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Abstract We present an application of deep generative models in the context of partial

differential equation constrained inverse problems. We combine a generative adversar-

ial network representing an a priori model that generates geological heterogeneities and

their petrophysical properties, with the numerical solution of the partial-differential

equation governing the propagation of acoustic waves within the earth’s interior.

We perform Bayesian inversion using an approximate Metropolis-adjusted Langevin

algorithm to sample from the posterior distribution of earth models given seismic

observations. Gradients with respect to the model parameters governing the forward

problem are obtained by solving the adjoint of the acoustic wave equation. Gradi-

ents of the mismatch with respect to the latent variables are obtained by leveraging

the differentiable nature of the deep neural network used to represent the generative

model. We show that approximate Metropolis-adjusted Langevin sampling allows an

efficient Bayesian inversion of model parameters obtained from a prior represented by

a deep generative model, obtaining a diverse set of realizations that reflect the observed

seismic response.
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1 Introduction

Solving an inverse problem means finding a set of model parameters that best fit

observed data (Tarantola 2005). The observed data or measurements are often noisy

and/or sparse, and therefore lead to an ill-posed inverse problem where numerous

realizations of the underlying model parameters may lead to a model response that

matches observed data (Kabanikhin 2008). Additionally, the model used to describe

how the observed data are generated, the so-called forward model, may be uncertain

(Hansen and Cordua 2017).

Based on natural observations or an understanding of the underlying data generat-

ing process we may have a preconception about possible or impossible states of the

model parameters. We may formulate this knowledge as a prior probability distribu-

tion function (PDF) of our model parameters and use Bayesian inference to obtain a

posterior PDF of the model parameters given the observations (Tarantola 2005).

Seismic inversion involves modeling the physical process of waves radiating

through the earth’s interior (Fig. 1). By comparing the simulated synthetic mea-

surements to actual acoustic recordings of reflected waves, we can modify model

parameters and minimize the misfit between synthetic data and measurements. The

adjoint of the partial differential equation (PDE) represents the gradient of the data

mismatch with respect to the parameters, leading to a gradient-based optimization of

the model parameters (Plessix 2006). In the most general case, which has been used

in this study, these gradients are obtained by back-propagating the full wavefield in

time, an approach commonly referred to as full-waveform inversion (FWI). The set of

parameters represented by the spatial distribution of the acoustic velocity of the rocks

within the earth can easily exceed 106 values, depending on the resolution of the sim-

ulation grid and the observed data. Large three-dimensional seismic observations may

require millions of parameters to be inverted for, demanding enormous computational

resources (Akcelik et al. 2003).

For direct observations of the earth’s interior, boreholes may have been drilled for

hydrocarbon exploration/development or hydrological measurements. These represent

a quasi-one-dimensional source of information of spatially sparse nature. Typical

borehole sizes are on the order of tens of centimeters in diameter, whereas the lateral

resolution of seismic observations is usually on the order of tens of meters.

We can deduce prior knowledge of the earth’s interior from observations of analog

outcrops or subsurface reservoirs. This geological knowledge can be incorporated

into prior distributions of physical properties of rocks, such as the acoustic P-wave

velocity, or into the distribution of geological features such as geological facies and

fault distributions within the earth.

Efficient parameterizations (Akcelik et al. 2002; Kadu et al. 2016) that enable

a dimensionality-reduced representation of the high-dimensional parameter space of

possible models have been shown to reduce computational cost and increase spatial res-

olution. Because of the high computational cost incurred by full-waveform inversion

(Modrak and Tromp 2015; Akcelik et al. 2003), probabilistic ensembles of models that

match observed data are rarely generated, and often only a single model that satisfies

predefined quality criteria is created and used for interpretation and decision-making

processes.
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Fig. 1 Computational domain for the acoustic inversion problem. Acoustic recording devices are placed

on the surface (∇) and record incoming acoustic waves reflected from geological structures emanating

from an artificial source (∗). The computational domain is embedded within a dampened boundary domain

to emulate lateral and vertical dissipation of the wave-source. The generative model Gθ (z) creates the

underlying spatially distributed P-wave velocity. Additional lower-dimensional constraints (dashed vertical

line representing a well) can be placed on the generative model, by incorporating loss terms. The vertical

axis of the computational domain has been rescaled by a factor of 10 for visualization purposes

We parameterize the earth model by a deep generative model that creates stochastic

realizations of possible model parameters. The probabilistic distribution of model

parameters is parameterized by a lower-dimensional set of multi-Gaussian-distributed

latent variables. Combined with a generative deep neural network, this represents a

differentiable prior on the possible model parameters. We combine this differentiable

generative model with the numerical solution of the acoustic wave equation to produce

synthetic acoustic observations of the earth’s interior (Louboutin et al. 2017). Using the

adjoint method (Plessix 2006), we compute a gradient of the mismatch between real

and synthetic data with respect to model parameters not only in the high-dimensional

model space, but also in the much smaller set of latent variables. These gradients

are required to perform a Metropolis-adjusted Langevin (MALA) sampling of the

posterior of the model parameters given the observed seismic data. Performing MALA

sampling allows us to obtain a diverse ensemble of model parameters that match

the observed seismic data. Additional constraints on the generative model, such as

information located at existing boreholes, are readily incorporated and included in the

MALA sampling procedure.
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We summarize our contributions as follows:

(i) We combine a differentiable generative model controlled by a set of latent vari-

ables with the solution of a PDE-constrained numerical solution of a physical

forward problem.

(ii) We use gradients obtained from the adjoint method and from neural network

back-propagation to perform approximate MALA sampling of the posterior in

the lower-dimensional set of latent variables.

(iii) We illustrate the proposed inversion framework using a simple synthetic seismic

inversion problem and evaluate the resulting ensemble of model parameters.

(iv) The framework allows integration of additional information, such as the knowl-

edge of geological facies along one-dimensional vertical boreholes.

(v) The proposed approach may be readily extended to a number of inverse problems

where gradients of the objective function with respect to input parameters can be

calculated.

The code, data and trained weights of the neural networks have been made available

under an open-source license.1

2 Related Work

Tarantola (2005) cast the geophysical seismic inversion problem in a Bayesian frame-

work. Mosegaard and Tarantola (1995) presented a general methodology to perform

probabilistic inversion using Monte Carlo sampling. They used a Metropolis rule

combined with a sampling of the prior to obtain the posterior distribution. In a similar

manner, Sen and Stoffa (1996) evaluated the use of Gibbs sampling to obtain a posteri-

ori model parameters and evaluate parameter uncertainties. Mosegaard (1998) showed

that the general Bayesian inversion approach of Mosegaard and Tarantola (1995) also

gives information on the ability to resolve geological features. Geostatistical models

enable spatial relationships and dependencies of the petrophysical parameters to be

modeled and incorporated into a stochastic inversion framework (Bortoli et al. 1993;

Haas and Dubrule 1994). Bayesian linear inversion has been successfully applied

to infer petrophysical property distributions (Grana and Della Rossa 2010). Buland

and Omre (2003) developed an approach to perform Bayesian inversion for elastic

petrophysical properties in a linearized setting. Grana et al. (2017) used a Gaussian

mixture model for Bayesian linear inversion from seismic and well data. Stochastic

sampling of petrophysical properties conditioned to well-log data allows petrophysical

property distributions to be inferred using an appropriate sampling strategy such as

Markov chain Monte Carlo (MCMC) (Bosch et al. 2009). A fully integrated stochas-

tic inversion method that allows direct inversion from seismic amplitude-versus-angle

(AVA) data creates a direct link between observed seismic data and underlying rock

physics models (Azevedo et al. 2018). Geological modeling using multi-point statis-

tics (Guardiano and Srivastava 1993) can be employed for inversion from seismic data

(González et al. 2007) where geological features are represented by a set of represen-

tative training images. For a more extensive review of statistical inversion approaches

1 Code Repository: https://github.com/LukasMosser/Stochastic_Seismic_Waveform_Inversion.
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we refer to Bosch et al. (2010) and the comprehensive overviews of Dubrule (2003),

Doyen (2007), Azevedo and Soares (2017).

In the case of nonlinear physics-based inversion schemes such as FWI, computation

of the solution to the forward problem is very expensive. Therefore, computationally

efficient approximations to the full solution of the wave equation may allow efficient

solutions to complex geophysical inversion problems. Neural networks have been

shown to be universal function approximators (Hornik et al. 1989) and as such lend

themselves to use as possible proxy models for solutions to the geophysical forward

and inverse problem (Hansen and Cordua 2017).

The early work by Röth and Tarantola (1994) presents an application of neural

networks to invert from acoustic time-domain seismic amplitude responses to a depth

profile of acoustic velocity in a supervised setting. They used pairs of synthetic data

and velocity models to train a multi-layer feed-forward neural network with the goal

of predicting acoustic velocities from recorded data only. They showed that neural

networks can produce high-resolution approximations to the solution of the inverse

problem based on representations of the input model parameters and resulting syn-

thetic waveforms alone. In addition, they showed that neural networks can invert for

geophysical parameters in the presence of significant levels of acoustic noise.

Representing the geophysical model parameters at each point in space quickly leads

to a large number of model parameters, especially in the case of three-dimensional

problems. Berg and Nyström (2017) represented the spatially varying coefficients that

govern the solution of a PDE by a neural network. The neural network acts as an

approximation to the spatially varying coefficients characterized by the weights of the

neural network. The weights of the individual neurons are modified by leveraging the

adjoint-state equation in the reduced-dimensional space of network parameters rather

than at each spatial location of the computational grid.

Hansen and Cordua (2017) replaced the solution of the partial differential equation

by a neural network, enabling fast computation of forward models and facilitating a

solution to the inversion problem by Monte Carlo sampling. Araya-Polo et al. (2018)

used deep neural networks to perform a mapping between seismic features and the

underlying P-wave velocity domain; they validated their approach based on synthetic

examples. A number of applications of deep generative priors have recently been

presented in the context of computer vision for image reconstruction, linear (Chang

et al. 2017) and bilinear (Asim et al. 2018) inverse problems, and compressed sensing

(Bora et al. 2017). Mosser et al. (2017) proposed GANs to generate three-dimensional

stochastic realizations of porous media from binary and grayscale computed tomog-

raphy images (Mosser et al. 2018b). These deep generative models can be further

conditioned to honor lower-dimensional features such as cross-sections or borehole

data (Dupont et al. 2018; Mosser et al. 2018a; Chan and Elsheikh 2018). For more gen-

eral subsurface inverse problems, Laloy et al. (2017) used a GAN to create geological

models for hydrological inversion. Inversion was performed using an adapted Markov

chain Monte Carlo (MCMC) (Laloy and Vrugt 2012) algorithm where the generative

model was used as an unconditional prior to sample hydrological model parameters.

Chan and Elsheikh (2017) evaluated the applicability of Wasserstein-GANs to param-

eterize geological models for uncertainty propagation.
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Mosser et al. (2018c) used a generative adversarial network with cycle constraints

(cycleGAN) (Zhu et al. 2017) to perform seismic inversion, formulating the inversion

task as a domain-transfer problem. Their work used a cycleGAN to map between the

seismic amplitude domain and P-wave velocity models. The cycle constraint ensures

that models obtained by transforming from the amplitude to P-wave velocity represen-

tation and back to the amplitude domain are consistent. Because the P-wave velocity

models and seismic amplitudes are represented as a function of depth rather than depth

and time, respectively, this approach lends itself to stratigraphic inversion, where a

pre-existing velocity model is used to perform time-depth conversion of the seismic

amplitudes. Richardson (2018) showed that a quasi-Newtonian method can optimize

model parameters in the latent space of a pre-trained GAN for a synthetic salt-body

benchmark dataset.

3 Problem Definition

3.1 Bayesian Inversion

In the Bayesian framework of inverse problems, we aim to find the posterior of latent

variables z given the observed data dobs (Fig. 2). The joint probability of the latent

variables z and observed data dobs is

p(z, dobs) = p(dobs|z)p(z) (1)

Furthermore, by applying Bayes rule, we define the posterior over the latent variables

z given the observed seismic data dobs

p(z|dobs) =
p(dobs|z)p(z)

p(dobs)
∝ p(dobs|z)p(z) (2)

We express the observed data by assuming conditional independence between the

observed seismic data dseis and data observed at the wells dwell

p(dobs|z) = p(dseis|z)p(dwell|z) (3)

dseis

dwell

mz

θ PDE

Earth Models

Fig. 2 Graphical model of the geological inversion problem. The set of possible earth models is represented

by a generative model with parameters θ (the parameters of the generator m ∼ Gθ (z)). We obtain model

observations of the acoustic waves dseis via the deterministic PDE, as well as partial observation of the

model parameters m from local information, for example, at boreholes dwell
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We represent the observed seismic data by

dseis = S(m) + ε, ε ∼ N (0, σ 2
seisI) (4)

where S(m) = S(m(x)) = S(Gθ (z)), denoting the spatial model coordinates by x,

the seismic forward modeling operator by S, and the generative model by Gθ (z) with

parameters θ . We assume a normally distributed noise term ε with zero mean and

standard deviation σseis equal to 25% of the standard deviation of the reference model

seismic amplitude data. The geological facies mfacies, the P-wave velocity mVp , and

the rock density mρ represent the set of model parameters m. The model parameter

mfacies represents the probability of a geological facies occurring at a spatial location

x.

The aim is to generate samples of the posterior z ∼ p(z|dobs). We reformulate

the approach using an iterative approximate Metropolis-adjusted Langevin sampling

rule (MALA-approx) with iteration number t as follows (Roberts and Tweedie 1996;

Roberts and Rosenthal 1998; Nguyen et al. 2016)

zt+1 = zt + γt∇ log p(zt |dobs) + ηt (5a)

zt+1 = zt + γt∇ log[p(dseis|zt )p(dwell|zt )p(zt )] + ηt (5b)

zt+1 = zt + γt {∇ log p(dseis|zt ) + ∇ log p(dwell|zt ) + ∇ log p(zt )} + ηt (5c)

where ηt ∼ N (0, 2γt I) is a sample from a Gaussian distribution with variance pro-

portional to the step size γt at MALA iteration t . Assuming a Gaussian log-likelihood

of the seismic data given the latent variables log p(dseis|zt ) ∝ −‖S(Gθ (zt ))− dseis‖
2
2

leads to the proposal rule of the MALA approximation (Nguyen et al. 2016) for the

case when only seismic observations dseis are considered

zt+1 = zt − γt

∂‖S(Gθ (zt )) − dseis‖
2
2

∂Gθ (zt )

∂Gθ (zt )

∂zt

+ γt∇ log p(zt ) + ηt (6)

Using this sampling approach requires gradients of the data mismatch with respect

to model parameters, which are obtained by the adjoint-state method which will be

presented in the following section. The gradients of the model parameters ∂Gθ (zt )
∂zt

with respect to the latent variables are obtained by traditional neural network back-

propagation. The gradient of the log-probability of the Gaussian prior distribution of

latent variables ∇ log p(zt ) can be interpreted as a regularization of the latent variables

against deviation from the Gaussian prior assumption (Creswell and Bharath 2018).

We follow the MALA step-proposal algorithm using an initial step size γt=0 =

10−2 for every model inference (Xifara et al. 2013). To obtain valid samples of the

posterior, we furthermore anneal the step size from the initial value of γt=0 = 10−2

to γt=200 = 10−5 over 200 iterations.

Where lower-dimensional information is available, such as at boreholes, the

geological models should honor both the seismic response and this additional lower-

dimensional information. In this study, we additionally find samples of the posterior

that reflect observed geological facies indicators dwell = mfacies
well at a one-dimensional
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borehole. When including borehole information, the step-proposal corresponds to

zt+1 = zt − γt

∂‖S(Gθ (zt )) − dseis‖
2
2

∂Gθ (zt )

∂Gθ (zt )

∂zt

+ γt

∂ log p(dwell = mfacies
well |zt )

∂zt

+ γt∇ log p(zt ) + ηt (7)

where we obtain samples of the posterior given the observed seismic data dseis and

geological facies at the wells dwell = mfacies
well .

The additional term log p(dwell = mfacies
well |zt ) in Eq. 7 represents the assumption

of a Bernoulli distribution for the facies as derived from the generator and observed

at the borehole.

3.2 Adjoint-State Method

We perform numerical solutions of the time-dependent acoustic wave equation given

a set of model parameters

F(u, mVp ) =
1

mVp (x)2

d2u(x, t)

dt2
− ∆u(x, t) + η

du(x, t)

dt
− q(x, xs, t) = 0 (8)

where u(x, t) is the unknown wave-field and mVp (x) is the acoustic P-wave velocity.

The dampening term η
du(x,t)

dt
prevents reflections from domain boundaries and ensures

that waves dissipate laterally. We refer to the evaluation of F(u, mVp ) = 0 (Eq. 8) as

the forward problem.

Time-dependent source wavelets q(x, xs, t) are introduced at locations xs . We emu-

late the seismic acquisition process by placing regularly spaced acoustic receivers that

record the incoming wave-field at the top edge of the simulation domain (Fig. 1). To

show the impact of adding additional information from the acoustic forward problem

to the posterior PDF of models, we perform Bayesian inversion using the proposed

approach in a number of scenarios where we increase the number of acoustic shot data

from 2 to 27 acoustic sources.

To perform sampling according to the MALA algorithm presented in Eq. 6, we

seek to obtain a gradient of the following functional

J (mVp (x)) =

nsources
∑

i=1

‖d
pred
seis (mVp (x)), qi ) − dseis‖

2
2 (9)

where d
pred
seis and dseis are the predicted and observed seismic observations, respectively.

We augment the functional J (mVp (x)) by forming the Lagrangian

L (mVp , u, λ) = J (mVp ) − 〈λ, F(u, mVp )〉 (10)
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Differentiating L (mVp , u, λ) with respect to λ leads to the state equation 8,

but differentiation with respect to the acoustic wave-field u leads to the adjoint state

equations (Plessix 2006)

(

∂ F
(

u, mVp
)

∂u

)T

λ =
(

d
pred
seis − dseis

)

(11)

showing that we obtain a similar back-propagation equation as that used to derive gra-

dients in neural networks (LeCun et al. 1988): the data mismatch is back-propagated

thanks to a linear equation in the adjoint state vector λ. By differentiating the

Lagrangian in Eq. 10 with respect to m(x) we obtain

∂ J

∂mVp
=

∂‖S(Gθ (zt )) − dseis‖
2
2

∂Gθ (zt )
=

〈

λ,
∂ F(u, mVp )

∂mVp

〉

(12)

which is the gradient required to perform MALA sampling of the posterior distribution

of latent variables, Eq. 6.

We perform a numerical solution of the acoustic wave equation and the respective

adjoint computation using the domain-specific symbolic language Devito (Kukreja

et al. 2016; Louboutin et al. 2017). The numerical solution is performed using a

fourth-order finite-difference scheme in space and second-order in time.

4 Generative Model

We use a generative model to sample realizations of spatially varying model parameters

m(x) ∼ Gθ (z). These realizations are obtained by sampling a number of latent variable

vectors z. The associated model representations represent the a priori knowledge about

the spatially varying properties of the geological structures in the subsurface.

We model the prior distribution of the spatially varying model parameters m(x)

(Sect. 3.1) by a generative adversarial network (GAN) (Goodfellow et al. 2014). GANs

represent a generative model where the underlying probability density function is

implicitly defined by a set of training examples. To train GANs, two functions are

required: a generator Gθ (z) and a discriminator Dω(m). The role of the generator

is to create random samples of an implicitly defined probability distribution that are

statistically indistinguishable from a set of training examples. The discriminator’s role

is to distinguish real samples from those created by the generator. Both functions are

trained in a competitive two-player min-max game where the overall loss is defined

by

min
θ

max
ω

{Em∼pm [log Dω(m)]

+Ez∼pz [log (1 − Dω(Gθ (z)))]} (13)

Because of the opposing nature of the objective functions, training GANs is inherently

unstable, and finding stable training methods remains an open research problem. Nev-

123



62 Math Geosci (2020) 52:53–79

ertheless, a number of training methods have been proposed that allow more stable

training of GANs. In this work we use a so-called Wasserstein-GAN (Arjovsky et al.

2017; Gulrajani et al. 2017; Chan and Elsheikh 2017), that seeks to minimize the

Wasserstein distance between the generated and real probability distribution. We use

a Lipschitz penalty term proposed by Petzka et al. (2017) to stabilize training of the

Wasserstein-GAN. For the discriminator, keeping the parameters θ of the generator

fixed, we minimize

min
ω

{Ez∼pz [Dω(Gθ (z))] − Em∼pm [Dω(m)]

+ λL PEm̂∼pm̂
[
(

max
{

0, ‖∇Dω(m̂)‖ − 1
})2

]} (14)

where m̂ is linear combination between a real and generated sample controlled by a

random variable τ (Petzka et al. 2017). For the generator, keeping the parameters of

the discriminator ω constant, we minimize

−Ez∼pz [Dω(Gθ (z))] (15)

In our work we set λL P = 200 to train the generative model. We represent both

the generator and discriminator2 function by deep convolutional neural networks (see

Appendix Table 1). The generator uses a number of convolutional layers followed by

so-called pixel-shuffle transformations to create output models (Shi et al. 2016).

The latent vector is parameterized as a multivariate standardized normal distribution

z ∼ N (0, I)50×1×2 (16a)

Gθ : z → R
3×64×128 (16b)

Because of the geological properties represented in our dataset, namely, geological

facies indicators mfacies, acoustic P-wave velocity mVp and density mρ , the generator

must output three data channels. We represent the geological facies as the probability of

a spatial location belonging to a sandstone facies. To facilitate numerical stability of the

GAN training process, we apply a hyperbolic tangent activation function and convert to

a probability mfacies for subsequent computation (Eq. 7). We apply a hyperbolic tangent

activation function to model the output distribution of the P-wave model parameters

mVp . For rock density mρ , a soft-plus activation function is used to ensure positive

values (Appendix A.1). In this study, only the facies indicator mfacies and acoustic

P-wave velocity mVp are used in the inversion process.

The generator-discriminator pairing is trained on the set of training images

described in Sect. 5. GAN training required approximately 8 hours on eight NVIDIA

K80 graphics processing units. A set of samples obtained from the GAN prior are

presented in Appendix Fig. 9. After training, the generator Gθ (z) and the forward

modeling operator S(m) are arranged in a fully differentiable computational graph.

To accommodate the sources and receivers of the acoustic forward modeling process

described in Sect. 3 and Fig. 1, we pad the output of the generator by a domain of

constant P-wave velocity.

2 In the Wasserstein-GAN literature, the discriminator is also termed a “critic”.
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Fig. 3 Overview of the object-based model realization used as a reference model for evaluating the inversion

procedure. Geological facies a distinguish between river channel bodies (light) and shale (dark). b Acoustic

P-wave velocity Vp and c rock density ρ are constant within river channels and vary by layer within shale

5 Dataset

To demonstrate the proposed inversion method, we will use a model of a fluvial-

dominated system consisting of highly porous sandstones embedded in a fine-grained

shaly material. Object-based models are commonly used to model such geological

systems (Deutsch and Wang 1996). They represent the fluvial environment as a set

of randomly located geometric objects following various size, shape, and property

distributions. We train a set of GANs on a dataset of 10,000 realizations of two-

dimensional cross-sections of fluvial object-based models.

The individual cross-sections are created with an object-based model, where half-

circle sand-bodies follow a uniform width distribution. P-wave velocity and density are

constant within each channel-body, and their values are sampled independently from a

Gaussian distribution for each individual channel-body. The locations of the channel-

bodies are determined by a uniform distribution in spatial location. The fine-grained

material surrounding the river systems comprises layers of single-pixel thickness,

where each layer has a constant value of acoustic P-wave velocity and density which

varies randomly from one layer to another and is sampled from a Gaussian distribution.

We use a binary indicator variable to distinguish the two facies regions, river channel

versus shale matrix. The ratio of how much of a given cross-section is filled with river

channels compared with the overall area of the geological domain is a key property in

understanding the geological nature of these structures. This ratio follows a uniform

distribution from 30 to 60% in our dataset, and river channels are placed at random

until a cross-section meets the randomly sampled ratio.

A total of 10,000 training images were created as a training set for the GAN. A

further 4000 images were retained as a test set to evaluate the inversion technique.

While training the generative model outlined in Sect. 4, we monitor image quality

and output distribution for each of the modeled properties. The reference realization

(Fig. 3) used to evaluate the Bayesian inversion approach was chosen randomly from

the test set of object-based models. Figure 3 shows a comparison of the distribution

of the three modeled properties: geological facies indicator, acoustic P-wave velocity,

and rock density for the reference model.

6 Results

We evaluate the proposed method of inversion by sampling a set of latent variables

z determining the output of the generative model Gθ (z) (Sect. 5, Fig. 3). First, we
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Fig. 4 a Pixel-wise mean and b standard deviation of the ensemble of 100 models sampled unconditionally

from the prior (1) represented by the generator function Gθ (z). Posterior ensemble of geological indicator

variables matched to the seismic representation of the reference model shown in Fig. 3 for (2) two sources,

(3) two sources and a single borehole, (4) three sources, (5) nine sources, (6) 27 sources. Source locations

are indicated by red diamonds and the borehole location by a blue circle. The reference model is indicated

by red contours

evaluate the generative model as a prior for representing possible earth models and

generating N = 100 unconditional samples (Fig. 4-1, Appendix Fig. 9).

Two cases of inversion are considered: inversion for the acoustic P-wave velocity

Vp and combined inversion of acoustic velocity and of geological facies along a

borehole. In all the cases presented, we assume that density is a constant. For all

tests, we perform inversion using the approximate MALA scheme. For the additional

borehole constraint, we require accuracy of geological facies of above 95% to be

accepted as a valid inverted sample. While lower errors in seismic mismatch and

borehole accuracy can be achieved, evaluating the forward problem and adjoint of

the partial differential equation comes at a high computational cost, and therefore a

cost-effectiveness trade-off was necessary.

For the first case of seismic inversion without borehole constraints, we perform sim-

ulations where the number of acoustic sources are increased. Fewer acoustic sources

means that less of the domain is properly imaged, leading to high uncertainty in areas

where no incoming waves have been reflected and recorded by the receivers on the

surface. The acoustic sources and 128 receivers are equally spaced across the top edge

of the domain.
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Fig. 5 Comparison of a the seismic waveform based on the reference model acoustic velocity with b

the waveform of an inferred model with three seismic sources. The difference c in amplitude of the two

waveforms. Color maps are scaled based on one standard deviation in amplitudes of the reference model

waveform (a)

In Fig. 4 we show the pixel-wise mean (Fig. 4a) and standard deviation (Fig. 4b)

of 100 inferred models for an increasing number of acoustic sources (from 2 to 27

sources). As the total number of acoustic sources increases, we obtain a lower stan-

dard deviation for the resulting model ensembles. In the case of two acoustic sources

(Fig. 4b-2), we find that close to the sources, there is a small variation among the

inferred models (dark shades), whereas the central area where no acoustic source has

been placed shows a very high degree of variation. This is confirmed by the three-source

case where a central acoustic source has been placed in addition to the sources on the

borders of the domain. Lower variability in the inverted ensemble can be observed.

This correlates well with the Bayesian interpretation of the inverse problem: where

acoustic sources allow the subsurface to be imaged, we arrive at a low standard devi-

ation in the posterior ensemble of geological models, whereas within regions that are

only sparsely sampled by the acoustic sources, we expect the prior—the unconditional

generative model—to be more prevalent, leading to a higher variability in geologi-

cal features. As expected, when we increase the number of sources, we find overall

smaller variability in the resulting ensemble of inverted earth models. We observe only

marginal reduction in variability between the cases with 9 and 27 sources (Fig. 4b, 5,

6). For all inversion scenarios considered, we present samples from the posterior in

the Appendix (Figs. 10, 11, 12, 13, 14).

In the case where lower-dimensional information such as a borehole was included

as an additional objective function constraining the generative model (Fig. 4b-3), we

find a lower standard deviation around this borehole. The standard deviation along the

borehole is close to zero due to the per-realization 95% accuracy constraint. Further-

more, there is a region of influence where the borehole constrains lateral features such

as channel bodies. This is shown by channel-shaped features of low standard deviation

at the top and bottom of the domain. Comparison with the reference model (Fig. 3-a)

shows that two channel bodies can be found along the one-dimensional feature.

For each generated realization we have recorded the ratio of the squared error norm

(Eq. 6) and the squared norm of the noise in the seismic data (Fig. 6) at each MALA

sampling iteration. The global minimum of the data mismatch in the presence of

Gaussian noise is reached when the objective function value is equal to the squared

norm of the noise in the data, i.e., at a ratio equal to 1 (Fig. 6). In practice, we find

that performing 200 MALA iterations leads to a sufficient reduction in the mismatch
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Fig. 6 Comparison of the ratio of the squared error norm and the squared norm of the Gaussian noise. The

global minimum is reached at values of 1. Shaded regions indicate ± σ of the squared error ratio. We perform

200 approximate MALA iterations to obtain samples of the posterior given seismic observations only, as

well as where borehole information and seismic observations are included. The step size was annealed to

very small values, leading to a stabilization of the squared error norm at the end of the sampling procedure
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of the seismic data, and as required by the approximate MALA algorithm, the error

stabilizes as the step size is reduced.

Because modern FWI methods come at very high computational cost for two- and

possibly three-dimensional inversion, a small number of required iterations is impera-

tive. In further tests, reducing the number of iterations of the MALA approximation or

simply optimizing by gradient descent, as performed by Richardson (2018), enables

convergence to small errors, but this approach has been shown to lead to reduced

sample diversity (Nguyen et al. 2016).

7 Discussion

We have shown that it is possible to obtain posterior realizations inferred from the latent

space of a GAN generator that honor seismic and well-bore data by using an approxi-

mate Bayesian sampling method. A number of open questions remain concerning the

generative model and the posterior distribution of models that are obtained.

A common challenge with GANs specifically is their so-called mode-collapse

behavior, where the distribution represented by the generative model has collapsed

to one or a few modes of the distribution implicitly represented by the set of training

images. GANs do not represent the density explicitly, and therefore it is not possible

to evaluate the ability of a GAN to represent the distribution by, for example, evalu-

ating the likelihood of a set of test images given the model parameters p(m|θ). Theis

et al. (2015) have shown that evaluating sample quality and diversity of generative

adversarial networks is difficult. Nevertheless, a number of heuristic approaches have

been proposed, such as the inception score (IS) (Salimans et al. 2016) or the Frechet

Inception Distance (FID) (Heusel et al. 2017), and while these methods are popu-

lar for evaluating GANs trained on natural images, they may not be representative

measures for comparing GANs, as shown by Barratt and Sharma (2018). Arora and

Zhang (2017) propose a method to empirically evaluate the support of the distribution

represented by a GAN.

Another common failure case of GANs occurs when the generator only memorizes

the images of the training set and does not learn a representation of the entire distri-

bution. In this case, it should only be possible to infer models which are part of the

training set and which match the well and seismic data associated with the reference

model. In the following, we investigate whether the ensemble of models obtained by

solving the inverse problem represent new stochastic realizations of the underlying

distribution implicitly represented by the training images.

We have evaluated the mean-squared-error (MSE) and the structural similarity index

(SSIM) (Wang et al. 2004) between pairs of binary facies models. A perfect agreement

between two models is reached for an MSE of zero and an SSIM of one. The MSE,

while being a common measure for comparing pairs of data, is very sensitive to small

translations of the models that are compared. The structural similarity index attempts

to capture perceptual similarity and is less sensitive to pixel-wise differences in the

two compared models (Wang and Bovik 2009).

In Fig. 7 we show kernel density estimates for the distributions of the two image

similarity measures. First, we compare the distribution of the MSE and SSIM between
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Fig. 7 Kernel density estimates of the distributions of the (left) mean-squared-error and (right) structural

similarity index (SSIM) with respect to the reference model for models sampled from the GAN prior, and

inferred models obtained by Bayesian inversion

the reference model and the 104 models in the training set (Ref.-TI) with that between

the reference model and 105 models sampled from the GAN prior (Ref.-Prior). We

find that the two distributions match closely. This confirms that images drawn from

the GAN prior and from the training set are statistically similar and that none of the

images from the training set and prior are likely to be identical to the reference model.

This finding is a good indication that the GAN does not seem to have collapsed to

a few modes, but it does not exclude the possibility of our generative model having

memorized the training set, as in this case we would expect the distributions between

Ref.-Prior and Ref.-TI to match.

In a second step we now compare the reference model to the models inferred by our

Bayesian inversion approach using the GAN as a prior. We find that the distributions

are all consistently shifted to regions of higher similarity to the reference model, i.e.,

lower MSE and higher SSIM for models inferred when considering the seismic data as

well as seismic and well data. This shows that our inversion, when the number of data

is increased, tends towards models that are increasingly similar to the reference model.

When 9 and 27 acoustic sources are used, we find that inversion leads to models that

on average have a SSIM that has very low probability under the Ref.-TI. and Ref.-Prior

distributions showing that our GAN is able to create images outside the set of training

images. If the generator had only memorized the training set, we should not be able

to infer models with higher similarity as the number of data increased.

In Fig. 8a we show models from the training set, samples from the GAN prior,

and models inferred with the highest SSIM when compared with the reference case

(Fig. 3). In Fig. 8b we show models that have an SSIM close to the mode of the SSIM

distributions and find that the model from the posterior inferred by inversion using 27

acoustic sources is visually more similar to the reference case (Fig. 3) than the samples

obtained from the prior and from the training set.

It is important to note that the evaluation of the inferred models with respect to

a reference model is only possible in the case of synthetic data. In subsurface appli-

cations, it is not possible to obtain the entire reference model. Furthermore, models

that are structurally very different can be valid solutions of the ill-posed inverse prob-

lem. These models, which represent possible solutions of the inverse problem, may be

associated with different modes of the prior distribution. In the case of GANs, the gen-
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Fig. 8 Overview of models from the training set, GAN prior, and inferred models using the MALA

approach that a show the highest similarity to the reference model (Fig. 3) measured by the SSIM metric

and b represent realizations close to the mode of the distribution of the SSIM

erator may be able to represent all of these modes or only a subset (mode-collapse). If

mode-collapse has occurred, the posterior ensemble only represents solutions obtained

from the modes represented by the generator. Therefore, checking for the occurrence

of mode-collapse is key for practical applications, as mode-collapse may significantly

affect the ensemble of obtained solutions and possibly lead to underestimated uncer-

tainty.

For future work, evaluating other deep generative models based on explicit density

representations (Kingma and Welling 2013; Dinh et al. 2016; van den Oord et al. 2016;

Kingma and Dhariwal 2018), which can calculate the likelihood of a set of test images,

may help to improve the representation of the prior distribution and mitigate the effect

of mode-collapse on inversion.

8 Conclusions

Inversion of subsurface geological heterogeneities from acoustic reflection seismic

data is a classical method designed to aid the understanding of the earth’s interior. The

inference of model parameters from measured acoustic properties is often performed

in the very high-dimensional space of model properties, leading to very CPU-intensive

optimization (Akcelik et al. 2003).

We apply a method that combines a generative model of geological heterogeneities

efficiently parameterized by a lower-dimensional set of latent variables, with a numer-

ical solution of the acoustic inverse problem for seismic inversion using the adjoint

method. Leveraging the adjoint of the studied partial differential equation, we deduce

gradients that are subsequently used to sample from the posterior over the latent vari-

ables given the mismatch of the observed seismic data by following an approximate

MALA scheme (Nguyen et al. 2016).
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While the proposed application was illustrated on a simple geophysical inversion,

this method may find use in other domains where spatial property models control the

evolution of physical systems, such as in fluid flow in porous media or materials

science. The combination of a deep generative model parameterized by a lower-

dimensional set of latent variables and gradients obtained by the adjoint method may

lead to new efficient techniques for solving high-dimensional inverse problems.
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A Appendix

A.1 Generative Model Network Architectures

See Table 1 and Figs. 9, 10, 11, 12, 13 and 14.

Table 1 Generator and

discriminator network

architectures used to create

synthetic geological structures.

Geological facies are

represented by a binary indicator

variable and P-wave velocities

are represented by a bimodal

Gaussian distribution. A

hyperbolic tangent activation

function is used to represent the

two families of properties. Rock

density shows a Gaussian

distribution. A soft-plus

activation function

( f (x) = 1
β

log(1 + exp(β x)),

β = 1) is used to ensure positive

values of density. Notation for

convolutional layers: LayerType

(Number of filters),

k = kernel size, s = stride, p =

padding, BN =

BatchNorm, PS = PixelShuffle

(a) Multi-channel generator

Latent variables z ∈ R50×1×2

Conv2D(512)k3s1p1, BN, ReLU, PSx2

Conv2D(256)k3s1p1, BN, ReLU, PSx2

Conv2D(128)k3s1p1, BN, ReLU, PSx2

Conv2D(64)k3s1p1, BN, ReLU, PSx2

Conv2D(64)k3s1p1, BN, ReLU, PSx2

Conv2D(64)k3s1p1, BN, ReLU, PSx2

Conv2D(3)k3s1p1

Tanh (0,1)—Softplus (2)

(b) Discriminator for multi-channel GAN

Geological properties m ∈ R3×64×128

Conv2D(64)k5s2p2, ReLU

Conv2D(64)k5s2p1, ReLU

Conv2D(128)k3s2p1, ReLU

Conv2D(256)k3s2p1, ReLU

Conv2D(512)k3s2p1, ReLU

Conv2D(512)k3s2p1, ReLU

Conv2D(1)k3s1p1, ReLU
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Fig. 9 Samples from the prior distribution of models obtained from the GAN with the reference model

(Fig. 3) shown in the first row
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Fig. 10 Samples obtained from latent space optimization with two acoustic sources with the reference

model (Fig. 3) shown in the first row
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Fig. 11 Samples obtained from latent space optimization with three acoustic sources with the reference

model (Fig. 3) shown in the first row
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Fig. 12 Samples obtained from latent space optimization with nine acoustic sources with the reference

model (Fig. 3) shown in the first row
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Fig. 13 Samples obtained from latent space optimization with 27 acoustic sources with the reference model

(Fig. 3) shown in the first row
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Fig. 14 Samples obtained from latent space optimization with two acoustic sources and one borehole with

the reference model (Fig. 3) shown in the first row
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