
Stochastic Skyline Operator
Xuemin Lin, Ying Zhang, Wenjie Zhang, Muhammad Aamir Cheema

The University of New South Wales, Australia
{lxue,yingz,zhangw,macheema}@cse.unsw.edu.au

Abstract— In many applications involving the multiple criteria
optimal decision making, users may often want to make a per-
sonal trade-off among all optimal solutions. As a key feature, the
skyline in a multi-dimensional space provides the minimum set of
candidates for such purposes by removing all points not preferred
by any (monotonic) utility/scoring functions; that is, the skyline
removes all objects not preferred by any user no mater how their
preferences vary. Driven by many applications with uncertain
data, the probabilistic skyline model is proposed to retrieve uncer-
tain objects based on skyline probabilities. Nevertheless, skyline
probabilities cannot capture the preferences of monotonic utility
functions. Motivated by this, in this paper we propose a novel
skyline operator, namely stochastic skyline. In the light of the
expected utility principle, stochastic skyline guarantees to provide
the minimum set of candidates for the optimal solutions over all
possible monotonic multiplicative utility functions. In contrast to
the conventional skyline or the probabilistic skyline computation,
we show that the problem of stochastic skyline is NP-complete
with respect to the dimensionality. Novel and efficient algorithms
are developed to efficiently compute stochastic skyline over multi-
dimensional uncertain data, which run in polynomial time if the
dimensionality is fixed. We also show, by theoretical analysis and
experiments, that the size of stochastic skyline is quite similar
to that of conventional skyline over certain data. Comprehensive
experiments demonstrate that our techniques are efficient and
scalable regarding both CPU and IO costs.

I. INTRODUCTION

In a 𝑑-dimensional space 𝑅𝑑, the skyline is defined over
the given preferences of coordinate values on each dimension
(i.e., either smaller or larger coordinate values are preferred).
Given two points 𝑥 and 𝑦 in 𝑅𝑑, 𝑥 dominates 𝑦 if 𝑥 is
not worse than 𝑦 on each dimension and is better than
𝑦 on one dimension according to the given preferences of
coordinate values. Given a set 𝐷 of points (objects) in 𝑅𝑑,
the preferences across different dimensions may conflict to
each other regarding 𝐷; that is, 𝐷 does not always contain
a point that dominates every other point in 𝐷. Consequently,
a scoring function 𝑓 is often required to rank the points in
𝐷 to capture the preferences on each dimension to generate
the optimal decision (solution). Without loss of generality,
in the rest of paper we assume smaller coordinate values
are preferred on each dimension and all points are in 𝑅𝑑

+

(i.e. coordinate values are non-negative). This implies that to
capture such preferences on each dimension and make the
optimal solution with the maximum score, a scoring function
𝑓 required to rank objects in 𝐷 should be decreasing.

The skyline of 𝐷 consists of the points in 𝐷 which are
not dominated by any other points in 𝐷. It is well known
[4], [22] that 𝑥 dominates 𝑦 if and only if for any decreasing
multivariate function 𝑓 , 𝑓(𝑥) ≥ 𝑓(𝑦); this is formally stated in
page 266 of [21] if a point is regarded as an uncertain object

with only one instance that has the occurrence probability 1.
Therefore, in multi-criteria decision applications when users
are not content with being given only one optimal solution
and want to make a personal trade-off among different op-
timal solutions (i.e., with maximal scores) over all possible
decreasing scoring functions, the skyline provides the minimal
set of candidates by removing the points not preferred by any
decreasing scoring functions (users). Skyline computation over
certain data has been extensively studied (e.g., [4], [17], [25]).

Probabilistic Skyline. Driven by many recent applications
involving uncertain data (e.g. environment surveillance, market
analysis, WWW and sensor networks), research in uncertain
data management has drawn considerable attention from the
database community. The skyline analysis over uncertain data
has been firstly proposed in [18] where the possible world
semantics is adopted to calculate the probabilities, namely
skyline probabilities, of uncertain objects not being dominated
by other uncertain objects. In [18], efficient techniques are
developed to retrieve uncertain objects with skyline probabili-
ties greater than a given threshold, while [2] provides efficient
techniques to compute skyline probabilities for all objects.

Motivation. The research towards the problem of multiple
criteria optimization over uncertain objects has a long history
in economics, finance, and mathematics; see [11], [14], [21]
for example. The expected utility principle is the most popular
model [11], [14] to select the optimal uncertain object against
multiple criteria. In the light of the expected utility principle,
an uncertain object 𝑈 with the maximum expected utility is
the optimal solution; that is, select 𝑈 to maximize 𝐸[𝑓(𝑈)]
for a given utility function 𝑓 .

Assume that a head coach wants to select the best high-
jump athlete from all available athletes in her team to attend an
international game and decides to evaluate the athletes against
their game performances in the recent years, say the last 3
years, where the performance of each athlete in a game is
recorded by the final height ℎ and the total number 𝑡 of failed
trails over all attempted heights before successfully passing
the final height - (ℎ, 𝑡). To conform with the preference of
smaller values, assume that ℎ is recorded into 5 bands instead
of actual value: band 1 - within a reach of smashing the
current world record, band 2 - world leading heights, band
3 - good, band 4 - fair, band 5 - poor. The coach wants to
select a player who is very stable (i.e., 𝑡 is minimized) and
jumps high (i.e., ℎ is minimized). Clearly, these two criteria
might conflict with each other. Consequently, a utility function
𝑓 = 𝑓1(ℎ)× 𝑓2(𝑡) may be employed by the coach to evaluate
the overall performance of a player in a game, where 𝑓1 and



𝑓2 are nonnegative decreasing functions, mapping [1, 5] to
[0, 1] and [0,∞) to [0, 1], respectively, with 𝑓1(1) = 1 and
𝑓2(0) = 1. The coach selects the athlete with the maximum
value of (𝑓1(ℎ)× 𝑓2(𝑡)). Nevertheless, the game performance
of an athlete may fluctuate from game to game due to various
reasons. Therefore, it is important to evaluate players against
their game performance statistic distribution. For this purpose,
an athlete 𝑈 may be treated as an uncertain object and her
performance at each past game may be treated as an instance
in a 2-dimensional space with the same probability to occur
if no other information is available. The coach could select a
player 𝑈 such that 𝐸(𝑓(𝑈)) is maximized. Figure 1 gives a
small scale example where 3 players are involved.
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Fig. 1. Motivating Example

As depicted in Figure 1(a), suppose that 𝐴, 𝐵, and 𝐶 have
2 instances, respectively. Each instance in objects 𝐴 and 𝐵
has the occurrence probability 1

2 . The occurrence probabilities
of 𝑐1 and 𝑐2 are 1

100 and 99
100 , respectively, assuming that

the player 𝐶 has the same performance 𝑐2 for 99 games
out of 100. While choosing an object 𝑈 from 𝐴, 𝐵, and
𝐶 to maximize 𝐸[𝑓(𝑈)] in the light of the expected utility
principle, 𝐸[𝑓(𝐴)] = 1

2𝑓1(4)𝑓2(1)+
1
2𝑓1(2)𝑓2(3), 𝐸[𝑓(𝐵)] =

1
2𝑓1(5)𝑓2(2)+

1
2𝑓1(3)𝑓2(4), and 𝐸[𝑓(𝐶)] = 1

100𝑓1(1)𝑓2(5)+
99
100𝑓1(4)𝑓2(3). Note that nonnegative decreasing utility func-
tions 𝑓1 and 𝑓2 could be in any form depending on what kind
of risks and trade-offs the coach wants to take; for instance, 𝑓1
and 𝑓2 could be in exponential forms such as 𝑓1(ℎ) = 𝑒𝑎(1−ℎ)

and 𝑓2(𝑡) = 𝑒−𝑏𝑡 where 𝑎 > 0 and 𝑏 > 0 may personally
weigh the importance of ℎ and 𝑡.

Nevertheless, 𝐴 is always preferred to 𝐵 since 𝐸[𝑓(𝐴)] ≥
𝐸[𝑓(𝐵)] for any nonnegative decreasing functions 𝑓1 and 𝑓2,
respectively. If the coach is taking more risks and only wants
to select the athlete with a chance to smash the world record,
𝑓1 can be defined such that 𝑓1(1) = 1 and 𝑓1(ℎ) = 0 if ℎ > 1
and 𝑓2 still uses 𝑒−𝑏𝑡. If these utility functions are used, then
𝐶 is the optimal solution since 𝐸[𝑓(𝐴)] and 𝐸[𝑓(𝐵)] are 0.
This example shows that 𝐵 is never preferred by any users (i.e.
by any such multiplicative decreasing utility functions) and
should be excluded as a candidate to any optimal solutions,
while 𝐴 and 𝐶 should be kept as candidates.

While very useful in applications to determine probabilistic
dominance relationships, skyline probabilities cannot capture
the preferences of utility (scoring) functions regarding the
expected utility principle. Regarding the example in Figure
1(a), it can be immediately verified that the skyline probability
of 𝐴 is 1, the skyline probability of 𝐵 is 1

2 , and the skyline
probability of 𝐶 is 1

100 . Clearly, if we choose players based

on skyline probability value, then 𝐵 is always preferred to 𝐶;
that is, there is no chance to exclude the object 𝐵 without
excluding the object 𝐶. This is an inherent limitation of the
probabilistic skyline model.

Stochastic Skyline. Stochastic orders have been widely used
in many real-life applications [11], [14], [21], including eco-
nomics, finance, and multi-criteria statistic decision making.
Generally, given a class ℱ of utility (scoring) functions from
all users, an uncertain object (random variable) 𝑈 stochasti-
cally dominates 𝑉 regarding ℱ , denoted by 𝑈 ≺ℱ 𝑉 if and
only if 𝐸[𝑓(𝑈)] ≥ 𝐸[𝑓(𝑉 )] for each 𝑓 ∈ ℱ (see [11]); that
is, all users prefer 𝑈 to 𝑉 . Given a set 𝒰 of uncertain objects,
the stochastic order based skyline, namely stochastic skyline
regarding ℱ , is the subset of 𝒰 such that each object 𝑈 in
the stochastic skyline is not stochastically dominated by any
other object in 𝒰 regarding ℱ . Consequently, in applications
of multiple criteria optimal decision making over uncertain
objects, the stochastic skyline regarding ℱ provides the min-
imum set of candidates for the optimal solutions (maximum
values), respectively, for all functions in ℱ by removing the
objects not preferred by any function in ℱ .

Several stochastic orders have been defined and their math-
ematic properties have been well studied in the statistic
literature [11], [21]. Consider that multiplicative nonnegative
decreasing functions are a very popular family ℱ of scoring
functions to rank an object in 𝑅𝑑

+, that is, ℱ = {∏𝑑
𝑖=1 𝑓𝑖(𝑥𝑖)}

where each 𝑓𝑖 (for 1 ≤ 𝑖 ≤ 𝑑) is nonnegative decreasing. In
this paper, we investigate the problem of efficiently computing
the stochastic skyline regarding lower orthant order [21] since
the lower orthant order ≺ℱ is defined over the family ℱ of
multiplicative decreasing functions. Intuitively, an uncertain
object 𝑈 stochastically dominates 𝑉 regarding the lower
orthant order if and only if for any point 𝑥 in 𝑅𝑑

+, the
probability mass of 𝑈 is not smaller than the probability mass
of 𝑉 in the region “dominated” by 𝑥 (i.e. the shaded region
in Figure 1(b)); this will be formally defined in Section II.
Note that as expected, such stochastic skyline excludes object
𝐵 and includes 𝐴 and 𝐶 in the example in Figure 1(a).

Challenges and Contributions. A main challenge for com-
puting stochastic skyline is how to efficiently check the
stochastic dominance relationship between two uncertain ob-
jects 𝑈 and 𝑉 . A naive way to check every point in the
whole multi-dimension data space involves an infinite number
of points; thus it is computationally infeasible. Efficiently
computing stochastic skyline among a large number of objects
is even harder. In the paper, following the filtering-verification
paradigm we develop novel spatial- and statistics-based fil-
tering techniques to efficiently and effectively eliminate non-
promising uncertain objects. Our filtering techniques are based
on an 𝑅-Tree. We also develop an efficient verification algo-
rithm that only needs to check a finite number of points to
verify whether 𝑈 stochastically dominates 𝑉 .

To the best of our knowledge, this is the first attempt to
introduce the stochastic skyline model over uncertain data.
Consider that in many applications, probability density func-



tions (PDFs) of an uncertain object are often described by
a set of instances and their occurrence probabilities. In this
paper, our investigation focuses on discrete cases of PDFs.
Our principal contributions can be summarized as follows.

∙ We introduce a novel stochastic skyline model on uncertain
data with the aim to provide a minimum set of candidates
to the optimal solutions over the family of multiplicative
decreasing scoring functions for users to make their personal
trade-offs.

∙ We show that the problem of determining the stochastic
dominance (i.e. lower orthant order) between two objects
is NP-complete regarding the dimensionality, in contrast to
the conventional skyline and probabilistic skyline.

∙ We develop a novel, efficient algorithm to verify if an un-
certain object is stochastically dominated by another object.
The algorithm runs in polynomial time if the dimensionality
is fixed.

∙ We propose effective and efficient filtering techniques to
reduce the number of verifications in computing stochastic
skyline.

∙ We also show, by theoretical analysis and experiments, that
the size of stochastic skyline is quite similar to that of
skyline over certain data.

Besides the theoretical results, our extensive experiments
on real and synthetic data are conducted to demonstrate the
efficiency of our techniques.

The rest of the paper is organized as follows. In Section II,
we formally define the problem and present preliminaries. In
Section III, we show that the problem of determining the
stochastic order between two objects is NP-complete regarding
the dimensionality 𝑑 and then present an efficient verification
algorithm that runs in polynomial time if 𝑑 is fixed. Then
we present our framework, novel filtering techniques, and a
size estimation of stochastic skyline in Section IV, as well as
discussions of other stochastic orders and continuous cases of
PDFs. Experiment results are presented in Section V. Section
VI provides the related work and Section VII concludes the
paper.

II. BACKGROUND INFORMATION

Table I below summarizes the mathematical notations used
throughout this paper.

Notation Definition

𝑈, 𝑉 uncertain objects in 𝑅𝑑
+

𝑢, 𝑣 (𝑥, 𝑦) instances (points) of uncertain objects in 𝑅𝑑
+

𝑛 number of uncertain objects
𝑈𝑚𝑏𝑏 the MBB of 𝑈

𝑈𝑚𝑎𝑥 (𝑈𝑚𝑖𝑛) upper (lower) corner of the 𝑈𝑚𝑏𝑏

𝑅(𝑥, 𝑦) rectangular region with 𝑥 (𝑦) as lower (upper) corner
𝑈.𝑐𝑑𝑓 the cumulative distribution function of 𝑈
𝜇(𝑈) the mean of 𝑈
𝜎2
𝑖 (𝑈) the variance of 𝑈 on the 𝑖-th dimension

𝑈 ≺𝑠𝑑 𝑉 𝑈 stochastically dominates 𝑉

TABLE I

THE SUMMARY OF NOTATIONS.

A. Problem Definition

We use 𝑅𝑑
+ to denote the points in 𝑅𝑑 with nonnegative

coordinate values. Without loss of generality, in the paper we
only consider the 𝑅𝑑

+ space. A point (instance) 𝑥 referred in
the paper, by default, is in 𝑅𝑑

+.
Let the 𝑖th coordinate value of 𝑥 be denoted by 𝑥𝑖. Given

two points 𝑥 and 𝑦, 𝑥 dominates 𝑦 (denoted by 𝑥 ≺ 𝑦) if
𝑥𝑖 ≤ 𝑦𝑖 for 1 ≤ 𝑖 ≤ 𝑑 and there is a 𝑗 ∈ [1, 𝑑] such that
𝑥𝑗 < 𝑦𝑗 . We use 𝑥 ⪯ 𝑦 to denote the case that either 𝑥 equals
𝑦 on each dimension or 𝑥 dominates 𝑦, and use 𝑅(𝑥, 𝑦) to
denote a rectangular region in 𝑅𝑑

+ where 𝑥 and 𝑦 are lower
and upper corners, respectively.

An uncertain object can be described either continuously
or discretely. As discussed earlier, in this paper we focus on
discrete cases and objects are on 𝑅𝑑

+. That is, an uncertain
object 𝑈 consists of a set {𝑢1, . . . , 𝑢𝑚} of instances (points)
in 𝑅𝑑

+ where for 1 ≤ 𝑖 ≤ 𝑚, 𝑢𝑖 is in 𝑅𝑑
+ and occurs with the

probability 𝑝𝑢𝑖
(𝑝𝑢𝑖

> 0), and
∑𝑚

𝑖=1 𝑝𝑢𝑖
= 1. We assume that

𝑚 ≥ 2 since 𝑚 = 1 means a certain object.
For a point 𝑥 ∈ 𝑅𝑑

+, the probability mass 𝑈.𝑐𝑑𝑓(𝑥) of 𝑈 is
the sum of the probabilities of the instances in 𝑅((0, ..., 0), 𝑥)
where (0, 0, ..., 0) is the origin in 𝑅𝑑; that is, 𝑈.𝑐𝑑𝑓(𝑥) =∑

𝑢⪯𝑥,𝑢∈𝑈 𝑝𝑢.

Example 1: Suppose the instances of each object in Fig-
ure 1(b) have the appearance probabilities as described in
the example depicted in Figure 1(a). Then, 𝐴.𝑐𝑑𝑓(𝑥) = 1

2 ,
𝐵.𝑐𝑑𝑓(𝑥) = 1

2 and 𝐶.𝑐𝑑𝑓(𝑥) = 1
100 .

Generally, given an 𝑆 ⊆ 𝑅𝑑
+, the probability mass of 𝑈

restricted to 𝑆 is
∑

𝑢∈𝑆∩𝑈 𝑝𝑢, denoted by 𝑈.𝑐𝑑𝑓(𝑆). The
minimal bounding box 𝑈𝑚𝑏𝑏 of 𝑈 is the minimal rectangular
region 𝑟 such that 𝑈.𝑐𝑑𝑓(𝑟) = 1. The lower (upper) corner of
𝑈𝑚𝑏𝑏 is denoted by 𝑈𝑚𝑖𝑛 (𝑈𝑚𝑎𝑥). For presentation simplicity,
uncertain objects are sometimes abbreviated to “objects”.

Stochastic Order. As discussed in Section I, in this paper
we will focus on lower orthant orders [21], called “stochastic
dominance” in this paper.

Definition 1 (Stochastic Dominance): Given two uncertain
objects 𝑈 and 𝑉 , 𝑈 stochastically dominates an object 𝑉 ,
denoted by 𝑈 ≺𝑠𝑑 𝑉 , if 𝑈.𝑐𝑑𝑓(𝑥) ≥ 𝑉.𝑐𝑑𝑓(𝑥) for any point
𝑥 ∈ 𝑅𝑑

+ and ∃𝑦 ∈ 𝑅𝑑
+ such that 𝑈.𝑐𝑑𝑓(𝑦) > 𝑉.𝑐𝑑𝑓(𝑦).

Base on the definition, we have that 𝐴 ≺𝑠𝑑 𝐵, 𝐵 ∕≺𝑠𝑑 𝐶,
𝐶 ∕⪯𝑠𝑑 𝐴, and 𝐴 ∕⪯𝑠𝑑 𝐶 regarding the example in Figure 1.

Definition 2 (Stochastic Skyline): Given a set of uncertain
objects 𝒰 , an object 𝑈 ∈ 𝒰 is a stochastic skyline object if
there is no object 𝑉 ∈ 𝒰 such that 𝑉 ≺𝑠𝑑 𝑈 . The set of
stochastic skyline objects is called the stochastic skyline of 𝒰 .

Problem Statement. In this paper we investigate the problem
of efficiently computing stochastic skyline of a set of uncertain
objects.

B. Preliminary

We say that 𝑈 stochastically equals 𝑉 , denoted by 𝑈 =𝑠𝑑

𝑉 , if 𝑈.𝑐𝑑𝑓(𝑥) = 𝑉.𝑐𝑑𝑓(𝑥) for any point 𝑥 ∈ 𝑅𝑑
+. Given



two objects 𝑈 and 𝑉 , we define 𝑈 = 𝑉 if there is a one
to one mapping 𝑔 from 𝑈 to 𝑉 such that for each instance
𝑢 of 𝑈 , 𝑢 = 𝑔(𝑢) and 𝑝𝑢 = 𝑝𝑔(𝑢); that is, 𝑔 preserves the
locations and probabilities. The following Lemma states that
=𝑠𝑑 is equivalent to = between two uncertain objects; it can
be immediately verified based on the definition of 𝑈.𝑐𝑑𝑓 and
𝑉.𝑐𝑑𝑓 .

Lemma 1: Given two (uncertain) objects 𝑈 and 𝑉 , 𝑈 =𝑠𝑑

𝑉 if and only if 𝑈 = 𝑉 .

Minimality of stochastic skyline. The following Theorem is
proved in [21] (pp 309).

Theorem 1: Let 𝑈 = (𝑈1, ..., 𝑈𝑑) and 𝑉 = (𝑉1, ..., 𝑉𝑑)
be two 𝑑-dimensional independent random vectors to describe
objects 𝑈 and 𝑉 , respectively, where 𝑈𝑖 and 𝑉𝑖 are sub-
variables of 𝑈 and 𝑉 on 𝑖-dimension. Assuming 𝑈 ∕= 𝑉 , then
𝑈 ≺𝑠𝑑 𝑉 if and only if 𝐸[

∏𝑑
𝑖=1 𝑓𝑖(𝑈𝑖)] ≥ 𝐸[

∏𝑑
𝑖=1 𝑓𝑖(𝑉𝑖)] for

every collection {𝑓𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑑} of univariate non-negative
decreasing functions where expectations exist.

Theorem 1 implies that in the light of expected utility
principle, the stochastic skyline of 𝒰 provides the minimum
set of candidates to the optimal solutions, respectively, over
all multiplicative decreasing functions by removing the objects
not preferred by any multiplicative decreasing function. Here,
we say 𝑈 is preferred to 𝑉 by 𝑓 if 𝐸[𝑓(𝑈)] ≥ 𝐸[𝑓(𝑉 )].
Framework of computing stochastic skyline. Our techniques
for computing stochastic skyline of a set 𝒰 of objects follow
the standard two phases’ framework: filtering and verification.
In the filtering phase, efficient filtering techniques are devel-
oped to effectively prune non-promising objects. In the veri-
fication phase, an efficient algorithm is developed to generate
the stochastic skyline of 𝒰 . The key in the verification phase
is to determine whether an uncertain object 𝑈 stochastically
dominates another uncertain object 𝑉 .

III. STOCHASTIC DOMINANCE TESTING

According to Lemma 1, testing if 𝑈 =𝑠𝑑 𝑉 is equivalent to
testing if 𝑈 = 𝑉 ; thus it can be conducted in 𝑂(𝑑𝑚 log𝑚)
if instances are firstly sorted according to the lexigraphic
order where 𝑚 is the number of instances in 𝑈 (𝑉 ). Given
two objects 𝑈 and 𝑉 , in this section we present an efficient
algorithm to determine whether 𝑈 stochastically dominates 𝑉
if 𝑈 ∕= 𝑉 . Naively following Definition 1 to compute 𝑈.𝑐𝑑𝑓(𝑥)
and 𝑉.𝑐𝑑𝑓(𝑥) for every point 𝑥 in 𝑅𝑑

+ is computationally
infeasible since an infinite number of check points is involved.

A. Testing Finite Number of Points Only

A point 𝑥 ∈ 𝑅𝑑
+ is a violation point regarding 𝑈 ⪯𝑠𝑑 𝑉 if

𝑈.𝑐𝑑𝑓(𝑥) < 𝑉.𝑐𝑑𝑓(𝑥). Assuming that 𝑈 ∕= 𝑉 , it immediately
follows from Definition 1 and Lemma 1 that 𝑈 does not
stochastically dominate 𝑉 if and only if there is a violation
point regarding 𝑈 ≺𝑠𝑑 𝑉 . Consequently, determining if 𝑈
stochastically dominates 𝑉 is converted to determining if there
is a violation point regarding 𝑈 ≺𝑠𝑑 𝑉 , given 𝑈 ∕= 𝑉 .

An intuitive way by checking every instance 𝑣 in 𝑉 to find
a violation point does not work. As depicted in Figure 2,
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Fig. 2. An Example

𝑈 consists of two instances 𝑢1 and 𝑢2 with 𝑝𝑢1
= 𝑝𝑢2

=
1
2 , 𝑉 consists of 3 instances 𝑣1, 𝑣2, and 𝑣3 with 𝑝𝑣1

=
𝑝𝑣2

= 𝑝𝑣3
= 1

3 , and 𝑣3 is placed at the same position
of 𝑢2. It can be immediately verified that for 1 ≤ 𝑖 ≤ 3,
𝑈.𝑐𝑑𝑓(𝑣𝑖) ≥ 𝑉.𝑐𝑑𝑓(𝑣𝑖). Nevertheless, we cannot conclude that
𝑈 stochastically dominates 𝑉 since 𝑥 in Figure 2 is a violation
point regarding 𝑈 ≺𝑠𝑑 𝑉 ; that is, 𝑉.𝑐𝑑𝑓(𝑥) > 𝑈.𝑐𝑑𝑓(𝑥).

(a) (b)
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Fig. 3. Grid Points

For an object 𝑉 in 𝑅𝑑
+, we use 𝒟𝑖(𝑉 ) (1 ≤ 𝑖 ≤ 𝑑) to denote

the set of all distinct 𝑖th coordinate values of the instances of
𝑉 . Then,

∏𝑑
𝑖=1 𝒟𝑖(𝑉 ) forms a grid; see Figure 3(a) as an

example. Theorem 2 below states that we only need to check
every (grid) point in

∏𝑑
𝑖=1 𝒟𝑖(𝑉 ) to determine if there is a

violation point regarding 𝑈 ≺𝑠𝑑 𝑉 .

Theorem 2: Suppose that 𝑈 ∕= 𝑉 . Then, 𝑉 is not stochas-
tically dominated by 𝑈 if and only if there is a (grid) point
𝑥 ∈ ∏𝑑

𝑖=1 𝒟𝑖(𝑉 ) that is violation point regarding 𝑈 ≺𝑠𝑑 𝑉
(i.e., 𝑐𝑑𝑓.𝑉 (𝑥)− 𝑐𝑑𝑓.𝑈(𝑥) > 0).

Proof: The “if” part is immediate according to Definition
1. Below we prove the “only if” part.

Suppose that 𝑉 is not stochastically dominated by 𝑈 . Then,
based on Definition 1 and Lemma 1 there is a violation point
regarding 𝑈 ≺𝑠𝑑 𝑉 . It can be immediately verified that if
there is a violation point regarding 𝑈 ≺𝑠𝑑 𝑉 then there
must be a violation point 𝑥 in 𝑉𝑚𝑏𝑏. Let 𝑥′ be the lower
corner of the grid cell in

∏𝑑
𝑖=1 𝒟𝑖(𝑉 ) which contains 𝑥; see

Figure 3(a) for example. It is immediate 𝑉.𝑐𝑑𝑓(𝑥′) = 𝑉.𝑐𝑑𝑓(𝑥)
and 𝑈.𝑐𝑑𝑓(𝑥′) ≤ 𝑈.𝑐𝑑𝑓(𝑥). Since 𝑈.𝑐𝑑𝑓(𝑥) < 𝑉.𝑐𝑑𝑓(𝑥),
𝑈.𝑐𝑑𝑓(𝑥′) < 𝑉.𝑐𝑑𝑓(𝑥′).

Naive Algorithm. A naive algorithm is to check every grid
point to calculate its 𝑈.𝑐𝑑𝑓 and 𝑉.𝑐𝑑𝑓 and terminates when
we find a violation point or all grid points are exhausted; it
is a correct algorithm, if 𝑈 ∕= 𝑉 , based on Theorem 2. Note
that there are at most 𝑚𝑑 grid points in

∏𝑑
𝑖=1 𝒟𝑖(𝑉 ) where

𝑚 is the number of instances in 𝑉 . Consequently, the naive
algorithm needs to check 𝑂(𝑚𝑑) grid points for computing
𝑈.𝑐𝑑𝑓 and 𝑉.𝑐𝑑𝑓 .



B. NP-completeness

Below we show that the exponential time complexity re-
garding 𝑑 is unavoidable.

Theorem 3: Given two objects 𝑈 and 𝑉 , assume that 𝑈 ∕=
𝑉 . Then, the problem of determining whether 𝑈 ∕≺𝑠𝑑 𝑉 is
NP-complete regarding the dimensionality 𝑑.

It is well known [9] that the minimum set cover (decision
version) is NP-complete regarding 𝑑 where 𝑑 is the number
of subsets.

Minimum Set Cover (decision version):
INSTANCE: a collection 𝐶 = {𝑆𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑑} of subsets of
𝑆 where 𝑆 contains (𝑚+1) elements, positive integer 𝐾 < 𝑑.
QUESTION: does 𝐶 contain a cover for 𝑆 of size 𝐾 or less,
i.e., a subset 𝐶 ′ ⊆ 𝐶 with ∣𝐶 ′∣ ≤ 𝐾 such that every element
of 𝑆 belongs to at least one member (a subset of 𝑆) of 𝐶 ′?

Proof of Theorem 3: We convert the above minimum set
cover to a special case of our problem as follows. For each
instance of the minimum set cover problem, we construct an
instance of our problem as follows. Let 𝑚 > 1, 𝑑 > 1, and
𝑆 = {𝑢𝑖 ∣ 0 ≤ 𝑖 ≤ 𝑚}.
𝑈 has (𝑚+1) instances, 𝑢0, 𝑢1, ..., 𝑢𝑚 with the occurrence

probability 𝑝𝑖 (0 ≤ 𝑖 ≤ 𝑚), respectively, where 𝑝0 = 𝑑−𝐾
𝑚𝑑 ,

and for 1 ≤ 𝑖 ≤ 𝑚, 𝑝𝑖 = 1
𝑚 − 𝑑−𝐾

𝑚2𝑑 . The instances of 𝑈 are
placed in 𝑅𝑑

+ as follows. 𝑢0 is placed in the origin; that is,
𝑢0 = (0, 0, ..., 0). For each 𝑢𝑖 (1 ≤ 𝑖 ≤ 𝑚), its coordinate
value on each dimension takes either 1 or 2 such that for
1 ≤ 𝑗 ≤ 𝑑, the 𝑗th coordinate value of 𝑢𝑖 is 2 if 𝑢𝑖 ∈ 𝑆𝑗
(1 ≤ 𝑗 ≤ 𝑑), and 1 otherwise.
𝑉 has (𝑑+2) instances, 𝑣0, 𝑣1, ..., 𝑣𝑑+1, with the occurrence

probabilities 𝑞0, 𝑞1, ... , 𝑞𝑑+1, respectively. Here, 𝑞0 = 1
𝑚3𝑑 ,

𝑞𝑑+1 = 1− 1
𝑚− 1

𝑚3𝑑 , and for 1 ≤ 𝑖 ≤ 𝑑, 𝑞𝑖 = 1
𝑚𝑑 . 𝑣0 is placed

at the origin and 𝑣𝑑+1 is placed at (2, 2, ..., 2). For 1 ≤ 𝑖 ≤ 𝑑,
the 𝑖th coordinate value of 𝑣𝑖 is 2 and the other coordinate
values of 𝑣𝑖 is 1.

Clearly,
∑𝑚

𝑖=0 𝑝𝑖 =
∑𝑑+1

𝑖=0 𝑞𝑖 = 1, 𝑝𝑖 > 0 (for 0 ≤ 𝑖 ≤ 𝑚),
and 𝑞𝑖 > 0 (for 0 ≤ 𝑖 ≤ 𝑑 + 1). Note that for 1 ≤ 𝑖 ≤ 𝑑,
𝒟𝑖(𝑉 ) = {0, 1, 2}. For a (grid) point 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑑) ∈∏𝑑

𝑖=1 𝒟𝑖(𝑉 ), the following can be immediately verified.

1) If ∃𝑖 such that 𝑥𝑖 = 0, then 𝑐𝑑𝑓.𝑈(𝑥) > 𝑐𝑑𝑓.𝑉 (𝑥); thus it
cannot be a violation point regarding 𝑈 ≺𝑠𝑑 𝑉 .

2) If each 𝑥𝑖 = 2 for 1 ≤ 𝑑, then 𝑐𝑑𝑓.𝑈(𝑥) = 𝑐𝑑𝑓.𝑉 (𝑥) = 1;
thus it cannot be a violation point regarding 𝑈 ≺𝑠𝑑 𝑉 .

3) If 𝑥𝑖𝑗 = 1 for 1 ≤ 𝑗 ≤ 𝑙 (𝑙 > 0) and 𝑥𝑗 = 2 otherwise, then
the following two equalities hold where 𝑆′ = ∪𝑙

𝑗=1𝑆𝑖𝑗 .

𝑐𝑑𝑓.𝑉 (𝑥) =
𝑑− 𝑙
𝑚𝑑

+
1

𝑚3𝑑
. (1)

𝑐𝑑𝑓.𝑈(𝑥) =
𝑑−𝐾
𝑚𝑑

+ ∣𝑆 − 𝑆′∣( 1
𝑚

− 𝑑−𝐾
𝑚2𝑑

). (2)

Regarding 3), since 𝑆′ ⊆ 𝑆, if 𝑆′ ∕= 𝑆 (i.e. {𝑆𝑖𝑗 ∣ 1 ≤ 𝑗 ≤
𝑙} is not a cover of 𝑆), then ∣𝑆 − 𝑆′∣ ≥ 1. Consequently, it
can be immediately verified that 𝑐𝑑𝑓.𝑈(𝑥) < 𝑐𝑑𝑓.𝑉 (𝑥) if and
only if 𝑙 ≤ 𝐾 and 𝑆′ = 𝑆; that is, 𝐶 ′ = {𝑆𝑖𝑗 ∣ 1 ≤ 𝑗 ≤ 𝑙}

is a cover of 𝑆 with size 𝐾 or less. Therefore, the minimum
set cover problem has a positive answer if and only if in its
corresponding instance, as constructed above, there is a grid
point that is a violation point regarding 𝑈 ≺𝑠𝑑 𝑉 ; that is, if and
only if 𝑈 does not stochastically dominates 𝑉 (by Theorem
2). □

C. Efficient Testing Algorithm

The NP-completeness implies that the exponential time
complexity regarding 𝑑 cannot be improved. In this section, we
present two techniques that may potentially reduce the number
of grid points to be tested in practice.

Switching Distinct Values Only. For 1 ≤ 𝑖 ≤ 𝑑, let the
set of distinct values of 𝑉 on 𝑖th dimension, 𝒟𝑖(𝑉 ) =
{𝑎1, 𝑎2, ..., 𝑎𝑙}, be sorted increasingly; that is, 𝑎𝑖 < 𝑎𝑖+1 for
1 ≤ 𝑖 ≤ 𝑙 − 1. 𝑎𝑗 (1 ≤ 𝑗 ≤ 𝑙) is a switching distinct value
regarding 𝑈 if there is at least one value in 𝒟𝑖(𝑈) that is in
[𝑎𝑗 , 𝑎𝑗+1] when 𝑗 < 𝑙 or in [𝑎𝑙,∞] when 𝑗 = 𝑙. Let 𝐷𝑠

𝑖 (𝑉 )
denote the set of switching distinct values of 𝒟𝑖(𝑉 ) regarding
𝑈 . The following theorem implies that only the (grid) points
in

∏𝑑
𝑖=1𝐷

𝑠
𝑖 (𝑉 ), instead of

∏𝑑
𝑖=1 𝒟𝑖(𝑉 ), need to be checked.

For example, the grid framed by the solid lines in Figure 3(b)
depicts

∏𝑑
𝑖=1𝐷

𝑠
𝑖 (𝑉 ). Clearly, 𝐷𝑠

𝑖 (𝑉 ) ⊆ 𝒟𝑖(𝑉 ); consequently,
we may reduce significantly the number of grid points for
testing.

Theorem 4: Assume that 𝑈 ∕= 𝑉 . Then, 𝑉 is not stochas-
tically dominated by 𝑈 if and only if there is a (grid) point
𝑥 ∈ ∏𝑑

𝑖=1𝐷
𝑠
𝑖 (𝑉 ) such that 𝑐𝑑𝑓.𝑉 (𝑥)− 𝑐𝑑𝑓.𝑈(𝑥) > 0.

Proof: Note that
∏𝑑

𝑖=1𝐷
𝑠
𝑖 (𝑉 ) ⊆ ∏𝑑

𝑖=1 𝒟𝑖(𝑉 ). It
can be immediately verified that for each grid point 𝑥 ∈∏𝑑

𝑖=1 𝒟𝑖(𝑉 ) but not in
∏𝑑

𝑖=1𝐷
𝑠
𝑖 (𝑉 ), there is a grid point

𝑥′ in
∏𝑑

𝑖=1𝐷
𝑠
𝑖 (𝑉 ) such that 𝑥 ≺ 𝑥′ and the instances of 𝑈

falling in 𝑅((0, ..., 0), 𝑥) are the same as those of 𝑈 falling
in 𝑅((0, ..., 0), 𝑥′); see such two pairs in Figure 3(b) for an
example. Therefore, 𝑈.𝑐𝑑𝑓(𝑥′) = 𝑈.𝑐𝑑𝑓(𝑥) and 𝑉.𝑐𝑑𝑓(𝑥′) ≥
𝑉.𝑐𝑑𝑓(𝑥). Thus, this theorem immediately follows from The-
orem 2.

Discarding a Rectangular Region. Let 𝑅(𝑥, 𝑦) denote a
rectangular region in 𝑅𝑑

+ where the lower and upper corners
are 𝑥 and 𝑦, respectively. Theorem 5 provides a sufficient
condition to exclude any point in 𝑅(𝑥, 𝑦) to be a violation
point regarding 𝑈 ≺𝑠𝑑 𝑉 . Consequently, 𝑅(𝑥, 𝑦) can be
discarded from the procedure of finding a violation point.

Theorem 5: Given an 𝑅(𝑥, 𝑦) ∈ 𝑅𝑑
+, suppose that

𝑈.𝑐𝑑𝑓(𝑥) ≥ 𝑉.𝑐𝑑𝑓(𝑦). Then, for every point 𝑧 in 𝑅(𝑥, 𝑦) (i.e.,
𝑥 ⪯ 𝑧 ⪯ 𝑦), 𝑈.𝑐𝑑𝑓(𝑧) ≥ 𝑉.𝑐𝑑𝑓(𝑧).

Proof: Since 𝑥 ⪯ 𝑧 ⪯ 𝑦, 𝑈.𝑐𝑑𝑓(𝑧) ≥ 𝑈.𝑐𝑑𝑓(𝑥) and
𝑉.𝑐𝑑𝑓(𝑦) ≥ 𝑉.𝑐𝑑𝑓(𝑧). Thus, the theorem holds.

Such an 𝑅(𝑥, 𝑦) in Theorem 5 is called valid regarding
𝑈 ≺𝑠𝑑 𝑉 . To facilitate the observation in Theorem 5, our
algorithm is partitioning-based, which iteratively divides rect-
angular regions into disjoint sub-rectangular regions. A job
𝑄 maintains a set of disjoint rectangular regions that cannot
be discarded by Theorem 5 (i.e., not yet valid regarding



𝑈 ≺𝑠𝑑 𝑉 ). Then, for each rectangular region 𝑅(𝑥, 𝑦) ∈ 𝑄 the
algorithm checks if one of the latest generated corner points
of 𝑅(𝑥, 𝑦) is a violation point regarding 𝑈 ≺𝑠𝑑 𝑉 . If none of
them is a violation point, then the algorithm checks if 𝑅(𝑥, 𝑦)
should be discarded or should be split into two disjoint sub-
rectangular regions to be put into 𝑄. Note that the corner
points of a 𝑅(𝑥, 𝑦) are the points (𝑧1, 𝑧2, ..., 𝑧𝑑) such that
for 1 ≤ 𝑖 ≤ 𝑑, 𝑧𝑖 is 𝑥𝑖 or 𝑦𝑖 where 𝑥 = (𝑥1, ..., 𝑥𝑑) and
𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑑). The algorithm terminates if a violation
point is found or 𝑄 is ∅. Algorithm 1 below presents our
partitioning based testing techniques. The algorithm outputs
“true” if 𝑈 ≺𝑠𝑑 𝑉 and “false” otherwise.

Algorithm 1: Verification( 𝑈 ≺𝑠𝑑 𝑉 )
Input : objects 𝑈 and 𝑉
Output: if 𝑈 ≺𝑠𝑑 𝑉 (i.e. 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒)
for 𝑖 = 1 to 𝑑 do1

𝐷𝑠
𝑖 (𝑉 ) := getSwitchingDistinct(𝑉 , 𝑈 );2

if Initial Check (𝑈 ≺𝑠𝑑 𝑉 ) returns false then3

return false4

mark each corner point of 𝑉𝑚𝑏𝑏 as new; 𝑄 := {𝑉𝑚𝑏𝑏};5

while 𝑄 ∕= ∅ do6

𝑟 := 𝑄.𝑑𝑒𝑞𝑢𝑒();7

calculate 𝑉.𝑐𝑑𝑓(𝑥) and 𝑈.𝑐𝑑𝑓(𝑥) for each new corner8

point 𝑥 of 𝑟;
if a new corner of 𝑟 is a violation point then9

return false;10

if 𝑟 cannot be discarded and 𝑟 is not an atom then11

𝑄 := 𝑄 ∪ Split(𝑟);12

return true13

In Algorithm 1, Line 2 is to get the set 𝐷𝑠
𝑖 (𝑉 ) of switching

distinct values of 𝑉 regarding 𝑈 on each dimension 𝑖. Line 3
conducts a quick check on each dimension 𝑖 as follows. Let
𝑈 = (𝑈1, ..., 𝑈𝑑) and 𝑉 = (𝑉1, ..., 𝑉𝑑) where 𝑈𝑖 and 𝑉𝑖 (1 ≤
𝑖 ≤ 𝑑) are 𝑖th sub-variables of 𝑈 and 𝑉 , respectively. For each
distinct value 𝑎𝑗 in 𝐷𝑠

𝑖 (𝑉 ) (1 ≤ 𝑖 ≤ 𝑑), Initial Check (𝑈 ≺𝑠𝑑

𝑉 ) calculates the total probability, denoted by 𝑉.𝑐𝑑𝑓(𝑉𝑖 ≤ 𝑎𝑗),
of the instances of 𝑉 with its 𝑖th-coordinate value not greater
than 𝑎𝑗 ; similarly, 𝑈.𝑐𝑑𝑓(𝑈𝑖 ≤ 𝑎𝑗) is also calculated for 𝑈 .
If 𝑉.𝑐𝑑𝑓(𝑉𝑖 ≤ 𝑎𝑗) > 𝑈.𝑐𝑑𝑓(𝑈𝑖 ≤ 𝑎𝑗) regarding the currently
encountered 𝑎𝑗 , then 𝑈 ∕≺𝑠𝑑 𝑉 and Initial Check (𝑈 ≺𝑠𝑑 𝑉 )
returns false. The correctness of Initial Check (𝑈 ≺𝑠𝑑 𝑉 )
immediately follows from Definition 1.

Line 8 calculates 𝑉.𝑐𝑑𝑓(𝑥) and 𝑈.𝑐𝑑𝑓(𝑥) for a new corner
𝑥 of 𝑟. Line 9 checks whether one of the new corners (grid
points) is a violation point and then removes their “new” marks
afterwards. In Line 11, the algorithm checks whether 𝑟 is valid
regarding 𝑈 ≺𝑠𝑑 𝑉 (i.e. the condition in Theorem 5) and thus
can be discarded. 𝑟 is an atom if it cannot be further split
to generate new grid points; that is, on each dimension 𝑖, 𝑟
contains at most 2 values from 𝐷𝑠

𝑖 (𝑉 ).
Split(𝑟) in Line 12 splits 𝑟 into two subregions as follows.

Note that for each dimension 𝑖 (1 ≤ 𝑖 ≤ 𝑑), the values in
𝐷𝑠

𝑖 (𝑉 ) contained by 𝑟 must be consecutive and are denoted

by 𝑟 ∩𝐷𝑠
𝑖 (𝑉 ). Firstly, a dimension 𝑖 is chosen such that ∣𝑟 ∩

𝐷𝑠
𝑖 (𝑉 )∣ is maximized. Then, the two median values 𝑙1 < 𝑙2

in 𝑟 ∩𝐷𝑠
𝑖 (𝑉 ) are chosen to split 𝑟 into 𝑟1 and 𝑟2; that is, the

points in 𝑟 with the 𝑖th coordinate value not greater than 𝑙1
belong to 𝑟1, and the others in 𝑟 belong to 𝑟2. The two median
values are used for splitting since we want to “maximize” the
number of grid points to be discarded in case if one of 𝑟1
and 𝑟2 is valid regarding 𝑈 ≺𝑠𝑑 𝑉 . Moreover, Split(𝑟) also
marks the newly generated corners of 𝑟1 and 𝑟2; that is, the
corners of 𝑟1 and 𝑟2 are not the corners of 𝑟. Note that there
is an extreme case; while splitting on the 𝑖th dimension, if
𝑟 contains only 3 values in 𝐷𝑠

𝑖 (𝑉 ), then splitting 𝑟 into 𝑟1
and 𝑟2 on the 𝑖th dimension leads to that one of 𝑟1 and 𝑟2
degenerates into a rectangular region in a (𝑑− 1) space.

(a) (b) (c) (d)

r1
r2

r3

r4 r5

r6

Fig. 4. an example for splitting

Example 2: As depicted in Figure 4(a), assume that 𝑉 has
5 switching distinct values in each dimension. Algorithm 1
splits 𝑉𝑚𝑏𝑏 into 𝑟1 and 𝑟2 in Figure 4(b). Suppose that 𝑟1 is
discarded by Line 11. Algorithm 1 further splits 𝑟2 into 𝑟3
and 𝑟4 in Figure 4(c). Again, assume that 𝑟3 is discarded. 𝑟4
is split into 𝑟5 and 𝑟6 by the algorithm where 𝑟6 is a line
segment containing 3 grid points. Any further splitting on 𝑟6
will be conducted on the line segment. In this example, at each
iteration, solid points in Figure 4 indicate the new generated
grid points.

Based on the correctness of Initial Check (𝑈 ≺𝑠𝑑 𝑉 ),
Theorems 2, 4, and 5, Algorithm 1 is correct when 𝑈 ∕= 𝑉 .

Time Complexity. Algorithm 1 intensively involves the com-
putation of cumulative probabilities of 𝑈 and 𝑉 over a rect-
angular region. To speed up such computation, the instances
of each object 𝑈 are organized by an in-memory aggregate
𝑅-tree, called local aggregate 𝑅-tree of 𝑈 , where each entry
records the sum of the probabilities of instances contained.
Then, the window aggregate techniques in [24] are employed
in our algorithm to calculate various 𝑈.𝑐𝑑𝑓 and 𝑉.𝑐𝑑𝑓 .

getSwitchingDistinct(𝑉 , 𝑈 ) is conducted as follows. Note
that 𝒟𝑖(𝑉 ) is sorted increasingly (1 ≤ 𝑖 ≤ 𝑑). Let 𝒟𝑖(𝑉 ) =
{𝑎1, ..., 𝑎𝑙}. Since the occurrence probability of each instance
is positive, based on the definition of switching distinct values
it is immediate that 𝑎𝑗 (𝑗 < 𝑙) is a switching distinct value
if and only if 𝑈.𝑐𝑑𝑓(𝑈𝑖 < 𝑎𝑗) < 𝑈.𝑐𝑑𝑓(𝑈𝑖 ≤ 𝑎𝑗+1);
here, we calculate 𝑈.𝑐𝑑𝑓(𝑈𝑖 ≤ 𝑎𝑗) and 𝑈.𝑐𝑑𝑓(𝑈𝑖 < 𝑎𝑗)
by the window aggregate techniques in [24]. We also cal-
culate 𝑉.𝑐𝑑𝑓(𝑉𝑖 ≤ 𝑎𝑗) for each 𝑎𝑗 ∈ 𝐷𝑠

𝑖 (𝑉 ) to conduct
Initial Check (𝑈 ≺𝑠𝑑 𝑉 ). Clearly, Lines 1-4 totally run in time
𝑂(𝑑𝑚 log𝑚+𝑑𝑚(𝑇 (𝑈𝑎𝑟𝑡𝑟𝑒𝑒)+𝑇 (𝑉𝑎𝑟𝑡𝑟𝑒𝑒)) where 𝑇 (𝑈𝑎𝑟𝑡𝑟𝑒𝑒)
and 𝑇 (𝑉𝑎𝑟𝑡𝑟𝑒𝑒) are the costs to conduct window aggregates
over the local aggregate 𝑅-trees of 𝑈 and 𝑉 , respectively, 𝑚
is the number of instances in 𝑉 , and 𝑂(𝑚 log𝑚) is the time



complexity to get each 𝒟𝑖(𝑉 ).
Assuming that𝐷𝑠

𝑖 (𝑉 ) is stored in an array. Since it is sorted,
it takes constant to find the two splitting values in Split(𝑟)
along a dimension. Since Algorithm 1 calculates 𝑈.𝑐𝑑𝑓(𝑥)
and 𝑉.𝑐𝑑𝑓(𝑥) only once at each grid point 𝑥 in

∏𝑑
𝑖=1𝐷

𝑠
𝑖 (𝑉 ),

the total time spent in calculating 𝑈.𝑐𝑑𝑓 and 𝑉.𝑐𝑑𝑓 at all
grid points is 𝑂((𝑇 (𝑈𝑎𝑟𝑡𝑟𝑒𝑒) + 𝑇 (𝑈𝑎𝑟𝑡𝑟𝑒𝑒))

∏𝑑
𝑖=1 𝑘𝑖) where

𝑘𝑖 = ∣𝐷𝑠
𝑖 (𝑉 )∣. Clearly, checking if 𝑟 is valid regarding

𝑈 ≺𝑠𝑑 𝑉 is only invoked when one new grid point (corner)
is generated; consequently, the total time for such a check is
𝑂(

∏𝑑
𝑖=1 𝑘𝑖). Thus, the time complexity from Line 5 to the

end is 𝑂((𝑇 (𝑈𝑎𝑟𝑡𝑟𝑒𝑒) + 𝑇 (𝑈𝑎𝑟𝑡𝑟𝑒𝑒))
∏𝑑

𝑖=1 𝑘𝑖). The following
theorem is immediate based on the discussions above.

Theorem 6: Algorithm 1 runs in time 𝑂(𝑑𝑚 log𝑚 +
𝑚𝑑(𝑇 (𝑈𝑎𝑟𝑡𝑟𝑒𝑒) + 𝑇 (𝑈𝑎𝑟𝑡𝑟𝑒𝑒))) where 𝑚 is the number of
instances in 𝑉 .

The naive algorithm in Section III-A can also employ
the window aggregate techniques in [24] to calculate 𝑈.𝑐𝑑𝑓
and 𝑉.𝑐𝑑𝑓 . Although the time complexity of Algorithm 1 is
similar to that of the naive algorithm in the worst case, our
experiment in Section V demonstrates that the naive algorithm
is unpractical, while Algorithm 1 is very efficient in practice.

IV. STOCHASTIC SKYLINE COMPUTATION

We first present the index to be used, followed by our index-
based framework, filtering techniques, a size estimation of
stochastic skyline, and discussions.

A. Statistic 𝑅-Tree

As discussed in Section III-C, the instances of an object
are organized into a local aggregate 𝑅-tree. In our algorithm,
we assume that a global 𝑅-tree is built on the MBBs of each
object; that is, the data entries (unit data) in the global 𝑅-
tree are MBBs. To facilitate our filtering techniques, we store
the following statistic information at each entry of the global
𝑅-tree.

Suppose that 𝑈 has 𝑚 instances in 𝑅𝑑
+, 𝑢1, 𝑢2, ... , 𝑢𝑚

with the occurrence probabilities 𝑝1, 𝑝2, ... , 𝑝𝑚, respectively.

Definition 3 (mean 𝜇): The mean of 𝑈 , denoted by 𝜇(𝑈),
is

∑𝑚
𝑖=1 𝑝𝑖 × 𝑢𝑖.

Note that 𝜇(𝑈) is in 𝑅𝑑
+. For 1 ≤ 𝑖 ≤ 𝑑, 𝜇𝑖(𝑈) denotes the

𝑖th coordinate value of 𝜇(𝑈).

Definition 4 (variance 𝜎2): For 1 ≤ 𝑖 ≤ 𝑑, 𝜎2𝑖 (𝑈) =∑𝑚
𝑗=1 𝑝𝑗(𝑢𝑗,𝑖 − 𝜇𝑖(𝑈))

2 where each 𝑢𝑗,𝑖 denotes the 𝑖th
coordinate value of 𝑢𝑗 .

Suppose that an entry 𝐸 of the global 𝑅-tree has 𝑙 child
entries {𝐸1, 𝐸2, ..., 𝐸𝑙}. 𝐸 stores the MBB of each child entry
𝐸𝑗 (1 ≤ 𝑗 ≤ 𝑙), as well as 𝜇𝑖(𝐸𝑗) and 𝜎2𝑖 (𝐸𝑗) for 1 ≤ 𝑖 ≤ 𝑑.
Here, for 1 ≤ 𝑖 ≤ 𝑑, 𝜇𝑖(𝐸𝑗) = min{𝜇𝑖(𝑉 ) ∣ 𝑉 ∈ 𝐸𝑗} and
𝜎2𝑖 (𝐸𝑗) = max{𝜎2𝑖 (𝑉 ) ∣ 𝑉 ∈ 𝐸𝑗} are called the mean and
the variance of 𝐸𝑗 on 𝑖th dimension, respectively.

The global 𝑅-tree, together with the above statistic in-
formation, is called a statistic 𝑅-tree, denoted by 𝑠𝑅-tree.
Our algorithm for computing stochastic skyline is conducted

against 𝑠𝑅-tree of 𝒰 . To correctly use the verification algo-
rithm (Algorithm 1), in this paper we assume that no two
objects 𝑈 and 𝑉 in an 𝑠𝑅 tree of 𝒰 are equal. In case that 𝒰
contains equal objects, we only index one of the equal objects
and record the object Ids for others while building an 𝑠𝑅-tree
of 𝒰 .

B. Framework for stochastic skyline computation

It is immediate that for each point 𝑥 ∈ 𝑅𝑑
+, if 𝑈.𝑐𝑑𝑓(𝑥) ≤

𝑉.𝑐𝑑𝑓(𝑥) and 𝑉.𝑐𝑑𝑓(𝑥) ≤ 𝑊.𝑐𝑑𝑓(𝑥) then 𝑈.𝑐𝑑𝑓(𝑥) ≤
𝑊.𝑐𝑑𝑓(𝑥). Therefore, ≺𝑠𝑑 has the transitivity. Consequently,
the standard filtering paradigm is applicable; that is, if 𝑈 ≺𝑠𝑑

𝑉 then 𝑉 can be immediately removed since for any 𝑊 , if
𝑉 ≺𝑠𝑑 𝑊 then 𝑈 ≺𝑠𝑑 𝑊 and 𝑊 can be pruned by 𝑈 .

Theorem 7: For two 𝑈 and 𝑉 , if 𝑑𝑖𝑠𝑡(𝑈𝑚𝑖𝑛) < 𝑑𝑖𝑠𝑡(𝑉𝑚𝑖𝑛)
then 𝑉 ∕≺𝑠𝑑 𝑈 where 𝑑𝑖𝑠𝑡(𝑈𝑚𝑖𝑛) and 𝑑𝑖𝑠𝑡(𝑉𝑚𝑖𝑛) denote the
distances of 𝑈𝑚𝑖𝑛 and 𝑉𝑚𝑖𝑛 to the origin, respectively.

Proof: Immediately, 𝑉𝑚𝑖𝑛 ∕≺ 𝑈𝑚𝑖𝑛 and 𝑉𝑚𝑖𝑛 ∕= 𝑈𝑚𝑖𝑛.
Thus, there must be an instance 𝑢 in 𝑈 such that 𝑉𝑚𝑖𝑛 ∕≺ 𝑢
and 𝑉𝑚𝑖𝑛 ∕= 𝑢. Therefore, 𝑈.𝑐𝑑𝑓(𝑢) > 0 and 𝑉.𝑐𝑑𝑓(𝑢) = 0. 𝑢
is a violation point regarding 𝑉 ≺𝑠𝑑 𝑈 .

Algorithm 2: stochastic skyline Computation(𝑠𝑅)
Input : 𝑠𝑅 (𝑠𝑅-Tree for 𝒰 )
Output: 𝑅𝑠𝑠𝑘𝑦 (stochastic skyline of 𝒰 )
𝑅𝑠𝑠𝑘𝑦 := ∅;1

QUEUE(the root entry of 𝑠𝑅) into a heap 𝐻;2

while 𝐻 ∕= ∅ do3

𝐸 := 𝐻.𝑑𝑒ℎ𝑒𝑎𝑝();4

if NOT PRUNE (𝑅𝑠𝑠𝑘𝑦, 𝐸) then5

if 𝐸 is an MBB of a 𝑉 (i.e a data entry) then6

for each 𝑈 ∈ 𝑅𝑠𝑠𝑘𝑦 do7

if Verification(𝑈 ≺𝑠𝑑 𝑉 ) then8

Goto Line 3;9

else10

if 𝑑𝑖𝑠𝑡(𝑈𝑚𝑖𝑛) = 𝑑𝑖𝑠𝑡(𝑉𝑚𝑖𝑛) then11

if Verification(𝑉 ≺𝑠𝑑 𝑈 ) then12

𝑅𝑠𝑠𝑘𝑦 := 𝑅𝑠𝑠𝑘𝑦 − {𝑈} ;13

𝑅𝑠𝑠𝑘𝑦 := 𝑅𝑠𝑠𝑘𝑦 + {𝑉 };14

else15

QUEQUE(𝐸) into 𝐻;16

return 𝑅𝑠𝑠𝑘𝑦17

Our index-based algorithm, Algorithm 2 above, adopts the
branch and bound search paradigm [17]. It iteratively traverses
on the global 𝑠𝑅-tree to find the data entry (MBB) such that
its lower corner has the minimum distance to the origin. An
advantage by doing this is that we can guarantee that later
accessed objects with distances to the origin is not smaller
than those of the early accessed objects. Consequently, based
on Theorem 7 below a later accessed object is only possible to
stochastically dominate an earlier accessed object when such
distances from two objects are the same. Thus, our algorithm
has a progressive nature if all such distances are different.



Lines 2 and 16 push each child entry descriptions of the root
or 𝐸, including its MBBs and the above statistic information,
into the heap 𝐻 . Here, 𝐻 is a min-heap built against the
distances of the lower corners of the MBBs of entries to the
origin. PRUNE(𝑅𝑠𝑠𝑘𝑦 , 𝐸) returns true if 𝐸 is pruned by the
current 𝑅𝑠𝑠𝑘𝑦 using our filtering techniques in Section IV-C.

Line 8 performs the verification algorithm, Algorithm 1.
Since 𝑈 is accessed earlier than 𝑉 , 𝑈 is impossible to
be stochastically dominated by 𝑉 unless 𝑑𝑖𝑠𝑡(𝑈𝑚𝑖𝑛) =
𝑑𝑖𝑠𝑡(𝑉𝑚𝑖𝑛) according to Theorem 7. When 𝑑𝑖𝑠𝑡(𝑈𝑚𝑖𝑛) =
𝑑𝑖𝑠𝑡(𝑉𝑚𝑖𝑛), according to our algorithm 𝑈 is not stochastically
dominated by any objects accessed earlier, including those in
the current 𝑅𝑠𝑠𝑘𝑦; nevertheless it is possible that 𝑉 stochas-
tically dominates 𝑈 if 𝑉 is not stochastically dominated by
any object in the current 𝑅𝑠𝑠𝑘𝑦.

C. Filtering

A key in Algorithm 2 is to efficiently and effectively conduct
PRUNE(𝑅𝑠𝑠𝑘𝑦, 𝐸). The following two filtering techniques are
developed to check if 𝐸 can be pruned by 𝑈 for each object
𝑈 in 𝑅𝑠𝑠𝑘𝑦 till 𝑅𝑠𝑠𝑘𝑦 is exhausted or 𝐸 is pruned.

1. MBB-based Pruning. The following pruning rule is im-
mediate according to the definition of stochastic dominance
since each object contains at least 2 instances. Note that 𝐸𝑚𝑖𝑛

denotes the lower corner of the MBB of an entry 𝐸.

Pruning Rule 1: If 𝑈𝑚𝑎𝑥 ≺ 𝐸𝑚𝑖𝑛 or 𝑈𝑚𝑎𝑥 = 𝐸𝑚𝑖𝑛 (i.e.
𝑈𝑚𝑎𝑥 ⪯ 𝐸𝑚𝑖𝑛), then 𝑈 stochastically dominates every object
in 𝐸; that is, 𝐸 can be pruned.

2. Statistic based Pruning. Our statistic based pruning tech-
nique uses the observation in Theorem 5 in combining with
the Cantelli’s Inequality [16].

Suppose that 𝐸 cannot be pruned by 𝑈 by Pruning Rule
1; that is, 𝑈𝑚𝑎𝑥 ∕≺ 𝐸𝑚𝑖𝑛 and 𝑈𝑚𝑎𝑥 ∕= 𝐸𝑚𝑖𝑛. Intuitively, 𝐸
could still be pruned if 𝑈 and 𝐸 are “significantly” separated
from the statistic point of view; that is, 𝑈𝑚𝑎𝑥 is significantly
closer to 𝐸𝑚𝑖𝑛 than the mean of 𝐸. We show our basic ideas
by the case when 𝐸 is a data entry; that is, 𝐸 is 𝑉𝑚𝑏𝑏 - the
MBB of an object 𝑉 .

Suppose that 𝑈𝑚𝑖𝑛 ⪯ 𝑉𝑚𝑖𝑛, 𝑈𝑚𝑎𝑥 ≺ 𝑉𝑚𝑎𝑥, and 𝑈𝑚𝑎𝑥 ∕⪯
𝑉𝑚𝑖𝑛. Let 𝑈𝑚𝑎𝑥 = (𝑎1, 𝑎2, ..., 𝑎𝑑), 𝑉𝑚𝑖𝑛 = (𝑏1, 𝑏2, ..., 𝑏𝑑), and
𝐷 is the subset of {1, ..., 𝑑} such that 𝑎𝑖 > 𝑏𝑖 if 𝑖 ∈ 𝐷 and
𝑎𝑖 ≤ 𝑏𝑖 otherwise. Note that if 𝐷 = ∅, then 𝑉 is pruned by
Pruning Rule 1. Figure 5 shows two cases in a 2-dimensional
space where ∣𝐷∣ = 2 in Figure 5(a) and ∣𝐷∣ = 1 in Figure
5(b).
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Fig. 5. Statistic Pruning

Let 𝑘 = ∣𝐷∣. We use the following 𝑘 + 1 rectangular
regions to cover 𝑉𝑚𝑏𝑏: ∀𝑖 ∈ 𝐷, 𝑟𝑖 = {(𝑥1, ..., 𝑥𝑑) ∣ 𝑥𝑖 ≤
𝑎𝑖, (𝑥1, ..., 𝑥𝑑) ∈ 𝑉𝑚𝑏𝑏}, and the (𝑘 + 1)th rectangular region
is 𝑅(𝑈𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥). Note that for the ease of statistic estimation
below, 𝑟𝑖 and 𝑟𝑗 (𝑖, 𝑗 ∈ 𝐷) share a common area. It can be
immediately verified that 𝑅(𝑈𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥) is always a valid
region regarding 𝑈 ≺𝑠𝑑 𝑉 . For each 𝑟𝑖 (𝑖 ∈ 𝐷), let the
lower-corner and upper-corner of 𝑟𝑖 be denoted by 𝑟𝑖,𝑚𝑖𝑛

and 𝑟𝑖,𝑚𝑎𝑥, respectively. Clearly, ∀𝑖 ∈ 𝐷, 𝑉.𝑐𝑑𝑓(𝑟𝑖,𝑚𝑎𝑥) =
𝑉.𝑐𝑑𝑓(𝑉𝑖 ≤ 𝑎𝑖) where 𝑉𝑖 is the 𝑖th sub-variable of 𝑉 (i.e.
𝑉 = (𝑉1, ..., 𝑉𝑑)), respectively. Therefore, based on Theorems
5 and 2, if ∀𝑖 ∈ 𝐷, 𝑟𝑖 is valid regarding 𝑈 ≺𝑠𝑑 𝑉 then
𝑈 ≺𝑠𝑑 𝑉 since ∪𝑖∈𝐷𝑟𝑖 ∪ 𝑅(𝑈𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥) covers 𝑉𝑚𝑏𝑏.
Consider that 𝑉𝑚𝑖𝑛 = 𝑟𝑖,𝑚𝑖𝑛 (∀𝑖 ∈ 𝐷). Immediately, each
𝑟𝑖 is valid regarding 𝑈 ≺𝑠𝑑 𝑉 if and only if

𝑈.𝑐𝑑𝑓(𝑉𝑚𝑖𝑛) ≥ max
𝑖∈𝐷

{𝑉.𝑐𝑑𝑓(𝑉𝑖 ≤ 𝑎𝑖)} (3)

In our pruning technique, we can precisely calculate
𝑈.𝑐𝑑𝑓(𝑉𝑚𝑖𝑛) for both cases since 𝑈 ∈ 𝑅𝑠𝑠𝑘𝑦 is already read
in memory; and the Cantelli’s inequality [16] is employed to
provide an upper-bound for 𝑉.𝑐𝑑𝑓(𝑉𝑖 ≤ 𝑎𝑖). Let 𝛿(𝑥, 𝑦) be

1

1+ 𝑥2

𝑦2

if 𝑦 ∕= 0, 1 if 𝑥 = 0 and 𝑦 = 0, and 0 if 𝑥 ∕= 0 and

𝑦 = 0.

Theorem 8 (Cantelli’s Inequality [16]): Suppose that 𝑡 is a
random variable in 𝑅1 with mean 𝜇(𝑡) and variance 𝜎2(𝑡),
𝑃𝑟𝑜𝑏(𝑡 − 𝜇(𝑡) ≥ 𝑎) ≤ 𝛿(𝑎, 𝜎(𝑡)) for any 𝑎 ≥ 0, where
𝑃𝑟𝑜𝑏(𝑡− 𝜇(𝑡) ≥ 𝑎) denotes the probability of 𝑡− 𝜇(𝑡) ≥ 𝑎.

Note that Theorem 8 extends the original Cantelli’s Inequal-
ity [16] to cover the case when 𝜎 = 0 and/or 𝑎 = 0. The
following theorem provides an upper-bound for 𝑃𝑟𝑜𝑏(𝑡 ≤ 𝑏)
when 𝑏 ≤ 𝜇.

Theorem 9: Assume that 0 ≤ 𝑏 ≤ 𝜇(𝑡). Then, 𝑃𝑟𝑜𝑏(𝑡 ≤
𝑏) ≤ 𝛿(𝜇(𝑡)− 𝑏, 𝜎(𝑡)).

Proof: Let 𝑡′ = 2𝜇(𝑡)− 𝑡. It can be immediately verified
that 𝜎2(𝑡′) = 𝜎2(𝑡) and 𝜇(𝑡) = 𝜇(𝑡′). Applying Cantelli’s
Inequality on 𝑡′, the theorem holds.

Now we generalize the above observations formally into our
second punning rule. Let 𝑈𝑚𝑎𝑥 = (𝑎1, 𝑎2, ..., 𝑎𝑑), 𝐸𝑚𝑖𝑛 =
(𝑏1, 𝑏2, ..., 𝑏𝑑), and 𝐷 is the subset of {1, ..., 𝑑} such that
𝑎𝑖 > 𝑏𝑖 if 𝑖 ∈ 𝐷 and 𝑎𝑖 ≤ 𝑏𝑖 otherwise. Let Δ(𝐸,𝑈) =
max𝑖∈𝐷{𝛿(𝜇𝑖(𝐸)−𝑎𝑖, 𝜎𝑖(𝐸))} if 𝑎𝑖 ≤ 𝜇𝑖(𝐸) for each 𝑖 ∈ 𝐷;
and Δ(𝐸,𝑈) = ∞ otherwise.

Pruning Rule 2: Suppose that 𝑈𝑚𝑖𝑛 ⪯ 𝐸𝑚𝑖𝑛 and 𝑈𝑚𝑎𝑥 ≺
𝐸𝑚𝑎𝑥. If 𝑈.𝑐𝑑𝑓(𝐸𝑚𝑖𝑛) ≥ Δ(𝐸,𝑈), then every object in the
entry 𝐸 of the global 𝑅-tree is stochastically dominated by
𝑈 ; that is 𝐸 can be pruned by 𝑈 .

Proof: Note that each uncertain object 𝑉 can also be
regarded as a random variable (𝑉1, 𝑉2, ..., 𝑉𝑑). Immediately,
each sub-variable 𝑉𝑖 of 𝑉 can be regarded as a random
variable in 𝑅1 with the mean 𝜇𝑖(𝑉 ) and the variance 𝜎2𝑖 (𝑉 ).
From Theorem 5, the inequalities in (3), the assumptions in
Section IV-A that no objects indexed by 𝑠𝑅-tree are equal,
and Theorem 9, this Pruning Rule immediately holds if 𝐸 is



a data entry 𝑉𝑚𝑏𝑏; that is, 𝑈 ≺𝑠𝑑 𝑉 .
Secondly, suppose that 𝐸 is an intermediate entry of the

global 𝑠𝑅-tree. Since Δ(𝐸,𝑈) ∕= ∞, 𝑎𝑖 ≤ 𝜇𝑖(𝐸) for 𝑖 ∈
𝐷. Consider that 𝛿(𝜇 − 𝑎, 𝜎) is increasing and decreasing
regarding 𝜎 and 𝜇, respectively, when 𝜇 − 𝑎 ≥ 0 and 𝜎 ≥
0, and 𝜎2𝑖 (𝐸) and 𝜇𝑖(𝐸) are chosen as the maximum and
minimum values among the objects contained. Immediately,
𝑈 ≺𝑠𝑑 𝑉 for each 𝑉 ∈ 𝐸 because if 𝑉 does not satisfy the
conditions in Pruning Rule 1 then 𝑈.𝑐𝑑𝑓(𝐸𝑚𝑖𝑛) ≥ Δ(𝐸,𝑈)
ensures that the inequality (3) holds between 𝑈 and 𝑉 .

D. Analysis of Algorithm 2

Prune(𝑅𝑠𝑠𝑘𝑦 , 𝐸) in Algorithm 2 is conducted as follows that
for each object 𝑈 in 𝑅𝑠𝑠𝑘𝑦, we first check Pruning Rule 1 and
then Pruning Rule 2. It immediately terminates and returns
true if 𝐸 is pruned. Clearly, Pruning Rule 1 runs in time 𝑂(𝑑)
and Pruning Rule 2 runs in time 𝑂(𝑑+ 𝑇 (𝑈𝑎𝑟𝑡𝑟𝑒𝑒)) for each
𝑈 ∈ 𝑅𝑠𝑠𝑘𝑦.

Correctness. Based on the correctness of our verification
algorithm in Section III-C, and proofs of Pruning Rules 1 and
2, it can be immediately shown that Algorithm 2 is correct.

Access Order of 𝑅𝑠𝑠𝑘𝑦. In Algorithm 2, the objects in
𝑅𝑠𝑠𝑘𝑦 can be accessed in any order. Nevertheless, in our
implementation, we access objects 𝑈 in 𝑅𝑠𝑠𝑘𝑦 according to
the increasing order of 𝑑𝑖𝑠𝑡(𝑈𝑚𝑖𝑛) with the aim to maximize
the chance that Verification(𝑈 , 𝑉 ) may terminate earlier and
an entry may be pruned earlier.

E. Discussions

Size Estimation. It tends to be quite complicated to estimate
the size of stochastic skyline of 𝒰 when each object is
described by discrete cases. Below, we show that if each
object 𝑈 ∈ 𝒰 follows a continuous distribution with the
uniform assumption, the expected number of stochastic skyline
objects is bounded by ln𝑑(𝑛)/(𝑑 + 1)! - the expected size of
conventional skyline in (𝑑 + 1) dimension space [7], where
𝑛 is the number of objects in 𝒰 . The empirical study in
Section V also shows that the size of stochastic skyline objects
in 𝑑-dimension space is almost between those of conventional
skyline in 𝑑-dimensional space and (𝑑+1)-dimensional spaces.

Theorem 10: Given a set of objects 𝒰 , assume that MBBs
of all objects are hyper-cubes. We assume the pdfs of an object
is continuous with the uniform distribution (i.e., a constant in
its MBB), and the lengths of the MBBs and lower-corners
of the MBBs on each dimension are independent and follow
the same distribution. Then the expected size of 𝑠𝑠𝑘𝑦(𝒰) is
bounded by ln𝑑(𝑛)/(𝑑+ 1)!.

Proof: ∀𝑈 ∈ 𝒰 , let 𝑙(𝑈) denote the length of the
hyper-cubes respectively. Clearly, (𝑈𝑚𝑖𝑛, 𝑙(𝑈)) is a point in
(𝑑 + 1)-dimensional space. Since the pdf of each object
follows the uniform distribution, it can be immediately verified
that if (𝑈𝑚𝑖𝑛, 𝑙(𝑈)) ≺ (𝑉𝑚𝑖𝑛, 𝑙(𝑉 )), then 𝑈 stochastically
dominates 𝑉 . Consequently, the number of objects on stochas-
tic skyline of 𝒰 is not greater than the size of skyline of
{(𝑈𝑚𝑖𝑛, 𝑙(𝑈))∣𝑈 ∈ 𝒰}. Since {(𝑈𝑚𝑖𝑛, 𝑙(𝑈))∣𝑈 ∈ 𝒰} is a

set of points on a (𝑑 + 1)-dimensional space such that every
coordinate is independent and follows the same distribution,
the expected skyline size of {(𝑈𝑚𝑖𝑛, 𝑙(𝑈))∣𝑈 ∈ 𝒰} is bounded
by ln𝑑(𝑛)/(𝑑+ 1)! [7].

Continuous Cases. In the paper, we focus on discrete cases of
probability distributions. For continuous cases, we can discrete
a continues PDF by sampling methods. While the framework
is immediately applicable to the sampled points, the main issue
is to estimate the accuracy of a sampling method.

Other Statistic Orders. There are two other popular stochas-
tic orders defined in the literature [21], 1) upper orthant order,
and 2) usual stochastic order. We can also define stochastic
skyline against these two orders, respectively. Note that the
upper orthant order is “symmetric” to the lower orthant order
with the preference on larger values; thus the techniques
developed in the paper can be immediately modified to the
stochastic skyline regarding the upper orthant order.

The usual stochastic order is defined below [21].

Definition 5 (Usual Stochastic Order): Given objects 𝑈
and 𝑉 , 𝑈 dominates 𝑉 , denoted by 𝑈 ≺𝑠𝑡 𝑉 if for any upper
space 𝑆, 𝑈.𝑐𝑑𝑓(𝑆) ≤ 𝑉.𝑐𝑑𝑓(𝑆).

Note that 𝑆 ⊆ 𝑅𝑑 is an upper space if for any 𝑥, 𝑦 ∈ 𝑅𝑑,
𝑥 ⪯ 𝑦 and 𝑥 ∈ 𝑆, we have 𝑦 ∈ 𝑆. Similar results to Theorem
1 presented in page 266 of [21] imply that the stochastic
skyline regarding the usual stochastic order can provide the
minimum sets of candidate for the optimal solutions (with
maximum expected values) regarding any forms of decreasing
functions; that is, stochastic skyline excludes objects that are
not preferred by any decreasing functions.

Note that the number of skyline objects regarding the
usual stochastic order is usually larger than the number of
skyline objects regarding the lower orthant order, since the
lower orthant order may be regarded as a special case of
usual stochastic order. However, the size estimation result in
Theorem 10 also holds. New techniques for computing the
stochastic skyline regarding the usual stochastic order need
to be developed. For instance, the verification seems a much
more complicated problem.

V. EMPIRICAL STUDY

We conduct a thorough performance evaluation on the
efficiency and effectiveness of our techniques. Since this is
the first work in stochastic skyline computation, our perfor-
mance evaluation is conducted against our techniques only.
We implement the following techniques.

∙ ssky: Algorithm 2 proposed in Section IV to compute
stochastic skyline.

∙ ssky-NF : ssky without the filtering techniques in Section
IV-C but with the non-naive verification algorithm (Algo-
rithm 1) in Section III-C.

∙ ssky-NV: ssky with the two filtering techniques in Section
IV-C and the naive verification algorithm in Section III-A.



A. Experiment Setup

All algorithms proposed in the paper are implemented in
standard C++ with STL library support and compiled with
GNU GCC. Experiments are conducted on a PC with Intel
Xeon 2.4GHz dual CPU and 4G memory under Debian
Linux. In our implementation, MBBs of the uncertain objects
are indexed by an 𝑠𝑅-tree with page size 2048 bytes. The
instances of an object are organized by a main-memory based
aggregate 𝑅-tree with fan-out 8 and we load in the whole
aggregate 𝑅-tree of 𝑉 if 𝑉 cannot be pruned by the filtering
techniques.

We use both real and synthetic data sets in our evaluation
process.

Real dataset is extracted from NBA players’ game-by-game
statistics (http://www.nba.com), containing 339,721 records of
1,313 players. Each player is treated as an uncertain object
where the statistics of a player per game is treated as an
instance. For one player, all instances are assumed to take the
same probability to appear. In our experiment, we use three
attributes, points, assistances, and rebounds in an instance.
NBA dataset is employed since the MBBs of players have
a very large overlapping degree; thus it may give a good
challenge to our techniques.

Synthetic datasets are generated using methodologies in [4]
with respect to the following parameters. The centers of
objects (objects’ MBBs) follow either anti-correlated (anti for
short), correlated (corr) or independent (inde) distribution. We
use anti as the default distribution for objects’ centers. Data
domain in each dimension is [0, 1]. The MBBs of the objects
are hype-cube with average edge length ℎ varying from 0.02
to 0.1 with the default value 0.04. The average number of
instances 𝑚 in each object varies from 200 to 1000 with
the default value 400. Locations of instances of an object
follow one of the 4 distributions, uniform (unif for short),
zipf, constrained normal (norm) or a mixture of the previous
three mix. In unif, instances are distributed uniformly inside an
MBB with the same occurrence probability. In zipf, firstly an
instance 𝑢 of 𝑈 is randomly generated and the distances from
all other instances to 𝑢 follow a zipf distribution with 𝑧 = 0.5.
In norm, instances follow the normal distribution within the
MBR of the object with standard deviation 𝜎 = 0.4 × ℎ. In
mix, previous three distributions are mixed each with a portion
of 1

3 . We use mix as the default distribution for instances. Note
that in a synthetic dataset, the instances in every object have
the same probability value.

edge length ℎ 0.02, 0.04, 0.06, 0.08, 0.1
dimensionality 𝑑 2, 3, 4, 5

number of objects 𝑛 20k, 40k, 60k, 80k, 100k
number of instances 𝑚 200, 400, 600, 800, 1k

object center distribution anti, corr, inde
instance distribution unif, zipf, norm, mix

TABLE II

PARAMETERS

We also study the impact of other key parameters. The
dimensionality (d) varies from 2 to 5 with the default value 3.

The number 𝑛 of objects varies from 20𝑘 to 100𝑘 where the
default value is 20k.

Table II summarizes parameter ranges and default values (in
bold font). Note that in the default setting, the total number of
instances is 8 millions. The maximal number of total instances
of the datasets is 40 millions. In the experiments below, these
parameters use default values unless otherwise specified.

𝑝 #psky #hit
0.5 0 0

0.05 83 76
0.005 316 122

5× 10−10 837 124

𝑝 #psky #hit
0.8 12 12

0.08 137 94
0.008 310 124

3× 10−10 1215 147

(a) NBA( #ssky: 127) (b) 3d (#ssky: 148)

TABLE III

PSKYLINE VS STOCHASTIC SKYLINE

B. Size of Stochastic Skyline

Table III shows the result sizes (#psky) of probabilistic
skyline and the number (#hit) of stochastic skyline objects
contained by the corresponding probabilistic skyline regarding
different probability thresholds. The real dataset NBA data is
employed, as well as a 3 dimension synthetic dataset with
instance locations following unif and MBB centers following
inde (other parameters are default values). The experiment re-
sult shows that some stochastic skyline objects may have very
small skyline probabilities and some non-stochastic skyline
objects may have large skyline probabilities. Consequently, it
shows that we may have to use very small probability threshold
(𝑝) to generate the probabilistic skyline with large size to cover
all stochastic skyline objects.
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Figure 6 evaluates the impacts of different distributions
of instances locations and object MBB centers, respectively.
We use conv to denote the size of (conventional) skyline
against the set of MBB centers. The 𝑥-coordinate in Figure
6 gives different distributions of MBB centers; regarding each
distribution of MBB centers, we record the number of skyline
objects over one distribution of instance locations. We also
record the size of (conventional) skyline against the set of
MBB centers in 4-dimensional space to evaluate Theorem 10
in practice since the uncertain data is in 3-dimensional space.

Figure 7 reports the skyline size regarding the number
of objects and average number of instances per object. As
expected, the skyline size grows with the number of objects
but is not very sensitive to the number of instances per object.
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C. Evaluating Efficiency

We first evaluate the efficiency of ssky to compute stochastic
skyline. We have done the comparison of ssky, ssky-NF and
ssky-NV to evaluate the overall performance of filtering tech-
niques and verification techniques. Since the naive verification
algorithm is very inefficient comparing with the non-naive
verification algorithm Algorithm 1, we use small data size
in the experiment where only 10𝑘 objects are involved and
the average number of instances in Figure 8(b) is 200. As
depicted in Figures 8(a)-(b), with naive verification approach,
the performance of ssky-NV drops quickly with the increase
of instance number and 𝑑 due to the time complexity 𝑂(𝑚𝑑).
Some values regarding ssky-NV are missing because under
these settings, we can not get result after 5 days running.
Moreover, without any filtering techniques, the performance
of our algorithm, i.e. ssky-NF algorithm, is very poor due to
the large number of IO accesses and verifications. ssky-NF is
orders of magnitude slower than ssky.
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Fig. 8. Comparison with Naive Techniques

Therefore, in the rest of experiments we no-longer evaluate
ssky-NF (without filtering techniques) and ssky-NV (with the
naive verification algorithm). We focus on evaluating the two
filtering techniques. Particularly, we evaluate the performance
of ssky and ssky-F2 where ssky-F2 stands for that in Algo-
rithm 2, only Pruning Rule 1 is used.
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Figure 9 reports the evaluation of ssky and ssky-F2 against
different distributions of instance locations and NBA data.
Both algorithms are quite efficient. It also shows that ssky

always significantly outperforms ssky-F2; that is, the Pruning
Rule 2 is very effective in practice. Based on the experiment
results in Figures 8(a)-(b) which demonstrate that ssky-NF (i.e.
without the two filtering techniques) is orders of of magnitude
slower than ssky, this experiment implies that the 1st filtering
technique is also very effective.
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In Figure 10, we evaluate the scalability of our algorithms
against different dataset sizes, number of instances, MBB
sizes, and dimensionality. Figure 10(a) and Figure 10(b) show
that the performance of ssky and ssky-F2 degrades “linearly”
with the growth of dataset size, number of instances, while
in Figure 10(c) and Figure 10(d) the performance drops
more significantly with the growth of MBB edge size and
dimensionality due to the increase of the number of stochastic
skyline objects. Nevertheless, the gain of statistics pruning
rules becomes more significant when dimensionality is high
and MBB edge size is large.
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Fig. 11. I/O costs w.r.t Different Parameters

Figure 11 reports the number of objects accessed regarding
dataset sizes and the dimensionality. Both algorithms, ssky and
ssky-F2, are I/O efficient because a large number of objects
are eliminated by Pruning Rules 1 and/or 2. For instance,
Figure 11(a) shows that only 11.2% and 5.6% of objects are
loaded into main memory by algorithms ssky-F2 and ssky,
respectively, when the number of objects is 100𝑘. Figure 11
also shows that Pruning Rule 2 can further improve the I/O
efficiency. As expected, the number of object (I/O) accesses
increases with the increase of dataset size and dimensionality.

Table IV gives a breakdown information of the filtering time
and verification (in seconds). The results are reported in where
we vary the number of objects from 20𝑘 to 100𝑘. It shows the
filtering costs are much smaller than the costs of verification.



20k 40k 60k 80k 100k
Filtering 0.25 0.45 0.58 0.80 2.50

Verification 5.96 10.10 17.45 20.22 31.21

TABLE IV

FILTERING AND VERIFICATION TIME(S)

VI. RELATED WORK

While the paper is the first work to model and efficiently
compute stochastic skyline, below we give a brief overview
of skyline computation over conventional and uncertain data,
respectively.

Conventional Skyline Computation. Börzsönyi et al [4]
firstly study the problem of computing skylines over large
datasets. They develop block-nested-loop (BNL) and divide-
and-conquer (D & C) based techniques for skyline compu-
tation. The Sort Filter Skyline (SFS) algorithm [8] aims to
improve BNL by sorting a dataset first. An optimized version
of SFS, named linear elimination sort for skyline (LESS) is
later proposed in [10]. Sort and limit skyline algorithm (SaLSa)
[3] aims to improve SFS and LESS by avoiding scanning the
complete set of sorted objects.

The first index based techniques are proposed by Tan et
al [23] where two progressive techniques, Bitmap and Index
based on bitmap and B-tree structures, are developed. Various
index based techniques are also developed (e.g. [12], [13],
[17]). Very recently, an effective dynamic indexing technique
is proposed in [25] to index the current skyline.

Variations of skyline computation have also been exten-
sively explored; for example, skylines for partially-ordered
value domains[6] and skyline cubes [19].

Skyline Computation over Uncertain Data. Considerable
research effort has been put into modeling and managing
uncertain data in recent years due to many emerging important
applications (e.g [1], [5]). Sarma et al [20] purpose to model
queries over uncertain data by possible world semantics.

Probabilistic skyline on uncertain data is first tackled by Pei
et al [18] where skyline objects are retrieved based on skyline
probabilities. Efficient techniques are proposed following the
bounding-pruning-refining framework. Lian et al [15] combine
reverse skyline with uncertain semantics and study the prob-
abilistic reverse skyline problem in both monochromatic and
bichromatic fashion. Atallah and Qi [2] develop sub-quadratic
algorithms to compute skyline probabilities for every object.
Zhang et al [26] tackle the problem of efficiently on-line
computing probabilistic skyline over sliding windows.

VII. CONCLUSION

In this paper, we propose a novel stochastic skyline model
based on the stochastic orders which strictly captures the
preference of users and guarantees to provide the minimum
set of candidates to the optimal solutions over a broad and
popular family of functions. We develop efficient stochastic
skyline computation algorithm on large set of objects based
on novel filtering and verification techniques. Comprehensive
experiments are conducted on both real and synthetic data

to demonstrate the efficiency of our techniques. As a possible
future work, we will investigate the problem against correlated
uncertain data, as well as the stochastic skyline computation
over other stochastic orders.
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