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a b s t r a c t

We study a phenomenon of noise-induced intermittency for the stochastically forced

one-dimensional discrete-time system near tangent bifurcation. In a subcritical zone,

where the deterministic system has a single stable equilibrium, even small noises generate

large-amplitude chaotic oscillations and intermittency. We show that this phenomenon

can be explained by a high stochastic sensitivity of this equilibrium. For the analysis of

this system, we suggest a constructive method based on stochastic sensitivity functions

and confidence intervals technique. An explicit formula for the value of the noise intensity

threshold corresponding to the onset of noise-induced intermittency is found. On the basis

of our approach, a parametrical diagram of different stochastic regimes of intermittency

and asymptotics are given.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Due to the interaction between nonlinearity and stochasticity, noise can induce a number of interesting unexpected
phenomena in dynamical systems, such as noise-induced transitions [1,2], noise-induced resonance [3–5], noise-induced
excitement [6], noise-induced order [7,8] and chaos [9,10]. The transition to chaos is a fundamental and widely studied
problem in deterministic nonlinear dynamics. Among the possible routes to chaos is an intermittency route. The system
demonstrating intermittent behavior remains for a longduration in some regular regime (laminar state) and at unpredictable
moments begins to exhibit chaotic oscillations (turbulent state) before returning to the laminar state. Pomeau and
Manneville [11,12] have proposed a simple deterministic one-dimensional model and classified three different types
of intermittency. These types (I, II and III) correspond to a tangent bifurcation, a subcritical Hopf bifurcation, or an
inverse period-doubling bifurcation. A renormalization group approach to analyze type-I intermittency has been used in
Refs. [13,14].

In this paper, we focus on the study of the noise-induced type-I intermittency phenomenon. An influence of noise on the
intermittent behavior of nonlinear dynamical systems has been widely studied [15–21].

Frequently, noise-induced intermittency is caused by the multistability of the initial nonlinear deterministic system.
Indeed, let the system have coexisting regular (equilibrium or limit cycle) and chaotic attractors. Due to random
disturbances, a phase trajectory can cross a separatrix between basins of the attraction and exhibit a new dynamical regime
which has no analog in the deterministic case. Random trajectories hopping between basins of coexisting deterministic
attractors form a new stochastic attractor. This stochastic attractor joins together two types of dynamics. Trajectories in this
attractor exhibit the alternation of phases of noisy regular and noisy chaotic dynamics near initial deterministic attractors
and define corresponding type of noise-induced intermittency.
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However, themultistability is not an obligatory condition of the noise-induced intermittency. The phenomenon of noise-
induced intermittency can be observed in the specific dynamical systems with a single stable equilibrium only. For these
systems, a basin of attraction of equilibrium can be separated on two zones. If the initial point belongs to the first zone
localized near the equilibrium, the system quickly relaxes back into the stable equilibrium. Once the initial point lies in
second zone, a large excursion of the trajectory is observed. In this case, the systemdemonstrates high-amplitude oscillations
until the trajectory returns to the first zone. Under the small random disturbances, trajectory of this type system leaves a
stable equilibrium and forms some probabilistic distribution around it. This noisy equilibrium is localized in the first zone.
Once the noise intensity exceeds a certain threshold, the random trajectory hits at second zone and exhibits long-time
noisy oscillations until return to first zone and so on. In such a way the stochastically forced system with super-threshold
noise demonstrates noise-induced intermittency. Under the random disturbances, this system is transformed from order
to chaos. The standard model with this type noise-induced intermittency is a one-dimensional map in a zone of tangent
bifurcation. Similar phenomenawhen small noises generate large-amplitude oscillations can also be observed in continuous-
time systemswith a single stable equilibrium. The FitzHugh–Nagumomodel is a well known example of such noise-induced
excitement [22,6].

A probabilistic analysis of the noise-induced phenomena is based on the investigation of corresponding stochastic attrac-
tors. A detailed description of stochastic attractors for continuous-time systems is given by the Kolmogorov–Fokker–Planck
equation. For discrete-time systems, this description is given by the corresponding integral equationwith Frobenius–Perron
operator. However, a direct usage of these equations is very difficult even for the simplest cases. To avoid this complexity,
various asymptotics and approximations can be considered [23,24].

A stochastic sensitivity function (SSF) method has been used for the constructive probabilistic description of stochastic
attractors for both continuous [25] and discrete-time [26] systems. The aim of our work is to demonstrate how the SSF
technique can be applied to the parametrical analysis of the noise-induced intermittency for discrete-time nonlinear
systems. Our general approach is illustrated on the example of the simple one-dimensional model.

In Section 2, we introduce this model and discuss phenomena of noise-induced intermittency and noise-induced
chaotization in a subcritical zone near the tangent bifurcation.

The main results of our paper are shown in Section 3.

In Section 3.1, we present a brief theoretical background of the general SSF technique for stochastic equilibria of discrete-
time dynamical systems. A constructive description of the dispersion of random states in the stochastic equilibria is given
by confidence intervals. The size of the confidence interval is defined by the noise intensity, value of stochastic sensitivity
and fiducial probability.

In Section 3.2, this technique is applied to the detailed parametrical analysis of noise-induced intermittency for the
one-dimensional model introduced in Section 2. Through this study, we find an explicit formula for the value of noise
intensity threshold corresponding the onset of noise-induced intermittency and construct a parametrical diagram of
different stochastic regimes.

In Section 3.3, constructive abilities of our approach for the asymptotic analysis of the noise-induced intermittency in a
tangent bifurcation zone for the general one-dimensional systems are demonstrated.

2. Phenomena of noise-induced intermittency and chaotization

2.1. Deterministic model. Intermittency

We consider a discrete-time nonlinear dynamic system

xt+1 = f (xt , µ), f (x, µ) = µx(1 − x)(lx2 + px + q), (1)

where

l =
1

1 − s1 + s2 − s3
, p = l(1 − s1), q = l(1 − s1 + s2),

s1 = x̄1 + x̄2 + x̄3, s2 = x̄1x̄2 + x̄2x̄3 + x̄3x̄1, s3 = x̄1x̄2x̄3.

For any µ, the system (1) has a trivial equilibrium x̄0 = 0. Values x̄1, x̄2, x̄3(x̄1 ≤ x̄2 ≤ x̄3) are nontrivial equilibria of the
system (1) for µ = 1. As parameter µ varies near µ = 1, these equilibria change too. So we denote the corresponding
functions by x̄1(µ), x̄2(µ), x̄3(µ).

This system is a convenient model for the study of the phenomenon of intermittency.

We fix values x̄1 = x̄2 = 0.25, x̄3 = 0.85 and vary the parameter µ near the value µ∗ = 1. Note that for the interval
µ∗ − 0.1 < µ < µ∗ + 0.1 , the equilibria x̄0 and x̄3(µ) are unstable.

Here, the value µ∗ = 1 is a tangent bifurcation point (see Fig. 1). For µ < µ∗, we have x̄1(µ) < x̄2(µ), where the
equilibrium x̄1(µ) is stable (black circle) and equilibrium x̄2(µ) is unstable (white circle). For µ = µ∗, these equilibria
coalesce into the single semistable equilibrium x̄1(µ∗) = x̄2(µ∗). For µ > µ∗, this equilibrium disappears.

In Fig. 2, the attractors of the system (1) for µ ∈ (0.995, 1.005) are presented.
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Fig. 1. Plots of y = f (x, µ) for µ > µ∗ (upper); µ = µ∗ (middle); µ < µ∗ (lower).
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Fig. 2. Attractors of deterministic system (1).

At the left subinterval 0.995 ≤ µ ≤ 1, the system (1) has a stable equilibrium x̄1(µ) (lower solid curve) and unstable
equilibrium x̄2(µ) (dashed curve). In Fig. 3, iterations of the system (1) with µ = 0.996 are shown. Here unstable equilibria
x̄2, x̄3 are plotted by white circles and a stable equilibrium x̄1 is plotted by the black circle. There are two different roads
towards the stable equilibrium x̄1 depending on the initial state x0 location. For x0 ∈ (0, x̄2), one can observe a short
monotonous walk. An example of such walk for the initial state x0 = 0.04 is shown in Fig. 3. The interval x0 ∈ (0, x̄2)
is a basin of the monotonous attraction for the stable equilibrium x̄1. But for x0 ∈ (x̄2, x̄3) we have a long excursion away
from the equilibrium x̄1 with oscillations until the trajectory comes after all to the interval (0, x̄2) (see a trajectory with an
initial state x0 = 0.4 in Fig. 3). The unstable equilibrium x̄2 separates these two types of trajectories.

As the parameter µ increases, the critical value µ∗ = 1 is reached. At this critical value the stable equilibrium x̄1(µ)
coalesces with the unstable equilibrium x̄2(µ). Above the critical value µ∗ = 1, these merged equilibria disappear and a
new chaotic attractor is born. A transition of the parameter µ across the value µ∗ = 1 produces the sadden creation of the
strange attractor with a wide size. For µ slightly larger than µ∗ = 1, the orbit of this new attractor typically spends the
long stretched time in the vicinity of the point x̄1(µ∗) with the slow monotonous increase. At the end of this laminar time
interval, the orbit suddenly bursts out of this region and switches to chaotic oscillations around the unstable equilibrium
x̄3(µ). At the end of this turbulent interval, the orbit hits the vicinity of point x̄1(µ∗) again and so on. In Fig. 4, the dynamics of
the system (1) with µ = 1.005 is shown. Here one can see iterations and time series for the initial state x0 = 0.04 (Fig. 4(a),
(b)). A distribution of states in the chaotic attractor is plotted in Fig. 4(c). This sporadic switching between two qualitatively
different behaviors of the system (1) is a typical example of Pomeau and Manneville type I intermittency under a tangent
bifurcation.
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Fig. 3. Iterations of deterministic system (1) with µ = 0.996.
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Fig. 4. Dynamics of system (1) with µ = 1.005: (a) iterations; (b) time series; (c) distribution of states in attractor.
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Fig. 5. Lyapunov exponent of deterministic system (1).

In Fig. 5, a plot of the Lyapunov exponent for attractors of the system (1) is presented. A positiveness of this exponent for
µ > µ∗ = 1 confirms the chaotic character of attractors in this parametrical zone.

2.2. Stochastic model. Noise-induced intermittency and transition to chaos

Along with the deterministic system (1) we consider a corresponding stochastic system forced by additive noise

xt+1 = f (xt , µ) + εξt , (2)

where ξt is uncorrelated Gaussian random process with parameters Eξt = 0, Eξ 2
t = 1, ε is a scalar parameter of the noise

intensity.
We study a behavior of this stochasticmodel for different sets of parametersµ and ε. In Figs. 6 and 7, stochastic attractors

and Lyapunov exponents of the system (2) are plotted on the interval 0.995 ≤ µ ≤ 1.005 for three values of the noise
intensity ε = 0.001, 0.002, 0.005.

As we can see, noise deforms the deterministic attractor (compare Figs. 2 and 6). As noise intensity increases, a border
between order and chaos moves to the left. The changes of the arrangement of attractors are accompanied by the changes
in dynamical characteristics (compare Lyapunov exponents in Figs. 5 and 7).

The most essential difference between stochastic and deterministic attractors is observed near the bifurcation point
µ∗ = 1. The underlying reason is that in the vicinity of this bifurcation point attractors are highly sensitive to random
disturbances. Consider in detail a behavior of stochastic system (2) near µ∗ = 1. Compare the stochastic response of this
system for two fixed values µ = 0.998 and µ = 0.9998. In Figs. 8 and 9, time series are presented for different values of
noise intensity.

Consider µ = 0.998. For low noise ε = 0.002, random states are concentrated near the stable deterministic equilibrium
x̄1 (see Fig. 8(a)). For ε = 0.005 one can see stochastic oscillations of large amplitude. Indeed, as the noise intensity increases,
the dispersion of random states near x̄1 grows and iterations with high probability jump over the unstable equilibrium x̄2
and continue a long excursion with high amplitude oscillations around x̄3. After these oscillations, iterations come to the
vicinity of the point x̄1 again and so on (see Fig. 8(b)). In this case, the stochastic model (2) exhibits a coexistence of two
different dynamical regimes even if the deterministic system (1) has a stable equilibrium only. This type of dynamics of the
system (2) can be determined as a noise-induced intermittency.

In Fig. 9, time series of the stochastic system (2) with µ = 0.9998 for ε = 0.0005 and ε = 0.002 are plotted. As can be
seen, noise-induced intermittency for this µ = 0.9998 is observed for the lower noise intensity.

For stochastic attractors and their dynamic characteristics, a dependence on noise level is illustrated in Figs. 10 and 11
for µ = 0.998 and µ = 0.9998. In Fig. 10, one can see a sharp growth of the size of the attractor as noise intensity exceeds
some critical value. A change of the sign of Lyapunov exponent from minus to plus can be interpreted as a transition from
regular to noise-induced chaotic regime (see Fig. 11).

Thus, the results presented here give us a qualitative description of noise-induced transitions from the regular regime to
intermittency. More detailed quantitative analysis of noise-induced intermittency will be presented in Section 3 with the
help of the SSF technique.
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Fig. 6. Attractors of stochastic system (2) for (a) ε = 0.001, (b) ε = 0.002, (c) ε = 0.005.
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Fig. 7. Lyapunov exponents of stochastic system (2) for (a) ε = 0.001, (b) ε = 0.002, (c) ε = 0.005.
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Fig. 8. Time series of stochastic system (2) with µ = 0.998 for (a) ε = 0.002, (b) ε = 0.005.
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Fig. 9. Time series of stochastic system (2) with µ = 0.9998 for (a) ε = 0.0005, (b) ε = 0.002.
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Fig. 10. Attractors of stochastic system (2) for (a) µ = 0.998, (b) µ = 0.9998.

3. Stochastic sensitivity analysis for noise-induced intermittency

3.1. SSF technique

Consider a nonlinear stochastic discrete-time system

xt+1 = f (xt) + εσ (xt)ξt . (3)
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Fig. 11. Lyapunov exponents of stochastic system (2) for µ = 0.998 (lower) and µ = 0.9998 (upper).

Here the function f (x) describes deterministic dynamics, and the function σ(x) characterizes the dependence of random
disturbances on state, ξt is uncorrelated Gaussian random process with parameters Eξt = 0, Eξ 2

t = 1, ε is a noise intensity.
It is supposed that the system (3) for ε = 0 has an exponentially stable equilibrium xt ≡ x̄.
Let xε

t be a solution of the system (3) with the initial condition xε
0 = x̄ + εv0. The variable

vt = lim
ε→0

xε
t − x̄

ε

characterizes the sensitivity of the equilibrium x̄ both to initial data disturbances and to the random disturbances of the
system (3). For the sequence vt , it holds that

vt+1 = αvt + βξt , α = f ′(x̄), β = σ(x̄). (4)

The dynamics of the momentsmt = Evt , wt = Ev2
t for the solution vt of the system (4) is governed by the equations

mt+1 = αmt , wt+1 = α2wt + β2. (5)

For the exponentially stable equilibrium x̄, it holds that |α| < 1 and the solutionsmt and wt of the system (5) are stabilized
for anym0 and w0:

lim
t→∞

mt = 0, w = lim
t→∞

wt =
β2

1 − α2
.

The mathematical details and proofs can be found in Ref. [26].
For small ε, a probabilistic distribution of xε

t is stabilized too. It means that the system (3) has a stationary distributed
solution x̄ε

t with probability density function p(x, ε). This function has the following Gaussian approximation:

p(x, ε) ≈
1

ε
√
2πw

exp



−
(x − x̄)2

2wε2



with mean value x̄ and dispersion D = ε2w. The value w connects the intensity of stochastic input (ε2) with stochastic
output (D) in the system (3) and characterizes a stochastic sensitivity of the equilibrium x̄. For the stochastic sensitivity
function w, the explicit formula can be written:

w =
σ 2(x̄)

1 − (f ′(x̄))2
.

Values w and ε define the borders of the confidence interval (x∗
1, x

∗
2):

x∗
1,2 = x̄ ± kε

√
2w.

Here the parameter k is connected with fiducial probability P by the formula k = erf−1(P), where erf(x) = 2√
π

 x

0
e−t2dt

is the error function. It means that random states of the system (3) hit into this interval with the probability P . Confidence
intervals characterize a spatial arrangement of random states of the system (3) near the stable equilibrium x̄.
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Fig. 12. Stochastic sensitivity function of the equilibrium (x̄1(µ)).

The stochastic sensitivity function (SSF) techniquewas elaborated for the analysis of randomly forced equilibria and limit
cycles for both continuous [25] and discrete-time [26] systems. The SSF technique was successfully applied to the study of
some peculiarities of stochastic cycles in a period-doubling bifurcations zone [27].

Confidence domains are sufficiently simple and evident geometrical models for the spatial description of random states
of the stochastic system. The SSF technique enables to construct confidence intervals, ellipses, bands and tori for the
probabilistic analysis of various stochastic attractors [28,29].

In this paper, SSF technique and a method of confidence intervals are used for the constructive analysis of noise-induced
intermittency.

3.2. Analysis of noise-induced intermittency

For quantitative analysis of the phenomenon of noise-induced intermittency in the system (2), we will use the
corresponding stochastic sensitivity function.

For a zone 0.995 ≤ µ < 1, the stochastic sensitivity function w(µ) of the stable equilibrium x̄1(µ) of the system (2) is
the following:

w(µ) =
1

1 − (f ′(x̄1(µ)))2
.

Near the tangent bifurcation point, if µ → µ∗ = 1 then f ′(x̄1(µ)) → 1 and w(µ) → ∞. In Fig. 12, the function w(µ)
is plotted. Note that a high level of SSF values is the original cause of the noise-induced intermittency near the point of the
tangent bifurcation.

Stochastic sensitivity function w(µ) allows us to construct confidence intervals (x∗
1(µ), x∗

2(µ)) : x∗
1,2(µ) = x̄1(µ) ±

kε
√
2w(µ). Here k = erf−1(P), P is a fiducial probability, ε is the noise intensity. These intervals characterize a dispersion

of random states near the stable equilibrium x̄1(µ) and can be used in the quantitative analysis of phenomenon of noise-
induced intermittency.

In Fig. 13, random states of the system (2) on the interval 0.995 ≤ µ < 1 for three values of noise intensity are plotted
in gray. Along with stochastic attractors, here one can see curves of the stable equilibrium x̄1(µ) (solid line), the unstable
equilibrium x̄2(µ) (dashed line), and the borders x∗

1(µ), x∗
2(µ) (dotted lines) of corresponding confidence intervals with

fiducial probability P = 0.99. For the left part of the considered zone 0.995 < µ < 1, where x∗
2(µ) < x̄2(µ), the results of

the direct numerical simulation agree with the confidence intervals found by the SSF technique. Indeed, for this zone, the
confidence intervals are entirely contained in the basin of the monotonous attraction of the stable equilibrium x̄1(µ) and
therefore the random states of the system (2) are concentrated near x̄1(µ). At the right part of the interval 0.995 < µ < 1,
because of the unlimited increase of the stochastic sensitivity and decrease of the distance x̄2(µ) − x̄1(µ), the confidence
intervals expand and for x∗

2(µ) > x̄2(µ) begin to occupy the zone, where the system exhibits oscillations with large
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Fig. 13. Random states (gray), unstable equilibrium (dashed line), stable equilibrium (solid line) and borders of corresponding confidence intervals (dotted

line) with P = 0.99 for (a) ε = 0.001, (b) ε = 0.002, (c) ε = 0.005.

amplitude. This occupationmeans that random trajectories of the noisy systemwith high probability can exceed the bounds
of the unexcited regime and go on a large excursion.

Intersection point of the curves x∗
2(µ) and x̄2(µ) can be used as a marker for the border between unexcited regime with

small amplitude stochastic oscillations and zone of excitement of chaotic oscillations. This point can be found from the
equation

(x̄2(µ) − x̄1(µ))2 = 2k2ε2w(µ).

From this equation, an explicit formula for corresponding critical value ε∗ of noise intensity follows:

ε∗(µ) =
|x̄2(µ) − x̄1(µ)|

k
√
2w(µ)

.

A plot of the function ε∗(µ) for the system (2) is shown in Fig. 14. This plot together with a line µ∗ = 1 distinguishes three
zones. Here A is a zone of noisy order, B is a zone of noise-induced intermittency and C is a zone of noisy intermittency.
Transition from A to B can be interpreted as noise-induced chaotization. Thus, based on a SSF technique and a method
of confidence intervals, one may construct parametrical portraits illustrating different regimes of stochastic dynamics for
systems in which phenomenon of intermittency occurs.

3.3. Noise-induced intermittency and local asymptotics of tangent bifurcation

An essence of noise-induced intermittency can be described by local asymptotics of the function f (x) in a zone of tangent
bifurcation. For the asymptotic analysis, we consider the following one-dimensional model map:

xt+1 = f (xt) + εξt , f (x) = x − δ(x − x̄1) + l|x − x̄1|m +′′ return′′, δ ≥ 0, l > 0. (6)

Here x̄1 is a fixed equilibrium, parameters δ, l and m define the asymptotic of f (x) at the point of tangent bifurcation. The
parameter δ characterizes a subcriticity, m > 1 is an order of contact of the curve y = f (x) with y = x at the point x̄1 for
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Fig. 14. Critical value ε∗(µ) (solid line) and zones: A—noisy order; B—noise-induced intermittency; C—noisy intermittency.

δ = 0. For δ > 0, the system (6) has an unstable equilibrium x̄2 = x̄1 + (δ/l)
1

m−1 along with the stable equilibrium x̄1.
The return of the states of this system after large-amplitude oscillations to the vicinity of the equilibrium x1 can proceed in
different ways. Here the concrete mechanism of this return does not matter.

Using the SSF technique presented above, one can find the stochastic sensitivity function w and the confidence interval
(x̄1 − r, x̄1 + r):

w(δ) =
1

2δ − δ2
, r = k ε



δ −
δ2

2

− 1
2

.

Note that the stochastic sensitivity function depends on the parameter δ only.
An asymptotic of the critical value ε∗ for noise intensity corresponding to the onset of noise-induced intermittency can

be found from the equation r(ε) = x̄2 − x̄1 in the explicit form:

ε∗ ≈
1

k
lp δq, p = −

1

m − 1
, q =

m + 1

2m − 2
.

Note that the coefficient k depends on the fiducial probability P: k = erf−1(P).

4. Conclusion and discussion

We study an intermittency phenomenon for nonlinear systems forced by the random disturbances. Our paper is focused
on the noise-induced intermittency and chaotization observed near tangent bifurcation. Through the study of a simple one-
dimensional stochastic system,we present themain probabilistic phenomena andmethods of their analysis. The remarkable
feature of the dynamics of themodel considered here is that small noises generate large-amplitude chaotic oscillations even
in the subcritical zone where the deterministic system has a single stable equilibrium. We show that this phenomenon
can be explained by the high stochastic sensitivity of this equilibrium. In this paper, for the probabilistic distribution of
random states in the stochastic attractor, we use the constructive approximation based on the stochastic sensitivity function
technique. On the basis of the SSF technique, we find confidence intervals for these random states and use them in the
parametrical analysis of noise-induced intermittency. For a sufficiently small noise, the confidence intervals are localized
near the stable equilibrium. As the noise intensity increases, the confidence intervals expand and begin to occupy the zone
of large-amplitude oscillations. This occupationmeans that random trajectories of the forced systemwith a high probability
can exceed the bounds of the unexcited regime and go on a large excursion generating chaotic oscillations. The noise
intensity that corresponds to the beginning of this occupation can be used as the estimation of the threshold value. In the
present work, we have found an explicit formula for the value of noise intensity threshold corresponding to the onset of
noise-induced intermittency and constructed a parametrical diagram of different stochastic regimes. Our method enables
to determine the asymptotic of the critical noise intensity as a function of parameters of tangent bifurcation in a general
case.
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