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ABSTRACT

We consider shortest path problems defined on graphs with random arc

costs. We assume that information on arc cost values is accumulated as the

graph is being traversed. The objective is to devise a policy that leads from

an origin to a destination node with minimal expected cost. We provide

dynamic programming algorithms, estimates for their complexity, negative

complexity results, and analysis of some possible heuristic algorithms.
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1 Introduction

The deterministic shortest path problem has been studied extensively and

has been found to be a very useful tool in a great variety of contexts. In

this problem, one looks for a path joining two given nodes of a graph while

minimizing the sum of the costs of the traversed arcs, assuming that these

arc costs are known. On the other hand, there are many application areas

in which it is natural to model arc costs as random variables. One example

is the problem of vessel routing in the presence of uncertain weather condi-

tions. Other examples concern the routing of automobiles in the presence of

partially known and stochastically changing road congestion levels. Indeed,

the recent interest in Intelligent Vehicle Highway Systems (IVHS) and in au-

tomated driver assistance technologies seems to lead naturally to variations

of the shortest path problem that involve random arc costs.

The shortest path problem with random arc costs admits a few different

formulations depending on the assumptions made regarding the time at which

the realized values of the arc costs are learned (for a more detailed discussion,

see [An87]). For example:

a) We may assume that the values of the arc costs are learned before the

graph is traversed, in which case a shortest path (with respect to the

realized values) should be followed. As the shortest path length is a

random variable, it can become an object of study, as in [Fr69, HZ85,

M76, L081].

b) At the other extreme, we may assume that the values of the arc costs

are never learned or become known after a path is chosen. In this case,

we should choose a path which is shortest with respect to the expected

values of the arc lengths. References [MS85, MS87] deal with the more

difficult problem of finding a path that minimizes the expectation of a

utility function that depends nonlinearly on the arc lengths.

c) In an intermediate formulation, which is the one adopted in this paper,

the realization of the arc costs is learned progressively, as the graph

is traversed. In particular, if learning occurs by direct observation, we

may postulate that the cost of an arc is learned at the first time that

an end-node of that arc is visited. This is the case, for example, for a

vehicle that learns the congestion level in a particular road by getting



to an intersection of that road. This framework is also suitable for

modeling a robot that attempts to find a path to a destination through

a random environment. For this class of problems, one should not be

looking for a best path, but rather for a best policy, that is, a rule

for deciding where to go next given currently available information.

Alternatively, the problem arises when we consider the set of decisions

facing a vehicle that starts moving towards the destination along a

certain path, with the recourse option of choosing a new path whenever

new information is obtained.

Reference [Cr78] appears to be the first to have studied a model of this

type, in a fairly restricted setting. Finally, [AR88] considers a model in

which arcs can be active or inactive. One starts along a "ground path"

which is followed until an inactive arc is encountered. At that point, an

alternative recourse path is chosen and followed until the destination

is reached. The model in the present paper is more general in several

of respects (for example, we allow for several recourse actions, each

time that new information is obtained). The dynamic programming

algorithms given in [AR88] and in this paper are based on similar ideas.

In all of the above cases, we have assumed that the value of the arc costs

is random but does not change with time. In an alternative set of models,

briefly discussed in the last section, we may assume that the arc costs can

change randomly with time, as in [PT93].

We also note that there is some related literature in which information is

obtained as the graph is traversed, and the arc costs are modeled as deter-

ministic but unknown [BaS91, PY89]. This formulation is natural in unstruc-

tured environments for which minimal prior information is available. On the

other hand, our probabilistic framework could more suitable for environments

that have some statistical regularity, e.g., street congestion levels.

Regarding the objectives of this paper, although this study has been mo-

tivated from certain practical contexts, we do not claim to be studying fully

realistic or complete models of real-world situations. Rather, in view of the

practical significance of routing problems under uncertainty, we are inter-

ested in understanding the assumptions necessary for such problems to be

computationally tractable. Knowing which formulations result to tractable

problems is often a key factor in deciding how to pose and approach practical

problems.
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The remainder of this paper is organized as follows. In Section 2, we

specify the details of the models to be employed; in particular, two alternative

models are proposed in which the arc costs are modelled as independent or

dependent, respectively, random variables. Sections 3 and 4 present dynamic

programming algorithms for these two models, together with upper bounds

on their complexity. Section 5 contains some negative complexity results

indicating that our algorithms cannot be improved much. Section 6 discusses

and analyzes a few natural heuristics and provides some bounds on the "value

of information." Section 7 contains a discussion of further variations of our

model.

2 The Model and Notation

We define a random network G = (N/, A, P), by a triple consisting of a set N

of nodes (IJlJ = n), a set A of arcs (AI41 = m), and a probability distribution

P describing the statistics of the arc costs. In particular, the cost Cij of

each arc (i,j) is assumed to be a random variable and P specifies the joint

probability distribution of these random variables. The arcs could be either

directed or undirected; in the undirected case, it is assumed that the cost is

the same for both directions of travel through an arc.

Note that the sets A/ and A are assumed to be the same under every real-

ization. On the other hand, the distribution of the arc costs can be chosen so

that under a particular realization, the cost of some arc is prohibitively large.

Thus, in effect, our model encompasses the situation where certain arcs are

absent with some probability, as in the model of [AR88]. The same comment

applies to the case where certain nodes are absent with some probability.

We propose two different ways of specifying the probability distribution

P. In the first model, we assume that there is a set R = {1,...,R} of

possible realizations of the vector of arc costs, with the rth realization having

probability pr. We use ci~ to denote the cost of arc (i,j) under the rth

realization. It is clear that under this model, the costs of different arcs will

be, in general, dependent random variables. The stochastic shortest path

problem that is obtained under this model will be referred to as R-SSPPR.

In the second model, we assume that the costs of different arcs are in-

dependent random variables. The probability distribution P can be then

determined by specifying the statistics of each arc cost Cij. We assume that
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the range of Cij is finite and of cardinality Kij. We are then given, for each

(i,j) E A, the possible values cj, r = 1, ... , Ki, of Cij, together with the

associated probabilities pi'. The stochastic shortest path problem that is

obtained under this model will be referred to as i-SSPPR.

We note that the i-SSPPR can be viewed as a special case of the R-

SSPPR, except that a large number R = fI(i,j)EA Kij of realizations is needed.

In practice, the different arc costs are usually dependent; for example, high

congestion on one arc (or road) might imply high congestion on other arcs

as well. For this reason, the R-SSPPR with a moderate value of R could

sometimes be a realistic formulation.

Besides the random network G, we are given an origin node s E X/ and a

destination node t E A/. We consider a vehicle that starts at node s, travels

through the network, and ends up at node t. In doing so, the vehicle incurs

a cost equal to the sum of the costs of the arcs that it traverses. The key

difference from the classical shortest path problem is that when the vehicle

starts traveling, it does not know the realized values of the arc costs; it

only knows their statistics, as summarized by the probability distribution

P. As the vehicle moves through the network, its information increases. In

particular, we assume that whenever the vehicle visits a new node i, it learns

(and remembers) the realization of Cij for every arc (i, j) emanating from i.

A policy of the vehicle is defined as a set of rules that, given the location

of the vehicle and the information it has collected, determines the arc that

should be traversed next. The cost of a policy is the sum of the costs of the

arcs traversed until the vehicle reaches the destination node t. As the cost of

a policy depends on the realization of the arc costs, it is a random variable.

Our objective is to find a policy that has the smallest possible expected cost.

The SSPPR is a stochastic problem, because of the randomness of the arc

costs, and dynamic, because the vehicle's information changes dynamically

and, in fact, the information acquired also depends on the vehicle's deci-

sions. The SSPPR can be viewed as a stochastic programming problem with

recourse; the readjustment of the vehicle's path based on any newly acquired

information can be viewed as a recourse action. It is more useful, however,

to view the SSPPR as a stochastic control problem with imperfect informa-

tion [Be87]. Such problems can be solved, in principle, using the dynamic

programming methodology, although the resulting algorithms typically have

prohibitively high complexity [PT87]. One of the objectives of this paper is

to study the extent to which the SSPPR is an intractable problem and to
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determine conditions under which it can be solved realistically.

We end this section with an assumption which will be in effect throughout

the remainder of the paper. This assumption is introduced in order to guar-

antee that the expected cost of an optimal policy is not equal to -oo and is a

natural generalization of the assumptions commonly made for deterministic

shortest path problems.

Assumption: Under every possible realization of the network, the cost of

every cycle is nonnegative.

3 A Dynamic Programming Algorithm for

the R-SSPPR

The R-SSPPR is a stochastic control problem with imperfect information

because the actual realization of the random network is not known by the

vehicle. On the other hand, as is customary with imperfect information

problems, it can be converted to a problem with perfect information by

suitably redefining the state vector. In particular, the state vector should

encompass whatever information is relevant to the future decisions of the

vehicle: its current location and the arc cost information collected thus far.

In this section, we describe how this can be accomplished and we bound the

complexity of the resulting algorithm.

Recall that 1R = {1,..., R} is the set of possible realizations of the net-

work. Any subset of T1 will be called an information set. Initially, the vehicle

may only know that the actual realization of the network belongs to R1. As

the vehicle travels through the network, it can eliminate those realizations

that are incompatibe with the observed values of the Cijs. In particular, at

any time, the vehicle possesses an infomation set I (or "has information I")

which is the set of all r E R such that Cirj is equal to the observed value

of Cij, for all arcs (i,j) such that the vehicle has visited node i. If I is

a singleton, then there is a single realization compatible with the vehicle's

observations which means that the vehicle knows (or can infer) the value of

Cij for every arc of the network. Initially, when I = 1, the probabilities of

the different elements of I are equal to the prior probabilities of the differ-

ent realizations. Later on, when some of the realizations are eliminated, the

probabilities of the remaining possibilities can be easily evaluated: if I is the
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current information set, then

pr
Pr (r I I) = EI Pq' (1)

Given a current information set I, the set A can be divided into two

subsets:

(a) The set A, of arcs for which the value of Cij can be inferred from the avail-

able infomation; formally, Ad = {(i,j) e A I cr1(i,j) = cr2(i,j), Vrl,r 2 E I}.

We call these arcs deterministic (given I).

(b) The set Au of arcs for which the value of Cij cannot be inferred from

the available information; formally, Au = {(i,j) E Al 3 rl,r2 E I,crl(i,j) $
cr2(i,j)}. We call these arcs uncertain (given I).

For some more terminology, if i is a node and at least one of its outgoing

arcs (i,j) is uncertain given I, we say that node i is an information collection

node (given I); let Vf' be the set of such nodes. The rationale behind this

definition is the following. If the vehicle has information I and visits next a

node i which is not an information collection node, then the values of Cij are

already known for all arcs emanating from i, no new information is provided

to the vehicle, and the information set I remains the same. If on the other

hand, i is an information collection node, then the vehicle will learn the

realization of Cij for some uncertain arc and will be able to eliminate at least

one of the realizations. Thus, the cardinality of the information set decreases

each time that an information collection node is visited.

We now describe the "dynamics" of the changes of the information set.

Suppose that the vehicle has information I and visits next a node i E A/IV.

The new information set, after i is visited, is some proper subset I' of I.

Given the value of I and i, I' is a random variable because it depends on

the random (and uncertain) costs of some of the arcs emanating from i. In

particular, I' can be expressed as a function h(i, I, r) of i, I, and the actual

realization r of the network. This functional dependence can provide us with

the statistics of I' given I and i.

We are now ready to present a dynamic programming algorithm for the

R-SSPPR. Let V(i, I) be the expected cost-to-go (until the vehicle reaches

the destination node t), under an optimal policy, assuming that the vehicle

starts at node i and has information I. If I is a singleton, then V(i, I) is the

shortest path length from i to t in a graph without any arc cost uncertainty,

and can be determined by running a shortest path algorithm. Suppose now
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that we have already determined V(i, I) for all i and all I of cardinality k- 1

or less. Consider some node i and some I of cardinality k. We will show

how V(i, I) can be evaluated. The cost of the vehicle starting at node i with

information I and until it reaches node t can be broken up as follows: the

vehicle goes to an information collection node j E AI/, acquires a new (and

smaller) information set I' and then, starting from node j with information

I', goes to node t. The only other possibility is that the vehicle goes directly

from i to t without passing through an information collection node. Using

the principle of optimality, once the vehicle reaches node j and acquires

information I', its expected cost-to-go should be the optimal cost-to-go

V(j, I'). This is equivalent to deleting all arcs emanating from j (for every

information collection node j) and replacing them with a single arc (j, t) with

cost E[V(j, I')]. Having done so, V(i, I) is simply the shortest path length

from i to t in this newly defined graph. A few remarks are in order regarding

the arc costs in this new graph. If j is not an information collection node

given I, the costs of all arcs emanating from j are uniquely determined by I.

If on the other hand j E AVI/, we only need to know the value of E[V(j, I')].

We note that I' has cardinality smaller than that of I and according to our

earlier assumption, that V(j, I') is available for every relevant value of I'.

The expectation is necessary because, as discussed earlier, I' is a random

variable whose statistics are determined from j and I.

We now estimate the complexity of this algorithm. Since there are R

realizations, there are 2R - 1 choices for I and we have to solve 2 R - 1

all-origin single-destination shortest path problems. This can be done in

time 0(2Rn3) or, if all arc costs are nonnegative, in time 0(2Rn2). There is

some additional work required in order to determine the values of E[V(j, I')].

For each I, there are O(n) information collection nodes j that need to be

considered. Given I and j, the probability of I' can computed using the

formula

Pr(I' I j,I) = c p, (2)
{rElZjh(j,I,r)= I'}

where c is a normalizing factor so that EIp Pr(I' I j, I) = 1. We note that

the union of all information sets I' that can result from a given I and j, has

cardinality III, which is bounded by R. In particular, the summations in (2)

can be carried out for all relevant values of I' in O(R) time. We conclude

that this additional work is of the order of O(R2Rn).
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We also note that once V(i, I) has been computed for every i and I, an

optimal policy is easily determined.

We summarize this discussion in the following:

Theorem 1 The R-SSPPR can be solved in time 0(2R(Rn + n3 )), in gen-

eral, and in time 0(2R(Rn + n2 )) if all arc costs are nonnegative.

Remarks:

1. A path followed under an optimal policy might contain a cycle even

if the arc costs are positive under every realization, as can be demonstrated

by simple examples [AR88, Po92]. This is because information gathering

could be an important feature of an optimal policy. For example, it might

be profitable in the expected value sense, to find out the realization of a

certain arc and if its realization is not what was hoped for, to backtrack to

the origin node and try an alternate path. Let us now assume that every

cycle has positive length under every realization. Then, it is easily seen

that any cycle resulting from an optimal policy is traversed only once. The

reason is the following. The path resulting from an optimal policy consists

of a sequence of shortest paths obtained from certain deterministic shortest

path problems. One such shortest path ends and another starts when an

information collection node is reached. Since shortest paths in deterministic

networks (under the positive cost cycle assumption) do not contain cycles,

any cycle must contain an information collection node. But if a cycle has

been traversed once, its nodes cease to be information collection nodes and

therefore the same cycle will not be traversed again.

2. Using the observations in the preceding remark, and assuming that

cycle costs are positive, under a path followed by an optimal policy there

must be a visit to an information collection node between any two visits

to the same node. Since visits to information collection nodes result to a

reduction in the cardinality of the information set and to a reduction of the

number of information collection nodes, we conclude that no node can be

visited more than min(n, R) times. In particular, the number of arcs in the

path followed by an optimal policy is bounded by n min(n, R) under every

realization. If the positive cost cycle is relaxed and we only require cycle

costs to be nonnegative, the same reasoning shows that there still exists an

optimal policy under which no more than n min(n,R) arcs are traversed.

(However, not all optimal policies need to have this property.) This upper
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bound on the number of arcs that may have to be traversed turns out to be

tight within a constant factor, as shown by an example in p. 58 of [Po92], for

the case of directed networks.

3. When actually solving an instance of R-SSPPR, many of the informa-

tion sets I might never be reached and the computation of the corresponding

V(i, I) might be unnecessary. One way of exploiting this, in order to reduce

the computational burden, is to use a forward implementation of the algo-

rithm: when trying to compute some V(i, I), if the value of some V(j, I')

with II'I < II] is needed, pause to compute V(j, I'), using the same method

(recursively). This variation of the basic algorithm can reduce substantially

the run time in practice; however, its theoretical worst-case performance is

the same.

4. The R-SSPPR belongs to the class of "stochastic shortest path prob-

lems", in the terminology of [BT91]. That is, it is a controlled Markov chain

(in our case, the state is (i, I)) and the objective is to reach a terminal state

(in our case, any state of the form (t, I)), with minimal total (undiscounted)

expected cost. While there are general purpose dynamic programming algo-

rithms for stochastic shortest path problems, their complexity is substantially

larger than the complexity of the algorithm proposed here (cf. Theorem 1).

The reason for our better complexity estimate is the special structure of the

R-SSPPR: its state space consists of a sequence of R layers (with successive

layers associated with a smaller cardinality of the set I); the state can only

move from one layer to a random state in a next layer or it can move to

another state in the same layer; in the latter case, the next state is a de-

terministic function of the decision variable. It is not hard to see that any

Markov decision problem with such a structure can be solved by computing

the cost-to-go function in one layer at a time using a deterministic shortest

path algorithm at each layer.

5. This algorithm is easily amenable to parallel implementation, with

different processors in charge of computing V(i, I) for different choices of I.

9



4 A Dynamic Programming Algorithm for

the i-SSPPR

In this section, we present an algorithm for the i-SSPPR, similar to the one

proposed for the R-SSPPR. The main difference between the two algorithms

is in the manner in which the information component of the state vector is

defined.

Note that our algorithm for the R-SSPPR can be applied to the i-SSPPR

since the latter is a special case of the former. However, we would need to

let R = O(Km ), where K is a bound on the cardinality of the range of each

Cij and m is the number of arcs. Since the algorithm for the R-SSPPR is

exponential in R, we would obtain an algorithm for the i-SSPPR which is

doubly exponential in m. We will show shortly that a singly exponential

algorithm is possible.

As the state vector in our dynamic programming algorithm for the i-

SSPPR, we take the present location of the vehicle together with an infor-

mation component I which for every arc provides the value of its cost, if

its cost has been already learned by the vehicle, or an indication that this

particular arc has not been observed yet. With m arcs, a typical state vec-

tor will be an (m + 1)-tuple; there are n choices for the first entry in the

state vector and at most K + 1 choices for each one of the remaining entries.

(There are up to K possible realizations of Cij and an additional possibility

that the realization has not been learned yet.) We conclude that the size of

the state space is O(n(K + 1)m).

Once the state space has been defined as above, an algorithm is obtained

in pretty much the same way as for the R-SSPPR. We say that an arc (i,j)

is deterministic, given information I, if its cost is uniquely determined from

I; otherwise, the arc is said to be uncertain. We say that a node is an

information collection node if at least one of the arcs emanating from that

node is uncertain. When an information collection node is reached (and only

then), I changes and the number of uncertain arcs strictly decreases. If I'

is the new information, it includes the costs of the newly observed arcs, and

these costs are selected randomly (according to their prescribed probability

distributions) and independently of everything else.

Let V(i, I) be the expected cost-to-go starting from state (i, I). Simi-

larly with the R-SSPPR, V(i, I) can be computed recursively for all (i, I) by
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solving O((K + 1)m) deterministic single-destination shortest path problems.

(In this recursion, we start by computing V(i, I) for those I for which all arc

costs are known and proceed to the computation of V(i, I) with fewer known

arc costs.) Finally, for every I and every information collection node j (un-

der I), we need to compute E[V(j, I') I j, I], where I' is the new information

after j is reached. We note that given I and j, there are O(Kn) possible val-

ues for I' (we have O(n) arcs outgoing from j and K possibilities for each).

The probability of each possibility for I' is determined by multiplying the

probability of each choice for every particular arc (the independence assump-

tion is used here). These latter multiplications need only be done once for

each node j; so, the total work spent for such multiplications (summed over

all nodes in the network) is O(nKn). Once these probabilities are available,

each expectation E[V(j, I') I j, I] can be computed in time O(K n). Thus,

the amount of computation needed besides running shortest path algorithms,

is O(n(K + 1)m Knn).

We summarize our discussion of the i-SSPPR in the following theorem:

Theorem 2 The i-SSPPR can be solved in time O((K+ -1)m(nKn+n3 )), in

general, and in time O((K+ -1)m(nK n+n 2)) if the arc costs are nonnegative.

5 Complexity Results

Theorem 1 shows that the R-SSPPR can be solved in time polynomial in

n, if R is held fixed. On the other hand, our algorithm is exponential in R.

Similarly, for the i-SSPPR, our algorithm is exponential in the number of

arcs. In this section, we show that polynomial time algorithm for these prob-

lems are unlikely to exist. Some indication of the difficulty of these problems

has been provided in [An87] where it is observed that a full description of

an optimal policy may involve an exponentially long table. Our results go

beyond this observation and establish that the problem is difficult even if

such a description in the form of a table is not required.

We now state formally the recognition version of the R-SSPPR.

INSTANCE: A graph (/, A); two nodes s, t E Af; a positive integer R; pos-

itive integers Cirj, for (i,j) E A and r = 1,... , R; positive rational numbers

pl,..., pR that sum to 1; a positive rational number B.

QUESTION: Does there exist a policy whose expected cost is less than or

equal to B?

· , --- ----- -- --- -- -- - -------11



Theorem 3 The recognition version of the R-SSPPR is NP-complete, for
both directed and undirected networks.

Proof: We first show that R-SSPPR E NP. Suppose that we have a "YES"
instance of R-SSPPR and let y* be an optimal policy. Such a policy can be
described by specifying the R paths that are followed by the vehicle under
each possible realization of the network; let xr* be the path followed under
the rth realization. We claim that a policy described as above is a certificate
that can be used to verify in polynomial time that we are dealing with a
"YES" instance.

We first note that (see Remark 2 in Section 3) each path need not involve
more than n min{n, R} arc traversals; thus, this description of a policy is
of polynomial length. The next step is to verify that the given paths do
correspond to an admissible policy. In particular, we must check that two
paths 7r* and ir*, separate only after an information collection node is reached
at which the vehicle realizations r and r' lead to observable differences. Given
the bound on the number of arcs in each path, this can be also checked in
polynomial time. Finally, we need to evaluate the cost Lr of each path wrr
(with respect to the arc costs Cirj) and then compute the expected cost of

the policy which is ERl prLr. All of these computations can be done in

polynomial time, which establishes that the problem belongs to NP.

We will now reduce the undirected Hamiltonian path problem to the R-

SSPPR for undirected networks. In the undirected Hamiltonian path prob-

lem, we are given an undirected graph G' = (v', A') and we are asked

whether there exists a path which visits every node exactly once. This prob-

lem is known to be NP-complete (see p. 199 of [GJ79]).

Assume that we are given an instance G' = (iv', A') of the Hamiltonian

path problem and that i' = {1,...,n}. We construct from G', a graph

G = (JV, A), as follows: we let XV = V' U {s, t} and A = A' U {(s, i),(i, t) I

i = 1,..., n}. We assume that there are R = n possible realizations for the

arc costs and R1 = {1,..., R}. The arc costs in G take the following values

under the corresponding realizations:

ci5 = 1, (i,j) E A', r E ,

cri = 0, iEK', r E ,

{0,0 if r = i,
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Let B = (R - 1)/2 and let Pr(r[lZ) = 1/R for all r E R. This completes the

construction of an instance of R-SSPPR.

Assume that we have a "YES" instance of the Hamiltonian path problem.

Based on a Hamiltonian path for G, we construct the following policy it*:

starting from node s, go to the first node of the Hamiltonian path and then

follow that path. When at node r, if crt = 0, we can conclude that the

realization of the network is r and that node t should be reached following

arc (r, t), otherwise continue to the next node in the Hamiltonian path. We

notice that policy A* ensures that t is reached, and since G t is a "YES"

instance for the Hamiltonian path problem, and c/. = 1 for all r E 1Z and all

(i,j) E A', the expected cost of this policy is

1 R-1 R-1

R i=O

This shows that we have a "YES" instance of R-SSPPR.

Suppose now that we have a "NO" instance of the Hamiltonian path

problem. We observe that any policy with finite expected cost visits the

nodes of G' in some order and when a node r E A/' is visited with crt = 0,

the vehicle reaches t by traversing arc (r, t). Since no Hamiltonian path exists,

and since all nodes have to be visited under the worst possible realization,

some node will have to be visited twice with positive probability. This results

in the expected cost of the policy being strictly larger than (R - 1)/2 and

we have a "NO" instance of the R-SSPPR.

A similar reduction also works for the case of directed networks, since

the Hamiltonian path problem is NP-complete for directed graphs as well.

Q.E.D.

We now provide a formal definition of the i-SSPPR and a corresponding

complexity result.

INSTANCE: A graph (J/, A); two nodes s, t E K/; a positive integer R; pos-

itive integers C[j, for (i,j) E A and r = 1,..., K; positive rational numbers

p ... , such that K pk = 1; a positive rational number B.

QUESTION: Does there exist a policy whose expected cost is less than or

equal to B, assuming that the costs of the different arcs are independent

random variables?

Theorem 4 The i-SSPPR is #P-hard, and can be solved in polynomial

space, for both directed and undirected networks.
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Proof: We first discuss membership in PSPACE. Reference [Pa85] defines

a class of decision making problems under uncertainty which is called SAP-

TIME (Stochastic Alternating Polynomial Time). In this class of problems

one deals with a controlled Markov chain. The goal is to minimize the expec-

tation of some functional depending on the history of states and decisions.

The problem i-SSPPR can be viewed as such a controlled Markov chain

with state (i, I), where the information vector I is as defined in the proof

of Theorem 2. For this reason, i-SSPPR belongs to SAPTIME and [Pa85]

establishes that SAPTIME=PSPACE. In fact, the definition of SAPTIME

given in [Pa85] is more precise; for a problem to belong to SAPTIME there

must be certain bounds on the time horizon, the size of the state space, the

size of the control space, and the size of the numbers involved. It is not hard

to show that instances of i-SSPPR do satisfy all of these requirements, after

a minor reformulation; the details can be found in [Po92].

We now present a polynomial-time reduction of the Reliability problem

to i-SSPPR. Reliability, which is #P-hard [V79], for both cases of directed

and undirected graphs is formally defined as follows:

INSTANCE: A graph G' = (Af', A') in which arcs fail independently with

rational probability p E [0, 1] and two nodes s, t E Af'.

OUTPUT: The probability f(G',s,t;p) that there is a path from s to t

without failed edges.

We will first consider the undirected case, and then extend the reduction

to the case of directed networks. Given an instance (KJ', A', s, t, p) of the

Reliability problem, we construct an instance of i-SSPPR with node set

NA = A' and arc set A = A' U {(s, t)}. Regarding the arc costs, we assume

that Ct = 1 with probability 1 and

C = { 0, with probability 1 - p,

=o i 1, with probability p, V(i

The following policy is easily seen to be optimal: while using only zero-

cost arcs, explore as much of the graph as possible. (Given that the graph

is undirected, the vehicle can always backtrack and therefore the exploratin

strategy is immaterial). If the destination t is reached, stop. If the destination

t cannot be reached, backtrack to node s and traverse arc (s, t). The expected

cost of this policy is equal to the probability that there exists no path from s

to t consisting of zero-cost arcs, which is 1 - f(G', s, t; p). As a consequence,

i-SSPPR is #P-hard, for the undirected case.
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The reduction given for the directed the case does not work for the di-

rected case because the vehicle may be unable to backtrack. This can be

remedied by introducing additional arcs of the form (i,s), i E /, whose

cost is zero with probability 1. With this modification, our reduction goes

through and establishes that i-SSPPR is #P-hard for the directed case as

well. Q.E.D.

We note that the proof of Theorem 4 shows that the i-SSPPR remains

#P-hard even for the case where each arc cost can take at most two different
values.

6 Heuristics and Bounds on the Optimal

Cost

In this section, we compare the cost of an optimal policy for the SSPPR with

the cost resulting from the application of a heuristic policy (that is, an easily

computable but nonoptimal policy). A few different heuristic policies are

considered and a set of results (mostly negative) are derived. Our results are

presented separately for the R-SSPPR and the i-SSPPR, and we also distin-

guish between directed and undirected networks for each case. Throughout

this section, we assume that arc costs are nonnegative with probability 1.

Before proceeding to the detailed development, we introduce some nota-

tion. We use CH to denote the expected cost corresponding to some heuristic

policy H, and COPT to denote the expected cost of an optimal policy. We

also define CFI (for "full information") as the expected cost had the realiza-

tion of all arc costs been known when at s. (The expectation is taken again

with respect to the probabilities of the different realizations.) It is clear that

the following inequalities hold for every instance of SSPPR and for every

heuristic policy H:

CFI • COPT • CH. (3)

We will be interested in the ratio CHICOPT which characterizes the quality
of a heuristic and in the ratio COPT/CFI which measures the value of infor-

mation. (We also note that the ratio CH/CFI is similar to the ratio that was

studied in [PY89] and which is sometimes called the "competitive ratio.")
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6.1 The Certainty Equivalent Heuristic

An easy way of obtaining a policy is to replace the arc costs by their expecta-

tions, obtain a shortest path under these new (deterministic) arc costs, and

let the vehicle follow such a shortest path no matter what information it ac-

quires along the way. We call this heuristic the certainty equivalent heuristic

and we denote the cost of the resulting policy by CCE. A main drawback

of this heuristic is that it makes no use of available information and for this

reason, its cost can be quite high compared to the optimal cost, as we now

demonstrate.

Considering an instance of the R-SSPPR, involving an undirected graph.

Assume that there exist only two paths from s to t (an "upper" path and

a "lower" path) and two equally likely realizations. All arc costs are zero

except that under the first (respectively, the second) realization, the lower

(respectively, the upper) path has an arc with a cost of 1. The certainty

equivalent heuristic (as any other policy that does not use the available in-

formation) results in an expected cost of 1/2 , whereas the optimal cost is

zero. Essentially the same example would lead to the same conclusion for

the case of directed graphs as well.

The cost CCE can be arbitrarily worse than the optimal for the i-SSPPR

as well (for both directed and undirected networks), as we now show. Con-

sider the undirected graph in Figure 1. Let the arcs of the form (s, i) have

zero length. The length of each arc of the form (i, t) is equal to 1 with proba-

bility p and equal to 0 with probability 1 - p. Then, the cost CCE is equal to

p and the optimal cost COPT is pk. As a consequence, the ratio CCE/COPT

can become arbitrarily large if we keep p constant and we increase k or if

we keep k constant and decrease p. An example involving directed graphs

leading to the same conclusion is be obtained if we take the same instance,

assign a direction from left to right to all arcs, and add zero-cost arcs of the

form (i,j), i,j = 1,...,n.

Having obtained these negative results for the certainty equivalent heuris-

tic, we now turn our attention to heuristics that try to make some use of new

information when it becomes available.

6.2 Heuristics for the R-SSPPR

A naive adaptive heuristic
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Figure 1: An undirected graph.

We start by considering the following "naive adaptive heuristic" HN for

the R-SSPPR. Let L, be the shortest path length from s to t, under the

rth realization of the network, and let 7rr be a corresponding shortest path.

Assume that the realizations have been indexed so that L 1 < L 2 < ... <

LR. The heuristic proceeds as follows: the vehicle first behaves as if the

realization of the network is 1 and follows irl. More generally, it behaves

as if the realization is r and follows rr. If, along the way, it finds out that

the realization is not r, it returns to s and assumes that the realization is

the lowest indexed realization compatible with the information collected thus

far. The vehicle will eventually reach t because once it guesses the correct

realization r, it will follow the path 7rr to the end.

Theorem 5 Consider the R-SSPPR for undirected networks. For every in-

stance, we have:

a) CHN/CFI < 2min{n,R}.

b) CHN/COPT < 2min{n,R}.

c) COPT/CFI < 2 min{n, R}.

Furthermore, there exist instances for which:

d) CHN /CFI = min{n, R}.
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e) CHN/CCPT = min(n, R}.

f) COPT/CFI = min{n, R).

Proof: Assume first that R < n. Suppose that the true realization is some

r*. (In particular, CFI is the expectation of Lr*.) Whenever the vehicle

assumes that r is the true realization and tries the path err, we must have r <

r*. Thus, the total length traversed by the vehicle, including backtracking

to S, is bounded by 2 r*l*- Lr + Lr* < 2RLr*, from which we obtain CHN <

2RCFI. Notice that the vehicle can make incorrect assumptions on the true

value of r at most n times, because the assumption on the true value of r can

only change when the vehicle visits a new information collection node. For

this reason, the bound of 2RLr* can be improved to 2 min{n, R}Lr*, which

establishes part (a) of the result . Parts (b) and (c) follow immediately.

To prove part (f), we construct an instance for which COPT/CFI = R.

The underlying graph is the one shown in Figure 1. There are R = k possible

realizations which are equally likely. Arcs of the form (s, i) have unit length.

Arcs of the form (i,t) have length M, with M > 2R, except that under

realization r, arc (r, t) has zero length. Clearly, CFI = 1. For this instance,

the naive adaptive heuristic behaves as follows: go to node 1; if clt = 0 then

go to node t; otherwise, go back to node s and then to node 2, etc. The

expected cost of this policy is

1 R

COPT = (1 + 2(i- 1))= R,
i=l

which establishes part (d). It is easily seen that, for this instance, the heuris-

tic HN is also an optimal policy which establishes part (f) as well.

To prove part (e), we modify the instance of Figure 1 as in Figure 2.

Here the cost of arc (a, b) is random, takes one of R different values, and

its value provides full information on the actual realization. (The statistics

of the arcs (i, t) are the same as before.) The same calculation as in the

preceding paragraph shows that CHN = R. On the other hand, an optimal

policy would first visit node a, learn the true realization, and then follow a

shortest path to the destination t, for a total cost of 1.

Q.E.D.

It should be clear that parts (c) and (f) of this theorem are not related to

the particular heuristic being study. Instead they establish that information
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Figure 2: An instance of R-SSPPR for the proof of part (e) of Theorem 5.

is valuable in that it can improve costs by a factor of R but no more than

2R.
A further improvement to the heuristic is obtained as follows. Once an

assumed value of r is invalidated and a new value of r is assumed, instead of

returning to s and following Tr,y find a shortest path from the current node

to node t (with respect to the arc costs under the newly assumed realization)

and follow it until the new assumption about r is invalidated. We might

expect this modification to lead to better performance, although the results

of Theorem 5 would not be changed.

The naive adaptive heuristic is not useful in the case of directed networks

because, once the vehicle leaves the origin s along a certain path, it might be

impossible to return. For this reason, both CHN/COPT and COPT/CFI are

unbounded above, for the directed case.

An Open Loop Feedback Heuristic

The "open loop feedback" heuristic is a general purpose heuristic for

stochastic problems. The idea is to start by following a path which is shortest

with respect to the expected values of the arc costs, as in the certainty

equivalent heuristic. However, as soon as the vehicle acquires some new
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information, the probability distribution of the arc costs is replaced by the

conditional distribution given the new information; then, a new path with

least expected cost is computed and followed, and so on. This procedure is

repeated until node t is reached. We notice that the amount of computation

needed to implement this heuristic is polynomial in R and n. (We basically

need to solve at most min{R, n} deterministic shortest path problems, for

each particular realization.)

Unfortunately, this heuristic does not enjoy any favorable performance

guarantees. As for the certainty equivalent heuristic, it is not hard to con-

struct examples for which the optimal cost is zero and the cost of this heuristic

is positive.

6.3 Heuristics for the i-SSPPR

We restrict our discussion to the undirected case. Since the i-SSPPR is a spe-

cial case of the R-SSPPR, it follows from Theorem 5 that the naive adaptive

heuristic satisfies CHN/CFI < 2n. It might appear that implementing this

heuristic could require an exponential amount of computation, since we need

to find a shortest path under each realization and then sort these shortest

paths in order of increasing lengths. However, a more efficient implementa-

tion is possible which we now describe. At any point in time, assume that

all arc lengths are equal to the lowest possible values, given the information

observed so far, and follow a path to node t that would be shortest if this

assumption were true. Thus, implementation of this heuristic only requires

that we solve a new shortest path problem each time that we encounter

an arc whose value is larger than the value that was assumed. Therefore, at

most n shortest path problems need to be solved and the total computational

requirements are polynomial. (On the other hand, evaluating the expected

cost CHN associated with this heuristic appears to be much more difficult,

because the expectation is the sum of an exponential amount of terms. In

fact, it can be shown that the evaluation of CHN is a #P-complete problem.

The proof is fairly similar to the proof of Theorem 4.)

Using Theorem 5(c), we obtain COPTICFI < 2n. We conjecture that

this bound is pretty tight; that is, there are instances of i-SSPPR for which

COPT/CFI = Q(n)
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7 Extension and Conclusions

We discuss here a few variations of our model.

There are several possible variations of the mechanism whereby new in-

formation on arc costs is acquired. For example, we could have assumed that

the length of an arc is learned only after traversing it. Under this variation,

the certainty equivalent solution is optimal when arc costs are independent

random variables (i-SSPPR); for the R-SSPPR, a dynamic programming al-

gorithm similar to the one in Section 3 is possible.

In a more complicated variant, we can allow for an option of obtaining

information on the costs of remote arcs, except that a price has to be paid

whenever such information is to be obtained. (This could represent an "intel-

ligence gathering" activity.) The dynamic programming methodology easily

extends to this setting [Po92].

In another variant, we may assume that global information on the real-

ization of the arc costs is obtained at some time r, after the vehicle starts its

journey. (The time r could be either a deterministic constant, or an exponen-

tially distributed random variable.) For the model to be complete, we need

to specify the relation, if any, between arc costs and travel times. For exam-

ple, we may assume that each arc traversal takes unit time and that there

is a penalty for waiting in place. Alternatively, we may assume that travel

times are proportional to arc costs. Both alternatives can be approached via

dynamic programming [Po92], similarly with Section 3.

Another possible direction involves the case in which arc costs change with

time, according to a stochastic process. As in the R-SSPPR, we can assume

that there are R possible realizations and that the actual realization r changes

according to a Markov chain. If the value of r is observed perfectly, we obtain

a Markov decision problem with state (i, r), where i is the current location

of the vehicle. In the case where r is not perfectly known, but we attempt to

infer r from the observed arc costs and knowledge of underlying statistics, the

problem can be still handled, in principle, through dynamic programming,

but its computational requirements are much more substantial.

In a model similar to the i-SSPPR, we can assume that each arc evolves

independently as a Markov chain. This problem can be solved in polynomial

time for the case of directed acyclic graphs [PT93], but seems to be quite

difficult for general graphs.

Overall, this paper has analyzed and discussed a number of stochastic
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shortest path problems in the absence of full arc cost information. Our main

interest was in understanding the conditions under which problems of this

type can be considered to be solvable. The distinction between the R-SSPPR

and the i-SSPPR and the results obtained for these problems highlight the

fact that modeling uncertainty is crucial for problems of this type and that

there may be a significant tradeoff between modeling accuracy and solvabil-

ity; for example, the R-SSPPR with a small value of R is easiest to solve but

could be a poor model in some settings.
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