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Classical and anomalous diffusion equations employ integer derivatives, fractional derivatives,

and other pseudo-differential operators in space. In this paper we show that replacing the
integer time derivative by a fractional derivative subordinates the original stochastic solution
to an inverse stable subordinator process whose probability distributions are Mittag-Leffler.
This leads to explicit solutions for space-time fractional diffusion equations with multiscaling
space-fractional derivatives, and additional insight into the meaning of these equations.

PACS numbers: 05.40.Fb, 47.55.Mh, 02.50.-r, 05.10.Gg

I. INTRODUCTION

Space-fractional diffusion equations [1–4] have been
useful as models of anomalous transport in many diverse
disciplines, including finance, semiconductor research, bi-
ology, and hydrogeology [5–7]. In the context of flow in
porous media, fractional space derivatives model large
motions through highly conductive layers or fractures,
while fractional time derivatives describe particles that
remain motionless for extended periods of time. Dis-
solved solutes may sorb to solid material [8] or diffuse
into immobile-water zones of various sizes [9]. The scalar
space-fractional diffusion equation governs Lévy motion,
and the tail parameter α of the Lévy motion equals the
order of the fractional derivative. Solutions to the vec-
tor space-fractional diffusion equation are operator Lévy
motions [10] that may scale at different rates in differ-
ent directions. The matrix exponent of the fractional
derivative is related to the scaling rates in a similar man-
ner [11, 12]. A more general diffusion equation governs
any Lévy process X(t) [13, 14]. The probability density
p(x, t) of any such process solves a diffusion-type equa-
tion

∂p(x, t)
∂t

= Lp(x, t); p(x, 0) = δ(x), (1)

where L is the generator of the Feller semigroup Stf(x) =∫
f(x − y)p(y, t)dy [15–17]. In this case, we say that

∗partially supported by NSF-DES grant 9980484; Electronic ad-
dress: mcubed@unr.edu

†partially supported by NSF-DES grant 9980489 and DOE-BES
grant DE-FG03-98ER14885

‡partially supported by NSF–DES grant 9980484

X(t) is the stochastic solution to (1). The generator
Lf(x) = limt↓0 t

−1(Stf(x) − f(x)). If X(t) is an α-
stable Lévy motion without drift, then L is a fractional
derivative operator of order α.

Fractional time derivatives are important in reactive
transport, since solutes may interact with the immo-
bile porous medium in highly nonlinear ways. There is
evidence that solutes may sorb for random amounts of
time that have a power law distribution [8], or move into
irregularly-sized blocks of relatively immobile water, pro-
ducing similar behavior [9]. If the first moment of these
time delays diverges, then a fractional time derivative
applies [6]. The fractional time derivative ∂γg(t)/∂tγ for
0 < γ < 1 is the inverse Laplace transform of sγg(s),
where g(s) = L[g(t)] is the usual Laplace transform. In
this paper, we find the stochastic solution to the space-
time fractional diffusion equation

∂γq(x, t)
∂tγ

= Lq(x, t) + δ(x)
t−γ

Γ(1− γ)
. (2)

We show that if X(t) is the stochastic solution to (1) then
X(Vt) is the corresponding solution to (2), where Vt is
the inverse Lévy process [18] for the stable subordinator
with index γ. The fractional time derivative subordinates
X(t) to the inverse stable subordinator Vt.

The space-time fractional diffusion equation is also
connected with scaling limits of continuous time random
walks (CTRW, see [6]). The spatial operator L depends
on the jump size distribution [11, 12]. A fractional time
derivative of order 0 < γ < 1 pertains when the random
waiting time T between jumps satisfies P (T > t) ≈ t−γ

so that E(T ) = ∞. The infinite mean waiting time
CTRW limit is the finite mean waiting time CTRW
limit, subordinated to the inverse stable subordinator Vt.



2

The random variable Vt has a Mittag-Leffler distribution
[19] previously noted in connection with fractional time
derivatives [4, 20] and relaxation [21].

II. CTRW SCALING LIMITS

CTRW were introduced [22, 23] to study random walks
on a lattice. They are now used in physics to model a
wide variety of phenomena connected with anomalous
diffusion [23–25]. With finite mean waiting times, the
jump process is asymptotically linear, and the CTRW
behaves like the original random walk for large time [20,
26]. For a scalar process, finite variance jumps lead to
Brownian motion in the scaling limit. Infinite variance
jumps with power law tails lead to Lévy motion. Vector
jumps with finite second moments lead to multivariable
Brownian motion. Vector jumps with power law tails lead
to multivariable Lévy motion, or operator Lévy motion
if the power law behavior varies with the direction of
motion [11, 12]. Speed of convergence to the CTRW
scaling limit, and the implications for fractional diffusion
modeling, are discussed in a recent paper of Barkai [27].

Many physical applications involve infinite mean wait-
ing times [21, 28]. Introducing infinite mean waiting
times has the effect of subordinating the CTRW scal-
ing limit to the inverse process of a stable subordinator
whose index γ is the same as the power law tail index of
the waiting times. Essentially, this is because the count-
ing process for particle jumps is inverse to the jump time
process. The jump time process is asymptotically the
stable subordinator, so the counting process for particle
jumps is asymptotically the inverse stable subordinator.

A rigorous mathematical proof appears in [29]. We
recount the basic ideas here to emphasize the physi-
cal applications. Given iid positive random variables Ji
let Tn =

∑n
i=1 Ji denote the time of the n-th particle

jump. The position of the particle after the n-th jump
is W (n) =

∑n
i=1 Yi where Yi are iid and assumed inde-

pendent of Ji. Then Nt = max{n : Tn ≤ t} counts the
number of particle jumps by time t > 0 and the CTRW
variable W (Nt) gives the position of the particle at time
t > 0.

If Y has zero mean and finite second moments, the
simple random walk of particle jumps

c−1/2W ([ct]) ⇒ X(t) as c→∞ (3)

where the scaling limit X(t) is a Brownian motion.
Shrinking the spatial coordinates by c1/2 compensates
expanding the time scale by c according to the central
limit theorem. If P (J > t) ≈ t−γ for some 0 < γ < 1
then

c−1/γT[ct] ⇒ Bt as c→∞ (4)

according to the extended central limit theorem [15]
where the scaling limit Bt is the stable subordinator pro-
cess [13]. The γ-stable random variable Bt is totally pos-

itively skewed, hence this Lévy process is strictly increas-
ing. The inverse process

Vτ = inf{t : Bt > τ}

is also called the hitting time or first passage time pro-
cess. Using the fact that Tn, Nt are inverse, so that
{Nt ≥ x} = {Tdxe ≤ t}, along with (4) yields

c−γN[ct] ⇒ Vt as c→∞.

Hence N[ct] ≈ cγVt, and together with (3) this yields

c−γ/2W (N[ct]) ≈ (cγ)−1/2W ([cγVt]) ⇒ X(Vt)

as c → ∞, so that the Brownian motion X(t) is subor-
dinated to the inverse stable subordinator Vt.

The inverse processes have inverse distributional scal-
ing Bct = c1/γBt and Vct = cγVt, and together with the
classical scaling for Brownian motion X(ct) = c1/2X(t)
this shows that the CTRW limit is subdiffusive

X(Vct) = X(cγVt) = cγ/2X(Vt)

with Hurst index H = γ/2 < 1/2. Since P (Vτ ≤ t) =
P (Bt ≥ τ) = P (t1/γB1 ≥ τ) = P ((B1/τ)−γ ≤ t) the
random variable Vτ has the same density function as
(τ/B1)γ . The density gγ of the stable random variable
B1 has Laplace transform L[gγ(t)] = e−s

γ

. Computing
moments of (t/B1)γ shows that Vt has a Mittag-Leffler
distribution [19]. If p(x, t) is the density of X(t) then
a conditioning argument along with a simple change of
variable shows that X(Vt) has density

q(x, t) =
∫ ∞

0

p(x, (t/s)γ)gγ(s)ds

=
t

γ

∫ ∞

0

p(x, u)gγ(tu−1/γ)u−1/γ−1du.
(5)

Analytical estimates in [29] show that q(k, t) ≥ C‖k‖−b
for large ‖k‖, so X(Vt) does not have a normal density
and hence cannot be a fractional Brownian motion [30].

If P (‖Y ‖ > r) ≈ r−α for some 0 < α < 2 then X(t) is
an α-stable Lévy motion and the CTRW limit X(Vt) has
Hurst index H = γ/α. If the tail index varies with the
spatial coordinate, operator norming applies [12]. Then
X(ct) = cEX(t) leads to X(Vct) = cγEX(t) so that the
Hurst index H = γE is a matrix. For a diagonal expo-
nent E = diag(1/α1, . . . , 1/αd) the ith coordinate Xi(t)
is an αi-stable Lévy motion and Xi(Vt) is self-similar
with Hurst index γ/αi. Diagonalizable matrix exponents
introduce a change of coordinates. Repeated eigenval-
ues thicken probability tails by a logarithmic factor, and
complex exponents introduce rotations, leading to dis-
crete scale invariance [31]. In every case, the scaling limit
X(t) of the simple random walk is subordinated by the
inverse stable subordinator Vt and the density changes
from p(x, t) to q(x, t) via (5) when infinite mean waiting
times are introduced. Next, we show that this change
corresponds to a fractional time derivative in the diffu-
sion equation.
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III. TIME-FRACTIONAL DIFFUSION
EQUATIONS

Wyss [32] and Schneider and Wyss [33] studied a time-
fractional diffusion equation. Zaslavsky [34] introduced
the space-time fractional kinetic equation (2) for Hamil-
tonian chaos. When L = −v∂/∂x +D∂α/∂|x|α Saichev
and Zaslavsky [35] show that if p(x, t) solves (1) then the
function q(x, t) given by (5) solves (2). When α = 2 they
call the stochastic solution to (2) a “fractal Brownian mo-
tion.” We prefer the term “time-fractional diffusion” to
avoid confusing this process with the well-known frac-
tional Brownian motion. In fact, if X(t) is a Brownian
motion, the stochastic solution to (1) in this case, then
the stochastic solution to (2) is X(Vt) where Vt is the
inverse γ-stable subordinator. This interesting stochas-
tic process is self-similar with Hurst index γ/2 so it is
subdiffusive. However X(Vt) does not have a Gaussian
distribution and it does not have stationary increments
[29], so it is not fractional Brownian motion.

Barkai, Metzler, and Klafter [20] introduce a fractional
Fokker-Planck equation equivalent to (2) with

L = − ∂

∂x

V ′(x)
mη1

+K1
∂2

∂x2
.

Barkai [4] applies (5), which he calls the inverse Lévy
transform of p(x, t), to the solution of (1) in order to
solve this fractional Fokker-Planck equation.

Scalar solutions to (1) with

L = −v ∂
∂x

+D

(
1− β

2
∂α

∂(−x)α
+

1 + β

2
∂α

∂xα

)
are α-stable densities [36, 37], purely symmetric when
the skewness β = 0 [2, 38] and maximally skewed when
β = 1 [3, 34]. When α = 2 the skewness β is irrelevant,
and the solutions are normal densities. Vector solutions
for

L = −v · ∇+D∇αm

are multivariable stable densities [11], where ∇αm is the
operator with Fourier symbol∫

‖θ‖=1

(ik · θ)αm(θ)dθ.

If α = 2, this integral reduces to (ik)A(ik)′ where the
matrix A has ij component

∫
θiθjm(θ)dθ, and solutions

are vector Brownian motion.
Operator stable densities, where the stable index de-

pends on the coordinate, solve (1) with

L = −v · ∇+
1
2
∇ ·A∇+ F

where the generalized fractional derivative

Ff(x) =
∫

[f(x− y)− f(x) + y · ∇f(x)] dφ(y)

and dφ(rEθ) = r−2drm(θ)dθ is an operator stable Lévy
measure [10, 12, 39]. These are all abstract Cauchy
problems [16, 17] whose solution p(x, t) is the family of
densities for a Lévy process, a stationary independent
increment process which includes Brownian motion and
(operator) Lévy motion as special cases. Baeumer and
Meerschaert [40] give a rigorous mathematical proof that
any solution to the abstract Cauchy problem (1) is trans-
formed to a solution of the fractional Cauchy problem (2)
via the inverse Lévy transform (5). We summarize the
essentials here in order to clarify the argument.

Use sγ−1 = L[t−γ/Γ(1− γ)] and take Laplace-Fourier
transforms (x 7→ k, t 7→ s) in (2) to get sγq(k, s) =
ψ(k)q(k, s) + sγ−1 where ψ(k) is the Fourier symbol of
L, so that F [Lf(x)] = ψ(k)f(k). Then

q(k, s) =
sγ−1

sγ − ψ(k)

= sγ−1

∫ ∞

0

e−(sγ−ψ(k))udu (6)

=
∫ ∞

0

sγ−1e−s
γup(k, u)du

using
∫ ∞
0
e−audu = a−1 and p(k, t) = eψ(k)t, which

follows from (1). Use d(e−s
γu)/ds = −γsγ−1ue−s

γu

to get sγ−1e−s
γu = −(γu)−1d(e−s

γu)/ds. Recall that
e−s

γ

= L[gγ(t)] and write

e−s
γu = e−(su1/γ)γ

=
∫ ∞

0

e−su
1/γvgγ(v)dv

=
∫ ∞

0

e−stgγ(u−1/γt)u−1/γdt.

Then compute

sγ−1e−s
γu =

−1
γu

d

ds

(∫ ∞

0

e−stgγ(u−1/γt)u−1/γdt

)
=

1
γu

∫ ∞

0

te−stgγ(u−1/γt)u−1/γdt

and combine with (6) to write q(k, s) as∫ ∞

0

(
1
γu

∫ ∞

0

te−stgγ(u−1/γt)u−1/γdt

)
p(k, u)du

=
∫ ∞

0

e−st
(∫ ∞

0

p(k, u)gγ(u−1/γt)
t

γ
u−1/γ−1du

)
dt.

Now invert the Laplace transform to obtain

q(k, t) =
t

γ

∫ ∞

0

p(k, u)gγ(tu−1/γ)u−1/γ−1du

and invert the Fourier transform to get (5).

IV. CONCLUSIONS

Infinite mean waiting times subordinate CTRW scaling
limits to an inverse stable subordinator, equivalent to ap-
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plying an inverse Lévy transform (5) to the solution den-
sity. Since the solutions to time-fractional diffusion equa-
tions are also obtained via the inverse Lévy transform, a
γ-fractional time derivative in a diffusion equation has
the effect of subordinating the stochastic solution to the
inverse process of a γ-stable subordinator. When ap-
plied to the classical diffusion equation, this procedure
produces the “fractal Brownian motion” of Saichev and
Zaslavsky as the solution to the time-fractional diffu-
sion equation, a model for subdiffusion. This interesting
stochastic process is not the same as fractional Brown-
ian motion, but rather a completely new stochastic pro-
cess. For CTRW models with coupled memory, in which
particle jumps Yi and waiting times Ji are dependent,
the effect of infinite mean waiting times is more com-
plicated [26]. In a forthcoming paper we will show that
infinite mean waiting times in a coupled CTRW model
also induce subordination by an inverse stable subordi-
nator, but in that case the two processes are dependent.
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