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Abstract

Environmental factors, such as humidity, precipitation, and temperature, have

significant impacts on the spread of the new strain coronavirus COVID-19 to humans.

In this paper, we use a stochastic epidemic SIRC model, with cross-immune class and

time-delay in transmission terms, for the spread of COVID-19. We analyze the model

and prove the existence and uniqueness of positive global solution. We deduce the

basic reproduction numberRs

0 for the stochastic model which is smaller thanR0 of

the corresponding deterministic model. Sufficient conditions that guarantee the

existence of a unique ergodic stationary distribution, using the stochastic Lyapunov

function, and conditions for the extinction of the disease are obtained. Our findings

show that white noise plays an important part in controlling the spread of the

disease; When the white noise is relatively large, the infectious diseases will become

extinct; Re-infection and periodic outbreaks can occur due to the existence of

feedback time-delay (or memory) in the transmission terms.

Keywords: Brownian motion; COVID-19; Cross-immunity; Extinction; Stationary

distribution; Stochastic SIRC model

1 Introduction

The ongoing pandemic coronavirus disease (COVID-19) has become a worldwide emer-

gency. This infectious disease is spreading fast, endangering a large number of people’s

health, and thus immediate actions and intensive studies are needed to control the disease

in communities [1]. COVID-19 is the seventh member of the coronavirus (CoV) family,

such as MERS-CoV and SARS-CoV [2]. Although SARS-CoV was more deadly, it was

much less infectious than COVID-19. There have been no outbreaks of SARS anywhere

in the world since 2003. The symptoms of the COVID-19 infection include cough, fever,

tiredness, diarrhea, and shortness of breath. Mostly in severe cases, COVID-19 causes

pneumonia anddeath [3]. The primary studies show that the incubation period ofCOVID-

19 is between 3–14 days or longer [4]. Additionally, the average of basic reproduction

numberR0 for COVID-19 is about 2–2.8. The disease may still be infectious in the latent

infection period. Studies to date suggest that the virus is very serious and spreads fast from

person to person through close contact and respiratory droplets rather than through the

air [4]. Table 1 shows the incubation period of several common infectious diseases.
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Table 1 Incubation period of several common infectious diseases

Disease Range Ref.

COVID-19 3–14 days [4]

Cholera 0.5–4.5 days [26]

Common cold 1–3 days [27]

Ebola 1–21 days [28]

HIV 2–3 weeks to months or longer [29]

Influenza 1–3 days –

MERS 2–14 days [30]

SARS 1–10 days [31]

Mathematical modeling of the infectious diseases has an important role in the epidemi-

ological aspect of disease control [5–8]. Several epidemic models, with various charac-

teristics, have been described and investigated in the literature. Most of these models are

based on susceptible–infected–removed (SIR) model. Casagrandi et al. [9] introduced a

SIRC model to describe the dynamical behaviors of influenza A by inserting a new com-

partment, namely cross-immunity (C) componenta of people who have been recovered

after being infected by different strains of the same viral subtype in previous years. The

component C describes an intermediate state between the susceptible S and the recov-

ered R. Rihan et al. [10] investigated the qualitative behaviors of a fractional-order SIRC

model for salmonella bacterial infection. Recently in [11], the authors provided a deter-

ministic SEIR epidemic model of fractional order to describe the dynamics of COVID-19.

In other descriptions, quarantine state (Q) may be included in the presence of subjects,

such as SIRQ models [12].

In fact, stochastic perturbation factors, such as precipitation, absolute humidity, and

temperature, have a significant impact on the infection force of all types of virus dis-

eases to humans. Taking this into consideration enables us to present randomness into

deterministic biological models to expose the environmental variability effect, whether

it is environmental fluctuations in parameters or random noise in the differential systems

[13–17].Moreover, stochasticmodels give an extra degree of freedom and realism in com-

parison with their corresponding deterministic models. Stochastic population dynamics

perturbed by white noise (or Brownian motion) has been studied extensively by many

authors [18–20]. It has been investigated in [21] that an environmental Brownian noise

can suppress explosions in population dynamics. Yuan et al. [22] discussed the results of

stochastic viral infection, immune response dynamics and analyzed the human immuno-

deficiency virus infection. In [23], the author investigated the existence results of ergodic

distribution for stochastic hepatitis B virus model based on Lyapunov function. In [24],

the authors explored the dynamics of SIR epidemic model with environmental fluctua-

tions. Additionally, they calculated a threshold parameter to demonstrate the persistence

and extinction of the disease. Recently, Lakshmi et al. [25] identified some environmental

factors such as geographic location of the countries, the upcoming climate, atmospheric

temperature, humidity, sociobiological factors, etc., that influence the global spread of

COVID-19.

Up-to-date studies have reported that there are many COVID-19 carriers who are not

suffering from the disease. This may be due to cross-immunity of other virus survivors,

peoplewho have been recovered from the virus, such as other stains of coronavirus, H1N1,

or influenza A. It has been reported in [2] that “T-cells that target SARS-CoV2, the virus
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that causes COVID-19, in the blood of people who had recovered from a coronavirus infec-

tion.” Accordingly, in the present paper, we investigate an SIRC epidemic model of cross-

immune class for the dynamics of COVID-19 infection among groups. We include time-

delay in the transmission terms to represent the incubation period of the virus (the time

between infection and symptom onset).We also incorporate white noise type of perturba-

tions to reveal the effect of environmental fluctuations and variability in parameters. Based

on the existing literature, this is the first work dealing with the persistence and extinction

of a stochastic epidemic model for the COVID-19 infection. We investigate the impact of

small and large values of white noise in the persistence and extinction of the disease. We

also derive the existence results of stationary distribution and extinction of the disease

using a novel combination of stochastic Lyapunov functional. This paper is presented as

follows: We provide a stochastic SIRC model with time-delay in Sect. 2. In Sect. 3, we

study the existence and uniqueness of a global positive solution for the stochastic delayed

SIRC model. In Sect. 4, a stationary distribution and extinction analysis of the underlying

model are investigated. Some virtual numerical examples are presented in Sect. 5. Finally,

concluding remarks are given in Sect. 6.

2 Stochastic SIRC epidemic model

For the spread of the COVID-19 disease in humans, we classify the population into four

categories: S(t), I(t), R(t), and C(t) are the proportion of susceptible, infected, recovered,

and cross-immune ones at time t, respectively. LetN(t) = S(t)+I(t)+R(t)+C(t) be the total

population. At this stage, we believe that a SIRC model efficiently describes the mecha-

nism for the spreading of the COVID-19 virus. The classical SIRC model [9, 32] takes the

form

Ṡ(t) = η
(
1 – S(t)

)
– ξS(t)I(t – τ ) + βC(t),

İ(t) = ξS(t)I(t – τ ) + σξC(t)I(t) – (η + α)I(t),

Ṙ(t) = (1 – σ )ξC(t)I(t) + αI(t) – (η + γ )R(t),

Ċ(t) = γR(t) – ξC(t)I(t) – (η + β)C(t).

(1)

We incorporate a discrete time-delay τ into the SIRC model to represent the incubation

period which is about 3–14 days [4]. All the parameters appearing in the model are non-

negative, see Table 2. In the absence of cross-immunity i.e. (1 – σ = 0), the SIRC model

curtails to the SIRS model since the two individuals S and C become immunologically

indistinguishable. Figure 1 shows the scheme of SIRC model.

Table 2 Description of the model parameters

Parameters Description

η Mortality rate in every compartment assumed to be equal to the rate of newborn

in the population [9]

β Rate at which the cross-immune population becomes susceptible again

ξ Contact/transmission rate

σ The average reinfection probability of a cross-immune individual

α Recovery rate of the infected population

γ Rate at which the recovered population becomes the cross-immune population

and moves from total to partial immunity
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Figure 1 Scheme of SIRC model (1)

Time-delay τ > 0 is incorporated in the transmission terms to represent the incubation

period of the viral infection, the time between infection and symptom onset. The current

studies show that the average/median of incubation period of early confirmed cases of

COVID-19 is about 5.5 days, which is similar to SARS-CoV. Presence of time-delay in the

model may cause periodic solutions many times for different time-delay values τ [33].

Model (1) has a disease-free equilibrium E0 = [1, 0, 0, 0] and an endemic equilibrium

E+ = [S∗, I∗,R∗,C∗], where

S∗ =
η + α

ξ
–

βγαI∗

[(η + γ ) – (1 – σ )γ ]ξ I∗ + (η + β)(η + γ )
,

R∗ =
αI∗(ξ I∗ + η + β)

[(η + γ ) – (1 – σ )γ ]ξ I∗ + (η + β)(η + γ )
,

C∗ =
γαI∗

[(η + γ ) – (1 – σ )γ ]ξ I∗ + (η + β)(η + γ )
,

and I∗ is a root of quadratic equation pI2 + qI + r = 0, where

p = ηξ (η + α + σγ ),

q = ηξ
[
α(2η + γ + β) + (η + β)(η + γ ) + (η + σγ )(η – ξ )

]
,

r = η(η + β)(η + γ )(η + α)(1 –R0).

HereR0 =
ξ

η+α
is known as the basic reproduction number of the deterministic model.

In fact, there is an increasing indication that superior consistencywith somephenomena

can be contributed if the effects of environmental noises in the system are taken into ac-

count [34]. Epidemicmodel (1) assumes that the observed dynamics are driven exclusively

by internal deterministic cases. Ignoring environmental variability in themodelingmay af-

fect the dynamics of themodel and transmission of the disease. Accordingly, there is a need

to extend the deterministic systems described by differential equations into stochastic dif-

ferential equations (SDEs), where related parameters are modeled as suitable stochastic

processes, added to the driving system equations.

From the mathematical and biological point of view, there are some assumptions to

incorporate stochastic perturbations into the epidemiological model, such as Markov

chain process, parameter perturbations, white noise type, etc. Here, we incorporate white

noise type perturbation into model (1), which is proportional to the S, I , R, C classes, so
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that

dS(t) =
[
η
(
1 – S(t)

)
– ξS(t)I(t – τ ) + βC(t)

]
dt + ν1S(t)dW1(t),

dI(t) =
[
ξS(t)I(t – τ ) + σξC(t)I(t) – (η + α)I(t)

]
dt + ν2I(t)dW2(t),

dR(t) =
[
(1 – σ )ξC(t)I(t) + αI(t) – (η + γ )R(t)

]
dt + ν3R(t)dW3(t),

dC(t) =
[
γR(t) – ξC(t)I(t) – (η + β)C(t)

]
dt + ν4C(t)dW4(t),

(2)

where W1(t), W2(t), W3(t), and W4(t) stand for the independent Brownian motions. ν2
1 ,

ν2
2 , ν

2
3 , and ν2

4 represent the intensity of the environmental white noises, νi > 0 (i = 1, 2, 3, 4)

subject to the following initial conditions:

S(θ ) = φ1(θ ), I(θ ) = φ2(θ ),

R(θ ) = φ3(θ ), C(θ ) = φ4(θ ), θ ∈ [–τ , 0],

φi(θ ) ∈ C, i = 1, 2, 3, 4,

(3)

such that C is a family of Lebesgue integrable functions from [–τ , 0] into R
4
+.

3 Existence and uniqueness of the positive solution

To investigate the dynamical characteristics of SDDEs (2), the first consideration is to ver-

ify if system (2) has a unique global positive solution. As the coefficients of system (2)

satisfy the local Lipschitz condition together with the linear growth condition [35, 36],

there exists a unique local solution. Now, we need to prove that the solution is positive

and global using the Lyapunov analysis method [36].

Theorem 1 System (2) has a unique positive solution (S(t), I(t),R(t),C(t)) on t ≥ –τ , and

the solution will remain in R
4
+ for the given initial condition (3) with probability one.

Proof 1 For any initial value (3), as the coefficients of system (2) satisfy the local Lipschitz

condition, so system (2) has a unique local solution (S(t), I(t),R(t),C(t)) on t ∈ [–τ , τe) a.s.,

where τe represents the explosion time [36].

Our aim is to show that this solution is global i.e. τe = ∞ a.s. Assume n0 ≥ 1 to be suf-

ficiently large such that S(θ ), I(θ ), R(θ ), and C(θ ) (θ ∈ [–τ , 0]) are lying in the interval

[ 1
n0
,n0]. For each n ≥ n0, n ∈N, define the stopping time

τn = inf

{
t ∈ [–τ , τe) : min

{
S(t), I(t),R(t),C(t)

}
≤ 1

n
or max

{
S(t), I(t),R(t),C(t)

}
≥ n

}
,

we fix infφ = ∞ (φ is the empty set). Apparently, τn is increasing as n→ ∞. Assume τ∞ =

limn→∞ τn, then τ∞ ≤ τe a.s. Therefore, we need to show that τ∞ = ∞ a.s., then τe = ∞ a.s.

and (S(t), I(t),R(t),C(t)) ∈ R
4
+ a.s. for all t ≥ –τ . If it is erroneous, there is a pair ǫ ∈ (0, 1)

and T̃ > 0 such that P{τ∞ ≤ T̃} > ǫ. Then there is an integer n1 ≥ n0 such that

P{τn ≤ T̃} ≥ ǫ, ∀n≥ n1. (4)
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We define a C2-function V :R4
+ →R+ as follows:

V(S, I,R,C) =

(
S – κ – κ

lnS

κ

)
+ (I – 1 – ln I)

+ (R – 1 – lnR) + (C – 1 – lnC) +

∫ t+τ

t

κξ I(s – τ )ds,

where κ > 0 is a constant to be determined. By Ito’s formula, we can obtain

dV =LV dt + ν1(S – κ)dW1(t) + ν2(I – 1)dW2(t) + ν3(R – 1)dW3(t)

+ ν4(C – 1)dW4(t),

where

LV =

(
1 –

κ

S

)(
η – ηS – ξSI(t – τ ) + βC

)
+

(
1 –

1

I

)(
ξSI(t – τ ) + σξCI – (η + α)I

)

+

(
1 –

1

R

)
(ξCI – σξCI + αI – ηR – γR) +

(
1 –

1

C

)(
γR – ξCI

– (η + β)C
)
+

κν2
1 + ν2

2 + ν2
3 + ν2

4

2
+ κξ I(t) – κξ I(t – τ )

≤ 4η + κη + α + β + γ – ηC – ηR +
(
ξ (1 + κ) – α

)
I – ηI – ηS +

κν2
1 + ν2

2 + ν2
3 + ν2

4

2
.

Let κ = α–ξ

ξ
, then we have

LV ≤ 4η + κη + α + β + γ +
κν2

1 + ν2
2 + ν2

3 + ν2
4

2
≤M, (5)

whereM > 0 is a constant which is independent of S(t), I(t), R(t), and C(t). Therefore,

dV(S, I,R,C)≤Mdt + ν1(S – κ)dW1(t) + ν2(I – 1)dW2(t)

+ ν3(R – 1)dW3(t) + ν4(C – 1)dW4(t).
(6)

Integrating (6) from 0 to τn ∧ T̃ = min{τn, T̃} and then taking the expectation E on both

sides, we have

EV
(
S(τn ∧ T̃), I(τn ∧ T̃),R(τn ∧ T̃),C(τn ∧ T̃)

)
≤ EV

(
S(0), I(0),R(0),C(0)

)
+MT̃ . (7)

Let �n = {τn ≤ T̃}, for n ≥ n1 and in view of (4), we obtain P(�n) ≥ ǫ such that, for every

ω ∈ �n, there is at least one of S(τn,ω), I(τn,ω), R(τn,ω), or C(τn,ω) equaling either n or
1
n
, and then we obtain

V
(
S(τn ∧ T̃), I(τn ∧ T̃),R(τn ∧ T̃),C(τn ∧ T̃)

)
≥ (n – 1 – lnn)∧

(
1

n
– 1 – ln

1

n

)
. (8)
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According to (7), we get

EV
(
S(0), I(0),R(0),C(0)

)
+MT̃ ≥ E

[
1�n(ω)V

(
S(τn,ω), I(τn,ω),R(τn,ω)

)
,C(τn,ω)

]

≥ ǫ(n – 1 – lnn)∧
(
1

n
– 1 – ln

1

n

)
,

(9)

where 1�n represents the indicator function of �n. Letting n→ ∞ yields

∞ > EV
(
S(0), I(0),R(0),C(0)

)
+MT̃ = ∞, (10)

which leads to a contradiction. It can be concluded that τ∞ = ∞ a.s., which proves the

theorem.

4 Existence of ergodic stationary distribution

Herein, we construct a suitable stochastic Lyapunov function to study the existence of a

unique ergodic stationary distribution of the positive solutions to system (2). First, let us

assume that X(t) is a regular time-homogenous Markov process in R
d illustrated by the

SDDE

dX(t) = f
(
X(t),X(t – τ ), t

)
dt +

d∑

r=1

gr
(
X(t), t

)
dBr(t). (11)

The diffusion matrix of the process X(t) is

�(x) =
(
λij(x)

)
, λij(x) =

d∑

r=1

gir(x)g
j
r(x).

Lemma1 ([37]) TheMarkov process X(t) has a unique ergodic stationary distribution π (·)
if there exists a bounded domain U ⊂R

d with regular boundary Ŵ, and

(i): there is a positive number K so that
∑d

i,j=1 λij(x)ξiξj ≥K|ξ |2, x ∈ U , ξ ∈ R
d .

(ii): there exists a nonnegative C2-function Ṽ so that LṼ is negative for any Rd \ U .

Define the reproduction number of the stochastic model as follows:

R
s
0 =

ηγ ξ 2(1 – σ )

η̂α̂γ̂ β̂
, (12)

where η̂ = η +
ν21
2
, α̂ = η + α +

ν22
2
, γ̂ = η + γ +

ν23
2
, and β̂ = η + β +

ν24
2
.

Theorem 2 Assume that Rs
0 > 1 and η –

ν21∨ν22∨ν23∨ν24
2

> 0, then for value (S(0), I(0),R(0),

C(0)) ∈R
4
+, system (2) has a unique ergodic stationary distribution π (·).

Proof 2 First, we need to validate conditions (i) and (ii) of Lemma 1. To prove condition

(i), the diffusion matrix of model (2) is described as follows:

� =

⎛
⎜⎜⎜⎝

ν2
1S

2 0 0 0

0 ν2
2 I

2 0 0

0 0 ν2
3R

2 0

0 0 0 ν2
4C

2

⎞
⎟⎟⎟⎠ .
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Then the matrix � is positive definite for any compact subset of R4
+, then condition (i) of

Lemma 1 is satisfied.

Next, we prove condition (ii). Define C2-function V :R4
+ →R as follows:

V(S, I,R,C) =Q

(
– lnS – c1 ln I – c2 lnR – c3 lnC + ξ

∫ t+τ

t

I(s – τ )ds

)

– lnS + ξ

∫ t+τ

t

I(s – τ )ds – lnR – lnC +
1

ρ + 1
(S + I + R +C)ρ+1

=QV1 + V2 + V3 + V4 + V5,

where c1 =
ηγ ξ2(1–σ )

α̂2γ̂ β̂
, c2 =

ηγ ξ2(1–σ )

α̂γ̂ 2β̂
, and c3 =

ηγ ξ2(1–σ )

α̂γ̂ β̂2 . Note that V(S, I,R,C) is not only

continuous, but also tends to +∞ as (S, I,R,C) approaches the boundary of R4
+ and

‖(S, I,R,C)‖ → ∞. Therefore, V must have a minimum point (S(0), I(0),R(0),C(0)) in the

interior of R4
+. We define a C2-function Ṽ :R4

+ →R+ as follows:

Ṽ (S, I,R,C) =Q

(
– lnS – c1 ln I – c2 lnR – c3 lnC + ξ

∫ t+τ

t

I(s – τ )ds

)

– lnS + ξ

∫ t+τ

t

I(s – τ )ds – lnR – lnC +
1

ρ + 1
(S + I + R +C)ρ+1

– V
(
S(0), I(0),R(0),C(0)

)

:=QV1 + V2 + V3 + V4 + V5 – V
(
S(0), I(0),R(0),C(0)

)
,

(13)

where (S, I,R,C) ∈ ( 1
n
,n) × ( 1

n
,n) × ( 1

n
,n) × ( 1

n
,n) and n > 1 is a sufficiently large integer,

V1 = – lnS – c1 ln I – c2 lnR – c3 lnC + ξ
∫ t+τ

t
I(s – τ )ds, V2 = – lnS + ξ

∫ t+τ

t
I(s – τ )ds, V3 =

– lnR, V4 = – lnC, and V5 =
1

ρ+1
(S + I + R +C)ρ+1. ρ > 1 is a constant satisfying

η –
ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)
> 0,

and Q > 0 is a sufficiently large value satisfying the condition

–Qμ +w≤ –2, (14)

where μ = ηγ ξ2(1–σ )

α̂γ̂ β̂
– (η +

ν21
2
) > 0,

w = sup
(S,I,R,C)∈R4

+

{
–
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Iρ+1

+ 3η + γ + β + 2ξ I +A +
ν2
1

2
+

ν2
3

2
+

ν2
4

2

}
,

(15)

and

A = sup
(S,I,R,C)∈R4

+

{
η(S + I + R +C)ρ –

1

2

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
(S + I + R +C)ρ+1

}

<∞. (16)
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Applying Itô’s formula to V1, we have

LV1 = –
η

S
+ η + ξ I –

βC

S
–
c1ξSI(t – τ )

I

– c1σξC + c1(η + α) –
c2(1 – σ )ξCI

R
–
c2αI

R
+ c2(η + γ )

–
c3γR

C
+ c3ξ I + c3(η + β) +

ν2
1

2
+
c1ν

2
2

2
+
c2ν

2
3

2
+
c3ν

2
4

2

≤ –4 4
√

ηγ ξ 2(1 – σ )c1c2c3 + η +
ν2
1

2
+ c1

(
η + α +

ν2
2

2

)
+ c2

(
η + γ +

ν2
3

2

)

+ c3

(
η + β +

ν2
4

2

)
+ ξ (1 + c3)I

≤ –
ηγ ξ 2(1 – σ )

α̂γ̂ β̂
+ η +

ν2
1

2
+ ξ (1 + c3)I

= –μ + ξ (1 + c3)I.

(17)

Similarly, we can get

LV2 = –
η

S
+ η + ξ I –

βC

S
+

ν2
1

2
, (18)

LV3 = –
(1 – σ )ξCI

R
–

αI

R
+ η + γ +

ν2
3

2
, (19)

LV4 = –
γR

C
+ ξ I + η + β +

ν2
4

2
, (20)

LV5 = (S + I + R +C)ρ
[
η – η(S + I + R +C)

]
+

ρ

2
(S + I + R +C)ρ–1

×
[
ν2
1S

2 + ν2
2 I

2 + ν2
3R

2 + ν2
4C

2
]

≤ (S + I + R +C)ρ
[
η – η(S + I + R +C)

]
+

ρ

2
(S + I + R +C)ρ+1

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)

≤ η(S + I + R +C)ρ – (S + I + R +C)ρ+1
[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]

≤ A –
1

2

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
(S + I + R +C)ρ+1

≤ A –
1

2

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)](
Sρ+1 + Iρ+1 + Rρ+1 +Cρ+1

)
, (21)

where A is defined by (16). From equations (17)–(21), we have

LṼ ≤ –Qμ +Qξ (1 + c3)I –
1

2

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)](
Sρ+1 + Iρ+1 + Rρ+1 +Cρ+1

)

–
η

S
+ 3η –

βC

S
+

ν2
1

2
–

αI

R
+ γ +

ν2
3

2
–

γR

C
+ 2ξ I +A + β +

ν2
4

2

≤ –Qμ +Qξ (1 + c3)I –
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)](
Sρ+1 + Iρ+1 + Rρ+1 +Cρ+1

)
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–
η

S
–
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Iρ+1 + 3η –

βC

S
+

ν2
1

2
–

αI

R
+ γ +

ν2
3

2
–

γR

C

+ 2ξ I +A + β +
ν2
4

2
.

For ǫ > 0, define a bounded closed set

D =

{
(S, I,R,C) ∈R

4
+ : ǫ ≤ S ≤ 1

ǫ
, ǫ ≤ I ≤ 1

ǫ
, ǫ2 ≤ R ≤ 1

ǫ2
, ǫ3 ≤ C ≤ 1

ǫ3

}
.

In the set R4
+ \D, let us choose ǫ satisfying the following conditions:

–
η

ǫ
+H ≤ –1, (22)

–Qμ +Qξ (1 + c3)ǫ +w≤ –1, (23)

–
α

ǫ
+H ≤ –1, (24)

–
γ

ǫ
+H ≤ –1, (25)

–
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)] 1

ǫρ+1
+H ≤ –1, (26)

–
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)] 1

ǫ2(ρ+1)
+H ≤ –1, (27)

–
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)] 1

ǫ3(ρ+1)
+H ≤ –1, (28)

where

H = sup
(S,I,R,C)∈R4

+

{
Q(c3 + 1)ξ I –

1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Iρ+1

+ 3η + γ + β + 2ξ I +A +
ν2
1

2
+

ν2
3

2
+

ν2
4

2

}
.

We need to show that LṼ ≤ –1 for any (S, I,R,C) ∈R
4
+ \D, and R

4
+ \D =

⋃8
i=1Di, where

D1 =
{
(S, I,R,C) ∈ R

4
+; 0 < S < ǫ

}
,

D2 =
{
(S, I,R,C) ∈ R

4
+; 0 < I < ǫ

}
,

D3 =
{
(S, I,R,C) ∈ R

4
+; 0 < R < ǫ2, I ≥ ǫ

}
,

D4 =
{
(S, I,R,C) ∈ R

4
+; 0 < C < ǫ3,R≥ ǫ2

}
,

D5 =

{
(S, I,R,C) ∈R

4
+;S >

1

ǫ

}
,

D6 =

{
(S, I,R,C) ∈R

4
+; I >

1

ǫ

}
,

D7 =

{
(S, I,R,C) ∈R

4
+;R >

1

ǫ2

}
,

D8 =

{
(S, I,R,C) ∈R

4
+;C >

1

ǫ3

}
.
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Case 1. For any (S, I,R,C) ∈D1, we obtain

LṼ ≤ –
η

S
+Q(c3 + 1)ξ I –

1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Iρ+1 + 3η + γ + β + 2ξ I +A

+
ν2
1

2
+

ν2
3

2
+

ν2
4

2

≤ –
η

S
+H

≤ –
η

ǫ
+H ≤ –1,

which is obtained from (22). Therefore, LṼ ≤ –1 for any (S, I,R,C) ∈D1.

Case 2. For any (S, I,R,C) ∈D2, we have

LṼ ≤ –Qμ +Qξ (1 + c3)I –
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Iρ+1 + 3η + γ + β + 2ξ I

+A +
ν2
1

2
+

ν2
3

2
+

ν2
4

2

≤ –Qμ +Qξ (1 + c3)I +w

≤ –Qμ +Qξ (1 + c3)ǫ +w < –1,

which follows from (23) and (14). Thus, LṼ ≤ –1 for any (S, I,R,C) ∈D2.

Case 3. For any (S, I,R,C) ∈D3, we can get

LṼ ≤ –
αI

R
+Q(c3 + 1)ξ I –

1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Iρ+1 + 3η + γ + β + 2ξ I +A

+
ν2
1

2
+

ν2
3

2
+

ν2
4

2

≤ –
αǫ

ǫ2
+H ≤ –1,

which follows from (24). Consequently, LṼ ≤ –1 for any (S, I,R,C) ∈D3.

Case 4. For any (S, I,R,C) ∈D4, it yields

LṼ ≤ –
γR

C
+Q(c3 + 1)ξ I –

1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Iρ+1 + 3η + γ + β + 2ξ I +A

+
ν2
1

2
+

ν2
3

2
+

ν2
4

2

≤ –
γ ǫ2

ǫ3
+H ≤ –1,

which is obtained from (25). Thus, LṼ ≤ –1 for any (S, I,R,C) ∈D4.

Case 5. If (S, I,R,C) ∈D5, we have

LṼ ≤ –
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Sρ+1 +Q(c3 + 1)ξ I

–
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Iρ+1 + 3η
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+ γ + β + 2ξ I +A +
ν2
1

2
+

ν2
3

2
+

ν2
4

2

≤ –
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)] 1

ǫρ+1
+H ≤ –1,

which is obtained from (26). Then we can obtain LṼ ≤ –1 for any (S, I,R,C) ∈D5.

Case 6. If (S, I,R,C) ∈D6, we get

LṼ ≤ –
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Iρ+1 +Q(c3 + 1)ξ I

–
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Iρ+1 + 3η

+ γ + β + 2ξ I +A +
ν2
1

2
+

ν2
3

2
+

ν2
4

2

≤ –
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)] 1

ǫρ+1
+H ≤ –1,

which is obtained from (26). Hence, LṼ ≤ –1 for any (S, I,R,C) ∈D6.

Case 7. If (S, I,R,C) ∈D7, it yields

LṼ ≤ –
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Rρ+1 +Q(c3 + 1)ξ I

–
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Iρ+1 + 3η

+ γ + β + 2ξ I +A +
ν2
1

2
+

ν2
3

2
+

ν2
4

2

≤ –
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)] 1

ǫ2ρ+2
+H ≤ –1,

which is obtained from (27). Hence, LṼ ≤ –1 for any (S, I,R,C) ∈D7.

Case 8. If (S, I,R,C) ∈D8, we can see that

LṼ ≤ –
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Cρ+1 +Q(c3 + 1)ξ I

–
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)]
Iρ+1 + 3η

+ γ + β + 2ξ I +A +
ν2
1

2
+

ν2
3

2
+

ν2
4

2

≤ –
1

4

[
η –

ρ

2

(
ν2
1 ∨ ν2

2 ∨ ν2
3 ∨ ν2

4

)] 1

ǫ3ρ+3
+H ≤ –1,

which is obtained from (28). Therefore, LṼ ≤ –1 for any (S, I,R,C) ∈D8.

Clearly, condition (ii) of Lemma 1 holds. Therefore, we conclude that system (2) identi-

fies a unique stationary distribution π (·).

4.1 Extinction

In order to show the extinction of the disease, we go through the following lemmas.
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Lemma 2 ([38]) Let M = {Mt}t≥0 be a real-valued continuous local martingale vanishing

at t = 0. Then

lim
t→∞

〈M,M〉t = ∞ a.s. ⇒ lim
t→∞

Mt

〈M,M〉t
= 0 a.s.,

and also

lim sup
t→∞

〈M,M〉t
t

<∞ a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s.,

where 〈M,M〉t denotes the quadratic variation of M.

Lemma 3 (see Lemmas 2.1 and 2.2 in [39]) Let (S(t), I(t),R(t),C(t)) be the solution of (2)

with any (S(0), I(0),R(0),C(0)) ∈ R
4
+, then

lim
t→∞

S(t)

t
= 0, lim

t→∞

I(t)

t
= 0, lim

t→∞

R(t)

t
= 0, lim

t→∞

C(t)

t
= 0, a.s.

Furthermore, if η >
ν21∨ν22∨ν23∨ν24

2
, then

lim
t→∞

∫ t

0
S(s)dW1(s)

t
= 0, lim

t→∞

∫ t

0
I(s)dW2(s)

t
= 0, lim

t→∞

∫ t

0
R(s)dW3(s)

t
= 0,

lim
t→∞

∫ t

0
C(s)dW4(s)

t
= 0, a.s.

Theorem 3 If Rs
0 < 1 and η >

ν21∨ν22∨ν23∨ν24
2

, then the solution of (2) satisfies the following:

limt→∞ sup 1
t

ln(α(I(t) +C(t)) + (η +α)R(t))≤ ξ – 1
2(α)2

{α2 ν22
2

∧ (η(η +α + γ ) + (η +α)2
ν23
2
)∧

α2(η + β +
ν24
2
)} < 0 and limt→∞〈S〉 = 1 a.s.

Proof 3 Define U(t) = α(I(t) +C(t)) + (η + α)R(t), taking Ito’s formula, we can get

d lnU(t)

=

{
1

α(I +C) + (η + α)R

[
αξSI(t – τ ) – α(η + β)C –

(
η2 + ηα + ηγ

)
R
]

–
[α2ν2

2 I
2 + (η + α)2ν2

3R
2 + α2ν2

4C
2]

2(α(I +C) + (η + α)R)2

}
dt +

αν2I

α(I +C) + (η + α)R
dW2(t)

+
(η + α)ν3R

α(I +C) + (η + α)R
dW3(t) +

αν4C

α(I +C) + (η + α)R
dW4(t)

≤ ξS dt –
1

(α(I +C) + (η + α)R)2

{
α2 ν2

2

2
I2 + α2

(
η + β +

ν2
4

2

)
C2 +

(
η(η + α + γ )

+ (η + α)2
ν2
3

2

)
R2

}
dt +

αν2I

α(I +C) + (η + α)R
dW2(t)

+
(η + α)ν3R

α(I +C) + (η + α)R
dW3(t) +

αν4C

α(I +C) + (η + α)R
dW4(t)

≤ ξS dt –
1

2(α)2

{
α2 ν2

2

2
∧

(
η(η + α + γ ) + (η + α)2

ν2
3

2

)
∧ α2

(
η + β +

ν2
4

2

)}
dt
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+
αν2I

α(I +C) + (η + α)R
dW2(t) +

(η + α)ν3R

α(I +C) + (η + α)R
dW3(t)

+
αν4C

α(I +C) + (η + α)R
dW4(t). (29)

From model (2), we have

d
(
S(t) + I(t) + R(t) +C(t)

)
=

[
η – η

(
S(t) + I(t) + R(t) +C(t)

)]
dt + ν1S(t)dW1(t)

+ ν2I(t)dW2(t) + ν3R(t)dW3(t) + ν4C(t)dW4(t). (30)

Taking integration of (30) from 0 to t, we obtain

〈
S(t) + I(t) + R(t) +C(t)

〉
= 1 +ψ1(t), (31)

where

ψ1(t) =
1

η

[
1

t

(
S(0) + I(0) + R(0) +C(0)

)

–
1

t

(
S(t) + I(t) + R(t) +C(t)

)
+

ν1
∫ t

0
S(s)dW1(s)

t

+
ν2

∫ t

0
I(s)dW2(s)

t
+

ν3
∫ t

0
R(s)dW3(s)

t
+

ν4
∫ t

0
C(s)dW4(s)

t

]
.

(32)

By Lemmas 2 and 3, we can easily obtain that

lim
t→∞

ψ1(t) = 0 a.s.

Therefore, by taking the superior limit on both sides of (31), we obtain

lim
t→∞

sup
〈
S(t) + I(t) + R(t) +C(t)

〉
= 1 a.s. (33)

Integrating (29) from 0 to t, we obtain

lnU(t)

t
≤ ξ –

1

2(α)2

{
α2 ν2

2

2
∧

(
η(η + α + γ ) + (η + α)2

ν2
3

2

)
∧ α2

(
η + β +

ν2
4

2

)}

+ψ2(t),

(34)

where

ψ2(t) =
lnU(0)

t
+

αν2

t

∫ t

0

(
I(s)

α(I(s) +C(s)) + (η + α)R(s)
dW2(s)

)

+
(η + α)ν3

t

∫ t

0

(
R(s)

α(I(s) +C(s)) + (η + α)R(s)
dW3(s)

)

+
αν4

t

∫ t

0

(
C(s)

α(I(s) +C(s)) + (η + α)R(s)
dW4(s)

)
.
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In the same manner, by Lemmas 2 and 3, we have

lim
t→∞

ψ2(t) = 0 a.s.

SinceRs
0 < 1, therefore, by taking the superior limit of both sides of (34), we have

lim
t→∞

sup
lnU(t)

t

≤ ξ –
1

2(α)2

{
α2 ν2

2

2
∧

(
η(η + α + γ ) + (η + α)2

ν2
3

2

)
∧ α2

(
η + β +

ν2
4

2

)}

< 0,

(35)

which implies that limt→∞ I(t) = 0, limt→∞ R(t) = 0, limt→∞ C(t) = 0 a.s., which confirms

that the disease I can die out with probability one.

It is easy, by using (33) and (35), to show that limt→∞〈S〉 = 1 a.s.

5 Numerical simulations and discussions

Numerical simulations are given to validate our theoretical results through Euler–

Maruyama method for SDDEs reported in [40, 41] to numerically solve SDDEs (2).

The discretization transformation takes the form

Sj+1 = Sj +
[
η(1 – Sj) – ξSjIj–m + βCj

]
�t + ν1Sj

√
�tζ1,j,

Ij+1 = Ij +
[
ξSjIj–m + σξCjIj – (η + α)Ij

]
�t + ν2Ij

√
�tζ2,j,

Rj+1 = Rj +
[
(1 – σ )ξCjIj + αIj – (η + γ )Rj

]
�t + ν3Rj

√
�tζ3,j,

Cj+1 = Cj +
[
γRj – ξCjIj – (η + β)Cj

]
�t + ν4Cj

√
�tζ4,j.

(36)

The independent Gaussian random variables denoted as ζi,j (i = 1, 2, 3, 4), which follow the

distributionN(0, 1), the time-delay is defined as τ =m�t,m is an integer, and the step size

�t. Let νi > 0, (i = 1, 2, 3, 4) be the white noise values.

Example 1 Consider model (2) with white noise values ν1 = 0.1, ν2 = 0.09, ν3 = 0.09,

ν4 = 0.07 and parameter values η = 0.09, ξ = 1.3, β = 0.05, σ = 0.9, γ = 0.1, α = 0.36, τ = 1.2.

Simple calculation leads toRs
0 =

ηγ ξ2(1–σ )

η̂α̂γ̂ β̂
= 1.3 > 1 and η–

ν21∨ν22∨ν23∨ν24
2

= 0.087 > 0. There-

fore, the conditions of Theorem 2 hold. Based on Theorem 2, there is a unique ergodic

stationary distribution π (·) of model (2). Thus, the disease I is persistent; see Fig. 2.

Example 2 Given model (2) with parameter values η = 0.0005; ξ = 0.6; β = 0.01; σ = 0.12;

α = 0.3; γ = 0.02, τ = 1.4 andwhite noises ν1 = 0.02, ν2 = 0.02, ν3 = 0.01, ν4 = 0.2.Weobtain

Rs
0 =

ηγ ξ2(1–σ )

η̂α̂γ̂ β̂
= 0.38 < 1 and η –

ν21∨ν22∨ν23∨ν24
2

= –0.0195 < 0. In this case, the conditions

of Theorem 2 are not satisfied. From Fig. 3, we can clearly find that the disease goes to

extinction. In Fig. 4 time-delay is increased to τ = 2.5, with white noises ν1 = 0.01, ν2 = 0.2,

ν3 = 0.02, ν4 = 0.03, other parameter values are the same as in Fig. 3. ThereforeRs
0 < 1 and

η –
ν21∨ν22∨ν23∨ν24

2
= –0.0445 < 0. The conditions of Theorem 2 are not satisfied. Figure 4

shows a periodic outbreak due to the time-delay τ . However, the infection dies out with

time with bigger white noise.
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Figure 2 Shows numerical simulations of stochastic model (2) whenR
s
0 = 1.3 > 1, with η = 0.09, ξ = 1.3,

β = 0.05, σ = 0.9, α = 0.36, γ = 0.1; τ = 1 and white noises ν1 = 0.1, ν2 = 0.09, ν3 = 0.09, ν4 = 0.07. The model

has a unique ergodic stationary distribution and the infection is persistent

Figure 3 Time domain behaviors of solutions of SDDEs model (2) (right) and the corresponding deterministic

model (1) (left) whenR
s
0 = 0.38 < 1, with η = 0.0005, ξ = 0.6, β = 0.01, σ = 0.12, α = 0.3, γ = 0.02; τ = 1.4 and

white noises ν1 = ν2 = 0.02, ν3 = 0.01, ν4 = 0.02. The infection dies out with probability one

Figure 4 Time domain behaviors of SDDEs model (2) (right) and corresponding deterministic model (1) (left)

whenR
s
0 = 0.38 < 1, with η = 0.0005, ξ = 0.6, β = 0.01, σ = 0.12, α = 0.3, γ = 0.02; τ = 2.5 and white noises

ν1 = 0.02, ν2 = 0.2, ν3 = 0.02, ν4 = 0.2. The figure shows a periodic outbreak due to the time-delay τ
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Figure 5 Simulations of stochastic model (2) (right) and the corresponding deterministic model (1) (left)

whenR
s
0 = 0.38 < 1, with η = 0.0005, ξ = 0.6, β = 0.01, σ = 0.12, α = 0.3, γ = 0.02; τ = 2.5 and white noises

ν1 = 0.2, ν2 = 0.2, ν3 = 0.1, ν4 = 0.2. The deterministic model shows a periodic outbreak due to the

time-delay τ . The infection dies out with time when white noise is large

Figure 6 Time domain behaviors of SDDEs model (2) (right) and corresponding deterministic model (1) (left),

where τ = 1, whenR0 = 1.78 > 1, the infection persists in the deterministic model; whenR
s
0 = 0.75 < 1, the

infection dies out in the stochastic model. With parameter values η = 0.02, ξ = 0.5, β = 0.1, σ = 0.2, α = 0.26,

γ = 1 and white noises ν1 = 0.13, ν2 = 0.54, ν3 = 0.26, ν4 = 0.75

Example 3 To further explain the impact time-delay and white noises on system (2), we

choose τ = 2.5 and parameter values η = 0.0005; ξ = 0.6; β = 0.01; σ = 0.12; α = 0.3; γ =

0.02, and white noises ν1 = 0.2, ν2 = 0.2, ν3 = 0.1, ν4 = 0.3, such thatRs
0 =

ηγ ξ2(1–σ )

η̂α̂γ̂ β̂
= 0.38 <

1 and η –
ν21∨ν22∨ν23∨ν24

2
= –0.045 < 0. Thus, the conditions of Theorem 2 are not satisfied.

Figure 5 shows a periodic outbreak due to the time-delay τ when the white noise increased

the periodicity of the outbreak decreased. The infection dies out with time as white noise

increases.

Example 4 In order to show the impact of random perturbation, with τ = 1, we increase

the white noise values ν1 = 0.13, ν2 = 0.54, ν3 = 0.26, ν4 = 0.75 with parameter values η =

0.02; ξ = 0.5; β = 0.1; σ = 0.2; α = 0.26; γ = 1. Thus, Rs
0 =

ηγ ξ2(1–σ )

η̂α̂γ̂ β̂
= 0.75 < 1 < 1.78 =

ξ

α+η
=R0, and η –

ν21∨ν22∨ν23∨ν24
2

= 0.0115 > 0. Therefore, the conditions of Theorem 3 hold,

and disease dies out exponentially with probability one. However, the disease persists with

deterministic model; see Fig. 6.
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Figure 7 Time response of solutions for model (2) (right) and corresponding deterministic model (1) (left),

whenR0 = 1.78 > 1, the infection persists in the deterministic model; whenR
s
0 = 0.75 < 1, the infection dies

out in the stochastic model. With parameter values η = 0.02, ξ = 0.5, β = 0.1, σ = 0.2, α = 0.26, γ = 1 and

white noises ν1 = 0.13, ν2 = 0.54, ν3 = 0.26, ν4 = 0.75

Example 5 Consider the same parameter values of Example 4, but with time-delay τ = 0.

Thus, according to Theorem 3, the disease dies out exponentially with probability one; see

Fig. 7. Therefore, the smaller values of white noise ensure the existence of unique station-

ary distribution, which gives the persistence of the disease; while larger values of white

noise can lead to disease extinction.

Remark 1 Given the deterministic SIRCmodel (1), if the basic reproduction numberR0 =
ξ

α+η
< 1, then the disease-free equilibrium point is globally asymptotically stable; whereas

ifR0 > 1, the unique endemic equilibriumpoint is globally asymptotically stable. Repeated

outbreaks of the infection can occur due to the time-delay in the transmission terms. In

our stochastic SIRCmodel (2), ifRs
0 =

ηγ ξ2(1–σ )

η̂α̂γ̂ β̂
< 1 <R0 and η >

ν21∨ν22∨ν23∨ν24
2

, the stochastic

model (2) has disease extinction with probability one, and for Rs
0 > 1, the model has a

unique ergodic stationary distribution. See Figs. 5, 6, and 7.

6 Conclusion

In this work, we provided a stochastic SIRC epidemic model with time-delay for the new

strain coronavirus COVID-19. The stochastic components, due to environmental vari-

ability, are incorporated in the model as Gaussian white noise. We established some suffi-

cient conditions for persistence and extinction in the mean of the disease. The model has

a unique stationary distribution which is ergodic if the intensity of white noise is small.

Introduction of noise in the deterministic SIRC model modifies the basic reproductive
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number R0 giving rise to a new threshold quantity Rs
0. It has been proved that the dis-

ease dies out ifRs
0 < 1 <R0. On the other hand, ifRs

0 > 1 andR0 > 1, the disease persists

with both models, but with different behaviors. In other words, extinction of the infection

possibly occurs when Rs
0 < 1 < R0 and the intensity of white noise is large. This would

not happen in the deterministic models. The potential of using stochastic SIRCmodel for

COVID-19 is to consider the environmental fluctuation that all affects the spread of the

virus. The periodicity of outbreaks is possible due to the presence of time-delay (memory)

in the transmission terms.

The authors believe that the stochastic SIRCmodel is an attempt to understand epidemi-

ological characteristics of COVID-19. The model provides new insights into epidemio-

logical situations when the environmental noise (perturbations) and cross-immunity are

considered in the COVID-19 epidemic models. The combination of white noise and time-

delay, in the epidemic model, has a considerable impact on the persistence and extinction

of the infection and enriches the dynamics of the model. This work can be extended to

include control variables for vaccination, treatment, and/or quarantine actions. A more

sophisticated model is also required to investigate the dynamics of COVID-19 with im-

mune system in cells level [42]. Fractional derivatives can also be included in the model to

consider long-run memory [43, 44].
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