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Abstract
We deal with complex spatial diffusion equations with time-fractional derivative
and study their stochastic solutions. In particular, we complexify the integral oper-
ator solution to the heat-type equation where the time derivative is replaced with
the convolution-type generalization of the regularized Caputo derivative. We prove
that this operator is solution of a complex time-fractional heat equation with com-
plex spatial variable. This approach leads to a wrapped Brownian motion on a circle
time-changed by the inverse of the related subordinator. This time-changed Brownian
motion is analyzed and, in particular, some results on its moments, as well as its con-
struction as weak limit of continuous-time random walks, are obtained. The extension
of our approach to the higher dimensional case is also provided.

Keywords Complex singular integrals · Complex evolution equations · Generalized
Caputo derivative · Time-changed processes · Wrapped Brownian motion

Mathematics Subject Classification 26A33 · 60G22

1 Introduction

The study of the evolution equations with complex spatial variables is a quite recent
research topic in the theory of the partial differential equations and complex analysis. In
the pioneering works [8,9], the authors proposed two different methods to complexify
the spatial variable appearing in different evolution equations (and keeping the time
variable real). In particular, for the heat equation a possible approach consists in the
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complexification of the spatial variable in the linear semigroup operator

Tt f (x) = 1√
2π t

∫ +∞

−∞
f (x − y)e− y2

2y dy

representing the unique solution to the Cauchy problem

∂u

∂t
(x, t) = 1

2

∂2u

∂x2
(x, t), u(x, 0) = f (x),

where t > 0, x ∈ R and f ∈ BUC(R). This approach is interesting because, by
exploiting the theory of semigroups of linear operators, it is possible to obtain a new
complex version of the heat equation (see (2.2) below) and study the properties of its
analytic solution (see [8,9]). Furthermore, it is worth to observe that in this framework
a suitable probabilistic interpretation of the solution to (2.2) leads to a wrapped up
Brownian motion on a circle. The stochastic analysis of complex diffusion equations
still seems to be an unexplored research topic.

The above mentioned theory was developed starting from partial differential equa-
tions involving the standard time derivative. The aim of this paper is to study complex
versions of the time-fractional heat equations obtained by complexifying the spatial
variable only (and keeping the time variable real). The main idea is to complexify the
spatial variable in the corresponding integral operator arising in the study of time-
fractional evolution equations. In particular, we study the stochastic solution of the
complex heat equation, when the time-derivative is replaced by a convolution-type
operator, which generalizes the Caputo fractional derivative. We will adopt the defi-
nition given in [6], i.e.

D
g
t u(t) := d

dt

∫ t

0
w(t − s)(u(s) − u(0))ds, t ≥ 0, (1.1)

where w(·) is the tail Lévy measure of a subordinator Hg(t), t ≥ 0 and g(·) is its
Laplace exponent, i.e. Ee−θHg(t) = e−g(θ)t , where t, θ ≥ 0 (see Section 3 for details
on this definition). The so-called generalized fractional calculus has been developed
in recent years, starting from Kochubei in [13], by many authors (see, among the
others, [10,14,23]). They extend the traditional construct of fractional derivatives and
integrals in order to allow a wider class of kernels. Indeed, it is immediate to check
that, by choosing w(t) = t−α/Γ (1 − α), for α ∈ (0, 1), which coincides with the
tail Lévy measure of an α-stable subordinatorHα(t), the fractional derivative in (1.1)
reduces to the so-called “regularized Caputo derivative". Thus we will define the latter
as

∂α

∂tα
u(t) := 1

Γ (1 − α)

d

dt

∫ t

0
(t − s)−α(u(s) − u(0))ds, t ≥ 0. (1.2)

It has been proved in [17] that the solution to

∂α

∂tα
u(x, t) = Δu(x, t), t ≥ 0, x ∈ R

d , d ≥ 1,
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246 L. Beghin and A. De Gregorio

with u(x, 0) = f (x), admits the probabilistic representationEx [ f (B(Eα(t)))], where
B := {B(t), t ≥ 0}, is the standard Brownian motion on R

d , with infinitesimal
generator Δ, and {Eα(t), t ≥ 0}, is the inverse of the stable subordinator Hα(t)
(independent of B).

The previous result has been extended to the case of a strong Markov process
X := {X(t), t ≥ 0} (on a separable locally compact Hausdorff space E) whose
transition semigroup is a uniformly bounded strong continuous semigroup in some
Banach space and has infinitesimal generator A. In this case, the solution to

(
D

g
t + b

∂

∂t

)
u(x, t) = Au(x, t), t ≥ 0, x ∈ E, b ≥ 0,

with u(x, 0) = f (x), is represented by Ex
[
f (X(Eg(t)))

]
, where Eg(t), t ≥ 0, is the

inverse of the general subordinator Hg(t), with drift b, and is independent of X (see
[6], for details).

If we denote the unit disk as D := {z ∈ C; |z| < 1} and we consider the space
A(D) = { f : D →: f is analytic on D, continuous on D}, endowed with the uniform
norm, then we study here the solution to the following Cauchy problem

(
D

g
t + b

∂

∂t

)
u(z, t) = 1

2

∂2u

∂ϕ2 (z, t), (t, z) ∈ (0,∞) × D \ {0}, z = reiϕ,

with u(z, 0) = f (z), where f (z) ∈ A(D), z ∈ D.
The paper is organized as follows. Section 2 contains the probabilistic interpretation

of the solution to the complex Cauchy problem introduced in [8] and a discussion on
the properties of the circular Brownian motion. The generalized fractional setting
and the complex time-fractional heat equation are introduced in Section 3, where
the stochastic solution related to the related complex Cauchy problem is obtained.
Section 4 is devoted to the analysis of the time-changed Brownian motion emerging
in the previous section. Some results on the moments of the process are provided,
as well as the construction of the time-changed process based on the convergence of
time-continuous random walks. Furthermore, some special cases involving stable and
tempered stable subordinators are examined. The last section contains the analysis of
the complex time-fractional heat equation in higher dimensions.

2 On the probabilistic meaning of heat-type equations with complex
space variables

Let D := {z ∈ C; |z| < 1} be the open unit disk and introduce the Banach space
(A(D), ‖ · ‖), where A(D) = { f : D → C : f is analytic on D, continuous on D} ,
endowed with the uniform norm ‖ f ‖ = sup{| f |; z ∈ D}. If f ∈ A(D) then it can be
represented in the series form f (z) =∑∞

k=0 akz
k .
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Stochastic solutions for time-fractional... 247

In the interesting paper [8], it was proved (see Theorem 2.1 in [8]) that the singular
(at t = 0) complex integral (that is known as a Gauss-Weierstrass integral)

Wt f (z) = 1√
2π t

∫ +∞

−∞
f (ze−iu)e−u2/2t du, t ≥ 0, (2.1)

is a C0-contraction semigroup of linear operators on A(D). Furthermore, u(z, t) =
Wt f (z), is the unique solution (with u(z, t) ∈ A(D) for a fixed t) for the Cauchy
problem

∂u

∂t
(z, t) = 1

2

∂2u

∂ϕ2 (z, t), z = reiϕ, 0 < r < 1, ϕ ∈ [0, 2π), (2.2)

under the initial condition

u(z, 0) = f (z), z ∈ D, (2.3)

where f ∈ A(D).
Here we briefly discuss the interesting probabilistic meaning of this representation

of the solution for the problem (2.2)-(2.3). Indeed, it is evident from (2.1), that the
solution for the Cauchy problem can be represented as

u(z, t) = E f
(
ze−i B(t)

)
= E f (Bz(t)) , (2.4)

where B := {B(t), t ≥ 0} is the R-valued Brownian motion on (Ω,F ,P) and
Bz(t) = ze−i B(t). This means that the probabilistic representation of the solution for
this complexifiedCauchy problem is directly related to a circular orwrappedBrownian
motion Bz := {Bz(t), t ≥ 0} moving on a circle with radius r ∈ (0, 1] (hereafter
denoted by Sr ) and starting point z. Furthermore, B stands for B1.

For the sakeof simplicity,we set z = 1.From theproperties of the classicalR-valued
Brownian motion, it is easy to characterizedB. LetB be the complex conjugate ofB.
We observe that the wrapped Brownian motion B, satisfies the following properties:

1) B(0) = 1 a.s.;
2) B(tk)B(tk−1) with k = 1, 2, ..., n ∈ N, 0 =: t0 ≤ t1 < t2 < ... < tn < ∞ are

independent;
3) B(t)B(s) has the same distribution ofB(t + h)B(s + h), where 0 ≤ s < t, h ≥

−s;
4) for 0 ≤ s < t,

B(t)B(s) ∼ WN (0, e− t−s
2 ),
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248 L. Beghin and A. De Gregorio

where WN (μ, e− σ2
2 ), μ ∈ R, σ 2 > 0, stands for a wrapped normal random

variables with probability density function given by

f (ϕ) = 1√
2πσ

∞∑
k=−∞

e− (ϕ−μ+2kπ)2

2σ2 , ϕ ∈ [0, 2π).

This result follows by standard arguments on the wrapped distributions; i.e. by
wrapping the N (0, t − s) onto the circle (see, e.g., [16]).

5) B is a wrapped Gaussian process; i.e. let 0 =: t0 < t1 < t2 < ... < tn < ∞,

the random vector (B(t1),B(t2), ...,B(tn)) is multivariate wrapped normal in the
following sense

n∏
k=1

(B(tk))
αk , αk ∈ R,

admits a one-dimensional wrapped gaussian distribution. Indeed,

n∏
k=1

(B(tk))
αk = ei

∑n
k=1 αk B(tk ).

Since B is a Gaussian process, it follows that
n∑

k=1
αk B(tk) ∼ N (0,

n∑
k=1

α2
k tk). Then,

as in the previous point

n∏
k=1

(B(tk))
αk ∼ WN (0, e−

∑n
k=1 α2k tk

2 ).

3 Time-fractional diffusive-type equations with a complex spatial
variable

Let us introduce a time-fractional version of the complex heat equation (2.2) and study
its stochastic solution.

Let g : (0,+∞) → R be a Bernstein function (i.e. a non-negative, C∞ function
such that (−1)k−1g(k)(x) ≤ 0, ∀x > 0, k ∈ N). Then, it is well-known that the
following representation holds (see e.g., [22])

g(x) = a + bx +
∫ ∞

0
(1 − e−sx )ν(ds), b ≥ 0, (3.1)

where ν(·) is a non-negative measure on (0,+∞), satisfying the condition

∫ ∞

0
(z ∧ 1)ν(dz) < ∞,
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Stochastic solutions for time-fractional... 249

i.e. ν is a Lévy measure.
Let w(s) = ∫ +∞

s ν(dz) be its tail, in this paper we consider the following
convolution-type derivative (see [6])

D
g
t u(t) := d

dt

∫ t

0
w(t − s)(u(s) − u(0))ds. (3.2)

Typically w is a non-negative decreasing function on (0,+∞) that blows up at x = 0
and locally integrable on [0,∞). We refer to [6] for the functional setting, observing
that obviously this definition is a generalization of the Caputo fractional derivative
(see, e.g., [12]): the latter is recovered, as a special case, for w(s) = s−α

Γ (1−α)
, with

α ∈ (0, 1). Observe thatweused a quite different notation from [6] in order to underline
the connection between this generalized fractional derivative and the particular choice
of the underlyingBernstein function g.We remark that a similar probabilistic approach
to the generalized time-fractional derivatives have been developed in [23]. It is similar
but not equivalent. Hereafter, we exclude compound Poisson subordinator, namely we
assume that a = 0 and that the tail measurew(·) is infinite in the origin and absolutely
continuous on (0,+∞). Let nowHg := {Hg(t), t ≥ 0} be the subordinator with Lévy
measure ν and Laplace exponent g, i.e.

E

(
e−θHg(t)

)
= e−tg(θ), θ ≥ 0 (3.3)

(see, e.g., [1]).We denote by Eg := {Eg(t), t ≥ 0}, the inverse (or hitting-time) process
Eg(t) := inf{s > 0 : Hg(s) > t}, i.e.

{
Eg(t) ≥ s

}
=
{
Hg(s) ≤ t

}
, ∀s, t ∈ R

+. (3.4)

By the assumptions on w, the subordinator t �→ Hg(t) associated to g is strictly
increasing a.s. As a consequence, its inverse t �→ Eg(t) is continuous a.s. We recall
that the time-Laplace transform of the density of Eg(t) (with t > 0) denoted by
mg(s, t) := P

(Eg(t) ∈ ds
)
/ds reads

∫ ∞

0
e−θ tmg(s, t)dt = g(θ)

θ
e−sg(θ), θ ≥ 0, (3.5)

see, for example, Proposition 3.2 in [23].
We now consider the standard R-valued Brownian motion B, time-changed by

Eg(t), t ≥ 0 (under the assumption that B and Eg are mutually independent); i.e.
{B(Eg(t)), t ≥ 0}. Then, the density of B(Eg(t)) for a fixed t > 0, is given by

�g(x, t) =
∫ +∞

0

e− x2
2y

√
2π y

mg(y, t)dy, x ∈ R. (3.6)
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250 L. Beghin and A. De Gregorio

Then, for all t > 0, we can define on D, the following complex integral

Wg
t f (z) :=

∫
R

f (ze−iu)�g(u, t)du, z ∈ D, (3.7)

where �g is given in (3.6). The following stochastic interpretation of (3.7) emerges

Wg
t f (z) = E f (Bz

g(t)), (3.8)

where
Bz

g := {Bz
g(t), t ≥ 0} := {ze−i B(Eg(t)), t ≥ 0}, (3.9)

is the time-changed circular Brownianmotionmoving on a circlewith radius r ∈ (0, 1]
with starting point z, obtained from the wrapped up process Bz introduced in the
previous section. We observe that

Wg
t f (z) = E[WEg(t) f (z)] =

∫ ∞

0
Wy f (z)mg(y, t)dy,

that is, Wg
t arises by the time-changing of the C0-semigroup (2.1).

We have the following analytic results concerning the convolution operator Wg
t .

Theorem 1 (i) If f ∈ A(D), then we have that for any t > 0, we have that

Wg
t : A(D) → A(D),

i.e. W g
t f (z) is analytic in D

Wg
t f (z) =

∞∑
k=0

akz
kdk(t), (3.10)

where dk(t) := E[e− k2
2 Eg(t)], and if f is continuous on D, the integral Wg

t f (z) is
continuous on D as well. Furthermore,

RθW
g
t f (z) :=

∫ ∞

0
e−θ tW g

t f (z)dt =
∞∑
k=0

akz
k d̃k(θ), θ ≥ 0,

where

d̃k(θ) := g(θ)/θ

g(θ) + k2
2

. (3.11)

(ii) Moreover, u(z, t) = Wg
t f (z) is the unique solution, belonging to A(D) for any

t ≥ 0, of the Cauchy problem

(
D

g
t + b

∂

∂t

)
u(z, t) = 1

2

∂2u

∂ϕ2 (z, t),
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Stochastic solutions for time-fractional... 251

(t, z) ∈ (0,∞) × D \ {0}, z = reiϕ, 0 < r < 1, (3.12)

u(z, 0) = f (z), f (z) ∈ A(D), z ∈ D. (3.13)

Proof (i) The representation (3.10) follows by considering that f (z) ∈ A(D)

and by taking into account (3.6) together with (3.5). Indeed, since f (ze−iu) =∑∞
k=0 akz

ke−iuk, z ∈ D, is absolutely convergent, we can write

Wg
t f (z) =

∞∑
k=0

akz
k
E[e−ikB(Eg(t))]

=
∞∑
k=0

akz
k
∫
R

e−iku�g(u, t)du

=
∞∑
k=0

akz
k
∫ +∞

0

1√
2π y

mg(y, t)dy
∫
R

e−iku e− u2
2y du

=
∞∑
k=0

akz
k
∫ +∞

0
e− k2 y

2 mg(y, t)dy

=
∞∑
k=0

akz
k
E(e− k2

2 Eg(t)).

By using the same arguments in [9], it is possible to prove that if zn, z0 ∈ D, with
limn→∞ zn = z0, we get

|Wg
t f (zn) − Wg

t f (z0)| ≤
∫
R

ω1( f ; |zn − z0|)D �g(u, t)du

= ω1( f ; |zn − z0|)D,

where ω1( f ; δ)D := sup{| f (u) − f (v)|; |u − v| ≤ δ, u, v ∈ D} is the modulus of
continuity of f . Then if f is continuous on D, the integral Wg

t f (z) is continuous on
D, as n → ∞.

From (3.10) and by exploiting (3.5), we obtain that

RθW
g
t f (z) =

∞∑
k=0

akz
k
∫ ∞

0
e−θ t

E(e− k2
2 Eg(t))dt

=
∞∑
k=0

akz
k g(θ)/θ

k2
2 + g(θ)

.

(ii) From Theorem 2.1 in [6], we can observe that: 1) Dg
t W

g
t f (z) is well-defined

since the integral appearing in the definition of Dg
t is absolutely convergent in the

Banach space (A(D), || · ||); 2) for b > 0, t �→ Wg
t f (·) is globally Lipschitz in

(A(D), || · ||) and then ∂
∂t W

g
t f (·) exits in (A(D), || · ||) for a.s. t ≥ 0. In order to
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252 L. Beghin and A. De Gregorio

prove that (3.10) coincides with the solution of (3.12) with initial condition (3.13) we
take the time-Laplace transform of both sides of (3.12). By applying the result (2.18)
in [21], on the Laplace transform of the generalized derivative (3.2), we obtain

L
{
D

g
t W

g
t f (z) + b

∂

∂t
W g

t f (z); θ

}
= g(θ)RθW

g
t f (z) − g(θ)

θ
f (z)

= g(θ)

∞∑
k=0

akz
k d̃k(θ) − g(θ)

θ
f (z)

= g(θ)

θ

[ ∞∑
k=0

akzkg(θ)

g(θ) + k2
2

− f (z)

]
(3.14)

and

1

2

∂2

∂ϕ2L{Wg
t f (z); θ} = 1

2

∂2

∂ϕ2

∞∑
k=0

akz
k d̃k(θ)

= −1

2

g(θ)

θ

∞∑
k=0

akk2zk

k2
2 + g(θ)

. (3.15)

Furthermore, from (3.10), it is easy to prove that

Wg
0 f (z) = f (z). (3.16)

The result follows by considering (3.14), (3.15) and (3.16) together and taking into
account that f (z) =∑∞

k=0 akz
k . 
�

Remark 1 In Theorem 1, we proved that u(t, z) = Wg
t f (z) is the classical solution

with u ∈ C∞([0,∞); A(D)). Actually, it is also possible to prove that u(t, z) is the
unique strong solution of the fractional Cauchy problem (3.12)-(3.13) (see Theorem
2.1 in [6] for the exact statement).

4 Time-changed wrapped Brownianmotion

“Letz = 1”, by exploiting the theory of wrapped distribution, for any t > 0 we can
write down the probability density of Bg(t) := ei B(Eg(t)), t ≥ 0,

μBg (ϕ, t) := P(Bg(t) ∈ dϕ)

dϕ
=

∞∑
k=−∞

�g(ϕ + 2kπ, t), ϕ ∈ [0, 2π).
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The probability distribution on a circle is characterized by its Fourier coefficients (see
[7], Theorem XIX 6.1). In our case, for k ∈ N, we have that

φt
k :=

∫ 2π

0
eikϕμBg (ϕ, t)dϕ =

∞∑
k=−∞

∫ 2π(k+1)

2kπ
eikϕ�g(ϕ, t)dϕ

= E[eikB(Eg(t))] = E[e− k2Eg (t)
2 ]

= dk(t).

Therefore,

μBg (ϕ) = 1

2π

∞∑
k=−∞

φt
ke

−ikϕ

= 1

2π

(
1 + 2

∞∑
k=1

dk(t) cos(kϕ)

)
.

We now evaluate the Laplace transform of the first moments of Bg(t) by apply-
ing the results on the joint moments of the inverse subordinators given in [24].
In particular, we recall that, for the Laplace transform of Kt1,...,tn (s1, ..., sn) :=
P
(Eg(t1) > s1, ..., Eg(tn) > sn

)
, the following formula holds

K̃θ1,...,θn (s1, ..., sn) :=
∫ ∞

0
...

∫ ∞

0
e−θ1t1...−θn tn Kt1,...,tn (s1, ..., sn)dt1...dtn

= 1
n∏
j=1

θ j

exp

⎧⎨
⎩−

n∑
j=1

g

⎛
⎝ n∑

k= j

θ j(n)

⎞
⎠(s j(i) − s j(i−1)

)
⎫⎬
⎭ , (4.1)

where θ1, ..., θn > 0, 0 = s j(0) ≤ s j(1) ≤ ... ≤ s j(n) and j(1), ..., j(n) is a permuta-
tion of the integers 1, ..., n (by convention j(0) = 0).

Theorem 2 The Laplace transform of the moments of the process Bg is equal to

L {E [Bg(t)
]r ; θ

} = 2g(θ)

θ(r + 2g(θ))
, θ > 0, t ≥ 0, r ∈ N (4.2)

and

L {E(Bg(t1)Bg(t2)); θ1, θ2
}

= 4g(θ1)g(θ2)[g(θ1 + θ2) + 2] + 3[g(θ1) + g(θ2) − g(θ1 + θ2)]
θ1θ2 [2 + g(θ1 + θ2)] (3 + 2g(θ1))(1 + 2g(θ2))

, (4.3)

for 0 ≤ t1 < t2 and θ1, θ2 > 0.
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254 L. Beghin and A. De Gregorio

Proof The r -th moment in (4.2) can be easily obtained by a conditioning argument
and by considering (3.3):

V (t) := E

[
ei B(Eg(t))

]r = E

[
E

[
eir B(Eg(t))

∣∣∣ Eg(t)
]]

= Ee− r
2Eg(t) =

∫ +∞

0
e− rs

2 mg(s, t)ds.

Then, by taking the time-Laplace transform and considering (4.5), we have that, for
θ > 0,

Ṽ (θ) =
∫ +∞

0
e−θ t V (t)dt =

∫ +∞

0
e− rs

2 m̃g(s, θ)ds = g(θ)

θ(r/2 + g(θ))
,

where m̃g(s, θ) := ∫ +∞
0 e−θ tmg(s, t)dt . In order to prove formula (4.3), we write

V (t1, t2) := E
[
Bg(t1)Bg(t2)

]
= Eei B(Eg(t1))+i B(Eg(t2)) = E

[
E

[
ei B(Eg(t1))+i B(Eg(t2))

∣∣∣ Eg(t1), Eg(t1)
]]

= Ee− 1
2 [Eg(t1)+Eg(t2)+2min{Eg(t1),Eg(t2)}]. (4.4)

We start by evaluating, for any η1, η2 > 0

Vη1,η2(t1, t2) = Ee−η1Eg(t1)−η2Eg(t2)

=
∫ +∞

0

∫ +∞

0
e−η1s1−η2s2 ∂2

∂s1∂s2
Kt1,t2(s1, s2)ds1ds2

= [by repeatedly integrating by parts]
= Kt1,t2(0, 0) − η1

∫ +∞

0
e−η1s1Kt1,t2(s1, 0)ds1

− η2

∫ +∞

0
e−η2s2Kt1,t2(0, s2)ds2

+ η1η2

∫ +∞

0

∫ +∞

0
e−η1s1−η2s2Kt1,t2(s1, s2)ds1ds2.

We now consider that Kt1,t2(0, 0) = P
(Eg(t1) > 0, Eg(t2) > 0

) = 1 and that
Kt1,t2(s1, 0) = P

(Eg(t1) > s1
)
, so that we can write

∫ +∞

0
e−ηs1Kt1,t2(s1, 0)ds1 =

∫ +∞

0
e−ηs1P

(Eg(t1) > s1
)
ds1

= 1

η

[
1 − m̃g(η, t1)

]
,
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and analogously for Kt1,t2(0, s2). Therefore, we get

Vη1,η2(t1, t2) = m̃g (η1, t1) + m̃g (η2, t2) − 1

+ η1η2

∫ +∞

0

∫ +∞

0
e−η1s1−η2s2Kt1,t2(s1, s2)ds1ds2. (4.5)

In order to apply (4.1), we evaluate the Laplace transform of (4.5), with respect to the
time variables:

Ṽη1,η2(θ1, θ2) :=
∫ +∞

0

∫ +∞

0
e−θ1t1−θ2t2Vη1,η2(t1, t2)dt1dt2

= 1

θ2
˜̃mg (η1, θ1) + 1

θ1
˜̃mg (η2, θ2) − 1

θ1θ2

+ η1η2

∫ +∞

0

∫ +∞

0
e−η1s1−η2s2 K̃θ1,θ2(s1, s2)ds1ds2, (4.6)

where ˜̃mg (η, θ) := ∫ +∞
0 e−ηsm̃g(s, θ)ds. On the other hand, we can rewrite the last

integral in (4.6), by applying (4.1), as follows

1

θ1θ2

∫ +∞

0

∫ +∞

s1
e−η1s1−η2s2e−s1[g(θ1+θ2)−g(θ2)]−s2g(θ2)ds1ds2

+ 1

θ1θ2

∫ +∞

0

∫ s1

0
e−η1s1−η2s2e−s2[g(θ1+θ2)−g(θ1)]−s1g(θ1)ds1ds2

= 1

θ1θ2

∫ +∞

0

∫ +∞

s1
e−[η1+g(θ1+θ2)−g(θ2)]s1−[η2+g(θ2)]s2ds1ds2

+ 1

θ1θ2

∫ +∞

0

∫ +∞

s2
e−[η1+g(θ1)]s1−[η2+g(θ1+θ2)−g(θ1)]s2ds1ds2

= 1

θ1θ2

[∫ +∞

0

∫ +∞

s1
e−s1A1−s2B2ds1ds2 +

∫ +∞

0

∫ +∞

s2
e−s1B1−s2A2ds1ds2

]

= 1

θ1θ2

[
1

B2(A1 + B2)
+ 1

B1(A2 + B1)

]
,

wherewe put Ai := ηi+g(θ1+θ2)−g(θ j ), for i, j = 1, 2 and i �= j , Bi := ηi+g(θi ),
for i = 1, 2. We consider that A1 + B2 = A2 + B1 = η1 + η2 + g(θ1 + θ2), so that
we can write (4.6), by recalling (4.5), as

Ṽη1,η2(θ1, θ2) = 1

θ1θ2

[
g(θ1)

η1 + g(θ1)
+ g(θ2)

η2 + g(θ2)
− 1

]

+ η1η2

θ1θ2

η1 + η2 + g(θ1) + g(θ2)

[η1 + η2 + g(θ1 + θ2)] [η1 + g(θ1)] [η2 + g(θ2)]
. (4.7)
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By taking into account that Hg is a.s. increasing and its inverse Eg is a.s. non-
decreasing, so that min{Eg(t1), Eg(t2)} = Eg(t1) a.s., for t2 > t1, formula (4.3) follows
from (4.7), with η1 = 3/2 and η2 = 1/2, after some algebraic calculations. 
�

We are also able to give an integral representation for the mixed moment
E[Bg(t)Bg(s)], for t, s ≥ 0.

Theorem 3 Let Ug(τ ) := E[Eg(τ )], τ ≥ 0 and E[(Eg(t))k] < ∞, k ∈ N, then

E[Bg(t)Bg(s)] = EBg(t ∨ s) + 1

2

∫ t∧s

0
EBg(t ∨ s − τ)dUg(τ ) (4.8)

for t, s ≥ 0 and t �= s, while E[Bg(t)Bg(t)] = 1.

Proof Let t > s and denoting Ug(s, t; k, j) := E[(Eg(s))k(Eg(t)) j ], s, t ≥ 0, k, j ∈
N, we can write down

E[Bg(t)Bg(s)] = E[ei(B(Eg(t))−B(Eg(s)))]
= E[[ei(B(Eg(t))−B(Eg(s)))|Eg(t), Eg(s)]]
= E[e− 1

2 (Eg(t)−Eg(s))]

=
∞∑
k=0

1

k!
(

−1

2

)k

E[(Eg(t) − Eg(s))k]

=
∞∑
k=0

1

k!
(

−1

2

)k k∑
j=0

(−1)k− j
(
k

j

)
E

[
(Eg(t)) j (Eg(s))k− j

]

=
∞∑
k=1

1

k!
(

−1

2

)k k−1∑
j=0

(−1)k− j
(
k

j

)
Ug(s, t; k − j, j)

+
∞∑
k=0

1

k!
(

−1

2

)k

E

[
(Eg(t))k

]

=
∞∑
k=1

1

k!
(

−1

2

)k k−1∑
j=0

(−1)k− j
(
k

j

)
Ug(s, t; k − j, j) + Ee− 1

2Eg(t),

(4.9)

where we have singled out the term j = k in the second summation, since it must
be treated separately (in view of its different behavior for s = 0). Now we use the
recursive representation of the moments given by Theorem 4.2, [24], so that (4.9) can
be rewritten as follows

E[Bg(t)Bg(s)] =
∞∑
k=1

1

k!
(

−1

2

)k k−1∑
j=0

(−1)k− j
(
k

j

)

123



Stochastic solutions for time-fractional... 257

×
∫ s

0
(k − j)Ug(s − τ, t − τ ; k − j − 1, j)dUg(τ )

+
∞∑
k=1

1

k!
(

−1

2

)k k−1∑
j=0

(−1)k− j
(
k

j

)

×
∫ s

0
jUg(s − τ, t − τ ; k − j, j − 1)dUg(τ ) + EBg(t)

=: I1 + I2 + EBg(t). (4.10)

The first term in (4.10) can be treated as follows

I1 =
∞∑
k=1

1

k!
(

−1

2

)k k−1∑
j=0

(−1)k− j
(
k

j

)

×
∫ s

0
(k − j)Ug(s − τ, t − τ ; k − j − 1, j)dUg(τ )

=
∞∑
k=1

1

(k − 1)!
(

−1

2

)k k−1∑
j=0

(−1)k− j
(
k − 1

j

)

×
∫ s

0
E

[
(Eg(t − τ)) j (Eg(s − τ))k−1− j

]
dUg(τ )

= 1

2

∞∑
l=0

1

l!
(

−1

2

)l l∑
j=0

(−1)l− j
(
l

j

)∫ s

0
E

[
(Eg(t−τ)) j (Eg(s−τ))l− j

]
dUg(τ )

= 1

2

∫ s

0
E

[
Bg(t − τ)Bg(s − τ)

]
dUg(τ ),

while the second one reads

I2 =
∞∑
k=1

1

k!
(

−1

2

)k k−1∑
j=0

(−1)k− j
(
k

j

)

×
∫ s

0
jUg(s − τ, t − τ ; k − j, j − 1)dUg(τ )

=
∞∑
k=2

1

(k − 1)!
(

−1

2

)k k−1∑
j=1

(−1)k− j
(
k − 1

j − 1

)

×
∫ s

0
E

[
(Eg(t − τ)) j−1(Eg(s − τ))k− j

]
dUg(τ )

=
∞∑
k=2

1

(k − 1)!
(

−1

2

)k k−2∑
m=0

(−1)k−m−1
(
k − 1

m

)

×
∫ s

0
E

[
(Eg(t − τ))m(Eg(s − τ))k−m−1

]
dUg(τ )
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= −1

2

∞∑
k=2

1

(k − 1)!
(

−1

2

)k−1 ∫ s

0
E

[(Eg(t − τ) − Eg(s − τ)
)k−1

]
dUg(τ )

+ 1

2

∞∑
k=2

1

(k − 1)!
(

−1

2

)k−1 ∫ s

0
E

[
(Eg(t − τ))k−1

]
dUg(τ )

= −1

2

∫ s

0
E

[
Bg(t − τ)Bg(s − τ)

]
dUg(τ ) + 1

2

∫ s

0
EBg(t − τ)dUg(τ ).

The result follows by inserting I1 and I2 into (4.10) and treating the case s > t
analogously. 
�

Wenowprove that thewrappedBrownianmotionBg(t) can be obtained as a scaling

limit of a transformed continuous-time random walk on a circle. Let us denote by
J1�⇒

the convergence in the J1 topology and by
M1�⇒ the convergence in the M1 topology

in the Skorohod space D([0, T ),Rd), for T > 0 and d = 1, 2, ... (see [25] and [19]
for details on J1 and M1 topologies).

Theorem 4 Let c > 0 and let Y (c)
j , j = 1, 2, ..., be i.i.d. random variables with

finite moments and scale parameter c. Let moreover J (c)
j , j = 1, 2, ..., be i.i.d. ran-

dom variables, independent of Y (c)
j , for any j = 1, 2, ..., and for any c>0 and such

that {T (c)(ct), t ≥ 0} :=
{∑[ct]

j=1 J
(c)
j , t ≥ 0

}
J1⇒ {Hg(t), t ≥ 0} as c → +∞, in

D([0,+∞),R+). Then

{
ei
∑N (c)

t
j=1 Y (c)

j , t ≥ 0

}
M1�⇒ {Bg(t), t ≥ 0}, c → +∞, (4.11)

in D([0,+∞),S1), where N (c)
t := max{n ≥ 0 : T (c)(n) ≤ t}.

Proof The convergence in (4.11) follows by the application of Theorem 2.1 and
Corollary 2.4 in [18], in the special case where A(t) = B(t), t ≥ 0 : indeed, let
Disc(x) be the set of discontinuities of x , the assumption that Disc ({A(t)}t≥0)∩ Disc
(
{Hg(t)

}
t≥0) = ∅ a.s. is automatically satisfied because, as well-known, it is always

possible to choose a version of Brownian motion such that its trajectories are contin-
uous with probability one. Moreover, the Lévy measure ofHg is infinite on [0,+∞)

by assumption. By the independence of J (c)
j and Y (c)

j , for any j = 1, 2... and by the
functional central limit theorem, we have that

⎧⎨
⎩

[ct]∑
j=1

Y (c)
j , T (c)(ct), t ≥ 0

⎫⎬
⎭

J1⇒ {
B(t),Hg(t), t ≥ 0

}
, c → +∞,
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in the J1 topology on D([0,+∞),R × R
+). Therefore, by the above mentioned

Theorem 2.1 in [18], the following convergence holds

⎧⎪⎨
⎪⎩

N (c)
t∑

j=1

Y (c)
j , t ≥ 0

⎫⎪⎬
⎪⎭

M1⇒ {B(Eg(t)), t ≥ 0}, c → +∞,

in the M1 topology on D([0,+∞),R). The result finally follows by applying the
continuous mapping theorem to the function φ(·) : R → C defined as φ(x) = eix ,
x ∈ R. 
�

4.1 The stable case

For g(θ) = θα , α ∈ (0, 1), formula (3.1) holds for a = 0 and b = limθ→+∞ g(θ)/θ

= 0. Moreover, the process Eg(t) reduces to the inverse of the α-stable subordinator
(see e.g. [20]) and the operatorDg

t coincideswith theCaputo time-fractional derivative
of order α, namely ∂α/∂tα . In this case, if we denote Wg

t as Wα
t , we have that

Wα
t ( f )(z) = 1

tα/2

∫
R

f
(
zeiu

)
W− α

2 ,1− α
2

(
− |u|
tα/2

)
du, (4.12)

where

Wβ,γ (x) =
∞∑
k=0

xk

k!Γ (βk + γ )
,

is the Wright function, defined for β, γ, x ∈ C. The representation (4.12) follows by
the fact that the fundamental solution of the time-fractional diffusion equation

∂α

∂tα
u(x, t) = 1

2

∂2

∂x2
u(x, t), (4.13)

involving Caputo time-fractional derivatives of order α ∈ (0, 1) is given by

u(x, t) = 1

tα/2W−α/2,1−α/2

(
− |x |
tα/2

)
, (4.14)

see for example [15].
Then, in this case, as a consequence of Theorem 1, we have the following result.

Corollary 1 Let Eα(x) :=
∞∑
j=0

x j

Γ (α j + 1)
, for x, α ∈ C, if f (z) ∈ A(D), then we

have on D that

Wα
t f (z) = E f

(
zei B(Eα(t))

)
=
∫
R

f
(
zeiu

)
�α(u, t)du =

∞∑
k=0

akdk(t)z
k,
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where dk(t) = Eα

(
− k2tα

2

)
, α ∈ (0, 1), Eα(t) is the inverse of the α-stable sub-

ordinator and �α is the probability density of the time-changed Brownian motion
Bα(t) := B(Eα(t)).

Moreover, Wα
t f (z) is the unique solution u(z, t) for the fractional Cauchy problem

∂αu

∂tα
(z, t) = 1

2

∂2u

∂ϕ2 (z, t),

(z, t) ∈ R
+ × D, z = reiϕ, r ∈ (0, 1), ϕ ∈ [0, 2π) (4.15)

u(z, 0) = f (z), z ∈ D, f ∈ A(D). (4.16)

Remark 2 Observing that, for α = 1/2 the following equality in distribution holds

B(Eα(t))
d= B1(|B2(t)|), (4.17)

where B1 and B2 are independent, we have that

W 1/2
t f (z) = E f

(
zei B1(|B2(t)|)

)
(4.18)

coincides with the solution to (4.16), for α = 1/2. Therefore, in this special case, we
have an iterated Brownian motion on the circle.

Remark 3 In the stable case, i.e. for g(θ) = θα , the inverse transform of the r -th
moment given in (4.2) can be easily obtained and reads

E [Bα(t)]r = Eα

(
− r

2
tα
)

, r ∈ N.

Moreover, we can evaluate explicitly the mixed moment in (4.9), by recalling that
Ug(τ ) = EEα(τ ) = τα/Γ (α +1) and that EBα(τ ) = Eα(−τα/2), so that, for s < t ,
we get

E[Bα(t)Bα(s)] = Eα

(
− tα

2

)
+ α

2Γ (α + 1)

∫ s

0
Eα

(
− (t − τ)α

2

)
τα−1dτ

= Eα

(
− tα

2

)
+ tα

2Γ (α)

∫ s/t

0
Eα

(
− tα(1 − y)α

2

)
yα−1dy

= Eα

(
− tα

2

)
+ tα

2Γ (α)

∞∑
j=0

(−tα/2) j

Γ (α j + 1)
B (α j + 1, α; s/t) ,

where B(a, b; x) := ∫ x0 za−1(1− z)b−1dz is the incomplete beta function. Since, for
s → t , the previous expression reduces to one, we can write, for any s, t ≥ 0,

E[Bα(t)Bα(s)] = Eα

(
− (t ∨ s)α

2

)
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+ (t ∨ s)α

2Γ (α)

∞∑
j=0

(−(t ∨ s)α/2) j

Γ (α j + 1)
B (α j + 1, α; (t ∧ s)/(t ∨ s)) .

Finally, it is easy to check that, for α = 1, (4.8) reduces to e−[t∨s−t∧s]/2 as it should
be, since, in this case Eα(t) = t , a.s. for any t ≥ 0.

4.2 The tempered stable case

For g(θ) = (θ + μ)α − μα , for θ, μ ≥ 0, a = b = 0, and the process Eg(t) reduces
to the inverse of the tempered stable subordinator (in the next ET (t)) and the operator
D

g
t coincides with the tempered derivative (see e.g. [2] and [3]) denoted by

Dα,μ
t f (t) := e−μt ∂α

∂tα
(eμt f (t)) − μα f (t) =

(
μ + d

dt

)α

f (t). (4.19)

Since in this case the tail Lévy measure is given by

w(s) = αμαΓ (−α,μs)

Γ (1 − α)
, (4.20)

where

Γ (ρ, x) =
∫ +∞

x
e−ωωρ−1dω,

is the upper incomplete gamma function. The tempered derivative (4.19) can be also
expressed in a convolution form, as follows

Dα,μ
t f (t) = αμα

Γ (1 − α)

∫ t

0

∂

∂z
f (t − z)Γ (−α,μz)dz. (4.21)

Corollary 2 Let Wg
t be denoted as Wα,μ

t , for g(θ) = (θ +μ)α −μα , then the complex
integral

Wg
t f (z) =

∫
R

f
(
zeiu

)
�α,μ(u, t)du =

∞∑
k=0

akz
kdk(t), (4.22)

where �α,μ is the probability density of the time-changed Brownian motion B(ET (t))
and

dk(t) = 1

Γ (α)

∫ t

0
Γ (α;μ(t − z))

e−μz

z
Eα,0

(
(μα − k2

2
)zα
)
dz (4.23)

is the unique solution of the fractional Cauchy problem

Dα,μ
t u(z, t) = 1

2

∂2u

∂ϕ2 (z, t), (4.24)

(z, t) ∈ D × R
+, z = reiϕ, r ∈ (0, 1), ϕ ∈ [0, 2π)
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u(z, 0) = f (z), z ∈ D, f ∈ A(D). (4.25)

Proof The result follows by using Theorem 1 and by inverting the Laplace transform

d̃k(θ) = (θ + μ)α − μα

θ [(θ + μ)α − μα + k2
2 ]

. (4.26)

This can be done by applying the well-known formula of the Laplace transform of the
two-parameter Mittag-Leffler function (see e.g. [11]) and recalling that (see [4])

L{Γ (α;μx); θ} = (μ + θ)α − μα

θ(μ + θ)α
. (4.27)


�
Remark 4 Note that, in the special case μ = 0, the expression of dk(t) reduces, for
any k ∈ N and t ≥ 0 to

dk(t) =
∫ t

0

1

z
Eα,0

(
−k2

2
zα
)
dz = Eα,1

(
−k2

2
tα
)

, (4.28)

which coincides with the stable case.

5 Higher dimensional extensions

Following [8,9], we can also consider the n-dimensional fractional Cauchy problem
extending (3.12)-(3.13). In this case, the probabilistic interpretation of the solution for
the complexified multidimensional fractional heat equation can be obtain by means of
n-dimensional Brownian motions time changed with the inverse of the subordinator
{Eg(t), t ≥ 0}.

Let z1, z2, . . . , zn ∈ D and f (z1, z2, . . . , zn) ∈ A(Dn), which means that
f (z1, z2, ..., zn) belongs to A(D) for each complex variable z1, z2, ..., zn . Let us deal
with the arguments developed in Section 3 and extend them to the multidimensional
case. Let us introduce the following complex integral

W
g
t f (z1, z2, . . . , zn)

= 1

(2π)n/2

∫ +∞

−∞
. . .

∫ +∞

−∞
f (z1e

−iu1 , . . . zne
−iun )du1 · · · dun

×
∫ +∞

0

e− u21+u22 ···+u2n
2y

yn/2 mg(y, t)dy

= E f
(
z1e

−i B1(Eg(t)), z2e−i B2(Eg(t)), . . . , zne−i Bn(Eg(t))
)

= E f
(
B

z1
1,g(t),B

z2
2,g(t), . . . ,B

zn
n,g(t)

)
, (5.1)
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for z1, z2, · · · , zn ∈ D.Furthermore,Bzk
k,g(t) := zke−i Bk (Eg(t)) with zk = rkeiϕk , rk ∈

(0, 1], ϕk ∈ [0, 2π), and {Bk(t), t ≥ 0}, are independent standard Brownian motion
for k = 1, 2, ..., n. Therefore, the time-changed process

Bz1,...,zn
g :=

{(
B

z1
1,g(t),B

z2
2,g(t), . . . ,B

zn
n,g(t)

)
, t ≥ 0

}

represents a n-dimensional wrapped Brownian motion on the n-dimensional circle
S
n := Sr1 × · · · × Srn , where the coordinate processes are the circular Brownian

motions (3.9) with random time Eg(t) (and then they are not independent). Therefore,
simple calculations show that Bz1,...,zn

g has covariance matrix with entries

qi, j = E[Bzi
i,g(t)B

z j
j,g(t)] − E[Bzi

i,g(t)]E[Bz j
j,g(t)]

=
⎧⎨
⎩
zi z j {E[e−2Eg(t)] − (E[e−Eg (t)

2 ])2}, i �= j,

zi zi {1 − (E[e−Eg (t)
2 ])2}, i = j .

Now, we recall that, by the multivariate Taylor’s expansion, we can write

f (z1, ..., zn) =
∞∑

k1,...,kn=0

ak1,...,kn z
k1
1 · · · zknn .

Then, we have the following result representing the multidimensional version of The-
orem 1.

Theorem 5 (i) If f ∈ A(Dn), then we have that the complex integral (5.1) can be
written as

W
g
t f (z1, z2, ..., zn) =

∞∑
k1,...,kn=0

ak1,...,kn z
k1
1 · · · zknn dk1,...,kn (t), (5.2)

where dk1,...,kn (t) = E[e−Eg (t)
2

∑n
j=1 k

2
j ]. Furthermore

RθW
g
t f (z1, z2, ..., zn) :=

∫ ∞

0
e−θ tW

g
t f (z1, z2, ..., zn)dt (5.3)

=
∞∑

k1,...,kn=0

ak1,...,kn z
k1
1 · · · zknn d̃k1,...,kn (t),

where

d̃k1,...,kn (θ) = g(θ)/θ

g(θ) + (k21 + ... + k2n)/2
. (5.4)
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(ii) Let t > 0, f ∈ A(Dn) and z1, ..., zn ∈ D. The integral operator (5.1) is the
unique solution

u(z1, z2, . . . , zn, t) = W
g
t f (z1, z2, ..., zn)

(that belongs to A(D) for each complex variable zk) of the fractional Cauchy problem

D
g
t u(z1, z2, . . . , zn, t) = 1

2

[
∂2

∂ϕ2
1

+ ... + ∂2

∂ϕ2
n

]
u(z1, z2, . . . , zn, t), (5.5)

z1 = r1e
iϕ1 , ..., zn = rne

iϕn ∈ D \ {0},
u(z1, z2, . . . , zn, 0) = f (z1, z2, . . . , zn), (5.6)

where ϕk is the principal value of zk .

Proof (i) The representation (5.2) follows by writing (5.1) as follows

W
g
t f (z1, z2, · · · , zn)

=
∞∑

k1,...,kn=0

ak1,...,kn z
k1
1 · · · zknn

∫ +∞

−∞
dun . . .

∫ +∞

−∞
du1e

−i
∑n

j=1 u j k j

×
∫ +∞

0

e− u21+u22 ···+u2n
2y

(2π y)n/2 mg(y, t)dy

=
∞∑

k1,...,kn=0

ak1,...,kn z
k1
1 · · · zknn E[e−i

∑n
j=1 k j B j (Eg(t))]

=
∞∑

k1,...,kn=0

ak1,...,kn z
k1
1 · · · zknn E[e−Eg (t)

2

∑n
j=1 k

2
j ].

Since the time-Laplace transform of Ee−i
∑n

j=1 k j B j (Eg(t)) coincides with (5.4) (see,
for example, [5]), the result (5.3) holds true.

(ii) Analogously to the one-dimensional case, we take the time-Laplace transform
of both sides of (5.5), as follows

L{Dg
t W

g
t ( f )(z1, ..., zn); θ}

= g(θ)

θ

[ ∞∑
k1=0,...,kn=0

ak1,...kn z
k1
1 ...zknn g(θ)

g(θ) + (k21 + . . . + k2n)/2
− f (z1 + ... + zn)

]
(5.7)

and

1

2

[
∂2

∂ϕ2
1

+ ... + ∂2

∂ϕ2
n

]
L{Wg

t ( f )(z1, ..., zn); θ}
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= −1

2

∞∑
k1=0,...,kn=0

g(θ)/θ

(k21+...+k2n )
2 + g(θ)

ak1,...,kn (k
2
1 + ... + k2n)z

k1
1 · · · zknn . (5.8)

Therefore (5.7), (5.8) and (5.2) allow to conclude the proof. 
�
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