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It is generally assumed that axons use action potentials (APs) to transmit information fast and reliably to synapses. Yet,
the reliability of transmission along fibers below 0.5 lm diameter, such as cortical and cerebellar axons, is unknown.
Using detailed models of rodent cortical and squid axons and stochastic simulations, we show how conduction along
such thin axons is affected by the probabilistic nature of voltage-gated ion channels (channel noise). We identify four
distinct effects that corrupt propagating spike trains in thin axons: spikes were added, deleted, jittered, or split into
groups depending upon the temporal pattern of spikes. Additional APs may appear spontaneously; however, APs in
general seldom fail (,1%). Spike timing is jittered on the order of milliseconds over distances of millimeters, as
conduction velocity fluctuates in two ways. First, variability in the number of Na channels opening in the early rising
phase of the AP cause propagation speed to fluctuate gradually. Second, a novel mode of AP propagation (stochastic
microsaltatory conduction), where the AP leaps ahead toward spontaneously formed clusters of open Na channels,
produces random discrete jumps in spike time reliability. The combined effect of these two mechanisms depends on
the pattern of spikes. Our results show that axonal variability is a general problem and should be taken into account
when considering both neural coding and the reliability of synaptic transmission in densely connected cortical
networks, where small synapses are typically innervated by thin axons. In contrast we find that thicker axons above 0.5
lm diameter are reliable.
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Introduction

Nervous systems use the action potential (AP) to send
information rapidly and reliably along axons. The reliability
of the AP is an essential prerequisite for encoding, trans-
mitting and computing neural information [1], e.g., the
precision of AP arrival times (‘‘spikes’’) is behaviorally
relevant on the order of 1–10 ms in many species [2], and
cortical neurons have specialized to detect coincident arrival
of APs on the order of milliseconds [3].

The AP is mediated by voltage-gated ion channels whose
gating behavior is subject to thermodynamic fluctuations
which introduce a source of electrical noise in neurons,
channel noise [4,5]. This channel noise is an inescapable part
of the AP signaling mechanism. Previous modeling work
showed that channel noise explained threshold fluctuations at
individual Nodes of Ranvier and the reliability of spike
initiation in membrane patches [6–9]. In vitro experiments
related membrane potential fluctuations in dendrites and
soma to channel noise [10–13], suggesting that fluctuations
could indeed affect spike initiation reliability [14]. In an
elegant application of the dynamic-clamp technique, channel
noise was shown to be essential for generating the oscillatory
behavior of entorhinal cortex slices [15,16].

In general, ion channels affect membrane potential in
proportion to the membrane input resistance. In axons, this
leverage increases as a power-law as axon diameter decreases
(diameter�

3
2 [17–19]). The thinner the axon, the stronger

channel noise effects will be. Because the cable properties
of thin axons shield them from dendritic and somatic sources
of variability, such as synaptic input, resistive noise sources
are orders of magnitude smaller than channel noise [20,21].
Other sources of variability (ephaptic coupling, input

through axo-axonic synapses, and gap-junctions) are, unlike
channel noise, not inherent to AP signaling and not,
therefore, common to all axons. Thus, channel noise is likely
to be the dominant source of electrical noise in unmyelinated
axons below 0.5 lm diameter [19].
We have previously shown that channel noise causes AP

communication to break down in axons and soma below 0.1
lm and 3 lm diameter respectively—a general limit to
neuron size matched by anatomical data across species [19].
Axons in many important pathways operate close to or just
above this limiting diameter, such as cerebellar parallel fibers
(average diameter 0.2 lm [22]), C-fibers implicated in sensory
and pain transmission (range 0.1–0.2 lm [23]), and pyramidal
cell axon collaterals (average diameter 0.3 lm [24]) forming
the local cortico–cortical connectivity with wiring densities
up to 4 km of axon per mm3 gray matter [24]. Yet, little is
known about how reliably thin axons conduct APs, because
intracellular recordings are difficult to obtain, extracellular
data offers only limited signal resolution and stimulus
control, and tiny intracellular volumes limit the resolution
of imaging methods. Therefore, we used stochastic models of
rodent cortical and squid axons [19] to describe the effects of
channel noise on the reliability of AP conduction. We
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demonstrate, contrary to previous assumptions [9,25], that
channel noise in thin axons does significantly affect AP
conduction, by altering spike timing on the order of a
millisecond over distances of millimeters, and we explain how
its various stochastic effects degrade spike trains the further
spike trains propagate.

Results

We used the Modigliani stochastic simulator (see http://
www.modigliani.co.uk) to model the behavior of unmyeli-
nated axons using a stochastic version of the standard
compartmentalized neuron model [19]. We used cable
parameters and ion channel models for two very different
axons, the rodent cortical and squid axons which operate at
different temperatures (6.38 C and 368 C) [19] (see Methods
and Tables S2–S6). Optimized numerical code made the
simulator’s performance and accuracy (length scales of
micrometers, time scales down to nanoseconds) powerful
enough to study stochastic axons, yet calculating the
following results required several months of computer time
on a workstation cluster. Our general procedure was to
elucidate channel noise effects on propagating APs by
measuring the variability across repeated identical trials.

Four Stochastic Effects in Spike Trains
In a first set of simulations, we explored the effects of

channel noise on spike trains. We used an identical ‘‘frozen’’
input stimulus (Figure 1, top row) injected at the proximal
end of the axon to elicit spike trains in repeated trials, so that
channel noise effects are visible by comparing trials. We can
visualize the variability at a given axonal position by plotting
the spike arrival times of trials above each other in a spike
raster plot. To illustrate how variability changes with
propagation, we stacked raster plots for equidistant positions
along the axon on top of each other (Figure 1, rows below top
row). At the beginning of every trial, the simulation was fully

reset—except for the random number generators—such that
each trial had identical initial conditions and stimuli, but
statistically independent random channel noise events.
In the following we will focus on stochastic phenomena

occurring during AP conduction because effects related to
AP initiation have been previously described [6,7,9,26]. APs
generated by the same stimulus are not precisely aligned
across trials, and the misalignment in the AP set grows
considerably the further APs propagate. Inspection of the
raster plots reveals that APs are added, jittered, split into
groups, or deleted as the spike train propagates (Figure 1A–
1H). Thus, contrary to previous assumptions [9,25], channel
noise has considerable effects on traveling spike trains—well
beyond the variability of up to 2 ms introduced by spike
generation mechanisms [9,27]. We have identified four
distinct stochastic effects of channel noise on AP propaga-
tion. To characterize these effects, we call the portion of the
input stimulus that triggers an AP its stimulus event. APs that
are triggered across trials by the same stimulus event form an
AP set.
Addition of APs. The random opening of sufficient

numbers of Na channels can trigger a spontaneous AP which
does not belong to any stimulus event (see Figure 1, circle H).
At the diameter modeled in Figure 1 (0.2 lm), these random,
spontaneous APs appear with low rates (1 Hz) and, as
previously shown [19], the frequency of spontaneous APs
increases exponentially to levels that disrupt communication
below a limiting axon diameter of 0.08–0.1 lm.
Jitter. The timing of APs within each set is not unique, but

becomes unimodal (Figure 1, arrows A,B,C), or markedly
multimodally distributed—forming visually distinct groups of
APs (Figure 1, AP sets marked E). At the site of spike
generation, all AP sets are unimodally distributed (Figure 1,
AP sets marked E and G, or the top raster plot of the AP set
marked D). For those stimulus events where the spike time
distribution remains unimodal, it is straightforward to
quantify the spike train jitter at a given position on the axon
as the standard deviation (SD) of spike timing in each AP set,
averaged across all AP sets. In general we find that jitter
increases with travel distance, so that the spike time
distribution of an AP set becomes broader (cf. Figure 1
raster plots second from top with bottom). Jitter increases in
two ways, continuously by a gradual amount, and infrequently
by sudden discrete jumps (discussed in detail below). For the
0.2 lm–diameter axon shown in Figure 1, the AP initiation at
the proximal end of the axon has on average an SD of 0.38 ms,
matching values reported in stochastic membrane patches [9].
Jitter then increased over relatively short distances as the
spike train propagated, such that at 2 mm distance from the
initiation site, the jitter increased to about 0.6 ms SD. This
jitter implies that postsynaptic coincidence detection win-
dows cannot be more precise than 2–3 ms at this distance.
Spike pattern–dependent splitting (multimodality of jitter).

As the spike train propagates, an AP set can split into distinct
groups separated by several milliseconds (cf. spike rasters in
Figure 1 AP sets marked by D and E and AP sets marked A–C).
Splitting does not occur for all stimulus events, but only for
some. In fact, splitting into groups was the only stochastic
effect that was not observed in a separate set of simulations
(see below), where a single AP was triggered per trial.
Therefore, splitting must depend on the temporal pattern
of the spike train prior to the stimulus event. In general, the
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Author Summary

Neurons in cerebral cortex achieve wiring densities of 4 km per mm3

by using unmyelinated axons of 0.3 lm average diameter as wires.
Many axons (e.g., pain fibers) are thinner. Although, as in computer
chips, wire miniaturization economizes on space and energy, it
increases the noise introduced by thermodynamic fluctuations in a
neuron’s ‘‘protein transistors,’’ voltage-gated ion channels. We
investigated how well the relatively small number of ion channels
found in the membranes of tiny axons propagate the brain’s
universal signal—the action potential. We built a stochastic model
that incorporates the random behavior of individual ion channels
and found noise effects much larger than previously assumed,
because standard stochastic approximation techniques (Langevin)
break down because single channels can produce whole-cell
responses. Channel noise destroys information encoded in the
timing of action potentials, by randomly varying the speed of
conduction, and produces a novel mode of transmission, stochastic
microsaltatory conduction. Ion channel populations retain memory
of previous activity in the distribution of channel states, causing
action potential reliability to vary with context. The effects and
general relationships identified here will govern other cell-signaling
systems that rely on inherently noisy protein switches to propagate
signals, either for intracellular communication (Caþþ/cAMP waves) or
in nanotechnology.
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timing difference between each group increases as APs travel
along the axon, suggesting that APs in the late groups
continue to travel more slowly than APs in the early groups
(see Figure 1, splitting into groups of AP sets marked D and
F). The SD of spike timing within a group grows in a
comparable way to the jitter of a unimodal distributed AP set;
splitting is therefore a separate stochastic effect from jitter.

Failures. Channel noise causes very few conduction failures
(,1%), even for 0.1 lm–diameter axons, which implies that
the safety factor of AP conduction is little affected by channel
noise down to the smallest known axons.

All of these stochastic effects must be attributed to ion
channel stochasticity because channel noise is the only source
of variability and the effects do not occur in the correspond-
ing deterministic axon models given the same stimulus. We
can quantify the extent to which these four stochastic effects
degrade spike trains, by measuring the information rate
conveyed by the spike train along the axon. For the 0.2-lm
diameter axon depicted in Figure 1, the information rate

(measured following [28], bin widths of 1,2,3 ms) revealed a
drop from about 3.5 bits/spike at the site of spike generation
to about 2.6 bits/spike 2 mm down the axon. Thus, synapses at
this more distal axon position could at most receive 73% of
the information available at the site of spike initiation.

Occurrence of the Four Stochastic Effects Is Insensitive to
Axon Model and Parameters
The four stochastic effects are relatively insensitive to

model parameters and channel kinetics, since they occur in
both squid axon (0.1–0.5-lm diameter; see also Table S1) and
rodent axon (0.1–0.4 lm diameter; see also Table S2), which
operate with different types of ion channel at very different
temperatures, 6.3 8C and 37 8C. In both types of axon, varying
membrane parameters (axoplasmic resistance 650%, mem-
brane resistance 650%, resting potential 65.5 mV, temper-
ature 650%) and ion channel parameters (Na channel
density 650%, Na single channel conductance 650%, K
channel density 650%, K single channel conductance 650%)
results in either all four stochastic effects being still observed,

Figure 1. The Stacked Raster Plot Visualizes Traveling APs Produced by Identical Repeated Trials

The topmost row shows the stimulus current. Below, each row contains a spike raster plot recorded at equally spaced axonal positions (from the
proximal stimulus site at the top to the distal part the axon at the bottom). In each spike raster plot, the precise timing of a spike is marked by a dot on
an invisible time line. These time lines are stacked over each other for N¼ 60 repeated trials. The linear shift visible in the overall spike pattern across
rows reflects the APs traveling along the axon. Data based on 10-s trials, squid-type axon of 0.2 lm diameter (average diameter of cerebellar parallel
fibers). The timing of APs within each set of AP is either unimodal (sets marked by arrows A,B,C), or are markedly multimodal-distributed forming
visually distinct groups (set D). In general the timing difference between each group increases as APs travel along the axon (AP sets E and F). APs in a set
may be triggered markedly earlier due to differences in the distributions of ion channel states across trials (set G). APs are spontaneously and randomly
added (circle H) and in a few cases are even deleted. See text for details.
doi:10.1371/journal.pcbi.0030079.g001
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or the axon becoming so noisy that it is unsuitable for
communication, or the axon failing to produce APs. The
relative insensitivity of the four stochastic effects to many of
these parameters suggests that the effects are linked in a
rather general way to the action of channel noise on AP
propagation, so that they all become significant in thin
diameter axons.

The magnitude or frequency of occurrence of the four
stochastic effects increases as axon diameter decreases. AP
conduction is sensitive to channel noise because the relative
size of channel fluctuations with respect to the number of
channels involved grows quickly as diameter � 3

4 (see Methods
for derivation). This relationship implies that, as axon
diameter decreases, the number of channels straying from
their average behavior becomes as large as the average
number of open channels. This always occurred above or at
the observed lower limit to axon diameter 0.08–0.1 lm [19].

Having described the four stochastic effects that occur
during AP conduction, we consider how these effects are
caused by channel noise at a mechanistic level. We previously
described in detail [19] how the first of the four effects, the
addition of spontaneous APs, is caused by random, prolonged
opening of individual Na channels. Therefore, we next
address the cause of the two forms of jitter, gradual
conduction velocity fluctuations and sudden jumps. There-
after we consider the third and fourth effects: APs splitting
into groups and failures/deletions.

Stochastic Mechanisms Causing Jitter: Gradual
Conduction Velocity Fluctuations

To understand how channel noise can gradually vary the
speed at which APs travel down axons, we will briefly consider
how the AP propagates (see overview in Figure 2). The

regenerative cycle of AP propagation begins with a local,
suprathreshold membrane depolarization opening Na chan-
nels, which produce an inward current that further amplifies
the depolarization in a positive feedback loop (Figure 2,
rising phases). The resulting potential difference between the
local depolarization of the axon and the resting membrane
further ahead produces an axial current flowing down the
membrane potential gradient and ahead of the wavefront
peak (Figure 2, black arrows). This axial current depolarizes
the resting membrane, again triggering the opening of Na
channels, and so the cycle begins anew. Any variability
occurring after and behind the AP peak will have little effect
on propagation speed, because the repolarizing membrane
cannot drive currents forward (Figure 2, repolarizing phase).
Thus, propagation depends on the forward-flowing axial
current produced by the rising AP.
To measure how channel noise affects axial current, one

has to track the quantities affected by channel noise as the AP
moves along the axon. To this end we triggered single APs in
both axon models at various diameters and recorded the time
series of the membrane potential and the number of open
channels in narrowly spaced axon sections (spacing was 1

20 of
the axon’s length constant, all diameter and parameter
variations kept this spacing ,20 lm). The time series
recorded at each position are superimposed, after having
been aligned at the instant when the membrane potential
crosses its half AP peak value. This procedure directly
displays the relevant quantities and their variability at
corresponding phases of the traveling AP waveform (cf.
overview Figures 2 and 3 showing data for a 0.3-lm diameter
squid axon).

Channel Activity and Ionic Currents during the AP
The majority of Na channels open just before the

membrane potential reaches the AP peak (Figure 3A and
3B at 0.3 ms), while most K channels open when the AP is
already repolarizing (Figure 3A and 3B at 2.5 ms). In contrast,
Na and K currents reach their maximum earlier (in Figure 3C
at 0.3 ms and 2.5 ms) due to the larger electromotive forces.
Maximum forward axial current is produced close to half-
peak (in Figure 3C between 0 ms and 0.15 ms) because the
membrane potential gradient is steepest here. Yet, in marked
contrast to AP initiation, during AP propagation the ionic
(Na and K) currents trail the early rising phase of the AP (in
Figure 3C between �1 ms to 0 ms). This is because AP
propagation is driven by axial currents depolarizing the
membrane ahead, which then opens Na channels. Therefore,
the rising AP phase extends as far ahead as the forward axial
current (in Figure 3C at �1 ms).
The net current flowing across the membrane peaks in the

late rising phase as the AP peak is reached (in Figure 3D
between 0.2 ms and 0.4 ms). The net axial current (the
difference between axial current flowing on or off the
membrane capacitance) peaks here, too (in Figure 3E
between 0.2 ms and 0.4 ms), because the axial current in this
region is sustained by local Na currents causing most of the
depolarization. The net axial current goes from negative to
positive close to half-peak, as the late rising phase (between
half-peak and peak) contributes more axial current than it
receives (due to the rapid increase in the rate of depolariza-
tion caused by Naþ channels), while the early rising phase
(between resting axon and half-peak) behaves vice versa (as it

Figure 2. Diagrammatic Representation of a Traveling AP on the Axon

Stacked over each other, the membrane potential wave form of the AP
(V) along the axon, axial currents flowing along the axon (Iaxial, green), Na
(INa, blue), and K currents (IK, red), and the representation of the axon
itself. Axial, Na, and K currents are denoted by green, red, and blue
arrows scaled to represent the relative size of the current in the various
AP phases. Hollow and light-shaded arrows denote the size of the
current fluctuations relative to the average currents. The AP wave form is
subdivided into six phases: resting membrane, early rising phase, late
rising phase, early repolarizing phase, late repolarizing phase, and an
optional hyperpolarized phase (as some types of axons do not
hyperpolarize). See text for details.
doi:10.1371/journal.pcbi.0030079.g002
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Figure 3. Variability of the Propagating AP Aligned at Half-Peak Membrane Potential (t¼ 0 ms, Data for 0.3 lm Diameter Axon, White/Black Curves Are

Arithmetic Averages and Yellow Curves are 3 3 SD Envelopes, N ¼ 673)

(A) Membrane potential wave forms.
(B) Open Na (blue) and K (red) channels.
(C) Ionic currents flowing through the membrane (Na current, blue; K current, red) and axial current (green).
(D) Net membrane current calculated as the sum of Na, K, and leak currents.
(E) Net axial current is the sum of inflowing and outflowing axial currents, describing where axial current is produced (negative values) or consumed
(positive values).
(F) SDs of the currents in (C–E), color coding as above. Data shown are the overlayed traces of a single AP propagating along 711 axonal compartments.
See text for details.
doi:10.1371/journal.pcbi.0030079.g003
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consumes the axial current by depolarizing the membrane up
to threshold; cf. Figure 2).

Fluctuations in Channel Numbers and Variability of
Currents during the AP

The variability of the currents at corresponding points in
time (here measured as SD) are also the fluctuations at
different axonal locations encountered by the AP waveform
as it travels down the axon. In Figure 2 these fluctuating
currents are indicated by hollow or light-shaded arrows,
scaled in relation to the average currents. Na and the forward
flowing axial currents are more variable in the early rising
phase (respectively,�0.5 to 0 ms and�1.3 to 0.3 ms in Figure
3E). The SD of the current fluctuations is comparable to the
size of the currents in this phase, highlighting the fact that in
thin axons channel fluctuations will become as large as the
maximum number of open channels. A simple analytical
approximation (see Methods), shows that the relative size of
the fluctuations goes as diameter�

3
4; thus, channel fluctuations

are bound to grow as large as the average number of open
channels, as axon diameter decreases. This relationship is a
general consequence of the cable properties of axons and the
binomial nature of open channel fluctuations; it is independ-
ent of the axon’s membrane or ion channel properties.

The net axial current in the early rising phase (0.004 6

0.002 nA at t¼�1 ms in Figure 3C) is a small fraction of the
net axial currents maxima (0.02 6 0.018 nA in Figure 3C), and
small in comparison with the axon’s rheobase (0.03 nA for
axon in Figure 3C)—the minimum stimulus current required

to trigger an AP. Note, that almost all fluctuations are within
a 33SD envelope (yellow lines in Figure 3), showing that very
large fluctuations are unlikely to occur (,1% of the traces for
Figure 3). As K channels are predominantly closed, the net
membrane and axial current variability must result from Na
channel noise (cf. matching SD curves between�1 and 0 ms in
Figure 3E). These fluctuations result from Na channels
opening with delay or failing to open, as well as Na channels
that start inactivating prematurely. Thus, both the rising
phase of the wavefront and the resulting axial current are
determined by Na channels and their fluctuations.
The largest absolute variability in the number of open K

channels occurs between the AP peak and the late repolariz-
ing phase. K currents have little effect on the axial current
contributing to propagation, but contribute to large fluctua-
tions in the rate of repolarization. This results in variability of
the AP waveform width and height which by the time an AP
reaches a synapse can significantly vary the Caþþ signal
driving synaptic transmission (unpublished results).
We show that the profile of fluctuations in the currents

(illustrated in Figures S3–S6) is maintained over a 10-fold
range in axon diameter. This observation emphasizes that the
profile of fluctuations is inherent to the AP voltage profile
and thus the AP mechanism itself. Thus, we are confident that
our principal conclusion is robust; namely, that Na channel
noise in the early rising phase AP (around AP threshold
depolarizations) varies the speed of membrane depolariza-
tion to the AP peak, and in turn causes fluctuations in the
axial current driving the AP.

Figure 4. Comparison between the Fastest and the Slowest AP Out of 250 Single AP Trials

Data shown for a 0.3 lm diameter axon (average diameter of cortical axon collaterals).
(A) Margin between the faster and slower AP wavefront after propagating the same amount of time.
(B) Difference in the charge supplied by Na (blue) and K (red) channels between the foot of the AP and half-peak.
(C) Difference in the charge supplied by Na (blue) and K (red) channel between half-peak and peak of the AP wavefront.
(D) Difference of the axial charge generated at identical points in time.
(E–G) Show the unbiased cross-correlations between the quantities depicted in (A–D), as indicated by the connecting arrows and color coding.
doi:10.1371/journal.pcbi.0030079.g004
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Variations in Current Are Linked to Variations in
Propagation Velocity

To establish that fluctuations in axial current, and hence
early Na current, are related to variations in propagation
velocity, we analyzed 250 identical repeated trials where a
single AP was triggered. We repeated these blocks of at least
250 trials on both the rodent cortical and the squid axon
models with diameters ranging from 0.08 lm to 1 lm. Unlike
the first spike train protocol, splitting was not observed, while
additions, jitter (gradual and jump-like), and failures were
observed. For every axon diameter studied, the fastest and the
slowest trials were selected and the winning margin (the
distance gained by the AP in the fast trial over the AP in the
slow trial after propagating for the same amount of time) was
tracked. This allows one to compare if instantaneous differ-
ences in channel behavior between the faster and slower trials
translate into instantaneous changes in propagation speed
(Figure 4A). Note that, since we are studying gradual
conduction velocity changes here, we chose APs without
jump-like conduction events (see next section).

We present the results and illustrate them for a 0.3-lm
diameter axon in Figure 4. The excess axial current produced
by the faster AP was strongly correlated with the distance
gained by the faster AP over the slower AP—the winning
margin (Figure 4E). The excess Naþ influx (measured in units
of Naþ charge) produced under the early rising phase (red
curve in Figure 4C) and the excess axial current (Figure 4B) in
the faster AP correlated well with each other (red curve
Figure 4F). Note that this correlation was weaker in the late
rising phase. In contrast to the early rising phase, K currents
in the late rising phase (green curve in Figure 4D) are
anticorrelated with the axial current (green curves in Figure
4G). Furthermore, Na and K currents in both rising phases
show very weak correlations with each other (black curves in
Figure 4F and 4G).

This chain of evidence shows that Na channel fluctuations
in the early rising phase (cf. Figure 5A) determine the
variability in axial current (Figure 5B). The axon’s input
resistance also affects the speed by which the axial current of
an incoming AP depolarizes the resting membrane ahead of
it. The resting axon’s input resistance fluctuated considerably
as K (and very few Na) channels spontaneously opened and
closed (Figure 5C, SD

Mean ’ 0:5). This is because the resistance of
an individual channel is within an order of magnitude of the
axonal input resistance at diameters below 0.5 lm (single
channel conductance of known (axonal) voltage-gated Na and
K channels: average ’20 pS; range 10–50 pS [29]). Thus,
channel noise produces conduction speed variability, because
the AP is driven by events occurring well ahead of the AP
peak, where the number of ion channels involved is small and
their relative variation from the mean large.

Stochastic Mechanisms Causing Jitter: Jump-Like
Propagation by Stochastic Microsaltatory Conduction
Some APs travel faster than expected of a continuously

moving wavefront. We called this effect stochastic micro-
saltatory conduction. This is due to collaborative effects
among Na channels in the resting axon ahead of an AP (see
Figure 6), where the random opening of nearby Naþ channels
pre-depolarizes a region of the membrane by a few millivolts.
The axial current from an incoming AP is then sufficient to
immediately reach the AP threshold, skipping the compara-
tively slow increase of the early rising phase toward threshold.
The AP wavefront leaps several hundred micrometers ahead
to the pre-depolarized region, and the spike time at a given
position is shifted by a few milliseconds. This stochastic
microsaltatory conduction resembles saltatory conduction
between morphologically specialized Nodes of Ranvier in
myelinated nerve fibers, but it is produced by the stochastic
behavior of individual channels embedded in an axon of
uniform morphology. Thus, saltation occurs at random
positions and times and adds considerable variability across
trials. We observed jump-like propagation in simulations of
both spike trains and single APs.
We investigated a previously proposed mechanism of

microsaltatory conduction [30], where at very low Na channel
densities (,1lm�2) APs were thought to jump from Na
channel to Na channel in 0.1-lm diameter axons. We found
that this proposed mechanism cannot work, because at these
very low channel densities the stochastic behavior of the
single Na channels causes propagation to fail. Na channel
densities above 2–4 lm�2 were required for a 0.1-lm axon to
support conduction, at which point the number of channels
sustaining an AP is large enough to conduct APs continuously
(see Figure S2).

Splitting Is Caused by Memory Retained in Ion Channel
Populations
Splitting is caused by gradual conduction fluctuations and

jump-like events acting together in a structured manner, such
as to systematically accelerate or decelerate APs within an AP
set as it propagates along the axon. Were the occurrence of
these jitter effects not structured but entirely random, then
their summed effect would have to converge toward a
unimodal spike time distribution by the law of large numbers.
The opposite is the case, because the modes of the spike

time distributions become increasingly separated (cf. Figure

Figure 5. Variability Experienced by Propagating APs (Data for 0.3 lm

Diameter Axon, N¼ 671)

(A) Axial charge generated by incoming AP.
(B) Number of open Na channels under the rising foot of the AP.
(C) Input resistance of the resting axon as experienced by the incoming
AP wavefront. Arrow indicates the axonal input resistance when all
voltage gates are closed.
doi:10.1371/journal.pcbi.0030079.g005
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1: Figure 1D and bottom raster plot). Note also that at the site
of spike initiation the distribution is unimodal. We can make
the splitting effect disappear (no multimodal spike time
distributions) by modifying the Markov model of our ion
channels. To achieve this, the transitions among the closed/
inactivated states of ion channels have to be made determin-
istic, while transitions between the open state and the
adjacent closed or inactivated states remain stochastic
(unpublished data; this corresponds to a simplified channel
model previously used [25]). The jitter in this simplified
model matches simulations where deterministic Hodgkin–
Huxley ionic conductance models of gating were made noisy
by adding white noise ionic currents on top of the
deterministic ionic current [25]. We conclude that it is
essential to account for the stochastic transition between the
different closed channel states to account for splitting and
grouping.

The observation that the splitting effect disappears in the
simplified model implies that ion channels retain information
about previous activity in such a way that spike time
reliability is linked to the pattern of spikes.

What variables could be responsible for these differences in
reliability? We can eliminate the stimulus current—it is
identical from trial to trial and from the membrane
potential—because it is reset during the refractory phase of
the AP in a stereotyped fashion (note in Figure 5 that when
APs are aligned there is negligible variability when the
refractory phase begins; t . 5.5 ms, SD , 1mV). The only
free variables left are the distributions of non-open states
across the populations of ion channels (i.e., the only variables
that are not unconditionally set by the membrane potential).
These distributions can vary because they are conditionally
dependent on membrane potential. Note that in the tradi-
tional Hodgkin–Huxley model of ionic conductances, the
membrane potential directly sets the gating particle states.
Thus, the state of a channel prior to a membrane potential
change is ignored. This is not the case if one accounts for the
stochastic nature of transitions between discrete conforma-
tional states of the channel protein, as in the biophysically
realistic multistate Markov models [29]. In the detailed
channel description considered here, the membrane potential
sets only the conditional probability of a state transition. This
allows fluctuations in populations of ion channels to remain
correlated for many milliseconds, persistently deviating from
their mean behavior (e.g., the mean excess ion charges in
Figure 4B and 4C are far from zero and persistent for many
milliseconds), and this results in the splitting effect. These
correlations are much longer than the expected time of a
single ion channel to remain in its state (single channel open
state correlations are on the order of typically ,0.1 ms [29]).
This also explains why stochastic microsaltatory conduction,
which relies on groups of several spontaneously opening Na
channels to overlap in their opening time long enough to
facilitate conduction, becomes so unlikely in the simplified
model that it was not observed.

Failure of APs
We found that APs are unlikely to fail to propagate due to

channel noise. In simulations where a single AP per trial
propagated down an axon, in both models and at diameters
ranging from 0.5 lm down to 0.08 lm, less than 1% of APs
failed to reach the axon terminal (N ¼ 250 per model and
diameter pair). Failure is unlikely because the AP mechanism
requires a large, inactivating Na conductance to depolarize
the membrane and a smaller K conductance to reversibly
oppose this effect. The high open probability above the AP
threshold voltage and the large depolarizing current of a
single Na channel produces a strong positive feedback once
the AP has been triggered. If Na channel densities are
sufficiently high (�4 lm�2, shown above), this will ensure that
sufficient numbers of Na channels sustain the AP even when
individual Na channels remain closed. For conduction failure
then to occur would require large numbers of Naþ channels
to fail to open, which is many orders of magnitude more
unlikely than a single channel failing to open. The failure
probability p for single Na channels above the AP threshold is
small (p , 0.5) and, hence, the failure probability of n
channels is much smaller and proportional to pn ¼ 0.5 [29].
For analogous reasons, very large numbers of K channels
opening spontaneously and counteracting the depolarizing
Na current upstroke of the late rising AP phase are similarly
unlikely, thus propagation seldom failed.

Figure 6. Visualization of a Stochastic Microsaltatory Conduction Event

in a 0.1 lm Diameter Squid Axon

A continuously propagating AP wavefront (note the jitter in propagation
speed) suddenly jumps from position x ¼ 1,550 lm to x ¼ 1,900 lm.
Displays a space-time plot of the membrane potential on the axon (A)
and the corresponding space time plot of the transmembrane Na current
(B). The regions where no Na current was flowing are white, making ionic
currents from spontaneously open channels clearly visible.
doi:10.1371/journal.pcbi.0030079.g006
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Discussion

While it has been established that channel noise causes
spike-initiation variability, and generates spontaneous APs
[19], its effects on spike propagation variability have not been
rigorously analyzed before. We have shown here that channel
noise adds previously unreported stochastic, history-depend-
ent effects which corrupt spike trains the further they
propagate in thin axons (,0.5-lm diameter). Because channel
noise perturbs APs during their entire journey along the
axon, propagation variability will exceed spike initiation
variability at a distance on the order of millimeters, that is,
shorter in narrower axons. In axons comparable to parallel
fibers (0.2 lm diameter), spike time jitter increased to 0.6 ms
SD over a distance of 2 mm, which implies that postsynaptic
coincidence detection windows cannot be more precise than
2–3 ms. The information rate dropped linearly over this
distance by more than 25%.

Conduction variability is a direct, inescapable conse-
quence of internal noise in the AP signaling system and
will emerge whenever the input resistance of axons becomes
so large that small numbers of ion channels can support AP
conduction. This is because, counterintuitively, only a very
small proportion of Na channels contribute to the advancing
subthreshold ‘‘foot’’ of the AP. Note that the input
resistance of thin axons comes close to, or is of the same
order as the resistance of, a single open ion channel.
Consequently, as we previously demonstrated with sponta-
neous APs [19], channel noise effects are both significant in
thin axons and robust, i.e., they are resistant to biologically
plausible changes in biophysical parameters such as channel
densities, the use of different types of channel (e.g., the squid
channels versus rodent cortical channels), leak conductance,
and temperature (see Figures 2–5; and Supplementary
Information S1 in [19]). Channel-noise effects become more
severe as diameter decreases so as to render axons below
0.08–0.1 lm diameter inoperable for communication. Thus,
channel noise is bound to affect conduction in thin axons
below 0.5 lm diameter, unless their ion channels and
membrane properties are very different from known axons.
Therefore, axons above 0.5 lm diameter are going to be
reliable. For the same reasons, dendrites that support
backpropagating APs and dendritic AP initiation are
typically thicker then 0.5 lm and were found to reliably
conduct APs [13]. Our results also show that by using more
realistic multistate models to account for the stochastic
behavior of ion channels, one observes new results that
cannot be captured by classic deterministic models, even if
they are enhanced by Gaussian approximations of channel
noise.

Spike Time Jitter and Ion Channel Gating
Axonal spike time jitter has previously been measured in

myelinated cat and frog axons of several lm diameter and was
on the order of 0.01 ms [31,32]. The jitter we report here in
stochastic simulations of unmyelinated axons between 0.1–0.5
lm diameter was on the order of 0.1–1 ms SD over distances
of millimeters. In contrast, previous stochastic simulations of
axons [25] underestimated channel-noise effects in axons (of
comparable diameter) by several orders of magnitude (spike
time variability SD 0.001–0.01 ms). Those pioneering simu-
lations implemented a simplified kinetic channel model

which ignored stochastic transitions between closed ion
channel states, i.e., only transitions between the open and
the nearest closed states were stochastic, all other state
transitions were deterministic. It is not surprising that
simulations with simplified channel kinetics matched the
spike time jitter of previous simulations that used determin-
istic conductance models with additive Gaussian current
noise [25]. A Gaussian channel noise model generates
uncorrelated noise, and cannot therefore retain a memory
of previous activity in the distribution of states across a
population of ion channels. The simulations presented here
use detailed kinetic models of channels that establish and
preserve correlations in space and time, and this allows APs
to travel persistently faster or slower than average (splitting,
Figure 1) or to jump relatively large distances (Figure 6,
stochastic microsaltatory conduction). Furthermore, the ear-
lier simulations [25] used spatial compartments and time
steps that were 10–100 times coarser than ours (probably to
overcome severe computational constraints). We used our
model to verify that this coarser discretization averages out
noise (unpublished data).
The unsuitable Gaussian channel noise model corresponds

to a Langevin-type approximation of the Markov process of
channel gating [33]. Langevin approximations break down in
iso-potential membrane patches with fewer than about 800
channels [33], but their limitations have not been assessed in
non-iso potential models of neurons since the number of
channels involved dynamically varies with distance, mem-
brane potential, and conductance. Based on our simulations,
we conclude that the accuracy of Langevin-type approxima-
tions breaks down in axons below 1 lm diameter. Note that
for typical channel densities and assuming that the average
membrane area affected by the AP corresponds to an axon
cylinder about a length constant long, the breakdown limit
corresponds to at least an order of magnitude more channels
than in membrane patches. Thus, Langevin-type approxima-
tions of channel noise are likely to break down in smaller
arborized neurons, because they ignore both spatial and
temporal correlations.
An important study on stochastic simulations of membrane

patches used realistic channel kinetics and showed that spike
initiation has high temporal precision when the size of ionic
current fluctuations near the AP threshold are small
compared with the injected stimulus current [9]. Thus weaker
stimuli will produce more unreliable spiking in agreement
with experimental data [27]. These results were extrapolated
to axons, where the axial current driving the AP was regarded
as strong driving input, and, hence, it was inferred that APs
should propagate very reliably in axons [9]. However, the
spatial spread of membrane potential follows different input–
response relationships than in point-like iso-potential mem-
brane patches [34]. In fact, the current driving the AP ahead
is smaller than the minimum stimulus current required to
trigger an AP in the axon (Rheobase); in our simulations it is
one to two orders of magnitude smaller. Consequently,
contrary to previous suggestions [9], the driving axial current
is a weak input that is susceptible to channel noise, and we
find that conduction velocity fluctuates significantly, because
the small number of channels involved in driving the AP,
when the membrane is between resting potential and AP
threshold, are subject to large fluctuations.
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Stochastic Microsaltatory Conduction
Our simulations reveal a second source of jitter in thin

axons, stochastic microsaltatory conduction, whereby the AP
jumps well ahead of the advancing wavefront to a cluster of
spontaneously open Na channels. Thus, this cluster of
spontaneously open channels acts like a Node of Ranvier.
Our simulations revealed that this collaborative channel
effect occurs only in thin axons with high Na channel
densities. In contrast, we show that the ingenious suggestion
that thin axons could be dotted with individual Na
channels—each acting like a Node of Ranvier [30] —produces
axons that are too unreliable to sustain AP conduction.

Axonal Memory Residing in Populations of Multistate Ion
Channels

Spike trains are subject to stochastic effects which depend
on the history of previous axonal activity (splitting into
groups), while single APs did not. Thus, information about
previous activity must be retained in the state distribution of
ion channels. This effect should be measurable in axons below
0.5 lm diameter. Axonal memory effects have been pre-
viously measured in axons [35], where selective conduction of
APs was, for example, dependent on inactivation of a K
channel [36]. Here, we show that the timing reliability of APs
can become dependent on the axon’s activity history. This is a
general property of any voltage-gated ion channel with
multiple states. This property could explain evidence showing
stimulus-dependent spike time reliability [37], by channel
noise affecting different patterns of spikes to a differing
degree. Because spike time reliability depends on the
temporal pattern of spikes (splitting effect), dendritic and
somatic mechanisms of AP initiation could be tuned to
generate spike patterns that propagate especially reliably.
Such reliable spike patterns could involve bursts, because our
findings suggest that the first spike of a burst will condition
channel noise effects for subsequent spikes, such that the
interspike interval between the second and subsequent spikes
of the burst will be more reliable than the interval between
the first and the second.

Conduction Safety in the Presence of Channel Noise
Although channel noise provides an obvious means for APs

to fail, our results show that conduction failures are rare (1%
in axons of the smallest known diameter and thus the noisiest
axons). More often than not, channel noise has the opposite
effect of promoting AP generation (e.g., additional sponta-
neous APs, stochastic microsaltatory conduction). Our find-
ings suggest that conduction safety will be as high in thin (0.2-
lm diameter [38]) myelinated axons as in unmyelinated axons
of the same diameter, because with very high Naþ channel
densities and very low Kþ channel densities at the Nodes of
Ranvier, the strong positive feedback of AP regeneration is
even less likely to be overcome by channel noise. We are
currently working on modeling channel noise effects in
myelinated axons, as many long-range connections, such as
cortico–thalamic connections, are often partially myelinated,
unlike the unmyelinated axons discussed here.

Experimentally, thin pyramidal cell axons were found to
conduct APs reliably [39,40]. Reliable conduction was
observed in dissociated cells of cortex and hippocampus,
where intrinsic properties such as channel noise are con-
served, but effects depending on extracellular or network

mechanisms are lost. However, the same cell types displayed
propagation failures in nondissociated tissues [41]. In fact,
several neuronal mechanisms that purposely produce con-
duction failure are known, acting through membrane hyper-
polarization, shunting effects, and spike-frequency–
dependent block at branch points (see [42]). Our findings
suggest that channel noise cannot account for the AP failures
observed in many systems and that other factors must be
responsible. We suggest that if propagation failures occur in
the healthy nervous system, then these are due to purposely
designed mechanisms for presynaptic information processing,
which allow the incorporation of local information not
available at the site of spike initiation. We note that channel
noise effects at branch points and other low-safety factor
regions of the axon (e.g., synaptic varicosities) could be used
for probabilistic routing or editing of spike trains, and further
stochastic simulations are required.

Experimental Validation and Synaptic Transmission
Testing the predictions of our theory (the five stochastic

effects) is very straightforward. If one replicated our
stimulation protocol on axons of similar diameter, one would
only have to look at the raster plot of paired recordings along
an axon or at somatic and postsynaptic activity, and these
should reveal the effects described in our simulations. In fact,
we suspect that existing data on paired cell recordings could
straightforwardly reveal some of these novel effects, if
reanalyzed appropriately, i.e., by not discarding ‘‘abnormal’’
trials that could well have been caused by axonal channel
noise effects (e.g., where a spontaneous AP triggered synaptic
response or where the postsynaptic response preceded the
presynaptic stimulus). A practical problem in relating
existing experimental data to our results is that the diameters
of the axons are unknown, often because the necessary
electron microscopy data was not, or cannot be, obtained in
some preparations.
A straightforward experimental system would be to

cultivate individual pyramidal cells on a dish, where they
can form individual long-range axons and have them grow
over micro-electrode substrates (Hugh Robinson, personal
communication). The occurrence of the stochastic effects
could be facilitated, such that they occur in larger diameter
axons. A counterintuitive and easily testable prediction is
that decreasing temperature will increase channel noise
effects on APs, e.g., as spontaneously open channels would
stay open longer and increase the amount of charge delivered
to the membrane [19]. Furthermore, decreasing the numbers
of available Na channels should (e.g., by pharmacological
blocking a proportion of them) increase propagation speed
jitter, while increasing Na channel numbers and decreasing K
channel numbers should facilitate the appearance of sponta-
neous APs as well as saltatory conduction events.
Spike time reliability is bound to decrease the farther the

AP travels, thus long-range communication is in this respect
noisier than short range communication, given the same axon
diameter. Nonetheless, axonal channel noise may have an
effect on information transmission in short-range synaptic
connections, because the AP wave form is perturbed by
channel noise (cf. Figure 3). The AP wave form in turn
determines the Ca signal at the synapse, which controls
vesicle release. Thus, as will be shown elsewhere, short-range
synaptic connections may experience trial-to-trial variability
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in release probability and postsynaptic responses, due to
fluctuations of the driving AP wave form. Furthermore,
synaptic channel noise at presynaptic Ca channels and
postsynaptic receptor channels may produce spontaneous
postsynaptic potentials and further increase trial-to-trial
transmission variability.

Robustness of Noise Effects
Our extensive parameter variations demonstrate that the

precise means by which channels generate noise has a limited
effect (see Tables S1 and S2). Thus, the findings we present
here are rather general. Indeed, the key finding of our paper
is that the specific details of ion channels, kinetics, or the
gating model are negligible compared with the fact that
channel gating per se is stochastic.

The novel noise effects that we report depend on six basic
factors that are fundamental to the mechanism of AP
propagation, namely; a) Na channels supporting the AP have
to open earlier than the opposing K channels, b) Na channels
have to inactivate to allow for repetitive unidirectional
signaling, c) channels are discrete all-or-none conductances,
d) the fact that channels gate stochastically, e) the AP is locally
initiated by a relatively small number of Na channels, due to
the way that depolarization spreads in cables, and f) the single
channel conductance approaches the input conductance of
the membrane as axons become thinner. These basic factors
suffice to explain the observed effects. Furthermore, the
multistate nature of channels produces the novel effect of
activity ‘‘memory’’ across a population of ion channels that
can last an order of magnitude longer than an individual ion
channel time constant.

We have tested our axon simulations with several Na
channel models that differ with respect to activation/
deactivation/inactivation kinetics, and the overall gating
scheme. We modeled squid axon using a Na channel model
where among other things, activation and inactivation are not
independent [43]. We observed the same stochastic effects as
in the case of the standard squid channel model. We also
simulated the pyramidal cell axon using a model of hippo-
campal Na channels [44], which has more states and kinetic
functions.

The more recently proposed models for cortical Na
channels [45,46] have not been included in our study. This
is not only because they are controversial (see discussion in
Text S1 and also [47]), but also because they increase the rate
at which the membrane potential changes just above thresh-
old. Therefore, they will produce a greater decrease in spike
time reliability[46] than the models used here. Thus, our data
suggests an upper bound to the reliability of pyramidal cell
axons.

We conclude that, as in our previous work [19] where we
showed that channel noise sets a lower limit to axon diameter
that is remarkably insensitive to the specific details of the
channel model, all novel stochastic effects on AP propagation
we reported here occur irrespective of the specific channel
gating model, at least within plausible limits.

Conclusion
We have studied the AP in thin axons and have shown that

stochastic modeling of individual ion channels captures
essential properties and constraints of whole cell behavior.
These effects cannot be accounted for by deterministic (e.g.,

jitter) or approximative (Langevin-type) stochastic models
(stochastic microsaltatory conduction). Conversely, we find
that axons (or dendrites) above 0.5 lm diameter will reliably
conduct APs, and deterministic modeling of ion channels
should suffice for these, unless AP initiation is considered.
Our findings prompt careful experimentalconsideration in

thin axons, because typical experimental protocols are not
geared to distinguish postsynaptic variability due to synaptic
transmission from variability caused by axonal noise (‘‘axonal
variability’’). Optical methods and extracellular recordings
have limited stimulus control and signal resolution; thus
intracellular paired-cell recordings, as used to study small
synapses innervated by thin axons, would be more suitable.
However, the impact of axonal channel noise in circuits may
have gone so far unnoticed, because paired-cell measure-
ments which could reveal axonal variability are difficult to
obtain, since typical cell-to-cell distances are limited by the
microscope’s field of view and the probability of finding two
monosynaptically connected neurons to about 500 lm—at
this distance conduction jitter would be only on the order of
0.1 ms. However, cortico–cortical axon collaterals and
cerebellar parallel fibers, which are below 0.5 lm diameter,
can extend up to a centimeter away from the soma,
suggesting that jitter will limit the minimum width of reliable
coincidence detection windows to 5–10 ms at their terminals.
Thin unmyelinated axons are typically used to innervate

large numbers of small synapses [48] and are, therefore,
associated with and required for the high level of circuit
miniaturization observed in our brains [19]. Circuit and
axonal miniaturization is beneficial to an organism’s evolu-
tionary fitness, because it decreases connection length, mass,
volume, and metabolic demand of brains [19,49]. Our findings
show that noise poses a limit to miniaturization, because the
information capacity of axons will rapidly decrease as they
approach the limiting diameter of 0.1 lm—making them both
slow and noisy. Behavioral requirements on information
processing and neural coding are thus intricately linked to
brain anatomy by biophysical constraints such as axonal
channel noise and provide a rich area to investigate these
evolutionary relevant relationships using computational
methods. We have studied the role of internal noise-setting
constraints on the design of a typical cell-signaling system
[50], the AP. Similar stochastic effects and the general
relationships will govern other pulsatile signaling systems
that rely on inherently noisy protein switches to generate and
propagate signals, such as Ca and cAMP waves.

Materials and Methods

All simulations were carried out using our Modigliani stochastic
simulator (see http://www.modigliani.co.uk [19]) on Linux work-
stations and a Linux cluster and verified using deterministic
simulations using Neuron (see http://neuron.duke.edu). Channel
gating was described by discrete state Markov processes, capturing
the corresponding ion channels’ kinetics from patch clamp experi-
ments. Two different stochastic integration algorithms (Gillespie,
Binomial; see [19]) were used and an additional set of deterministic
simulations were carried out to cross-verify simulation results. Time
step sizes for the Binomial algorithm where 1 ls (results verified using
0.05 ls), while the Gillespie algorithm generated steps as small 1 ns.
Spatial discretization was, depending on parameters, between 1

20 and1
60 of the axon’s length constant (results verified with 1

80).
In the first (spike train) protocol, the axon model was simulated for

N¼ 60 repeated trials of 10 s each. The unmyelinated axon of 0.2 lm
diameter (2 mm long) was modeled using squid axon channels
kinetics (Na,GFLN1; K,SqKv1.1; see Table S3) and channel densities
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following [19]. In this first protocol we use a hybrid model of high
resistance mammalian membrane (e.g., [51] report values of up to
70,000 Xcm2 for cortical interneurons) with squid-like ion channels.
Cable properties were here Ra¼70 Xcm and Rm¼20,000 Xcm2. Axon
length was kept short to reduce computing times, yet the length and
number of trials required several weeks to complete for one
parameter set. Spike trains were generated by stimulation with a
zero-mean white noise current (SD ¼ 0.01 nA, 1-kHz corner
frequency) injected at the proximal end compartment. After each
trial, the simulator reset to identical initial conditions (only the state
of the random number generators were preserved).

In the second (single AP) protocol, an individual AP was triggered
by a rectangular input pulse and propagated down the axon. Two
types of axon models where used, a squid axon model (channels as
above and squid membrane parameters; for details see Table S4 and
Figure S1) and a cortical pyramidal cell axon collateral model based
on data from rodent cortex [19] (for details see Table S5). The
respective cortical rodent ion channels modeled were Nav 1.2 and
Kv1.1/3. Each trial simulation was run until after the AP reached the
distal end of the axon, and as before the simulator was reset after
each trail. Axons of diameter 0.08, 0.1, 0.2, 0.3, and 0.5 lm (1 cm long)
and 1 lm diameter axon (2 cm long) were stimulated in a single spike
per trial framework (N ¼ 250 trials). Parameter variations where
carried out by modifying a single parameter while keeping all other
parameters constant.

After visual inspection of the data, APs were detected by a
threshold discriminator detecting half-maximum AP height and their
waveforms aligned at their threshold crossing time to construct the
raster plots and current traces. Spike timing was quantified by first
calculating the SD of the spike timings within each event and then
averaging across all events. Spike train information rates were
measured and linearly extrapolated according to [28].

Scaling Relationship between Channel Fluctuations and Diameter
d. The total number of channels, n, involved in the rising phase of the
AP is proportional to the membrane area affected by its depolariza-
tion. This area, a cylindrical section of membrane, is proportional to
the circumference (}d) of the axon, times the electrotonic length of
the axon (l

ffiffiffi
d
p

). Thus, keeping channel density constant, the number
of affected channels goes as the 3/2-power of diameter (Nld

3
2). The

number of open channels, NO, is N times the voltage- and history-
dependent channel open probability p. Thus, the binomially
distributed SD of NO is DNO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞN

p
. The ratio between the

size of the fluctuations and the total number of channels scales with
diameter is DNO=NO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ=ðpd3=2Þ

p
. Thus, the relative effect of

channel fluctuations grows quickly as d�3=4 as diameter decreases.
Note, that p is generally low. At half-peak membrane depolarization
NO is a fraction of NO at peak. Even at peak, NO is typically between
1
3N to 1

2N . Thus, the low open probabilities during the rising phase of
the AP contribute to any diameter-dependent channel noise effects.
The overall relationship is given by the basic biophysics of AP
signaling and is independent of the specific axon parameter or
channel kinetics.

Supporting Information

Figure S1. Markov State Transition Scheme of the Patlak Naþ

Channel Model

Found at doi:10.1371/journal.pcbi.0030079.sg001 (52 KB DOC).

Figure S2. The Plots Show Superimposed Voltage Traces of Squid
Axons with Different Channel Densities

(Top) Naþ channel density was set to 2 mm2 (top) and 4 mm2

(bottom). The Kþ channel densities were adjusted to keep the 10
3 Naþ/

Kþ density ratio constant. Each row plot contains the superimposed
voltage traces V(x,t) (in units of millivolts) for 20 repeated trials. Each
row corresponds to a recording position x along a 0.1 lm diameter
axon of 1 mm length. APs are traveling from left to right and were
triggered at t ¼ 0 ms. Note that as the trials are superimposed, the
variability in spike triggering is clearly visible, as well as is some back-
propagating SAPs.

Found at doi:10.1371/journal.pcbi.0030079.sg002 (425 KB TIF).

Figure S3. Variability of the Propagating AP Aligned at Half-Peak
Membrane Potential (t¼0 ms, Data for 0.2 lm Diameter Axon, White/
Black Curves Are Arithmetic Averages and Yellow Curves Are 33 SD
Envelopes, N ¼ 673)

(A) Membrane potential wave forms.
(B) Open Na (blue) and K (red) channels.

(C) Ionic currents flowing through the membrane (Na current, blue; K
current, green) and axial current (green).
(D) Net membrane current calculated as the sum of Na, K, and leak
currents.
(E) Net axial current is the sum of inflowing and outflowing axial
currents, describing where axial current is produced (negative values)
or consumed (positive values).
(F) SDs of the currents in (C–E), color coding as above.
Cf. main text, Figure 3.

Found at doi:10.1371/journal.pcbi.0030079.sg003 (1.7 MB PDF).

Figure S4. Variability of the Propagating AP Aligned at Half-Peak
Membrane Potential (t¼0 ms, Data for 0.5 lm Diameter Axon, White/
Black Curves Are Arithmetic Averages and Yellow Curves Are 33 SD
Envelopes, N ¼ 673)

(A) Membrane potential wave forms.
(B) Open Na (blue) and K (red) channels.
(C) Ionic currents flowing through the membrane (Na current, blue; K
current, green) and axial current (green).
(D) Net membrane current calculated as the sum of Na, K, and leak
currents.
(E) Net axial current is the sum of inflowing and outflowing axial
currents, describing where axial current is produced (negative values)
or consumed (positive values).
(F) SDs of the currents in (C–E), color coding as above.
Cf. main text, Figure 3.

Found at doi:10.1371/journal.pcbi.0030079.sg004 (1.0 MB PDF).

Figure S5. Variability of the Propagating AP Aligned at Half-Peak
Membrane Potential (t¼ 0 ms, Data for 1 lm Diameter Axon, White/
Black Curves Are Arithmetic Averages and Yellow Curves are 3 3 SD
Envelopes, N ¼ 673)

(A) Membrane potential wave forms.
(B) Open Na (blue) and K (red) channels.
(C) Ionic currents flowing through the membrane (Na current, blue; K
current, green) and axial current (green).
(D) Net membrane current calculated as the sum of Na, K, and leak
currents.
(E) Net axial current is the sum of inflowing and outflowing axial
currents, describing where axial current is produced (negative values)
or consumed (positive values).
(F) SDs of the currents in (C–E), color coding as above.
Cf. main text, Figure 3.

Found at doi:10.1371/journal.pcbi.0030079.sg005 (686 KB PDF).

Table S1. Parameter Variation in a 0.3 lmDiameter Squid Axon of 10
mm Length

Effects of varying Na and K channel densities (rNa,rK), as well as
varying axoplasmic resistance (Ra) by 650% from standard param-
eter values in Table S1. Table S1 lists spike time jitter and the
occurrence of stochastic APs (SAP) and stochastic microsaltatory
conduction effects, which occurred for all parameters. The term noise
refers to the breakdown of communication on the axon, being so
noisy such that no specific AP could be discerned.

Found at doi:10.1371/journal.pcbi.0030079.st001 (30 KB DOC).

Table S2. Parameter Variations for a 0.3 lm Diameter Cortical
Pyramidal Cell Axon Collateral of 10 mm Length Effects of Varying
Na and K Channel Densities (rNa,rK), Axoplasmic Resistance (Ra),
Membrane Leak (gLeak), and Resting Potential (V0) 650% from
Standard Parameter Values in Table S1

Change in spike time travel time jitter (measured in SD) and the
occurrence of SAPs and stochastic microsaltatory conduction effects,
which occurred for all parameters. The term noise refers to the
breakdown of communication on the axon, being so noisy such that
no specific AP could be discerned. The term not excitable refers to the
AP being either not triggerable or not repolarizing.

Found at doi:10.1371/journal.pcbi.0030079.st002 (25 KB PDF).

Table S3. Full Parameter Set for Our Hybrid Axon Model Used in the
First Protocol

See main text for details.

Found at doi:10.1371/journal.pcbi.0030079.st003 (47 KB DOC).

Table S4. Full Parameter Set for the Squid Axon Model Used in the
Second Protocol

See main text for details.
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Found at doi:10.1371/journal.pcbi.0030079.st004 (47 KB DOC).

Table S5. Parameter Set for a Cortical Pyramidal Cell Axon Collateral
Used in the Second Protocol

See main text for further details.

Found at doi:10.1371/journal.pcbi.0030079.st005 (46 KB DOC).

Table S6. Parameter Values for the Kinetic Functions of the [43] Naþ

Channel Model

Found at doi:10.1371/journal.pcbi.0030079.st006 (35 KB DOC).

Text S1. Supporting Information

Found at doi:10.1371/journal.pcbi.0030079.sd001 (154 KB PDF).
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