive integers assigned to the letters of S. 

Consider one of the sequences, say { X , } ,  and define a new sequence { x }  by 
duplicating each letter in the sequence according to its value assigned by Y. Thus, 

X J , .  e x , ,  = ili2. m i , ,  

gives 
. .  XlX2. - XN(,,)  = ilil - - - ili2i2 . - i2 - i,,i,, . - in. 

Lv(r,) times] Lv(i2) times] Lv(I . )  times] 

The new sequence { X I }  is now a Markov chain, over the alphabet 

S'= ((1, I ) , .  * ,  (1, v(l)),- * * ,  ( d ,  I),* - * ,  (d ,  v m } ,  

with random length f i ( n )  = v(il) + - - + v(i,,) which is governed by q and Y. Relabeling 
the alphabet S' with the integers 1,2, - -, I S' 1, we get the transition probabilities over 
the relabeled alphabet s" = { 1,2,. - a ,  o(d)}  (where o(d)  = I s' I = .Z1 d k d d  v(k)): 

fori  #o(l),-..,o(d) PI,, + I = 1 

Pu(l),u(l)+l = qJ+l fori = 1,. - a ,  d ; j  = 1,. - e ,  d - 1 

P U ( l ) , l  = 41 fori = 1,. - -, d 

'IJ = otherwise, 

(3) 

where o(i) = C l d k S 1  v(k). 
For example, consider the i.i.d. random sequence { X I }  over S = {a ,  b} with scores 

Y = (2,3) such that P(Xl = a )  = 3 and P(Xl  = b) = 4. The transition probability matrix 
for XI is 

0 1 0 0 0  

P = O O O 1 0  [;;;;I 
Consider a second sequence { Y,}, and perform the same transformation to define 

{E}. The score of a word w = ili2. + si,,, is V(w)  = ZlSksd v(ik), which is identical to the 
length of the transformed word 9. Therefore, the highest-scoring matching word 
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between { X ,  } and { Y,  } is identical with the length of the longest matching worr 
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between 
the transformed sequences { 2, } and { p, }. Thus the problem is changed from V,, { X, }, 
{ Y,} to one concerning M N ( ~ ) ,  {x , } ,  {E}.  Formally stated, if { X , }  and { Y,} are i.i.d. 
random sequences over S and {x , }  and { p,} are independent Markov chains with 
transition probabilities and state space given as in (3), then Vn = MN(,,!, where V,, is taken 
with respect to { X , } ,  { Y,} and M*(,,) is taken with respect to {f,}, { Y , } .  

Note that the lengths of the new Markov sequences are random and not necessarily of 
the same length. To be precise, N"(n)  and N"(n)  are each the sum of independent 
random variables, given by 

N " ( n ) =  '& and N Y ( n ) =  (pk, 
I s k s n  I S k S n  

where <k = v ( i )  iff Xk = i and (pk = v(i) iff Y, = i. Let c = CfES v( i )q , .  Since &, &, - are 
i.i.d. with P( cl = v ( i ) )  = P ( X ,  = i) = q,, an application of the strong law of large 
numbers shows that 

(4) lim N"(n)ln = c almost surely. 
n-Jc 

The same statement may be made for NY(n). 
In [2], extensions of (1)  are stated for the case of matching between sequences of 

different lengths. However, by using (4), it is still possible to apply (1)  in its simplest 
form. Consider the stuttered sequences {2,}, { p,}, with Vn = Mp(,,). Set N , ( n )  = 
min{N"(n), N y ( n ) }  and N2(n)  = max{N"(n), NY(n)} .  By (4) it follows that 

( 5 )  lim N,(n) ln  = lim N,(n)ln = c almost surely. 
n - i c  n - x  

Truncating the (infinite) sequences at N , ( n )  and N2(n)  and using the monotonicity of Mk 
we get that, for any n ,  

M N l ( n )  5 V" 5 MNi"). 

Thus it suffices to consider the random variable MN,(,,) (matching between sequences of 
equal lengths) since by (S), all pertinent statements about MN,(n) will also hold for MNi,,,. 
For convenience we define N ( n )  to be N,(n) .  

3. Scoring with i.i.d. letters 

Through the transformation just described we are now able to formulate our results 
via an analysis of MN(,) with respect to the Markov processes (3) governed by [p, ,]  
combined with the law of large numbers (1). 

Inspection of the transition probability matrix for 2 a n d  Pshows that it is irreducible, 
but not necessarily aperiodic. In fact, gcd{ v( l),  e ,  v(d)} > 1 Q P is not aperiodic. 
However, without loss of generality, we may assume aperiodicity since the weights can 
always be scaled so that gcd{v( l) ,  . e ,  v(d)}  = 1. Furthermore, it can be checked (by 
direct calculation), that the left and right eigenvectors corresponding to the eigenvalue 1, 
for P = [( P , , ) ~ ]  are: 
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where L is a root of the equation 

Note that the equation in A has a real root p E (0, 1 ) .  Frobenius' theorem for positive 
matrices ensures that the largest real root of (7) is the largest eigenvalue for P = [(pii)*I [41. 

Theorem 1 .  Let P E [O, for all E > 0, 

N V , ,  - 2 logllp (n))/logi,p logllp ( n ) E (  - 4 - E ,  1 + E )  eventually) = 1 ,  

where p E(0, l),  is the largest root of the equation 

Proof. Suppose all v ( i )  are positive integers. By the transformation described in 
Section 2, we have that V, = Mp(,,), where N(n)/n - c  by (9, and Mk is the longest 
matching subsequence between independent Markov chains which satisfy the con- 
ditions of ( 1 ) .  Then, for fixed E > 0, 
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P((Mk - 2 logllp (k))llogIlp logllp ( k ) E (  - 4 - e, 1 + e) eventually) = 1, 

where p E(0, 1) satisfies (7) and p > II I for all 3, # p which also satisfy (7). By ( 5 )  we 
have that 

P ( N ( ~ ) E  (nc/2,2nc) eventually) = I. 

Using the monotonicity of Mk this implies 

P(ML,lzl I MN(,) 5 MIZncl eventually) = 1, 

where [x] denotes the integral part of x. The deterministic error bounds for all o, as 
n-co 

I ( M I n c / z l -  2 logl/p(n) + 2 logl/p [c/2l)llogl/p(log,/p(n) + lOgl/p [~/21)  

- (M[rrC/Z] - 2 ~ ~ ~ l / p ~ ~ ~ ~ ~ ~ ~ ~ l / p  logl/p(n) I - 0, 

combined with the almost sure statement above yields that for all e > 0, 

P((M1nc/zl - 2 logllp (n))/logllp logllp ( n ) E (  - 4 - E ,  1 + E )  eventually) = 1. 

Similarly one can show that MIZncl also falls within the desired range. This takes care of 
the case where all v(i) are positive integers. 

For v(i)E [0, co), approximate the vector v by a sequence of rational-valued vectors v, 
scaled by t to contain all integer components. 

For each i, let vf(i) = max{[tv(i)], l}  and v, = (v,(l),. . ., v,(d)). Let V,,, = max score 
under the weighting v,. Use the fact that v,(i)lt - v(i) as t - co to obtain: for all n, o 

-1 ast-co. v, 
K , n l t  

Apply the argument above to Vf,n and replace q ( t )  = ( I ) ,  in 

f(A; 1) = 1 - ( q 1 ) Z ~ - ~ , ( ' )  - . . . - (qd)zk -v , (d )  = 0 

+ E )  eventually) = 1, 

Since sup,,,,,lf(q, t ) - f ( q ) l  -0 as t - i o ,  we get q ( t ) - p  which is the largest real 
solution forf(q) as stated in the theorem. 

We now turn to a result on the composition of the highest scoring word. Let Pr(S') 
denote the space of probability measures on S'. Our method is to use a result from [ 11 to 
obtain nE Pr(S') such that n(i)  = expected proportion of times letter i occurs in a long 
matching word. Converting back to the original alphabet S is then relatively straightfor- 
ward. 
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In [ 11 it is shown, for matching between two independent Markov processes, with M, 
denoting the length of the longest match between XI e - X,, and Y,  - - Y,, , 

n(a)-(llm) = a )  : 
1 - l t o m  n-oo aES' 

X , + ,  = for some 0 5 i, j 2 n - m and t = 1, e ,  m, where m =M,, , 1) 
where ( ~ ( i ) )  = ( r ( i ) l ( i ) ) ,  and r ( i )  and l(i) are the components of the right and left 
eigenvectors corresponding to the principal eigenvalue p . Informally, this says that the 
proportion of letters in every longest matching word tends almost surely to (n(i))  = 

Thus, for v(i)E{Z+}d, we use I and r from (6) (ignoring the common factor Up), to 
get: a( i ,  1) = a(i ,  2) = - - - = n(i ,  v(i)) = (q l )2p -"(1 )  for each i ES. To obtain a vector 
/3 = (p( l), - - - , p(d))  over the original alphabet, set p ( i )  = n(i, 1) and normalize so that 
/3E Pr(S). Then /3 has the form 

( r ( i ) l ( i ) ) .  

/ 3 = M l ,  l ) , * * * , ~ ( d ,  l))/co 

and p ( i )  = proportion of letter i found in the highest-scoring word. Here, the normaliz- 
ing constant co = 1 by Equation (7). For v(i)E [0, ao), use the approximation method as 
intheproofofTheorem l.Thena,(i, l)+n(i, 1) =(q,)2p-'(')foralliES,andq(t)-p, 
where p is the largest solution to 

(8) 

almost surely to p ( i ) ,  where /3 has the form 

1 - (q1)21-W - . . . - ( q # A - " d ' =  0. 

Theorem 2. The proportion of letter i found in every highest-scoring word converges 

/3= ( (q , )2p-"W,.  . ., ( q d ) 2 p - W )  

and p is the largest solution to Equation (8). 

The form of /3 given in Theorem 2 can also be verified by the methods of [ 11. 

Example 1. Suppose {X,} and {Y,} are two sequences of fair-coin tosses with a 
match of heads being given a weight of 1, and a match of tails a weight of 2 (i.e. 
S = { 1,2}, Y = (1,2) and q is uniform). Then, 

P = [ (p1,)2]  = 0 0 1 , o =  1 - ( $ ) p - 2 - ( ( $ ) p - 1 ,  [ t  i :I 
and n = ( p - ' ,  ~ - ~ ) / 4 ( p - l  + 2 ~ - ~ ) .  Using Theorem 2: /3 = (p, l)l(p + 1). Since 
p = (1 + ( 17)1'2)/8 we get: /3 = (0.3716265,0.6283735). Changing the scoring to Y = 

(0, 1) we get: /3 = (0.25,0.75). 

Example 2. Consider the following generalization of the example above. 
Let S = { 1,2, .  . . ,2n} and v = (1,2, 1,. - -, 2), so that v(odd) = 1 and v(even) = 2, 

with q uniform over S. Then the equation to be solved is 
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1 - (1/4n)p-I - ( 1 / 4 n ) ~ - ~  = 0 

which has the solution p = (1 + (1 + 16n)1'2)/8n. For n = 1 we get Example 1. For 
arbitrary n, f l  has the form 

f l = ( p - ' ,  p -2 ,  p - I , .  * -, p-2)/4n2. 

Notice that: 

Cfl(odd)=1/4np=2/(1+(1 +16n)1'2)-0 asn-oo. 

Thus the size of the alphabet has a strong effect on the composition of the highest-scoring 
word. Compare this with a generalization of the second part of Example 1. Using the 
same set-up, change the scoring vector to Y - (0, 1,0,. - ., 1). The new equation 

1 - (1/4n)p-0-(1/4~)p-1=0,  

is satisfied by p = 1/(4n - 1). For this Y ,  we find 

f l=(1,  llp, 1,- * ., llp)/(n + n l p ) ,  

and C @(odd) = 1/4n - 0 as n - 00. Again we find that the appearance of odd letters 
decays with increases in the size of the alphabet. However, in this case the rate at which 
appearances of odd letters decays is much faster. 

4. Scoring with sequences of independent Markov chains 

The discussion for Markov chains closely follows that of the i.i.d. case. Let X i  be a 
Markov chain over a finite alphabet S with transition probabilities [ p o l .  If Y = 

(v( I), - . , v(d)) has positive integer components, we can apply the same transformation 
as in the i.i.d. case to get p given by: - 

p.. 1.1 + 1 = 1 

~ u ~ i ~ , u u ~ + l = ( p l , j + l )  f o r i =  l , - . . , d ; j =  l , . . . , d -  1 

pu( i ) , I  = (pi,,) f o r i =  l , . . . , d  

p . . = o  I J  otherwise 

fori  # a ( l ) , - .  e ,  a(d)  

where a(i) = C l c k c i  v(k) .  

Theorem 3. Let XI, Yl be independent Markov chains over S = { 1, - - a ,  d} with 
transition probabilities [ p , ] ,  with pV > 0 for all i, j. Let v(i)E [0, 00)  for all i ES. Then, 
for all E > 0 

P(( V, - 2 logllp (n))llogllp logllp ( n ) E (  - 4 - E ,  1 + E )  eventually) = 1, 

where p is the largest root of det(P - I ") = 0, with P = [( p,)'], I "  = [61$"(')]. 

Proof. Let Q = The right eigenvector for Q must have the form 

r = ( r ( l ) , ~ r ( l ) , . . . , I " ( l ) - l r ( l ) , . . . ,  ~ ( d ) , I ~ ( d ) , . . . , I " ( ~ ) - ' ~ ( d ) ) '  . 
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If Qr = Ar, the system of equations 

is satisfied by A. Equivalently, 

(9) det(P - A') = 0, where P = [( and A' = [6,,Av(')]. 

We claim that A is an eigenvalue for Q, iff it is a root of (9). Let P ( t )  = D + t (P  - D )  
where D = diag(P). Thenf;(A) = det(P(t) - A") and its roots Ai ( t )  are continuous in t. If 
t = 0 then P ( t )  = D, andf;(A) has n = v(  1) + + . - + v ( d )  roots - one for each eigenva- 
lue of Q(t ) .  As t varies continuously from 0 to 1, each Ai ( t )  traces a continuous arc in Cso 
that Ai( 1) = Ai (Le. the eigenvalues of Q), multiplicities included. Thus the roots of 
f ; ( A )  = det(P - A") = 0 represent all the eigenvalues of Q. The theory of positive 
matrices now implies that the largest root of (9) is the largest eigenvalue for Q. Applying 
the rational approximation procedure for v ( i )E[O,  a), as in Theorem 1, completes the 
proof. 

By the argument used in the proof we know that r can be found by using Cramer's rule 
on the matrix [P - ( p ) " ] ,  where p is the largest solution to (9). Thus we have that 

r(1) = M ( d ,  1), r(2) = M ( d ,  2),. - e ,  r(d - 1) = - M ( d ,  d - l), r (d)  = M ( d ,  d ) ,  

where M(i, j)  = minor of the (i,j)th entry of the matrix [P - (p)"], and 

r =  

Similarly one can show 

=(f 
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I =  

t - A"(1)- 'I( 1) 

A"('W(1) 
... 
... 

f(1) 

= ( * )  * . .  
... 
... 

A v(d) - If ( d )  
Av(d) -  '1 ( d )  
... 
... 

W) 
where f(1) = Mt(d,  l), f(2) = Mt(d ,  2),. - -, f ( d  - 1) = - Mt(d ,  d - l), f ( d )  = M,(d,  d) 
and M,(i,j) are the minors of the (i,j)th entry of the matrix [PI - (p)']. Then 11c can be 
given by n(i, 1) = - = n(i, v(i)) = p"%(i)I(i)/c for all i € S ,  where cis  a normalizing 
constant. 

Theorem 4. The proportion of letter i found in every highest-scoring word converges 
almost surely to j?(i), where /3 has the form 

/3 = (p?( l)l( l), - - - , pv(d)r(d)l(d))/c,  

and p is the largest solution to (9), and c is a normalizing constant. 

Example. Let S = (1,2}, Y = (1,2) andpU = 0.75 if i = j andpU = 0.25 otherwise. 

[(0.75)'-1 (0.25)' ] = 0. P =  r . 7 5 ) '  (0.25)'] and (P-A')= 
(0.25)' (0.75)' (0.25)' (0.75)' -A' 

Solving we find p = 0.76288, so that 

=( [ - 0.0625 ] [ - 0.0625 ] 
- 0.20038 and f = ( +_ - 0.152865 
- 0.152865 - 0.20038 

Combined with Theorem 4, this gives: /3 (0.1 13996,0.8869039). Changing the 
scoring to Y = (0, 1) we get: 1% (0.0190598,0.9809402). 

5. Large deviations 

Theorems 1 and 3 above give a precise version of the statement 'V,, = 2 logllp (n).' 
These theorems can be viewed as a synthesis of two results: first, a largedeviation result 
giving the value of p; and second, a correlation bound to establish the factor of 2. The 
large-deviation result includes the case where the scoring function Y takes both positive 
and negative values and may be of independent interest, so we present it below as 
Theorem 5. A continuous-time version of this is given as Theorem 5'. The role of a 
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correlation bound in Theorems 1 and 3 is not apparent in this paper, because our proof 
refers back to [2], where the correlation bound was exploited. 

In the absence of a correlation bound, the large deviation result easily determines the 
asymptotic growth rate of Mn, but only to within a factor of 2. We carry this out in 
Theorem 6. Further results about the correlation between matches at different pairs of 
positions, with applications to the longest match-run, appear in [2], [3], and [8]. 

- , d} with transi- 
tion probabilities [ p o l  such that all states i , j  f 0 communicate, 0 is accessible, and 
Poo = 1. Let v : S - R, let 7 be the hitting time for 0, and let 

Theorem 5.  Let X,, XI, X,, - - - be a Markov chain on S = { 0, 1 , 

H =  v(X, ) .  
O d n c T  

Assume that for all t > 0, P(H > t )  > 0. Then 

lim t-I log P ( H  2 t) = log p ,  
I -m 

where p is a root in (0, 1) of det(P - A") = 0, with P = [( pO)]  and A "  = [4,Ay(i)], i ,  j = 1 
to d. 

Proof. First we show the existence of Acr E(0, l), satisfying 

log(A,)=lim t-1 logP(H I t I X, = i ) E (  - co, 0) for i = I to d .  
I-OC 

To do this, let c =maxi v ( i )  and llb = mini P(H 2 0) I X, = j .  For s, t > 0 and j + 0, a 
stopping-time argument shows that 

P(H 2 s + t + c I X, = i )  s ~ P ( H  2 s I X, = i )  max P(H L - t I X, = j ) .  
j 

Thus if we let g(t) = maxi bP(H L t - c I X, = i), then g(t + s) 5 g(t)g(s), for s, t > c so 
1imldm t-I log[g(t)] exists. Irreducibility implies that for i = 1 to d, 

The condition that, for all t ,  P(H L t )  i 0 is equivalent to the condition that there exists 
a 'possible cycle of positive score', i.e. for some i (O) ,  i( l), . 0 ,  i (k)  = i(0)E 
{ 1,2,. - ., d}, piu-l),iu) > 0 for j - 1 to k, and v ( i ( j ) ) >  0. This shows that 
liml-m t-' log[g(t)] > - 00, so that A,, E(0, 1). 

Second, let A(A)=E(A-" I X, = i)E(O, 001, for i = 0 to d and A E(0, 1). By consider- 
ing the value of j of XI, we get the backward equations 

X ( A )  = A p&A) 
j -Otod  

for i = 1 to d, and&@) = 1. Rewrite these equations, for A >A,, as 
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with the matrix P - A" and the vector f(A) indexed by i = 1 to d. Clearly Acr = 

inf{A E(0, 11 : f ; ( A )  < 00) and f ; (A )+  00 as A +A$, for i = 1 to d. Irreducibility 
implies that the ratiosfi(A)/fi(A), for i = 1 to d, are bounded away from 0 and 00 

uniformly for A € ( A c r ,  11. By compactness, there is a sequence A, 1 Ac, for which the 
limit gi fi(A,)/fi(A,)E(O, ao) all exist, for i = 1 to d. Thus, for 1 = Lcr, 
(P - I ")g = 0, so that det(P - A ") = 0. 

Theorem 5'. Let ( X f ,  t I 0) be a continuous-time Markov process on S = 

(0, 1, - -, d }  with generator Q = [qii],  such that all states i, j # 0 communicate, 0 is 
accessible, and qw = 0. Let v : S -, R, with v(i)  > 0 for at least one i, let t be the hitting 
time for 0, and let 

H = s,' v(X,)ds. 

Then, 

lim t - '  logP(H 2 t )  = - r 
f -m 

whererE(0, co)isaroot ofdet(Q+xV)=OandQ+xV=[q,  + 6 , , x ~ ( i ) ] , , ~ , ~ ~ ~ ~ .  

Proof. The proof is essentially the same as the proof of Theorem 5 ,  so we 
present the differences. Let f ; ( x )  = E(exp(xH) I Xo = i) E (0, m], for x E (0, 00). 

Note that r = - limf-m t - '  log P(H I t )  satisfies: for i = 1,2,. a ,  d, r = 
sup{x E(0,ao) : f ; ( x )  < co} and limx-.r- f ; ( x )  = 00, whilef,(x) = 1 for all x. We get 
the backward equations by considering the time 0 of the first jump away from i, say 
to statej. Thus, for i = 1 to d, 

= E E(exp(oxv(0) &); x7 = j )  
I-Otod 

= E - qlJ/(xv(i) + 411) x(x) 
J -0 IO d,J # I  

ifxv(i) < - qll; otherwisef;(x) = co. Notice that r I mini( - qll/v(i)), which corres- 
ponds to the possibility that H i s  large just because the process Xremains a long time 
in its initial state. Rewrite these equations as: for i = 1 to d 

c 41, .m) + xvw f ; ( x )  = - 410, 
I - l t o d  

or in matrix form: 

( Q + x V ) f =  -(qlO)r-ltod. 

Taking a limit as x t r we get (Q + rV)g = 0, where g is a vector with entries 
gl E(0, co), i = 1 to d. 

Notice that Theorem 5 can be applied to the scoring function - Y to get the rate 
for large negative deviations of V ,  namely: if P(H < - t )  > 0 for all t ,  then 
limf-a t - '  logP(H I t )  = -log p - ,  wherep-E(l ,  co) isaroot ofdet(P -A") = 0. 
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Similarly, if v ( i )  < 0 for some i, then Theorem 5' can be applied to - Y to prove: 
limt-m t - '  log P(H < - t )  = r - ,  where r -  E( - 00, 0) is a root of det(Q + x V )  = 0. 

Theorem 6. Let X i ,  Yi be independent Markov chains over S = [ 1,2,. . ., d }  
with irreducible aperiodic transition probabilities [ pU]. Let v( i )E(  - GO, co) and 
assume that for all t ,  there exists n such that P( V,, > t )  > 0. Then for all E > 0, 

P( V,,/log,,,(n)E [ 1 - E ,  2 + E ]  eventually) = 1, 

where p is a root of det(P - A') = 0, with P = [(P~)~], A' = [S,,Ay(i)]. 

Pruuf. Fix E E(0, a). First we prove the upper bound. Using Theorem 5 ,  for all 
sufficiently large t , 

Odncr 

where 7 = inf[n I O  : X,, # Y,,}. By decomposing the event [ V,, I t }  according to 
the indices i,j 4 n at which the high-scoring match appears, we get P( V,, 2 t )  S 
n2pr (1 -e ) .  Using t = 2( 1 + 2~)log,,,(n), this says 

P(V,,/log,,,(n)> 2 + 4E) 5 n2p'(I-e'= n2n-2(1+ZeX1-e)<n-e, 

for sufficiently large n .  Using the Borel-Cantelli lemma along a skeleton of times 
such as nk = 2 k ,  it follows that 

P( V,,llog,,,(n) < 2 + 4~ eventually) = 1, 

Now we prove the lower bound. By Theorem 5 ,  and using the hypothesis that each 
Markov chain is irreducible and aperiodic, there exists an integer k ,  depending on E, 
such that 

'(1 +e )  

for all i, j E S  and all sufficiently large t ,  with r ( t )  = min[n I 1 :  X,, # Y,,}. By 
considering only matches which begin at Xi and Y,, where i = j  = lkt + t for some 
integer I ,  we see that for all positive integers m, and all sufficiently large t ,  

Using t = [( 1 - 3~)log,,,(n)] and m = [ n / k t ] ,  we have p' Z n - ( ' - 3 e )  and 

P( V,,/log,,,(n) I 1 - 3 ~ )  2 P( V,k[ 2 t )  < exp{ - M ~ ~ ( ' + ~ ) J  

< exp{ - mn-(1-3eX'+e)} < exp( - n2"kt) < exp( - n e ) ,  

for all sufficiently large n. Using the Borel-Cantelli lemma, it follows that 
P( V,,log,,,(n) > 1 - E eventually) = 1. 
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