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Abstract

We analyze the behavior of over-the-counter currency option prices across moneyness, maturity,

and calendar time on two of the most actively traded currency pairs over the past eight years. We find

that, on any given date, the conditional risk-neutral distribution of currency returns can show strong

asymmetry. This asymmetry varies greatly over time and often switches signs. We develop and

estimate a class of models that captures this stochastic skew behavior. Model estimation shows that

our stochastic skew models significantly outperform traditional jump-diffusion stochastic volatility

models both in sample and out of sample.
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1. Introduction

The foreign exchange market is the largest financial market in the world. Currently, the
average trading volume in foreign currencies exceeds 1.5 trillion US dollars per day. Hence,
a deeper understanding of the exchange rate dynamics has important economic
repercussions. Accompanying the dizzying volume in the foreign exchange market has
been a thriving over-the-counter market in currency options. Market prices of these
currency options reveal important information about the underlying exchange rate
dynamics. The objective of this paper is to study foreign exchange rate dynamics using
currency options.
We perform our analysis using over-the-counter option quotes on two of the most

actively traded currency pairs over the past eight years. The two currency pairs are the US
dollar prices of the Japanese yen and the British pound. The option quotes are expressed as
Garman and Kohlhagen (1983) implied volatilities at fixed time to maturities and fixed
moneyness in terms of the Garman–Kohlhagen delta. For each currency pair, our data set
consists of 40 option series from a matrix of eight maturities and five deltas.
From the implied volatility quotes, we find several interesting patterns. First, at each

maturity, the time-series average of the implied volatility is a U-shaped function of
moneyness. This well-known implied volatility smile suggests that the risk-neutral
conditional distribution of currency returns is fat tailed. The average implied volatility
smile persists as the option maturity increases from one week to 18 months. Second, the
implied volatility at a fixed moneyness and maturity level shows substantial time variation
over our sample period, suggesting that currency return volatility is stochastically time
varying. Third, the curvature of the implied volatility smile is relatively stable, but the
slope of the smile varies greatly over time. The sign of the slope switches several times in
our sample. Therefore, although the risk-neutral distribution of the currency return
exhibits persistent fat-tail behavior, the risk-neutral skewness of the distribution
experiences strong time variation. It can be positive or negative on any given date.
The strong variation in currency return skewness poses a new modeling challenge for

option pricing theory. Existing currency option pricing models, such as the jump-diffusion
stochastic volatility model of Bates (1996b), readily accommodate the average shape of the
implied volatility smiles and time variation of the implied volatility level. In the Bates
model, the Merton (1976) jump component captures the short-term curvature of the
implied volatility smile, whereas the Heston (1993) stochastic volatility component
generates smiles at longer maturities and time variation in the implied volatility level.
Unfortunately, models of this vintage cannot generate strong time variation in the risk-
neutral skewness of currency returns.
Starting from the jump-diffusion stochastic volatility model of Bates (1996b), it would

be tempting to try to capture stochastic skewness by randomizing the mean jump size
parameter or the correlation parameter between the currency return and the stochastic
volatility process, or both. In the Bates model, these two parameters govern the risk-
neutral skewness at short and long maturities, respectively. However, randomizing either
parameter is not amenable to analytic solution techniques that greatly aid econometric
estimation.
In this paper, we attack the problem from a different perspective. We apply the general

framework of time-changed Lévy processes developed in Carr and Wu (2004), and we
develop a subclass of models that contrast sharply with the traditional option pricing
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literature. Our models separate the up jumps from the down jumps in the currency
movement through two Lévy processes. The separation is consistent with the market
reality that buy orders and sell orders arrive separately in time. It also allows us to apply
separate time changes to each Lévy component. Intuitively, a time change can be used to
regulate the number of order arrivals that occur in a given time interval. Stochastic
volatility and skewness can be induced by randomizing the time clock on which each Lévy
process runs. The greater the randomness in the sum of the two clocks, the greater is the
degree of stochastic volatility. The stochastic variation in the relative proportion of up and
down jumps generates stochastic variation in the risk-neutral skewness of currency returns.
Thus, our models are capable of generating both stochastic volatility and stochastic
skewness. To differentiate this model class from traditional stochastic volatility models, we
christen them as stochastic skew models (SSM).

Our parsimoniously designed stochastic skew models have one more state variable
than traditional stochastic volatility models, but they have about the same number of
free parameters as the Bates (1996b) model. Model estimation using options on
the two currency pairs shows that our models generate much better performance in terms
of both root mean squared pricing errors and log likelihood values, both in sample
and out of sample. The stochastic volatility component in the Bates model can capture the
time variation in overall volatility, but it cannot capture the variation in the relative
proportion of up and down jumps. As a result, the Bates model and other single factor
stochastic volatility models fail to capture a large portion of the variation in the currency
options data. In contrast, the two random clocks in our stochastic skew models generate
not only stochastic volatility, but also the stochastic skew observed in currency option
prices.

Linking back to the literature, we can think of the classic Garman and Kohlhagen (1983)
model as the first generation of models that captures only the stochastic variation of the
currency price. The Bates (1996b) model and many other single factor stochastic volatility
models also recognize the stochastic behavior of the currency return variance. Our SSM
class captures the stochastic behavior of yet another dimension, the conditional skewness
of the currency return distribution. Furthermore, our chosen model specifications within
the SSM class capture all three dimensions with parsimony and tractability.

In other related works, Bakshi and Chen (1997) consider equilibrium valuation of
foreign exchange claims. Bates (1996a) investigates the distributional properties of the
currency returns implied from currency futures options. Campa and Chang (1995, 1998)
and Campa, Chang, and Reider (1998) study the empirical properties of the over-the-
counter currency options. Johnson (2002) proposes a stochastic volatility model of
exchange rates that links both the level of volatility and its instantaneous covariance with
returns to pathwise properties of the currency. By allowing time variation in the
covariance, the model can generate time-varying skewness, but option pricing under this
model is no longer tractable. Bollen (1998) and Bollen, Gray, and Whaley (2000) propose
regime-switching models for currency option pricing. Nevertheless, Bollen and Raisel
(2003) find that the jump-diffusion stochastic volatility model of Bates (1996b) outper-
forms regime-switching in matching the observed behaviors of currency options.

The paper is organized as follows. Section 2 describes the empirical properties of over-
the-counter currency options. Section 3 develops a class of models that captures the
properties of currency options. Section 4 proposes a maximum likelihood method that
estimates the models using the currency option quotes. Section 5 reports the estimation
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results of our parsimoniously designed stochastic skew models and compares their
performance with traditional stochastic volatility models. Section 6 explores the virtues of
more general specifications within the stochastic skew model class. Section 7 concludes.
2. The behavior of over-the-counter currency options

Over-the-counter currency option quotes differ from exchange-listed option quotes in
two major ways. First, the over-the-counter quotes are not made directly on option prices,
but on the Garman–Kohlhagen implied volatilities. Second, the implied volatilities are not
quoted at a fixed strike price, but at a fixed Garman–Kohlhagen delta. Given the quote on
the implied volatility, the invoice price is computed according to the Garman–Kohlhagen
option pricing formula, with mutually agreed-upon inputs on the underlying spot exchange
rate and interest rates. As the Garman–Kohlhagen delta is agreed upon ex ante, the strike
price of the option can be derived using the Garman–Kohlhagen model and the implied
volatility quote.
2.1. Data description

We collect over-the-counter currency option quotes from several broker dealers and
data vendors. These data sets cover different sample periods, sampling frequencies, and
currency pairs. We use the common samples of these different data sets to cross validate
the quality of the data. We present the stylized evidence and estimate our models using two
currency pairs from one data source because the samples on these two currency pairs span
the longest time period, from January 24, 1996 to January 28, 2004. Although our data are
available daily, we sample the data weekly on every Wednesday to avoid weekday effects in
model estimation. Each series contain 419 weekly observations.
The two currency pairs are the dollar price of Japanese yen (JPYUSD) and the dollar

price of British pound (GBPUSD). Options on each pair have eight fixed time to maturities
at one week and one, two, three, six, nine, 12, and 18 months. At each maturity, quotes are
available at five deltas in the form of delta-neutral straddle implied volatilities, ten- and
25-delta risk reversals, and ten- and 25-delta butterfly spreads. Altogether, we have 16,760
options quotes for each currency pair.
A straddle is a portfolio of a call option and a put option with the same strike and

maturity. For the straddle to be delta-neutral under the Garman–Kohlhagen model, the
strike price K needs to satisfy

e�rf tNðd1Þ þ e�rf tNð�d1Þ ¼ 0, (1)

where rf denotes the foreign interest rate, Nð�Þ denotes the cumulative normal distribution,
and

d1 ¼
lnðF t=KÞ

IV
ffiffiffi
t
p þ

1

2
IV

ffiffiffi
t
p

, (2)

with F t being the forward currency price, t the time to maturity in years, and IV the
implied volatility quote. Eq. (1) implies that d1 ¼ 0. Hence, the strike price is very close to
the spot or forward price. We refer to this quote as the at-the-money implied volatility
quote (ATMV).
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Fig. 1. Average implied volatility smiles on currency options. Lines plot the time-series average of the implied

volatility quotes in percentage points against the put delta of the currency options at three selected maturities: one

month (solid lines), three months (dashed lines), and 12 months (dash–dotted lines). The averages are on weekly

data from January 24, 1996, to January 28, 2004, with 419 observations for each series.
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The ten-delta risk reversal (RR10) quote measures the difference in implied volatilities
between a ten-delta call option and a ten-delta put option,

RR10 ¼ IV ð10cÞ � IV ð10pÞ, (3)

where 10p and 10c denote a ten-delta put and call, respectively.1 Hence, the risk reversal is
a measure of asymmetry, or slope, of the implied volatility smile across moneyness.

The ten-delta butterfly spread (BF10) measures the difference between the average
implied volatility of the two ten-delta options and the delta-neutral straddle implied
volatility,

BF10 ¼ IV ð10cÞ þ IV ð10pÞð Þ=2� ATMV . (4)

Hence, a butterfly spread measures the curvature of the implied volatility smile. The
25-delta risk reversals (RR25) and butterfly spreads (BF25) are defined analogously.

From the five quotes, we can derive the implied volatilities at the five levels of delta. To
convert the implied volatilities into option prices and the deltas into strike prices, we need
the currency price and the domestic and foreign interest rates. The currency prices are from
the same data source. We strip the continuously compounded interest rates using LIBOR
and swap rates from Bloomberg for the three currencies, assuming piecewise constant
forward rates.

2.2. Stylized features of currency option implied volatilities

Using the currency option implied volatility quotes, we find several important features
that a currency option pricing model should accommodate.
1As an industry convention, the deltas are quoted on out-of-money options and in absolute percentage terms.

Thus, the moneyness is represented in terms of call delta when K4Ft and put delta when KoFt. A ten-delta call

corresponds to a Garman–Kohlhagen delta of 0.1 on the call option, and a ten-delta put corresponds to a

Garman–Kohlhagen delta of �0:1 on the put option.
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2.2.1. The average behavior of implied volatility smiles

When we plot the time-series average of implied volatilities against delta, we observe a U
shape for each currency and at each maturity. Fig. 1 plots the average implied volatility
smile across moneyness at selected maturities of one month (solid lines), three months
(dashed lines) and 12 months (dash–dotted lines). In the graphs, we denote the x-axis in
terms of approximate put option delta. We approximate the ten-delta call as a 90-delta put
in the graph and denote the delta-neutral straddle at 50 delta.
The Garman–Kohlhagen model assumes a normal currency return distribution. The

smile shape of the implied volatility across moneyness has long been regarded as evidence
for return non-normality under the risk-neutral measure. The curvature of the smile
reflects fat tails or positive excess kurtosis in the risk-neutral return distribution. The
asymmetry of the smile reflects asymmetry or skewness in the currency return distribution.
The relatively symmetric mean implied volatility smiles on GBPUSD show that, on
average, the risk-neutral return distribution of this currency pair is fat tailed but not
highly asymmetric. In contrast, the average smiles on JPYUSD show more pronounced
asymmetry.
A classic hypothesis is that return increments are independently and identically

distributed (iid), with the common distribution being non-normal but with finite return
variance. Under this hypothesis, the short-term return distribution is non-normal, but this
non-normality disappears rapidly as the time horizon for the return increases. By virtue of
the central limit theorem, the return skewness declines like the reciprocal of the square root
of the time horizon, and the excess kurtosis declines like the reciprocal of the time horizon.
Mapping this declining non-normality to the implied volatility smile at different maturities,
we would expect the smile to flatten out rapidly at long option maturities.
Fig. 1 shows that the average smiles remain highly curved as the option maturity

increases from one month to one year. This maturity pattern indicates that the risk-
neutral distribution remains highly non-normal as the horizon increases. An iid return
distribution with finite return variance cannot generate this average maturity pattern of the
implied volatility smile. In continuous time finance, one generates iid return increments
by assuming that currency returns are driven by a Lévy process. To slow down the
convergence of the return distribution to normality, researchers have proposed
incorporating a persistent stochastic volatility process into the return dynamics.

2.2.2. The dynamic properties of implied volatilities, risk reversals, and butterfly spreads

Fig. 2 plots the time series of the three-month delta-neutral straddle implied volatility for
the two currency pairs JPYUSD and GBPUSD. The implies volatility series at other
maturities show similar patterns. The plots show that, historically, the implied volatilities
on both currency pairs have experienced large variations. If we use the implied volatility as
a proxy for the currency return volatility level, the time-series plots in Fig. 2 suggest that a
reasonable model should allow the currency return volatility to vary over time. Stochastic
volatility models such as Heston (1993) and Hull and White (1987) can accommodate this
feature of the data.
The market quotes on risk reversals and butterfly spreads provide direct and intuitive

measures of the asymmetry and curvature of the implied volatility smile, respectively.
Fig. 3 plots the time series of the three-month ten-delta risk reversals (solid lines) and
butterfly spreads (dashed lines), both normalized as percentages of the corresponding
delta-neutral straddle implied volatility. The ten-delta butterfly spreads are consistently at
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Fig. 3. Time variation of risk reversals and butterfly spreads. Solid lines are three-month ten-delta risk reversals

(RR10) and dashed lines are three-month ten-delta butterfly spreads (BF10), both in percentages of the delta-

neutral straddle implied volatility.
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Fig. 2. The time variation of currency option implied volatilities. Lines plot the time series of the three-month

delta-neutral straddle implied volatility quotes in percentage points on the dollar price of yen (JPYUSD, left

panel) and pound (GBPUSD, right panel).

P. Carr, L. Wu / Journal of Financial Economics 86 (2007) 213–247 219
about 10% of the straddle implied volatility during the eight year span for both currency
pairs. Therefore, the curvature of the smile is relatively stable over calendar time for
both currency pairs. The stability suggests that excess kurtosis in the currency return
distribution is a robust feature of the data.

In contrast, the risk reversals vary greatly over time. For JYPUSD, the ten-delta risk
reversals have moved from �30% to 60% of the straddle implied volatility level. For
GBPUSD, the swing of the ten-delta risk reversal is from �20% to 20%. For both
currency pairs, the skewness of the risk-neutral return distribution varies so much that the
direction of the skewness often switches. This feature of the currency options contrasts
sharply with equity index options, in which the implied skewness also varies over time, but
it stays highly negative across most sample periods (Foresi and Wu, 2005).

Table 1 reports the mean, standard deviation, and the weekly autocorrelation of risk
reversals, butterfly spreads, and delta-neutral straddle implied volatilities. We normalize
the risk reversals and butterfly spreads as percentages of the delta-neutral straddle implied
volatility. For JPYUSD, the sample averages of the risk reversals are positive, implying
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Table 1

Summary statistics of currency option implied volatilities

The three columns under each contract report the mean (Mean), standard deviation (Std), and weekly

autocorrelation (Auto) of the contract on risk reversal (RR), butterfly spread (BF), and delta-neutral straddle

implied volatilities (ATMV). Risk reversals and butterfly spreads are in percentages of the delta-neutral straddle

implied volatility. The numbers following RR and BF denote the delta of the contract. Data are weekly from

January 24, 1996 to January 28, 2004, with 419 observations for each series. The first column denotes the option

maturities, with ‘‘w’’ denoting weeks and ‘‘m’’ denoting months.

Maturity RR10 BF10 RR25 BF25 ATMV

Mean Std Auto Mean Std Auto Mean Std Auto Mean Std Auto Mean Std Auto

JPYUSD

1w 15.18 16.96 0.69 14.34 4.26 0.77 7.40 8.10 0.70 4.32 1.47 0.85 11.70 3.80 0.83

1m 13.32 15.21 0.85 12.15 3.40 0.89 6.90 8.04 0.87 3.60 0.88 0.87 11.45 3.10 0.92

2m 11.53 14.27 0.89 12.08 3.21 0.92 6.02 7.63 0.91 3.51 0.67 0.87 11.47 2.84 0.94

3m 10.16 14.14 0.92 12.20 3.29 0.94 5.34 7.60 0.93 3.47 0.64 0.89 11.57 2.70 0.96

6m 8.25 14.32 0.96 12.30 3.67 0.96 4.30 7.63 0.96 3.41 0.72 0.94 11.78 2.58 0.97

9m 7.77 14.66 0.97 12.42 4.11 0.98 4.01 7.74 0.97 3.39 0.82 0.96 11.87 2.55 0.98

12m 7.45 14.99 0.97 12.39 4.48 0.98 3.81 7.91 0.97 3.34 0.90 0.97 11.95 2.53 0.98

18m 7.95 14.42 0.97 12.03 4.95 0.98 4.00 7.61 0.97 3.17 1.00 0.97 12.00 2.49 0.98

GBPUSD

1w �0.14 11.76 0.73 10.30 4.60 0.86 0.13 5.72 0.76 2.95 1.50 0.89 8.20 1.79 0.81

1m �0.52 9.35 0.84 9.74 3.04 0.91 �0.11 4.68 0.84 2.95 0.86 0.88 8.20 1.47 0.90

2m �0.33 7.48 0.88 9.22 1.83 0.87 �0.05 3.95 0.89 2.77 0.57 0.87 8.33 1.31 0.92

3m �0.37 6.74 0.90 9.11 1.56 0.86 �0.10 3.55 0.91 2.72 0.47 0.84 8.43 1.20 0.93

6m �0.44 5.92 0.94 8.80 1.72 0.92 0.15 3.13 0.95 2.59 0.52 0.89 8.61 1.02 0.95

9m �0.38 5.60 0.96 8.63 1.95 0.95 �0.14 2.98 0.96 2.55 0.56 0.92 8.69 0.95 0.95

12m �0.36 5.45 0.96 8.46 2.11 0.96 �0.14 2.91 0.97 2.49 0.55 0.92 8.77 0.90 0.95

18m �0.53 4.93 0.97 7.99 2.38 0.97 �0.24 2.63 0.97 2.26 0.61 0.94 8.88 0.89 0.95
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that the out-of-money call options are on average more expensive than the corresponding
out-of-money put options during the sample period. The average butterfly spreads are
around 12% at ten delta and 3�4% at 25 delta. For GBPUSD, the average implied
volatility smile is much more symmetric as the average risk reversals are close to zero. The
average butterfly spreads for GBPUSD are around 9% at ten delta and less than 3% at
25 delta.
For both currencies, the standard deviations of the risk reversals are much larger than

the standard deviations of the butterfly spreads. For JPYUSD, the standard deviations are
around 15% for ten-delta risk reversals and are about 3�4% for ten-delta butterfly
spreads. The standard deviations of 25-delta risk reversals are about 8%, but those for
the 25-delta butterfly spreads are about 1% or less. The same pattern holds for GBPUSD.
The standard deviations for the risk reversals are about three times larger than those for
the corresponding butterfly spreads. The delta-neutral straddle implied volatilities have
standard deviations around three for JPYUSD and less than two for GBPUSD. Finally, all
time series show strong serial correlation that increases with the option maturity.

2.2.3. Cross-correlations between currency returns and changes in risk reversals

Table 2 reports the cross-correlation estimates between currency returns and the weekly
changes in risk reversals, butterfly spreads, and delta-neutral straddle implied volatilities.
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Table 2

Cross-correlation between currency returns and weekly changes in implied volatilities

Entries report the contemporaneous correlation between log currency returns and weekly changes in risk

reversals (RR), butterfly spreads (BF), and delta-neutral straddle implied volatilities (ATMV). Risk reversals and

butterfly spreads are in percentages of the delta-neutral straddle implied volatility level. The numbers following

RR and BF denote the delta of the contract. The first column denotes the option maturities, with ‘‘w’’ denoting

weeks and ‘‘m’’ denoting months. Data are weekly from January 24, 1996 to January 28, 2004, with 419

observations for each series.

Currency JPYUSD GBPUSD

maturity RR10 BF10 RR25 BF25 ATMV RR10 BF10 RR25 BF25 ATMV

1w 0.46 �0.06 0.48 �0.14 0.41 0.38 �0.01 0.40 �0.02 �0.02

1m 0.57 �0.06 0.58 �0.14 0.44 0.44 0.01 0.45 0.01 �0.00

2m 0.58 �0.05 0.59 �0.10 0.40 0.46 �0.01 0.46 0.02 0.02

3m 0.59 �0.06 0.59 �0.08 0.35 0.47 0.03 0.47 0.03 0.00

6m 0.59 �0.04 0.59 �0.04 0.25 0.44 0.04 0.45 0.04 0.02

9m 0.56 �0.04 0.57 �0.02 0.21 0.42 0.03 0.43 0.03 0.04

12m 0.57 �0.03 0.58 0.00 0.18 0.39 0.05 0.40 0.05 0.04

18m 0.53 �0.05 0.55 �0.01 0.18 0.37 0.06 0.37 0.07 0.02
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Currency returns show strongly positive correlations with weekly changes in risk reversals
across all option maturities and at both ten and 25 delta for both currency pairs. In
contrast, currency returns show little correlation with changes in butterfly spreads. The
correlation estimates between the currency return and changes in the delta-neutral straddle
implied volatility are positive for JPYUSD, but essentially zero for GBPUSD. Hence, the
only persistent and universal correlation pattern is between currency returns and risk
reversals.

Using different currency pairs, sample periods, and different data sources, we have
cross-validated the above-documented evidence on currency options. In particular, risk
reversals on most currency pairs vary greatly over time, while butterfly spreads remain
relatively stable. The positive correlations between currency returns and changes in risk
reversals are also universal across most currency pairs.
3. Modeling currency return dynamics for option pricing

We propose a class of models that can capture not only the average behavior of currency
option implied volatilities across moneyness and maturity, but also the dynamic variation
of at-the-money implied volatilities and risk reversals.

We use ðO;F; ðFtÞtX0;QÞ to denote a complete stochastic basis defined on a risk-neutral
probability measure Q, under which the log currency return obeys a time-changed Lévy
process,

st � lnSt=S0 ¼ ðrd � rf Þtþ ðL
R
TR

t
� xRTR

t Þ þ ðL
L
TL

t
� xLTL

t Þ, (5)

where rd and rf denote the continuously compounded domestic and foreign risk-free rates,
respectively, both of which are assumed to be deterministic. LR and LL denote two Lévy
processes that exhibit right (positive) and left (negative) skewness, respectively. xR and xL

are known functions of the parameters governing these Lévy processes, chosen so that the
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exponentials of LR
TR

t
� xRTR

t and LL
TL

t
� xLTL

t are both Q martingales. Finally, TR
t and TL

t

denote two separate stochastic time changes applied to the two Lévy components.
In principle, the specification in Eq. (5) can capture all of the documented features of

currency options. First, the two Lévy components can generate short term return non-
normality and hence the implied volatility smiles at short maturities. Furthermore, by
applying time changes to the two Lévy components, the model can generate stochastic
volatility. Persistence in stochastic volatility reduces the speed of convergence of the return
distribution to normality. Thus, the model can generate average implied volatility smiles
at both short and long maturities, as well as dynamic variation in the implied volatility
time series.
More important, the relative weight of the two Lévy components can also vary over

time because of the separate time changes. When the weight of the right skewed Lévy
component LR is higher than the weight of the left skewed Lévy component LL, the model
generates a right skewed conditional return distribution and hence positive risk reversals.
When the opposite is the case, the model generates a left skewed conditional return
distribution and negative risk reversals. Thus, the model can generate variations and even
sign changes on the risk reversals via the separate time changes. To stress the ability of this
class of models in capturing the stochastic skewness of the currency return distribution, we
christen them as stochastic skew models.
In what follows, we propose parsimonious and tractable specifications for the two

Lévy components and the stochastic time changes. We then price options under the
parsimoniously designed model specifications.

3.1. The Lévy components

For model design, we make the following decomposition on the two Lévy components in
Eq. (5),

LR
t ¼ JR

t þ sW R
t ; LL

t ¼ JL
t þ sW L

t , (6)

where ðW R
t ;W

L
t Þ denote two independent, standard Brownian motions and ðJR

t ; J
L
t Þ denote

two pure jump Lévy components with positive and negative skewness in distribution,
respectively.
For parsimony, we assume relative symmetry for the unconditional return distribution.

We set the instantaneous volatility parameter (s) of the two diffusion components to be the
same. For the two jump components ðJR

t ; J
L
t Þ, we propose a simple yet flexible specification

for the Lévy density,

nRðxÞ ¼
le
�
jxj
vJ jxj�a�1; x40

0; xo0

8<: ; nLðxÞ ¼
0; x40

le
�
jxj
vJ jxj�a�1; xo0

(
, (7)

so that the right skewed jump component allows only up jumps and the left skewed
jump component allows only down jumps. For both jumps, we use the same parameters
ðl; vJÞ 2 Rþ and ap2 for parsimony. This specification has its origin in the CGMY
model of Carr, Geman, Madan, and Yor (2002). We hence label it as CG jump. The
Lévy density of the CG specification follows an exponentially dampened power law
(Wu, 2006). Depending on the magnitude of the power coefficient a, the sample paths of
the jump process can exhibit finite activity (ao0), infinite activity with finite variation
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(0pao1), or infinite variation (1pap2). We need ap2 to maintain finite quadratic
variation. Therefore, this parsimonious specification can capture a wide range of
jump behaviors. We let the data determine the exact jump behavior for currency prices.
Within this specification, we estimate models both with a as a free parameter and with a
fixed at three special values at �1, 0, and 1. With a ¼ �1, the jump specification becomes a
finite-activity compound Poisson process with an exponential jump size distribution as in
Kou (2002). We label it as KJ jump. With a ¼ 0, the jump specification becomes the
infinite-activity but finite variation variance-gamma model of Madan, Carr, and Chang
(1998) and Madan and Seneta (1990). We hence label it as VG jump. Finally, when a ¼ 1,
we obtain the Lévy density for an exponentially dampened Cauchy process. We label it as
CJ jump.
3.2. Activity rates

We assume that the two stochastic time changes are continuous and differentiable
and let

vR
t �

qTR
t

qt
; vL

t �
qTR

t

qt
, (8)

denote the instantaneous activity rates of the two Lévy components. We model the two
activity rates as following square root processes,

dv
j
t ¼ kð1� v

j
t Þdtþ sv

ffiffiffiffiffi
v

j
t

q
dZ

j
t; j ¼ R;L. (9)

For identification, we normalize the long run mean of both processes to one. For
parsimony, we set the mean reversion parameter k and volatility of volatility coefficient sv

to be the same for both processes.
We allow the two Brownian motions ðW R

t ;W
L
t Þ in the return process and the two

Brownian motions ðZR
t ;Z

L
t Þ in the activity rates to be correlated,

rR dt ¼ E½dW R
t dZR

t �; rL dt ¼ E½dW L
t dZL

t �. (10)

The four Brownian motions are assumed to be independent otherwise. Furthermore, we
constrain rR to be positive and rL to be negative. With this constraint, we generate positive
skewness at short horizons via the up jump Lévy component JR and at long horizons via
the positive correlation rR. Similarly, we generate negative skewness at short horizons via
the down jump Lévy component JL and at long horizons via the negative correlation rL.
The time variation in the relative magnitudes of the two activity rates (vR

t and vL
t ) generates

time variation in the skewness of the currency return distribution at both short and
long horizons.

The correlation assumptions also capture the observed positive correlation between
currency returns and changes in risk reversals. To see this, we can use dZR

t � dZL
t to proxy

the innovation in the risk reversal and dW R
t þ dW L

t to proxy the innovation in the
currency return, ignoring the orthogonal jump component and the relative scales. Then,
the correlation between currency returns and changes in risk reversals is positively related
to rR � rL, which is positive given the positivity constraint on rR and the negativity
constraint on rL.
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3.3. Option pricing under stochastic skew models

For each model considered in this paper, we first derive the generalized Fourier
transform of the currency return st and then price European options using a fast Fourier
inversion method. The generalized Fourier transform of the currency return is defined as

fsðuÞ � E½eiust �; u 2 D � C, (11)

where E½�� denotes the expectation operator under the risk-neutral measure Q, and D is a
subset of the complex domain C on which the expectation is well defined.
For time-changed Lévy processes, Carr and Wu (2004) show that the problem of

deriving the generalized Fourier transform can be converted into an equivalent problem of
deriving the Laplace transform of the random time change under a new, complex valued
measure:

fsðuÞ ¼ eiuðrd�rf ÞtE½e
iuðLR

TR
t

�xRTR
t ÞþiuðL

L

TL
t

�xLTL
t Þ

�

¼ eiuðrd�rf ÞtEM½e�c
>Tt � � eiuðrd�rf ÞtLM

T ðcÞ, ð12Þ

where c � ½cR;cL
�> denotes the vector of the characteristic exponents of the concavity

adjusted right and left skewed Lévy components, respectively, and LM
T ðcÞ represents the

Laplace transform of the stochastic time vector Tt � ½T
R
t ;T

L
t � under a new measure M.

The measure M is defined by a complex valued exponential martingale,

dM

dQ

����
t

� exp½iuðLR
TR

t
� xRTR

t Þ þ iuðLL
TL

t
� xLTL

t Þ þ cRTR
t þ cLTL

t �. (13)

The solution to the Laplace transform depends on the characteristic exponents and the
activity rate dynamics.
The characteristic exponent of a Lévy process X is given by the Lévy–Khintchine

Theorem:

cðuÞ �
1

t
ln E½eiuX t � ¼ �iumþ

1

2
u2s2 þ

Z
R0

ð1� eiux þ iux1jxjo1ÞnðxÞdx, (14)

where m describes the constant drift of the process, s2 is the constant variance rate of the
diffusion component of the process, and nðxÞ determines the arrival rate of jumps of size x

and is referred to as the Lévy density (Bertoin, 1996). The truncation function 1jxjo1 equals
one when jxjo1 and zero otherwise. It is needed under infinite variation jump processes to
guarantee finiteness of the integral.
Under our Lévy density specification in Eq. (7), the integral in Eq. (14) can be carried

out analytically (Wu, 2006). Table 3 summarizes the characteristic exponents of the two
concavity adjusted Lévy components (LR

t � xRt;LL
t � xLt) under each a specification. The

characteristic exponents for the general case (CG) are applicable to all admissible a values
except for two singular cases at a ¼ 0 and a ¼ 1, which have different functional forms for
the characteristic exponents.
Because the Laplace transform of the time change in Eq. (12) is defined under the

complex measure M, we need to obtain the activity rate process under M. By Girsanov’s
Theorem, under measure M, the diffusion coefficient of vðtÞ remains the same as
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Table 3

Characteristic exponents of different Lévy components

All Lévy specifications have a diffusion component. The characteristic exponent for the concavity adjusted

diffusion component, sW t �
1
2
s2t, is cD

¼ 1
2
s2ðiuþ u2Þ. Entries in the table show the characteristic exponents of

the concavity adjusted Lévy jump components (J
j
t � xj t; j ¼ R;L) under different jump specifications: the finite-

activity exponentially distributed jump model (KJ), the variance-gamma model (VG), the exponentially dampened

Cauchy model (CJ), and the general exponentially dampened power law model (CG). The models differ in the

power coefficients a, which are given in the second column of the table.

Model a Right skewed component cR Left skewed component cL

KJ �1
�iul

1

1� iuvj

�
1

1� vj

� �
þ cD iul

1

1þ iuvj

�
1

1þ vj

� �
þ cD

VG 0 l lnð1� iuvjÞ � iul lnð1� vjÞ þ cD l lnð1þ iuvjÞ � iul lnð1þ vjÞ þ cD

CJ 1 �lð1=vj � iuÞ lnð1� iuvjÞ �lð1=vj þ iuÞ lnð1þ iuvjÞ

þiulð1=vj � 1Þ lnð1� vjÞ þ cD
þiulð1=vj þ 1Þ lnð1þ vjÞ þ cD

CG Free
lGð�aÞ

1

vj

� �a

�
1

vj

� iu

� �a� �
lGð�aÞ

1

vj

� �a

�
1

vj

þ iu

� �a� �
�iulGð�aÞ

1

vj

� �a

�
1

vj

� 1

� �a� �
þ cD

�iulGð�aÞ
1

vj

� �a

�
1

vj

þ 1

� �a� �
þ cD
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sv

ffiffiffiffi
v

j
t

q
; j ¼ R;L. The drift terms adjust as follows:

driftðv j
t Þ

M
¼ kð1� v

j
t Þ þ iussvr jv

j
t ; j ¼ R;L. (15)

Both the drift and the variance are affine in the activity rates under measure M. Under
affine activity rates, the Laplace transform of Tt is exponential affine in the current level of
the activity rates, ðvR

0 ; v
L
0 Þ:

LM
T ðcÞ ¼ expð�bR

ðtÞvR
0 � cRðtÞ � bL

ðtÞvL
0 � cLðtÞÞ, (16)

where

b j
ðtÞ ¼

2c j
ð1� e�Z

j tÞ

2Z j � ðZ j � k jÞð1� e�Z
j tÞ
,

c jðtÞ ¼
k
s2v

2 ln 1�
Z j � k j

2Z j
ð1� e�Z

j tÞ

� �
þ ðZ j � k jÞt

� �
, ð17Þ

and

Z j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk jÞ

2
þ 2s2vc

j

q
; k j ¼ k� iur jssv; j ¼ R;L. (18)

Thus, we obtain in closed form the generalized Fourier transforms for our stochastic skew
specifications. Given the Fourier transform, we can compute the option values across all
strikes numerically by applying fast Fourier inversion on the transform, as described in
Carr and Wu (2004).

3.4. Option pricing under traditional jump-diffusion stochastic volatility models

The jump-diffusion stochastic volatility model of Bates (1996b) represents the state
of the art in the currency option pricing literature. This model combines the Lévy
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jump-diffusion specification of Merton (1976) with the stochastic volatility specification of
Heston (1993). We label this model as MJDSV, where MJD denotes the Merton jump-
diffusion specification and SV denotes the stochastic volatility component.
To compare the MJDSV model with our SSM specification, we cast the MJDSV model

into the time–changed Lévy process framework and write the log return process under
measure Q as

st ¼ ðrd � rf Þtþ ðJtðlÞ � xtÞ þ ðsW Tt
� 1

2s
2TtÞ, (19)

where JtðlÞ denotes a compound Poisson Lévy pure jump process with mean arrival rate l.
Conditional on one jump occurring, the jump size in log returns is normally distributed
with mean mJ and variance vJ . The term W t denotes a standard Brownian motion, and Tt

denotes the stochastic clock with its activity rate given by vt ¼ qTt=qt. The activity rate
follows a square root process:

dvt ¼ kð1� vtÞdtþ sv

ffiffiffiffi
vt

p
dZt, (20)

with rdt ¼ E½dW t dZt�. Eq. (19) makes it obvious that the MJDSV model generates
stochastic volatility purely from the diffusion component, while keeping the jump arrival
rate constant over time. If we set l ¼ 0, we obtain the pure diffusion stochastic volatility
model of Heston (1993) as a special case. We also estimate this model and denote it as
HSTSV.
Both MJDSV and HSTSV can generate stochastic volatility via the stochastic time

change of the diffusion component, but neither can generate stochastic skew. Under
HSTSV, return skewness is determined by the correlation parameter r between the
diffusion in the currency return and the diffusion in the activity rate. With a fixed
correlation parameter, the model cannot generate dramatically varying skews. Under
MJDSV, the mean jump size mJ also helps in generating return skewness at short
maturities. However, because it is also a fixed parameter, the MJDSV model cannot
generate large variations in the skewness, either. Thus, although both models can generate
static skewness, neither model can generate the dynamics in skewness that are observed
from the time series of currency option quotes.
There are some attempts in the literature that try to extend the Bates (1996b) model

by making the mean jump size mJ or the instantaneous correlation r stochastic. Both
extensions can generate stochastic skew, but neither is amenable to analytic solution
techniques that greatly aid econometric estimation.

4. Maximum likelihood estimation

To estimate the dynamic models using the time series data of implied volatilities, we cast
the models into a state space form and estimate the models using the maximum likelihood
method.
To capture the time-series dynamics, we need to specify the currency return and activity

rate dynamics under the statistical measure P. Because the return process under measure P
has limited relevance for option pricing, we focus on the activity rate processes and leave
the market price of return risk unspecified. We assume that the market price of risk on the
activity rates is proportional to the square root of the activity rates:

gðv j
t Þ ¼ g

ffiffiffiffiffi
v

j
t

q
; j ¼ L;R. (21)
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We use the same parameter g for both activity rates. The P-dynamics governing the
activity rates become

dv
j
t ¼ ðk� kPv

j
t Þdtþ sv

ffiffiffiffiffi
v

j
t

q
dZ

j
t; j ¼ R;L, (22)

with kP ¼ k� svg. We make analogous assumptions for the Bates (1996b) model.
In the state space form, we regard the two activity rates of the SSM model as the

unobservable states Vt � ½v
R
t ; v

L
t � and specify the state propagation equation using a

discrete time approximation of Eq. (22):

Vt ¼ ð1� jÞyP
þ jVt�1 þ sv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vt�1Dt

p
et, (23)

where j ¼ expð�kPDtÞ denotes the autocorrelation coefficient with Dt being the length of
the discrete time interval, and e denotes an iid bivariate standard normal innovation. With
weekly sampling frequency, the time interval is Dt ¼ 7=365. For the Bates (1996b) model,
the state variable Vt � vt follows an analogous scalar process.

We construct the measurement equations based on the option prices, assuming additive,
normally distributed measurement errors:

yt ¼ OðV t;YÞ þ et, (24)

where yt denotes the observed option prices at time t and OðV t;YÞ denotes the model
implied values as a function of the parameter set Y and the state vector Vt. The term et

denotes the pricing errors. We convert the implied volatility quotes into out-of-money
option prices and scale all option prices by their Garman–Kohlhagen vega. With this
scaling, we assume that the pricing errors are iid normally distributed with zero mean and
constant variance sr. The dimension of the measurement equation is 40, capturing the 40
options quotes on each date for each currency pair.

When both the state propagation equation and the measurement equations are linear in
the state vector with normal innovations, the Kalman (1960) filter generates efficient
forecasts and updates on the conditional mean and covariance of the state vector and
the measurement series. In our application, the state propagation equation in Eq. (23) is
linear in the state vector with normal innovation, but the measurement equation
in Eq. (24) is nonlinear in the state vector. We use the unscented Kalman filter (Wan and
van der Merwe, 2001) to handle the nonlinearity. The unscented Kalman filter
approximates the posterior state density using a set of deterministically chosen sample
points (sigma points). These sample points completely capture the true mean and
covariance of the normally distributed state variables and, when propagated through the
nonlinear functions in the measurement equations, capture the posterior mean and
covariance of the option prices accurately to the second order for any nonlinearity. Let
ytþ1 and Atþ1 denote the time-t ex ante forecasts of time-ðtþ 1Þ values of the measurement
series and the covariance of the measurement series, respectively, obtained from the
unscented Kalman filter. We construct the log likelihood value assuming normally
distributed forecasting errors,

ltþ1ðYÞ ¼ �1
2
log jAtþ1j �

1
2
ððytþ1 � ytþ1Þ

>
ðAtþ1Þ

�1
ðytþ1 � ytþ1ÞÞ. (25)
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The model parameters are chosen to maximize the log likelihood of the data series

Y � argmax
Y

LðY; fytg
N
t¼1Þ; with LðY; fytg

N
t¼1Þ ¼

XN�1
t¼0

ltþ1ðYÞ, (26)

where N ¼ 419 denotes the number of weeks in our sample of estimation.
For each currency pair, we estimate six models, which include the Heston (1993) model

(HSTSV), the Bates (1996b) model (MJDSV), and four SSM models. The four SSM
models differ in their respective jump specifications. We label them as KJSSM, VGSSM,
CJSSM, and CGSSM, with KJ, VG, CJ, and CG denoting the four different jump
structures, respectively.
The Bates (1996b) model has nine free parameters YB ¼ ½sr;s2; l; mJ ; vJ ;k;sv; r;kP�. The

Heston (1993) constitutes a restricted version with l ¼ vJ ¼ mJ ¼ 0. Our SSM models with
KJ, VG, and CJ jumps also have nine parameters, YS ¼ ½sr;s2; l; vJ ;k;sv; rR;rL;kP�. The
SSM model with CG jump specification (CGSSM) has one extra free parameter a that
controls the type of the jump process. Furthermore, the four SSM models have two state
variables ðvR

t ; v
L
t Þ that generate both stochastic volatility and stochastic skewness in the

currency return distribution. The Bates model and the Heston model have only one state
variable vt that controls the instantaneous variance of the diffusion component.

5. Results and discussion

In this section, we discuss the estimation results. First, we investigate which model best
captures the time series and cross-sectional behavior of currency option implied volatilities.
Second, we show how the estimated activity rate dynamics relate to the observed time
variation in implied volatilities and risk reversals.

5.1. In-sample model performance comparison

We compare the in-sample model performance along two dimensions. First, we
investigate how our new SSM models perform against traditional jump-diffusion
stochastic volatility models. Second, within our new SSM model framework, we investigate
which jump structure delivers the best performance in capturing the currency option price
behavior.
Table 4 reports the parameter estimates and standard errors (in parentheses) for the six

models on the two currency pairs based on the whole sample of eight years of data. In the
last two rows of the table, we also report the root mean squared pricing error and the
maximized log likelihood value for each model and each currency pair. The pricing errors
are defined as the difference between the implied volatility quotes and the corresponding
model generated values.
Our four SSM models markedly outperform the MJDSV model in terms of both the log

likelihood values and the root mean squared pricing errors. For the currency pair
JPYUSD, the log likelihood value for MJDSV is lower than values for the four SSM
models by 2,605, 2,619, 2,637, and 2,685, respectively. The root mean squared error is
1.065 volatility points for MJDSV and is about 0.87 volatility points for the four SSM
models. For GBPUSD, the log likelihood values for the four SSM models are also higher
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Table 4

Full sample likelihood estimates of model parameters

Entries report the maximum likelihood estimates of the model parameters, standard errors (in parentheses), root mean squared pricing errors (rmse) in implied

volatility percentage points, and the maximized log likelihood values (L). The estimation uses eight years of weekly option data from January 24, 1996 to January 28,

2004 (419 weekly observations for each series). For each currency pair, we estimate six models: the Heston (1993) model (HSTSV), the Bates (1996b) model (MJDSV),

and our stochastic skew models (SSM) with four different jump specifications: KJ, VG, CJ, and CG. The column under ‘‘YB’’ denotes the parameter names for the

Heston model and the Bates model. The column under ‘‘YS ’’ denotes the parameter names for our SSM models.

Currency JPYUSD GBPUSD

YB YS HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM

s2 s2 0.020 0.006 0.006 0.005 0.004 0.003 0.010 0.008 0.003 0.003 0.002 0.002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

l l — 0.016 0.059 1.708 0.035 0.004 — 0.422 0.079 6.869 0.080 0.032

(—) (0.001) (0.003) (0.151) (0.002) (0.001) (—) (0.044) (0.005) (0.700) (0.005) (0.015)

vj vj — 0.497 0.029 0.045 0.104 0.270 — 0.003 0.012 0.017 0.031 0.039

(—) (0.013) (0.001) (0.001) (0.004) (0.056) (—) (0.000) (0.000) (0.001) (0.001) (0.004)

k k 0.559 0.569 0.387 0.394 0.421 0.465 1.532 1.044 1.205 1.206 1.211 1.180

(0.006) (0.011) (0.005) (0.006) (0.007) (0.010) (0.007) (0.007) (0.006) (0.006) (0.006) (0.008)

sv sv 1.837 1.210 1.675 1.657 1.582 1.566 2.198 1.737 1.429 1.447 1.505 1.492

(0.023) (0.022) (0.027) (0.028) (0.027) (0.031) (0.026) (0.023) (0.039) (0.040) (0.017) (0.018)

r rR 0.076 0.123 0.395 0.393 0.400 0.424 �0:023 �0:061 0.848 0.848 0.849 0.836

(0.005) (0.065) (0.017) (0.018) (0.022) (0.056) (0.003) (0.017) (0.040) (0.043) (0.017) (0.016)

mj rL — �0:210 �0:739 �0:758 �0:851 �1:000 — 0.002 �1:000 �0:999 �1:000 �1:000

(—) (0.024) (0.034) (0.036) (0.040) (0.144) (—) (0.001) (0.047) (0.050) (0.000) (0.004)

kP kP 0.745 0.258 0.522 0.502 0.544 0.586 1.276 0.800 2.062 2.092 1.158 3.296

(0.396) (0.114) (0.289) (0.288) (0.251) (0.261) (0.345) (0.236) (0.213) (0.213) (0.006) (0.223)

sr sr 1.045 1.002 0.704 0.703 0.703 0.700 0.198 0.184 0.148 0.148 0.148 0.148

(0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

— a — — — — — 1.602 — — — — — 1.180

— — — — — (0.126) — — — — — (0.155)

rmse 1.099 1.065 0.865 0.865 0.866 0.865 0.464 0.442 0.387 0.387 0.387 0.388

L;�103 �9:430 �9:021 �6:416 �6:402 �6:384 �6:336 4.356 4.960 6.501 6.502 6.497 6.521
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than the value for the MJDSV model, with the difference ranging from 1,537 to 1,561. The
root mean squared pricing error is 0.442 volatility points for MJDSV and is about 0.39 for
the four SSM models. From MJDSV to its restricted version HSTSV, we observe a further
reduction in likelihood values and a further increase in root mean squared pricing errors.
The likelihood difference is 409 for JPYUSD and 604 for GBPUSD. These differences
show that the jump component in MJDSV improves the model performance over the pure
diffusion model of HSTSV.
Within our SSM framework, we estimate four models with different jump specifications.

In contrast to the large difference in log likelihood values between the SSM models and the
MJDSV model, the likelihood value differences among the four SSM models are much
smaller. The parameter estimates for the four SSM models are also similar, except for the
jump parameters, which can have different scales under different jump specifications. For
JPYUSD, we detect a marginal increase in the likelihood value as we move from KJ to VG
and then to the CJ jump structure. These three jump specifications differ by a power term
in the Lévy density. The performance ranking corresponds to an increase in the power
coefficient a and an increase in jump frequency. When we estimate the CGSSM model
where a is a free parameter, the estimate for a is 1.602, indicating that a high frequency
jump specification is favored for modeling JPYUSD options. Nevertheless, when we
compare the root mean squared pricing errors for the four SSM models, we can hardly
distinguish any differences among the four jump types. For GBPUSD, the estimate of a
under the CGSSM model is 1:18, but the performance differences of the four SSM models
are negligible in terms of both the log likelihood values and the root mean squared pricing
errors. Therefore, we conclude that our currency options data cannot effectively
distinguish between different jump types. There is only weak evidence that favors a high
frequency jump specification with infinite variation for JPYUSD.
Our results on the nature of the jump specification for currency options are not as strong

as those in Carr and Wu (2003) and Huang and Wu (2004) for equity index options. Both
studies find that infinite activity jump specifications significantly outperform finite activity
jump specifications for pricing Standard & Poor’s 500 index options. Daal and Madan
(2005) also find evidence that the infinite activity VG model performs better than the finite
activity Merton (1976) jump in pricing currency options. Those studies use exchange-
traded options that include deep out-of-money contracts. The over-the-counter currency
options data that we use have only five strikes for each maturity, all located within
approximately the tenth and 90th percentile of the risk-neutral return distribution. Hence,
the currency options data that we use do not provide much information on the tail (beyond
the tenth percentile) of the risk-neutral currency return distribution. However, it is in the
tails of the distribution that the alternative jump specifications display their differences.
To test the statistical significance of the performance difference between different

models, we adopt the likelihood ratio statistic constructed by Vuong (1989) for non-nested
models. Formally, we let LRðYi;YjÞ denote the log likelihood ratio between models i and j,

LRðYi;YjÞ �LiðYiÞ �LjðYjÞ. (27)

Vuong constructs a test statistic based on this log likelihood ratio,

M ¼ LRðYi;YjÞ=ðbs ffiffiffiffiffi
N
p
Þ, (28)

where N denotes the number of weeks in the time series and bs2 denote the variance estimate
of the weekly log likelihood ratio ðli � ljÞ. Vuong proves that M has an asymptotic
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Table 5

Full sample likelihood ratio tests of model performance differences

Entries report the pairwise likelihood ratio test statistics M on non-nested models. The statistic has an

asymptotic standard normal distribution. We report the pairwise statistics in a ð6� 6Þ matrix, with the ði; jÞth
element denoting the statistic on model i versus model j such that a strongly positive estimate for this element

indicates that model i significantly outperforms model j. The tests are based on the model estimations using the

full sample of eight years of data for each currency. We bold the lower triangular elements that are greater than

1.65, the critical value at 95% confidence level. The upper triangular elements contain the same information as the

lower triangular elements, only with opposite signs.

M HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM

JPYUSD

HSTSV 0.00 �2.55 �4.92 �4.88 �4.75 �4.67

MJDSV 2.55 0.00 �5.39 �5.33 �5.22 �5.07

KJSSM 4.92 5.39 0:00 �1.11 �0.86 �1.20

VGSSM 4.88 5.33 1.11 0.00 �0.72 �1.21

CJSSM 4.75 5.22 0.86 0.72 0.00 �1.59

CGSSM 4.67 5.07 1.20 1.21 1.59 0.00

GBPUSD

HSTSV 0.00 �2.64 �4.70 �4.68 �4.63 �4.71

MJDSV 2.64 0.00 �3.85 �3.86 �3.89 �4.19

KJSSM 4.70 3.85 0.00 �0.04 0.34 �0.37

VGSSM 4.68 3.86 0.04 0.00 0.56 �0.39

CJSSM 4.63 3.89 �0.34 �0.56 0.00 �0.51

CGSSM 4.71 4.19 0.37 0.39 0.51 0.00
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standard normal distribution under the null hypothesis that the two models are equivalent
in terms of likelihood. Based on the weekly log likelihood estimates, we compute the
sample mean and standard deviation of the likelihood ratio between each pair of models
and then construct the test statistic in Eq. (28). In estimating bs, we adjust for serial
dependence in the weekly log likelihood ratios according to Newey and West (1987) with
the lags optimally chosen following Andrews (1991) under an AR(1) specification.

Table 5 reports the pairwise log likelihood ratio test statistics. For each currency pair, we
report the statistics in a ð6� 6Þ matrix, with the ði; jÞth element being the statistic on
ðli � ljÞ. Given the symmetry of the test, the diagonal terms are zero by definition and the
lower triangular elements are equal to the negative of the upper triangular elements. We
focus on the lower triangular entries for our discussion and use boldface type to highlight
the statistics that are greater than 1.65, which corresponds to a 95% confidence level on a
one-sided test.

For both currency pairs, all of the off-diagonal elements in the first column are positive
and strongly significant, indicating that HSTSV is the worst performing of all six estimated
models. The last four elements in the second column are also strongly positive and
significant, indicating that the performance of MJDSV is significantly worse than the four
SSM models. However, as we move to the ð4� 4Þ block in the right bottom corner, none of
the elements is significant for either currency pair. This block compares the performance
among the four SSM models, with CGSSM having an extra free parameter a that controls
the jump type. Within the SSM modeling framework, our currency options data cannot
effectively distinguish the different jump specifications.
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5.2. Out-of-sample performance comparison

To study the out-of-sample performance, we reestimate the six models using the first six
years of data from January 24, 1996 to December 26, 2001, with 310 weekly observations
for each series. Then, we use these estimated model parameters to compare the model
performance both in sample during the first six years and out of sample during the last two
years from January 2, 2002 to January 28, 2004, with 109 weekly observations for each
series. If the behavior of currency option prices has not dramatically changed during the
last two years, we would expect that the out-of-sample performance for each model is
similar to its in-sample performance. We also investigate whether the superior in-sample
performance of our SSM models over traditional specifications such as HSTSV and
MJDSV extends to an out-of-sample comparison.
Table 6 reports the subsample estimates and standard errors of the model parameters.

For GBPUSD, the parameter estimates from the subsample are close to those obtained
from the full sample estimation in Table 4. The differences in the two sets of estimates for
most parameters are within two times their respective standard errors. The stability of
parameter estimates suggest that the option price behavior on GBPUSD has not
experienced dramatic structural changes over the past two years. For JPYUSD, the
subsample estimates on some of parameters show substantial differences from the
full sample estimates. In particular, for all six models, the subsample estimates on
the mean reversion parameter k are markedly larger than the corresponding full sample
estimates. The subsample estimates for the volatility of volatility coefficients sv are also
larger than the corresponding full sample estimates for five of the six models. These
differences suggest that option price behavior on JPYUSD is not as stable as that on
GBPUSD.
Table 7 compares the in-sample and out-of-sample performance of the six models based

on the subsample estimation. We report the root mean squared pricing error, the mean
weekly log likelihood value (L=N), and the pairwise likelihood ratio test statistics defined
in Eq. (28). To facilitate comparison between in- and out-of-sample performance, we
normalize the aggregate likelihood value (L) by the number of weeks (N) for each sample
period and report the mean weekly log likelihood estimate (L=N). The in-sample
comparison is based on the first 310 weeks of data. The out-of-sample comparison is based
on the last 109 weeks of data.
For each currency pair and each model, we first compare the in-sample and out-of-

sample performance in terms of the root mean squared pricing error and the mean weekly
log likelihood value. The in-sample and out-of-sample estimates are very close to one
another. For JPYUSD, most models generate slightly larger out-of-sample pricing errors
and smaller out-of-sample likelihood values than their in-sample counterpart. For
GBPUSD, all models generate smaller out-of-sample pricing errors and larger out-of-
sample likelihood values. Therefore, we do not observe much degeneration in out-of-
sample performance.
To test the overall stability of the model parameters over time, we construct a likelihood

ratio statistic. We can think of the full-sample estimates in Table 4 as for a restricted model
in which the parameters during the first six years are restricted to be the same as the
parameters during the last two years. By comparison, the subsample estimates in Table 6
can be regarded as for an unrestricted model as they can be different from the parameter
values during the last two years. Thus, we can construct the likelihood ratio statistic based
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Table 6

Subsample likelihood estimates of model parameters

Entries report the maximum likelihood estimates of the model parameters and their standard errors (in parentheses). The estimation uses the first six years of

weekly option data from January 24, 1996 to December 26, 2001 (310 weekly observations for each series). For each currency pair, we estimate six models: the Heston

(1993) model (HSTSV), the Bates (1996b) model (MJDSV), and our stochastic skew models (SSM) with four different jump specifications: KJ, VG, CJ, and CG. The

column under ‘‘YB’’ denotes the parameter names for the Heston model and the Bates model. The column under ‘‘YS ’’ denotes the parameter names for our SSM

models.

Currency JPYUSD GBPUSD

YB YS HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM

s2 s2 0.022 0.011 0.006 0.006 0.005 0.002 0.010 0.009 0.003 0.003 0.002 0.003

(0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

l l — 0.016 0.074 2.486 0.053 0.004 — 2.027 0.087 7.829 0.091 1210

(—) (0.001) (0.004) (0.234) (0.004) (0.002) (—) (0.153) (0.006) (0.922) (0.007) (9439)

vj vj — 0.491 0.027 0.041 0.087 0.273 — 0.001 0.012 0.017 0.030 0.011

(—) (0.018) (0.001) (0.001) (0.004) (0.089) (—) (0.000) (0.000) (0.001) (0.001) (0.006)

k k 0.810 0.846 0.660 0.665 0.686 0.739 1.449 1.015 1.177 1.178 1.183 1.173

(0.006) (0.013) (0.006) (0.007) (0.008) (0.012) (0.008) (0.008) (0.007) (0.008) (0.008) (0.012)

sv sv 1.943 1.171 1.945 1.922 1.881 1.777 2.091 2.041 1.428 1.452 1.523 1.518

(0.025) (0.024) (0.031) (0.031) (0.032) (0.037) (0.030) (0.028) (0.047) (0.048) (0.023) (0.053)

r rR 0.050 0.062 0.270 0.267 0.252 0.299 �0:056 �0:065 0.796 0.794 0.789 0.720

(0.005) (0.078) (0.015) (0.016) (0.018) (0.092) (0.005) (0.013) (0.047) (0.050) (0.022) (0.053)

mj rL — �0:212 �0:629 �0:642 �0:672 �1:000 — �0:001 �1:000 �0:999 �1:000 �0:905

(—) (0.033) (0.035) (0.037) (0.041) (0.396) (—) (0.000) (0.059) (0.062) (0.000) (0.069)

kP kP 1.090 0.636 0.924 0.879 0.822 0.813 1.308 2.529 2.022 2.060 1.166 2.192

(0.390) (0.155) (0.392) (0.385) (0.364) (0.331) (0.451) (0.238) (0.263) (0.260) (0.270) (0.263)

sr sr 1.095 1.072 0.746 0.747 0.746 0.744 0.217 0.200 0.175 0.175 0.175 0.174

(0.003) (0.004) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

— a — — — — — 1.691 — — — — — �1:162
— — — — — (0.175) — — — — — ( 15.37)
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Table 7

In-sample and out-of-sample model performance comparison

Entries report the root mean squared pricing error (rmse) in implied volatility percentage points, mean weekly log likelihood value ðL=NÞ, and the pairwise

likelihood ratio test statistics M on non-nested models. The models are estimated using data from January 24, 1996 to December 26, 2001 (310 weekly observations

for each series). The in-sample statistics are from the same period. The out-of-sample statistics are computed from the remaining two years of data from January 2,

2002 to January 28, 2004 (109 weekly observations for each series) based on model parameter estimated from the first subsample. The last panel reports the likelihood

ratio test statistics LR ¼ 2ðLSub �LFullÞ and their corresponding 99% critical values (CV) between the models estimated using the first six years of data and the

corresponding models estimated using the full sample of eight years of data. The likelihood ratio is computed based on the first six years of data.

Currency JPYUSD GBPUSD

Model HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM

In-sample performance

rmse 1.14 1.11 0.89 0.89 0.89 0.89 0.49 0.46 0.42 0.42 0.42 0.42

L=N �23.69 �23.03 �16.61 �16.60 �16.57 �16.47 8.36 10.06 12.27 12.27 12.26 12.28

M

HSTSV 0.00 �2.14 �4.44 �4.41 �4.33 �4.17 0.00 �3.34 �4.42 �4.39 �4.24 �4.33

MJDSV 2.14 0.00 �4.74 �4.70 �4.61 �4.42 3.34 0.00 �3.40 �3.39 �3.33 �3.33

KJSSM 4.44 4.74 0.00 �0.49 �0.51 �0.84 4.42 3.40 0.00 0.08 0.36 �0.42

VGSSM 4.41 4.70 0.49 0.00 �0.51 �0.89 4.39 3.39 �0.08 0.00 0.51 �0.42

CJSSM 4.33 4.61 0.51 0.51 0.00 �1.14 4.24 3.33 �0.36 �0.51 0.00 �0.55

CGSSM 4.17 4.42 0.84 0.89 1.14 0.00 4.33 3.33 0.42 0.42 0.55 0.00

Out-of-sample performance

rmse 1.09 1.03 0.90 0.90 0.90 0.90 0.40 0.38 0.27 0.27 0.27 0.27

L=N �24.01 �21.75 �18.47 �18.35 �18.23 �18.11 14.36 15.85 23.30 23.29 23.26 23.25

M

HSTSV 0.00 �6.01 �5.90 �6.01 �6.08 �6.12 0.00 �4.88 �7.06 �7.06 �7.05 �7.05

MJDSV 6.01 0.00 �3.11 �3.23 �3.32 �3.48 4.88 0.00 �5.98 �5.99 �5.99 �5.97

KJSSM 5.90 3.11 0.00 �7.76 �6.81 �5.27 7.06 5.98 0.00 0.64 1.47 4.51

VGSSM 6.01 3.23 7.76 0.00 �4.39 �3.67 7.06 5.99 �0.64 0.00 1.63 4.19

CJSSM 6.08 3.32 6.81 4.39 0.00 �3.11 7.05 5.99 �1.47 �1.63 0.00 0.23

CGSSM 6.12 3.48 5.27 3.67 3.11 0.00 7.05 5.97 �4.51 �4.19 �0.23 0.00

Likelihood ratio tests for overall parameter stability over time

LR 663.8 600.8 857.6 854.6 863.0 859.8 357.4 498.8 263.4 264.0 265.6 318.4

CV 16.8 21.7 21.7 21.7 21.7 23.2 16.8 21.7 21.7 21.7 21.7 23.2
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on the first six years of data, LR ¼ 2ðLSub �LFullÞ, where the subscript Sub and Full refer,
respectively, to the subsample and full sample parameter estimates used to compute the
likelihoods for the six years of data. The statistic has a chi-square distribution with six
degrees of freedom for HSTSV; nine degrees of freedom for MJDSV, KJSSM, VGSSM,
and CJSSM; and ten degrees of freedom for CGSSM. We report the likelihood ratio
statistic, as well as the critical values at 99% confidence level in the last panel of Table 7.
The statistics suggest that the null hypothesis that the parameters are the same during the
two sample periods are rejected.

We now compare the performance of different models both in sample and out of sample.
The root mean squared error and the log likelihood values in Table 7 show that the four
SSM models perform much better than the MJDSV and HSTSV models, both in sample
and out of sample. The likelihood ratio test statistics M tell the same story. For both in-
sample and out-of-sample tests, the off-diagonal terms in the first column of the M matrix
are all strongly positive for both currencies, indicating that all other models significantly
outperform the Heston (1993) model. The last four elements of the second column are also
strongly positive, indicating that our four SSM models significantly outperform the
MJDSV model.

Among the four SSM models, the in-sample M statistics show that the four models are
not statistically different from one another for both currencies. For out-of-sample
performance on JPYUSD, the CG jump structure significantly outperforms the three
restricted jump specifications (KJ, VG, and CJ). Among the three restricted jump
specifications, CJ significantly outperforms KJ and VG, and VG significantly outperforms
KJ, thus generating the following statistically significant performance ranking in
descending order: CG, CJ, VG, and KJ. The qualitative conclusion is similar to that
from the in-sample comparison, but statistically stronger: High frequency jumps perform
better in capturing the option price behavior on JPYUSD.

For GBPUSD, the out-of-sample performance ranking among the four jump
specifications goes the opposite direction, but with less statistical significance. Although
the encompassing CG jump specification generates slightly better in-sample performance,
its out-of-sample performance is significantly worse than KJ and VG. Thus, options on
GBPUSD ask for a more parsimonious and less frequent jump specification.

Historically, JPYUSD options have generated much larger smile curvature (butterfly
spreads) and skews (risk reversals) than options on GBPUSD. Thus, we conclude that high
frequency jump specifications perform better in capturing large return non-normality, but
a finite activity jump specification suffices for capturing moderate non-normality in the
return distribution.

In summary, likelihood ratio tests reject the null hypothesis on all models that the model
parameters do not vary over the eight years of sample period. Nevertheless, our estimated
SSM models significantly outperform traditional jump-diffusion stochastic volatility
models regardless of the sample period and irrespective of whether the test is in sample or
out of sample.

5.3. Pricing biases

Another way to investigate the performance of different models is to check for the
existence of any structural patterns in the pricing errors of these models. Because we have
documented the evidence mainly in the implied volatility space, we also define the pricing
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Fig. 4. Mean pricing error. The three lines in each panel denote the mean pricing errors across moneyness at three

maturities: one month (solid lines), three months (dashed lines), and 12 months (dash–dotted lines). The pricing

errors are defined as the difference between the observed implied volatility quote in percentage points and the

corresponding model values.
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errors in the volatility space as the difference between the observed implied volatility quote
and the corresponding values computed from the model.
The mean pricing error of a good model should be close to zero and show no obvious

structures along both the moneyness and the maturity dimensions. Fig. 4 plots the mean
pricing error in volatility percentage points along the moneyness dimension at selected
maturities of one month (solid lines), three months (dashed lines), and 12 months
(dash–dotted lines). Because the in-sample and out-of-sample performances are similar for
all models, we report results only from the full sample estimation. To further reduce
graphics clustering, we henceforth focus on two models, one from our four SSM
specifications and one from the two traditional specifications. The four SSM models
generate similar performance. We choose KJSSM as the representative. Of the two
traditional models, the Bates model (MJDSV) performs better than the pure diffusion
Heston model (HSTSV). We choose the better performing MJDSV and compare its
performance with KJSSM.
Under the MJDSV model, the mean pricing errors display obvious structural patterns

for JPYUSD along both the moneyness and maturity dimensions. At short maturities, the
mean pricing errors show a smile shape along the moneyness dimension, implying that the
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Fig. 5. Mean absolute pricing error. The three lines in each panel denote the mean absolute pricing errors across

moneyness at three maturities: one month (solid lines), three months (dashed lines), and 12 months (dash–dotted

lines). The pricing errors are defined as the difference between the observed implied volatility quote in percentage

points and the corresponding model values.
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MJDSV model cannot fully account for the implied volatility smile at short maturities.
At longer maturities, the mean pricing errors show an inverse smile shape along the
moneyness dimension, implying that the MJDSV model generates excess curvature in the
implied volatility smile at these maturities. In contrast, under our KJSSM model, the mean
pricing errors are very close to zero and do not show any obvious remaining structural
patterns. For both currencies, the mean pricing errors under KJSSM are all well within
half a percentage point, the average bid-ask spread for the implied volatility quotes.

Fig. 5 plots the mean absolute pricing error in implied volatility under MJDSV and
KJSSM. Under both models, the mean absolute pricing errors are smaller for GBPUSD
than for JPYUSD. Under MJDSV, the mean absolute pricing errors are larger on out-of-
money options than on at-the-money options, indicating that the MJDSV model cannot
fully account for the observed implied volatility smile. The mean absolute pricing errors
are also larger at very short and long maturities than at moderate maturities, indicating
that the model cannot fully account for the term structure of the implied volatilities.

The mean absolute pricing errors under KJSSM are smaller than those under MJDSV
across all moneyness levels and maturities for both currency pairs. Hence, this SSM model
performs universally better than the MJDSV model. Furthermore, under KJSSM, the
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mean absolute pricing error is invariant to moneyness at each maturity and for each
underlying currency pair, indicating that the model captures the volatility smile at all terms
and for both currencies. Along the maturity dimension, the mean absolute pricing errors
are smaller at moderate maturities than at very short and very long maturities, indicating
that the model has some remaining tensions along the term structure dimension.

5.4. The activity rate dynamics

Under the SSM models, the risk-neutral dynamics of the two activity rates are mainly
controlled by two parameters: k and sv. The parameter k controls the speed of mean
reversion for the activity rate processes. The parameter sv controls the instantaneous
volatility of the processes. Furthermore, the activity rate processes interact with the
currency return innovation through the instantaneous correlation parameters rR and rL.
Under the statistical measure, the time-series dynamics of the activity rates differ from the
risk-neutral dynamics in terms of the mean reverting speeds kP. The difference between k
and kP captures the market price of volatility risk. When the market price of risk
coefficient g is positive, the time-series dynamics of the activity rates are more persistent.
The opposite is true when the coefficient is negative.
In Table 4, the estimates for the risk-neutral mean reversion speed k in the SSM models

for JPYUSD vary from 0.387 to 0.465 as the jump specification changes. The statistical
mean reversion speeds kP are slightly larger, ranging from 0.502 to 0.586. The difference
between the two sets of parameters imply that the market price of activity rate
risk is negative. For GBPUSD, the k estimates are larger between 1.18 and 1.211. The
corresponding time-series estimates are between 1.158 and 3.296, implying a negative
market price of risk except under CJSSM. Intuitively, the activity rate captures the
volatility of the exchange rate. A negative market price for the activity rate risk implies
that investors are averse to both high activity level and high variation in the activity rate.
Nevertheless, our inference on the signs of market prices of risk is tentative, given the large
standard errors on the estimates for kP.
The estimates for the instantaneous volatility coefficient of the activity rates sv are also

stable across different jump specifications under the SSM framework. The estimates are
between 1.566 and 1.675 for JPYUSD and between 1.429 and 1.505 for GBPUSD.
The estimates for the instantaneous correlation are significantly positive between the

positively skewed Lévy component and its activity rate, and they are strongly negative
between the negatively skewed Lévy component and its activity rate. These different
correlations help in generating the stochastic skews at long maturities. They also help
generate the observed positive correlation between currency returns and changes in risk
reversals.
Under the HSTSV and MJDSV models, a scalar activity rate process controls the overall

stochastic volatility. The estimates for the persistence parameters k and kP and the
instantaneous volatility parameter sv are similar to those obtained under the SSM models.
However, the instantaneous correlation r estimates are close to zero under both currencies,
consistent with our observation that the currency returns and changes in volatilities do not
have strong cross-correlations.
The unscented Kalman filter provides a fast way to update the activity rates to achieve

an approximate fit to the implied volatility surface. In Fig. 6, the top two panels plot the
filtered activity rates for the MJDSV model, and the bottom two panels plot the filtered



ARTICLE IN PRESS

1997 1998 1999 2000 2001 2002 2003 2004

0

1

2

3

4

5

6

7

8

A
c
ti
v
it
y
 r

a
te

s

Currency = JPYUSD; Model = MJDSV

1997 1998 1999 2000 2001 2002 2003 2004

0

0.5

1

1.5

2

2.5

A
c
ti
v
it
y
 r

a
te

s

Currency = GBPUSD; Model = MJDSV

1997 1998 1999 2000 2001 2002 2003 2004

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
c
ti
v
it
y
 r

a
te

s

Currency = JPYUSD; Model = KJSSM

1997 1998 1999 2000 2001 2002 2003 2004

0

0.5

1

1.5

2

2.5

A
c
ti
v
it
y
 r

a
te

s

Currency = GBPUSD; Model = KJSSM

Fig. 6. Time series of the activity rates. The top two panels plot the single series of the activity rates from the

MJDSV model. The bottom two panels plot the two activity rate series from the KJSSM model, where the solid

lines denote the activity rate for the right skewed Lévy component and the dashed lines denote the activity rate for

the left skewed Lévy component. We extract the activity rates from the options data using unscented Kalman

filter, based on the estimated models using the whole sample of data.
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activity rates of the right skewed (solid lines) and left skewed (dashed lines) return
components under the KJSSM model.

Under both models, the overall time variation of the activity rates match the ups and
downs in the time series of the implied volatilities in Fig. 2. Hence, both models can
capture the stochastic volatility feature of currency options. For example, the implied
volatilities on JPYUSD show a large spike between 1998 and 1999, reflecting the market
stress during the Russian bond crisis and the ensuing hedge fund crisis. The single activity
rate process under MJDSV shows a similar spike. The two activity rates from our SSM
model tell a more detailed story. The spike in the implied volatility was mainly caused by a
spike in the activity rate level for the right skewed Lévy component, whereas the activity
rate level for the left skewed Lévy component went down. The difference in the two activity
rates during the hedge fund crisis reveals a potential imbalance of market demand for out-
of-money call and put options on the Japanese yen. The industry folklore is that many
hedge funds had gone short on yen before the crisis and were then forced to use call
options to cover their positions during the crisis. This extra demand for call options on yen
drove up the activity rate of upward yen moves (solid line), but not the activity rate of
downward yen moves (dashed line).
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Fig. 7. Theory and evidence on the stochastic skew. Dashed lines are the market quotes on three-month ten-delta

risk reversals, in percentages of the delta-neutral straddle implied volatility of the same maturity. Solid lines are

the values computed from the estimated models using the whole sample of data.
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5.5. Theory and evidence on the stochastic skew

The key feature that differentiates the implied volatility dynamics of currency options
from their equity market counterparts is the strong time variation in the risk reversal,
suggesting stochastic skewness in currency returns. Using the filtered time series on the
activity rates, we compute the model implied option prices and implied volatilities. From
the implied volatilities, we reconstruct the model implied risk reversals and compare them
with the market observations.
Fig. 7 compares the time series of the observed risk reversals to the model implied

values. For clarity, we plot only one time series for each currency pair: the ten-delta risk
reversal at three-month maturity in percentages of the delta-neutral straddle implied
volatility of the same maturity. The dashed lines denote data quotes, and the solid lines are
the values computed from the estimated models.
The top two panels in Fig. 7 show that the MJDSV model fails miserably in capturing

the observed strong variation in risk reversals. Compared with the strong variations in the
data, the MJDSV model implied values vary very little. In contrast, the bottom two panels
in Fig. 7 show that our SSM models can generate risk reversals variations that closely
match those in the data. The matches are close to perfection except under extreme
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realizations. Therefore, our SSM modeling framework contributes to the literature by
capturing stochastic skew in addition to stochastic volatility, both of which are pervasive
features of the currency options market.

6. Extensions

The class of stochastic skew models can in principle capture all of the salient features of
currency option prices. The four SSM models that we have designed and estimated are
extremely parsimonious as they have about the same number of free parameters as the
Bates (1996b) model, and yet they generate much better performance by capturing an extra
dimension of variation in the conditional skewness of the currency return distribution.
In this section, we explore the virtues of more general specifications within the SSM
model class.

6.1. Unconditional asymmetry

We achieve parsimony in the four estimated SSM models by assuming approximate
unconditional symmetry on the currency return distribution. Based on this assumption, we
use the same set of parameters to control the two Lévy components. The summary
statistics in Table 1 suggests that the symmetry assumption holds reasonably well on
GBPUSD, but less so on JPYUSD. For future applications, if we intend to price options
on exchange rates between emerging markets and industrialized countries, this assumption
is likely to be strongly violated because risk reversals on these currency pairs often skew
toward the industrialized countries. For example, the option implied risk-neutral return
distributions on the US dollar price of most emerging market currencies are negatively
skewed (Carr and Wu, forthcoming).2 Thus, to price options on these currency pairs, it is
imperative to allow the parameters for the two Lévy components to be different.

To gauge the importance of the asymmetry generalization for option pricing on the two
currency pairs under investigation, we estimate an asymmetric SSM specification that
allows the parameters for the two Lévy components to be different. Given the observed
relative insensitivity to the jump structure specification, we limit our estimation to one
jump structure, the KJ specification with a fixed at �1. In this case, we have 15 model
parameters: Y � ½sr; ðs2; l; vJ ;k;sv;kP; rÞR;L�, where the parameters with an R subscript
are for the right skewed Lévy component and the parameters with an L subscript are for
the left skewed Lévy component. We label this model as KJASSM, with the letter
A denoting asymmetry. The option pricing formula can be derived analogously. We
estimate the model using the first six years of data and compare its performance with its
symmetric counterpart KJSSM both in sample and out of sample.

Table 8 reports the estimation results. In the top panel, we report the parameters and
their standard errors (in parentheses) that govern the two Lévy components. We also
report their differences and the absolute magnitudes of the t-statistics on the differences.
The average magnitudes of the two Lévy components are controlled by s2R;L for the two
diffusion components and lR;L for the two jump components. For JPYUSD, the estimates
are markedly different for the right and left skewed Lévy components. The average
2Another example is equity index options. The slopes of the implied volatility smiles are time varying, but they

stay negative most of the time.
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Table 8

Likelihood estimation of the asymmetric model KJASSM

Entries report the maximum likelihood estimates of the model parameters and their standard errors (in parentheses) for KJASSM. We also report the difference

between the parameters for the right skewed Lévy component and the corresponding parameters for the left skewed Lévy component, as well as the absolute

magnitude of the t-statistics on the difference. For model performance, we report the root mean squared pricing error (rmse) in implied volatility percentage points,

the mean weekly log likelihood (L=N), and the likelihood ratio statistic against the KJSSMmodel, LR ¼ 2ðLKJASSM �LKJSSM Þ, which has a chi-square distribution

with six degrees of freedom. The critical value for the statistic at 99% confidence level is 16.81. The estimation uses the first six years of weekly option data from

January 24, 1996 to December 26, 2001 (310 weekly observations for each series). In-sample performance measures are based on the same sample period. Out-of-

sample performance measures are based on the remaining two years of data from January 2, 2002 to January 28, 2004 (109 weekly observations for each series).

Currency JPYUSD GBPUSD

Y Right Left Difference jtj-value Right Left Difference jtj-value

s2 1.004 (4.249) 0.007 (0.004) 0.998 0.235 0.005 (0.004) 0.023 (0.016) �0.018 1.375

l 8.065 (34.299) 0.005 (10.113) 8.060 0.219 0.078 (4.200) 0.063 (0.043) 0.016 0.004

vj 0.030 (0.001) 0.000 (0.177) 0.030 0.167 0.001 (0.024) 0.061 (0.003) �0.060 2.402

k 0.003 (0.012) 20.037 (0.232) �20.034 87.665 5.636 (0.039) 0.014 (0.011) 5.622 133.24

sv 0.212 (0.450) 11.665 (0.159) �11.452 26.972 5.781 (0.066) 0.126 (0.043) 5.656 72.082

r 0.000 (0.003) �0.042 (0.008) 0.042 4.408 0.179 (0.068) �0.998 (0.036) 1.179 0.004

kP 0.906 (0.443) 2.467 (0.576) �1.561 1.924 2.240 (0.493) 0.077 (0.008) 2.163 4.392

In-sample performance:

rmse 0.65 0.33

L=N �6.50 23.15

LR 6265.60 6746.47

Out-of-sample performance:

rmse 0.75 0.26

L=N �13.24 28.96

LR 1139.66 1234.18
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magnitudes of the right skewed component are much larger than the average magnitudes
of the left skewed component, generating positive risk reversals and positively skewed
conditional currency return distribution on average. Nevertheless, the estimates also show
large standard errors, making the differences statistically insignificant.

For GBPUSD, the ðs2; lÞ estimates for the two Lévy components show smaller
differences, consistent with the smaller average risk reversals. Again, the standard errors of
the estimates are large and the parameter differences between the two components are
insignificant. The large standard errors for both currency pairs suggest that the fully
asymmetric specification experiences some identification issues.

The t-statistics on the parameter differences show that the most significant asymmetry
between the two Lévy components do not come from their average magnitudes ðs2; lÞ, but
from the risk-neutral persistence (k) and, to a lesser degree, volatility (sv) of the two
underlying activity rates. For JPYUSD, the activity rate for the right skewed Lévy
component is more persistent but less volatile than the activity rate for the left skewed
Lévy component. The opposite is the case for GBPUSD.

Table 8 also reports the in-sample and out-of-sample performance for the asymmetric
model. The in-sample root mean squared pricing errors are 0.65 for JPYUSD and 0.33 for
GBPUSD, substantially smaller than the corresponding values (0.89 and 0.42) for its
symmetric counterpart (KJSSM in Table 6). We also report the likelihood ratio test
statistics between the two models, LR ¼ 2ðLKJASSM �LKJSSM Þ, which has a chi-square
distribution with six degrees of freedom. The critical value at the 99% confidence level is
16.81. The LR statistics show that KJASSM significantly outperforms its symmetric
counterpart KJSSM.

6.2. Stochastic central tendency

The mean absolute pricing errors in Fig. 5 show that the KJSSM model performs better
on three-month options than on one- and 12-month options, pointing to remaining
tensions along the term structure dimension. Furthermore, the summary statistics in
Table 1 show that the weekly autocorrelation estimates for risk reversals, butterfly spreads,
and delta-neutral straddle implied volatilities all increase with option maturities. The
upward sloping term structure on the autocorrelation estimates suggests the potential
existence of multiple volatility factors with different persistence, with low persistence
factors dominating short term contracts and high persistence factors dominating long term
contracts. Finally, when we allow the two Lévy components in the SSM model to be
asymmetric in KJASSM, the most significant asymmetry identified from the estimation
does not come from the average magnitudes of the two Lévy components, but from the
persistence of the two underlying activity rates.

Based on these observations, we consider an alternative generalization of the KJSSM
model by allowing the mean of the two activity rates to be stochastic and driven by one
common dynamic factor:

dv
j
t ¼ kðyt � v

j
t Þdtþ sv

ffiffiffiffiffi
v

j
t

q
dZ

j
t; j ¼ R;L,

dyt ¼ kyð1� ytÞdtþ sy
ffiffiffiffi
yt

p
dZy

t , ð29Þ

where yt denotes the common stochastic central tendency (Balduzzi, Das, and Foresi,
1998) for the two activity rates and Zy

t denotes another standard Brownian motion that is
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independent of other Brownian motions. We label this extended model as KJSSMSC, with
SC denoting the stochastic central tendency generalization. In contrast to KJASSM,
KJSSMSC retains the symmetric assumption but allows the activity rate dynamics for each
Lévy component to be controlled by two factors with different persistence. Normally, the
stochastic central tendency factor is more persistent than the activity rate itself: kyok.
Long term option contracts depend more heavily on the central tendency factor and hence
show higher persistence.
Under this specification, we can show that the generalized Fourier transform of the

currency return remains exponential affine in the current levels of the expanded state
vector V 0 � ½v

R
0 ; v

L
0 ; y0�,

fsðuÞ ¼ expðiuðrd � rf Þt� bðtÞ>V 0 � cðtÞÞ, (30)

where the coefficients ½bðtÞ; cðtÞ� solve a set of ordinary differential equations:

b0ðtÞ ¼ bv � K>bðtÞ � 1
2
S	 bðtÞ 	 bðtÞ; c0ðtÞ ¼ bðtÞ>M, (31)
Table 9

Likelihood estimation of the stochastic central tendency model KJSSMSC

Entries report the maximum likelihood estimates of the model parameters and their standard errors (in

parentheses) for KJSSMSC. For model performance, we report the root mean squared pricing error (rmse) in

implied volatility percentage points, the mean weekly log likelihood (L=N), and the likelihood ratio statistic

against the KJSSMmodel, LR ¼ 2ðLKJSSMSC �LKJSSM Þ, which has a chi-square distribution with 313 degrees of

freedom for in-sample performance and 112 degrees of freedom for out-of-sample performance. The critical value

of the statistic at 99% confidence level is 374.13 (in-sample) and 149.73 (out-of-sample), respectively. The

estimation uses the first six years of weekly option data from January 24, 1996 to December 26, 2001 (310 weekly

observations for each series). In-sample performance measures are based on the same sample period. Out-of-

sample performance measures are based on the remaining two years of data from January 2, 2002 to January 28,

2004 (109 weekly observations for each series).

Currency JPYUSD GBPUSD

s2 0.033 (0.012) 0.002 (0.000)

l 0.098 (0.038) 1.104 (0.146)

vj 0.092 (0.001) 0.002 (0.000)

k 23.028 (0.144) 8.184 (0.027)

sv 1.764 (0.343) 3.980 (0.046)

rR 0.587 (0.020) 0.703 (0.052)

rL �0.730 (0.026) �0.993 (0.073)

kP 1.180 (0.114) 3.192 (0.319)

ky 0.027 (0.011) 0.193 (0.006)

sy 0.224 (0.042) 0.617 (0.010)

kP
y 0.171 (0.177) 0.194 (0.010)

sr 0.251 (0.001) 0.039 (0.000)

In-sample performance:

rmse 0.49 0.22

L=N 2.74 37.61

LR 11998.70 15711.15

Out-of-sample performance:

rmse 0.52 0.20

L=N 2.81 39.79

LR 4638.85 3594.54
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with 	 denoting the Hadamard product and

bv ¼

cR

cL

0

2664
3775; K ¼

k� iussvrR 0 �k

0 k� iussvrL �k

0 0 ky

2664
3775; S ¼

s2v

s2v

s2y

2664
3775,

M ¼

0

0

ky

2664
3775. ð32Þ

The coefficients can be solved numerically starting at bð0Þ ¼ 0 and cð0Þ ¼ 0.
We estimate this stochastic central tendency model using the first six years of data and

compare its performance with KJSSM both in sample and out of sample. We assume that
the market price of yt risk is proportional to

ffiffiffiffi
yt

p
and use kP

y to denote the mean reversion
coefficient for yt under the statistical measure P. Compared with KJSSM, this new model
KJSSMSC has three additional parameters ðky;sy; kP

y Þ that control the risk-neutral and
statistical dynamics of the stochastic central tendency factor yt.

Table 9 reports the parameter estimates and standard errors in the first panel, the in-
sample performance measures in the second panel, and the out-of-sample performance
measures in the third panel. The parameter estimates show that the central tendency factor
yt is much more persistent than the activity rates themselves under both the risk-neutral
measure and the statistical measure. The performance measures show that the addition of
the central tendency factor dramatically improves the model performance. The root mean
squared errors are much smaller and the likelihood values are much larger than both the
KJSSM benchmark and the asymmetric generalization KJASSM. The root mean squared
errors for KJSSMSC are only about half of that for KJSSM. The likelihood ratio test
statistics, LR ¼ 2ðLKJSSMSC �LKJSSM Þ, are very large and highly significant over any
reasonable confidence level both in sample and out of sample.
7. Conclusions

In this paper, we analyze the statistical properties of currency option implied volatilities
across the dimensions of moneyness, maturity, and calendar time. We find that the market
prices of currency options exhibit several behaviors that challenge standard models in the
option pricing literature. Chief among these challenging behaviors is the observation that
the risk reversals vary greatly over time and switch signs several times in our sample.

Working within the paradigm of time-changed Lévy processes, we develop and estimate
a subclass of models that captures this stochastic skew behavior of currency option prices.
Our estimation results show that our stochastic skew models strongly outperform
traditional jump-diffusion stochastic volatility models, both in sample and out of sample.

For future research, it is important to understand the economic underpinnings of the
stochastic skewness suggested by currency option prices. An understanding of the source
of this feature should have important implications on our understanding of the behavior of
currency risk premia. For such research, our stochastic skew modeling framework can
serve as a benchmark, upon which we can construct the pricing kernels for each economy
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and link the exchange rate dynamics to the ratio of the pricing kernels of the two relevant
economies.
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