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ABSTRACT

We have been developing path planning techniques to look for paths that balance the utility and risk associated with
different routes through a minefield. Such methods will allow a battlegroup commander to evaluate alternative route
options while searching for low risk paths. A risk management framework can be used to describe the relative values of
different factors such as risk versus time to objective, giving the commander the capability to balance path safety against
other mission objectives. We will describe our recent investigations of two related path planning problems in this
framework. We have developed a stochastic search technique to identify low risk paths that satisfy a constraint on the
transit time. The objective is to generate low risk paths quickly so that the user can interactively explore the time-risk
tradeoff. We will compare this with the related problem of finding the fastest bounded-risk path, and the potential use of
dynamic graph algorithms to quickly find new paths as the risk bound is varied.
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1. OVERVIEW
Mine and minefield data is probabilistic due to many factors such as position uncertainty, detection probabilities,
classification confidence levels, and classification errors. In the face of this uncertainty, a commander needs a
meaningful way to measure risk in order to determine the best way to cross a potential minefield, or decide that the risk
to cross is too great. Effective path planning techniques can provide valuable information in a decision aid for mine
countermeasures (MCM).

Path planning is a well-studied problem in the setting where there is a single criterion to optimize. It is well known how
to find the path of shortest distance, and well known how to find the path of least cost (risk). However, to optimize both
criteria at once is a challenging problem. Instead of single path quality of length/time-to-objective, we want to include
other optimization criteria that describe the desirability of paths such as level of risk. In addition, it is desirable for
command and control to have alternative routes presented to help make a decision. Therefore, besides a single optimal
path we would like to find several choices of paths to display as alternatives. The most common path quality attribute is
path length or time to goal, as a model of the time required to achieve a successful landing. Another important quality
that we model is the probability of a successful landing, given the path risk from mines.

In previous work (Piatko et al. 2001) we described initial efforts on this problem using an A* planner. In this paper we
present our recent implementation experience using Dijkstra’s algorithm for this problem. We also investigate the use of
dynamic graph algorithms to efficiently update the shortest path when simulating the removal of a single mine. We have
developed methods to address a new problem of minimizing risk while meeting a hard constraint on time to goal.

1.1 Grid graph model for path planning
We discretize the minefield into a graph, with vertices evenly distributed over the minefield. We assume a start vertex s
and a goal vertex g. Risk values ir  are associated with each gridpoint vertex i according to its proximity to mines.

Factors to consider for developing a risk model can be found in (Piatko et al. 2001 and Wang et al. 2001). Lengths

ijl represent the estimated length/time to traverse between two adjacent gridpoints i and j. Eight edges emerge from each

vertex. The edges are directional, and are defined by the “from” vertex, the “to” vertex, and the weight, or cost of
traversing the edge. The weight of each edge is found using the following equation:
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Wij = α rto + (1-α) ijl ,

where rto is the risk value at the “to” vertex, and ijl  is the distance from the “from” vertex to the “to” vertex. This

distance is √2 for diagonal edges, and 1 otherwise. The parameter α is set by the user, and is a risk tolerance factor.
Setting α to zero corresponds to searching for the shortest distance path; setting α to one corresponds to searching for the
lowest risk path without regard to distance.

1.2 Linear combination of time and risk
One approach to making multicriteria path planning problems tractable is to reduce them to single metric problems. For
example, we can use a linear combination of the path quality metrics of path length and risk, and find the best path using
this single metric.

Given a starting location s and a desired goal g, this corresponds to finding the path p  that minimizes the value

∑ ∈
=

pij ijWpO )( . This can be computed optimally in polynomial time using Dijkstra's algorithm for fixed α.

1.3 Fixed constraint on risk
Another approach to making multicriteria path planning problems tractable is to fix side criteria as constraints. The user
or application can then explore various values for the side constraints. For mines path planning, one such constrained
problem is to find the shortest length path with risk less than a fixed bound R. This corresponds to finding the path p that
minimizes the value ∑ ∈

=
pij ijlpO )(  (in this case (1-α) is zero), such that each vertex along the path has risk Rri ≤ .

This can also be computed optimally in polynomial time using Dijkstra's algorithm, by using the subgraph of the full
grid graph that does not consider any edges that violate the risk threshold constraint.

1.4 Fixed constraint on time/length
An alternative way to fix a side criterion for mines path planning is to find the shortest path with risk less than a fixed
time constraint T. Assuming constant velocity, fixed time corresponds to a fixed length L. For this version, we wish to
find the path p that minimizes the value ∑ ∈

=
pij ijrpO )(  (in this case α is zero) such that the total path length

∑ ∈
=

pij ijlpl )( is less than L. This is harder than the fixed constraint on risk problem above, because the side constraint

is on a sum rather than on the individual edges of the path. While this version of the problem is NP-hard in general,
using a restricted version of the grid graph that uses only horizontal and vertical edges (and thus unit lengths) we can
solve this problem in polynomial time. We also present a faster stochastic search algorithm that finds locally reasonable
paths.

1.5 Waypoints and multiple goals
Each of the above path-planning problems can be generalized to include specified intermediate waypoints mww ...1 along

the path. In this case, we plan the shortest path from s to the intermediate goal 1w , from 1w to 2w , and so on, until

reaching mw and then planning to final goal g. Similarly, we can generalize to plan paths to multiple goalpoints.

2. DIJKSTRA’S ALGORITHM FOR PATH-PLANNING
We can use Dijkstra’s algorithm to find the shortest path between waypoints. In previous work, we described our efforts
using a Java implementation of an A* planner for the linear combination and fixed constraint on risk problems. We have
redone this original planner to use a static Dijkstra’s implementation. In the next section, we also describe our results
from coding a dynamic version to update Dijkstra shortest paths as the graph is modified. To date, we have found A*
and static Dijkstra to be comparable in terms of running time. Our particular implementation of Dijkstra seems to
produce more aesthetic paths than our A* implementation.

First, the graph for the minefield must be built and all the weights for the edges calculated for the particular choice of α.
Dijkstra’s algorithm then proceeds as follows (see also Cormen, Leiserson, and Rivest 1997 and Dijkstra 1955). The
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vertex closest to the “starting” waypoint is first considered, and given a path cost of zero. This “starting” vertex is put
then in a set of vertices for which cost has been calculated (this set has only one vertex in it at this point). Next, all the
vertices connected by an edge to that vertex are put in a set to be considered. The vertex with the lowest cost, i.e., the
lowest edge weight, is assigned a cost equal to the edge weight between the source and that vertex. That vertex is then
put in the set of vertices for which cost has been calculated. Next all vertices connected to the vertex for which the cost
was just calculated are put in the set to be considered. Again, the vertex with the lowest cost from the source is
considered next. The cost is the sum of the edge weights from the source to the vertex. This vertex is assigned that cost
and put in the set of vertices for which the cost has been calculated, and all vertices connected to the vertex are added to
the set of vertices to be considered, unless the vertex is already in that set. The algorithm ends when each vertex has
been considered, i.e., the cost from the source to each vertex has been calculated. Since this algorithm computes the
shortest path to all vertices, it can be used to compute the shortest path to multiple goal points. The process can also be
terminated if there is just a single goal g when that particular vertex is reached. Figure 1 shows an instance of Dijkstra’s
algorithm. For each vertex, the sum of the edge weights along the shortest path from the source can be saved, as well as
the previous vertex along the path from the source to that vertex. This gives an encoding of the shortest path tree from
the start vertex that can be used to reconstruct the vertices along the shortest path. The path from the “starting” waypoint
to the “goal” waypoint is found by locating the vertex closest to the goal, then stepping through the previous vertices
until the source is reached.

Figure 2 shows a snapshot of a path through a minefield calculated using Dijkstra’s algorithm. Dijkstra’s algorithm can
be implemented to have a running time of O((V + E) log V), where V is the number of vertices and E is the number of
edges.

3. DYNAMIC GRAPH UPDATES TO SIMULATE MINE NEUTRALIZATION EFFECTS
We can simulate the removal or neutralization of a single mine by recomputing the risk of affected edges in the
neighborhood of a mine, and recomputing the shortest path from the start to the goal. This enables interactive
exploration of which mines or minefields are best to neutralize. However, recomputing the shortest path using Dijkstra’s
algorithm can be expensive for a large grid graph. Fortunately, Dijkstra needs to be run in full just once for each set of
waypoints and each value of α. Recent results have shown how to efficiently maintain shortest paths in a dynamic
setting, where sets of edge insertions, deletions or cost changes occur. An algorithm by Ramalingam and Reps
[Ramalingam and Reps 1996] can be used to update the shortest paths efficiently. Only those vertices whose shortest
path cost changes because of the change in the risk field due to the removed mine need to be updated. Such methods can
also be used to support dynamic changes on bounds of acceptable risk for a path. They can also support other dynamic
aspects of path planning, including incorporating updated information about mines.

When a mine is removed, the weight of each edge in that affected area of the risk field is recalculated. The “to” vertex of
each edge whose weight has changed is put into a set of vertices to be updated. With each of these vertices is saved the
old cost of the shortest path from the source to that vertex, and the new cost of the path when the cost of just that one
edge is changed. These vertices are considered according to the lowest new path cost from the source to that vertex,
much the same way as in Dijkstra’s algorithm. As vertices are considered, their lowest path cost is updated, and they are
removed from the set of vertices to be considered. After the vertex is considered, the cost of the shortest path to all
vertices connected by an edge to the considered vertex is compared to the cost that would result from a new path through
the updated vertex. If the new cost to that vertex is lower than the previous saved cost, that vertex is added to the set of
vertices to be updated. When the set of vertices to be updated is empty, the algorithm terminates. Thus, only vertices
whose shortest path changes are updated, instead of all vertices. Figure 3 shows an instance of Ramalingam and Reps’
algorithm.

This updating algorithm has a running time of O(A log A), where A is the sum of affected vertices and the edges into
these vertices. The closer the removed mine is to the source, the larger A is, and the longer the running time of the
algorithm.
We implemented Ramalingam and Reps’ algorithm to update the shortest path when a single mine is removed, and
compared this to the cost of redoing Dijkstra’s algorithm for the entire graph each time. Figures 4 and 5 show some
results from these experiments with our implementations.
We randomly generated 10 different minefields for each of 6 different grid resolutions (250 by 250, 300 by 300, and so
on up to 500 by 500). Each minefield contained up to 10 randomly generated minelines, each with 5 to 15 mines. The
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simulated minefield also contained up to 100 randomly placed “noise” points (with lower mean posterior probabilities
than the mines). We also generated a random start vertex to the “left” of the minefield and a random goal to the “right.”
We used the linear combination metric with fixed α of 0.1 for these experiments. We computed the shortest path from
the start to goal using Dijkstra’s algorithm. We simulated two kinds of mine deletion/neutralization, a mine near the start
vertex and one farther away. This captures the effect of different numbers of affected vertices on the running times.

Figure 4 shows the 120 individual data points of these experiments, showing the time to update the shortest paths as a
function of the distance to the source for various graph sizes. The trend is that removing a mine close to the source takes
longer to update, since more of the shortest path tree is affected.

Figure 5 compares using the full Dijkstra’s algorithm versus the graph updating algorithm. It also shows more clearly the
effect of increasing graph size. The upper curves show the mean and standard deviation of the running times to compute
the initial shortest path using Dijkstra’s algorithm. We did not time using the full Dijkstra algorithm to compute the two
mine deletion paths, but those running times would be similar. The lower curves show the mean and standard deviation
of the update running times (using the same 120 experiments as in Figure 4). Note that there is a substantial time
advantage to updating rather than computing the shortest path from scratch.

4. ALGORITHMS FOR FIXED TIME-TO-GOAL
The previous techniques can be used to identify paths that satisfy constraints on the acceptable amount of risk, or linear
combinations of time-to-goal and risk.

We are also interested in the alternative constrained problem of finding low risk paths that satisfy a constraint on the
transit time. Such methods would identify low risk paths through a minefield that allow a ship to arrive at its destination
at a specified time. (We assume the ship traverses the path at a constant speed in order to simplify this planning
problem.) That is, given a fixed bound L on the length of the path (fixed time-to-goal), we wish to find the lowest risk
path.

4.1 Optimal algorithm for fixed time-to-goal
In general, the problem is NP-hard. However, in the grid case, with just 4 directions, L is discretized to exactly unit
increments. The lowest risk path of length L can then be computed by using a modified version of a Bellman-Ford
algorithm (Cormen et al. 1997). As described above, path risk is used for the objective (distance) function. Several
modifications are necessary. We need to make L passes over the graph. As opposed to the usual asynchronous approach
of Bellman-Ford (which overwrites distance information in the middle of each pass), we need to maintain both the
previous phase i-1 and current phase i distance information to each vertex. The previous distance information records the
lowest risk path from the source s with i-1 or fewer links to each vertex. Initially all such distances are set to infinity,
except the source vertex distance is to itself is set to zero. At pass I, we initialize the i link distance to each vertex v with
the value of the previous (i-1 or fewer links) lowest risk path to v. Then, for each edge (u,v), we test if using this edge
results in a lower risk path to v with i links; i.e., if the lowest risk path with i-1 or fewer links to u plus the cost of edge
(u,v) is less than the value of the current lowest risk path with i or fewer links to v. If so, we record the value of this new
path of i or fewer links to v. After all edges have been considered, we have found the shortest risk path with i or fewer
links to each vertex. (We have no negative cost edges and thus do not need to worry about negative cost cycles). After L
such passes, if we have reached the goal vertex g, we have found the shortest risk path that takes <= L steps. If we wish
to reconstruct the path, we also need to keep an auxiliary size L data structure at each vertex to record the predecessor
vertex for each link value i (since predecessors are different for different values of i). This modified Bellman-Ford
approach can be implemented in O(kE) time and O(kV) space for k phases. For our mines problem, this corresponds to
O(LE) and O(LV) space.

This approach becomes even more expensive when adding more directions to the grid vertices. For 8 directions (adding
the diagonals), a diagonal step adds √2 length, which are not equal to the vertical/horizontal steps. One option is to
discretize each edge into finer increments and distribute the risk of the original edge proportionally on these finer edges.
The goal is make each "step" small enough to be a unit increment as above. Since this is a bigger grid, this computation
will be even slower. Another option would be to discretize the minefield into a hex grid. In this case, all steps would be
of unit length.
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4.2 Stochastic search for fixed time-to-goal
Since this optimal algorithm can be so computationally expensive, we developed a fast, randomized method finding the
minimum risk path where there is a constraint on time-to-goal. In this case our objective is to define a path planner that
generates low risk paths quickly so that the user can interactively explore the time-risk tradeoff. We also require the
planner to produce alternatives to the lowest risk path as well as intermediate solutions when the planning process cannot
be completed due to time constraints.

We use a population-based, multiresolution stochastic search to generate a number of low risk paths through a minefield.
The basic idea is to generate random paths, locally improve them, and save the best ones. This type of approach is also
being used for more general types of motion planning (Hocaglu and A. C. Sanderson 1998 and 2001). When the planner
is executed, an initial population of candidate paths is created by randomly sampling the space of paths that deliver the
ship to the destination at the appropriate time. The paths are encoded as symbol strings that indicate the sequence of
moves through the grid overlaid on the minefield. As the planning proceeds, the resolution of the grid is incrementally
increased. At each resolution level, the current population of paths is first randomly perturbed to explore the path space.
Then the paths are deterministically perturbed into local minima. This process is repeated for a number of iterations at
each resolution level. Then, the best paths in the current population are saved if they yield improvements over any of the
lowest risk paths discovered previously.  The advantage of this approach is that it quickly generates paths, including
intermediate results. The main disadvantage is that it provides no guarantees of optimality on the resulting path.

Figure 6 shows a path generated by this planner coded in MATLAB. Initial results have been encouraging; many
reasonable paths can be generated very quickly. It is also possible to use this method to generate alternative choices of
paths. We also ported this planner to C++ to investigate the effectiveness of the process on larger planning tasks, and
found that it scaled well.

5. CONCLUSIONS
We have developed efficient methods for several versions of mines path planning problems with multiple constraints.
This work has demonstrated the effectiveness of such algorithms for mines path planning.

In future work, we would like to implement the polynomial time algorithm for the fast time-bounded problem to
compare how close the stochastic approach comes to finding optimal paths. We also plan on using the Ramalingam and
Reps algorithm to create a “risk slider” that uses batches of updates to allow a user to vary the risk threshold
interactively. We also seek to develop methods to address the very interesting problem of deciding which multiple mines
would be most effective to remove. Finally, there are a number of very recent results that use different techniques for
constrained shortest path planning that could also prove valuable to use for MCM path planning applications (Mehlhorn
and Ziegelmann 2001).
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Figure 1. An Instance of Dijkstra’s Algorithm
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Figure 2. A snapshot of the Dijkstra mines path
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Figure 3. An instance of Ramalingam and Reps’ Algorithm
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Figure 5. Comparison of running times of Dijkstra’s algorithm on a full graph
and updating the shortest path after the removal of one mine.

Figure 4. The effect of mine location on update time.
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Figure 6. A snapshot of the stochastic search mines path planner.
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