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Stochastic Source Seeking by Mobile Robots
Shun-ichi Azuma, Member, IEEE, Mahmut Selman Sakar, Member, IEEE, and George J. Pappas, Fellow, IEEE

Abstract— We consider the problem of designing controllers
to steer mobile robots to the source (the minimizer) of a signal
field. In addition to the mobility constraints, e.g., posed by the
nonholonomic dynamics, we assume that the field is completely
unknown to the robot and the robot has no knowledge of
its own position. Furthermore, the unknown field is randomly
switching. In the case where the information of the field (e.g.,
the gradient) is completely known, standard motion planning
techniques for mobile robots would converge to the known
source. In the absence of mobility constraints, convergence to
the minimum of unknown fields can be pursued using the
framework of numerical optimization. By considering these facts,
this paper exploits an idea of the stochastic approximation for
solving the problem mentioned in the beginning and proposes a
source seeking controller which sequentially generates the next
waypoints such that the resulting discrete trajectory converges
to the unknown source and which steers the robot along the
waypoints, under the assumption that the robot can move to
any point in the body fixed coordinate frame. To this end, we
develop a rotation-invariant and forward-sided version of the
simultaneous-perturbation stochastic approximation algorithm as
a method to generate the next waypoints. Based on this algorithm,
we design source seeking controllers. Furthermore, it is proven
that the robot converges to a small set including the source in
a probabilistic sense if the signal field switches periodically and
sufficiently fast. The proposed controllers are demonstrated by
numerical simulations.

Index Terms— source seeking, simultaneous-perturbation
stochastic approximation, mobile robots, nonholonomic systems.

I. INTRODUCTION

S
OURCE seeking is a mixed problem of search and

navigation as shown in Fig. 1: when a mobile robot is

placed in an environment where an unknown signal field, i.e.,

an unknown spatial profile of the signal, is introduced, find

a controller to steer the robot to the source (the unknown

minimizer) without using the position information. The field is

given by a scalar-valued function, denoted by f(x) in Fig. 1,

which could express the spatial distribution of magnetic force,

heat, or chemical concentration. The robot is navigated by only

using the measurements of the signal at the positions.

This topic will have great potential for a wide range of fu-

ture applications, including wireless communication, medical

science, security engineering, and natural resource develop-

ment. For example, the robotic suspect search is considered for
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Fig. 1. Source seeking problem.

the concentration field of a smell substance, and the landmine

search is done for a magnetic field (where the strongest signal

point is regarded as the minimizer of a function quantifying

the weakness field). Another possible application is the robotic

pinpoint dose for avoiding side effects, where, instead of

diffusing a medicine in the body, the medicine is directly sent

to invisible tumor cells by a micro robot. In this case, a protein

concentration field is used (related techniques are found in e.g.,

[1], [2]).

Currently, there are three main approaches to the problem.

In [3]–[5], mathematical programming based methods have

been provided, where a gradient type controller and a hybrid

controller have been given. An approach based on random

walk has been proposed in [6]. There, it has been shown that

the probability distribution on the robot position converges

to a desired function. The extremum seeking technique [7],

originally developed for adaptive control, has been applied

in [8]–[14]. Apart from these approaches, related problems

have been discussed in [15]–[20], where, unlike the situation

considered here, it is assumed that the position information is

available for the navigation, or the problems do not include

any control issue of mobile robots.

Here, we are interested in the stochastic source seeking,

which involves a randomly switching field. This is motivated

by the following fact. Although switching fields appear in

many applications, such a situation has never been handled

so far, except for a mathematically similar case with noisy

signal fields [13]. An example with a switching field is the

base station placement for wireless communication, which is

to find the best location in terms of the terminal density. In this

case, the signal field corresponds to the radio field made by a

number of terminal units, which randomly switches depending

on their usage, and the source is, for example, the strongest

signal point in an expectation sense. This example is closely

related to sensor networks, which is an actively studied topic

in recent years, where the terminal units correspond to sensor

nodes, and each node switches its own state between the active

mode and the sleep mode for energy saving.

This paper thus establishes a framework of stochastic source

seeking by mobile robots. Our approach is to find a controller
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which sequentially generates the next waypoints such that

the resulting discrete trajectory converges to the unknown

source and which steers the robot along the waypoints, under

the assumption that the robot can move to any point in the

body fixed coordinate frame. Here, the idea of a stochastic

approximation technique, called the simultaneous-perturbation

stochastic approximation (SPSA) [21], is utilized to obtain the

waypoints. The contributions of this paper are summarized as

follows.

First, we extend the SPSA algorithm to an appropriate

form for the source seeking by mobile robots. Since the

original algorithm generates the waypoints based on the world

coordinate frame, it is impossible to drive the robot along

the waypoints without a position sensor. In contrast, the new

algorithm provides the waypoints in a time-varying coordinate

frame, which fits the sensor-free navigation. Based on this, we

present source seeking controllers composed of point-to-point

controllers. It is then proven that the controllers drive the robot

to a small set including the source with probability 1 if the

field switches periodically and faster than the measurement

period of the signal.

Second, simple source seeking controllers are presented for

two- and three-dimensional nonholonomic robots by exploiting

a special structure. This shows that the stochastic source

seeking is achieved by repeating two actions: a random turn

and a forward/backward move.

It should be stressed that this paper does not just apply an

existing optimization method to the source seeking problem.

In fact, it is not true that any optimization method can be

employed, because the optimization method for our problem

must have the following properties: (i) the method uses the

measurements of the function f , instead of the explicit form

of f and ∇f (see Fig. 1), (ii) the number of measurements has

to be small for efficiency, (iii) the method can handle stochastic

switching fields, and (iv) the waypoints given by the method

can be followed by the robot with no position sensor. In

this paper, by focusing on these points, the SPSA algorithm

[21] is picked from a number of optimization techniques,

and is extended to a suitable version for the source seeking.

It is also noted that, as a first step to the source seeking

with stochastically switching fields, we mainly consider a

somewhat limited case, where the fields switch periodically

and sufficiently fast. This may limit possible applications,

but the paper will be a basis in developing stochastic source

seeking methods for more general cases.

This paper is organized as follows. In Section II, the

stochastic source seeking problem is formulated and the idea

for the solution is outlined. Next, a generalized version of the

SPSA algorithm is provided in Section III, and our source

seeking controllers are presented in Section IV. Section V

concludes this paper.

This paper is based on our earlier preliminary version [22],

and contains full explanations and proofs omitted there.

Notation: Let R, R+, R0+, and N be the real number

field, the set of positive real numbers, the set of nonnegative

real numbers, the set of nonnegative integers, respectively.

We denote by 0n×m and In (or for simplicity of notation,

0 and I) the n × m zero matrix and the n × n identity

matrix. For the vector x ∈ R
n, we use ∥x∥ and sign(x)

to express the Euclidian norm and the signum vector. If the

vector x is composed of nonzero elements, let x(−1) be the

vector composed of the elementwise inverse, i.e., x(−1) =
[x−1

1 x−1
2 · · · x−1

n ]⊤ ∈ R
n where xi is the ith element of x.

The vectorization of the matrix M is expressed by vec(M).
For the number θ ∈ R, R2(θ) is the two-dimensional rotation

matrix defined as

R2(θ) :=

[

cos θ − sin θ
sin θ cos θ

]

.

Furthermore, R3(ψ) expresses the three-dimensional rotation

matrix with the yaw, pitch, and roll specified by the vector

ψ := [ψ1 ψ2 ψ3]
⊤ ∈ R

3 in radians. Note that the matrices

are orthogonal, e.g., R2(θ)R
⊤
2 (θ) = I2, which plays an

important role in this paper. For the number a ∈ R, let

⌊a⌋ be the maximum integer less than or equal to a. The

scalar/vector/function sequence {xl, xl+1, . . . , xm} is denoted

by {xi}mi=l and, for simplicity, it is denoted by {xi} if l = 0
and m = ∞. The gradient of the scalar-valued function

f : Rn → R is denoted by ∇f(x), i.e.,

∇f(x) :=
[

∂f(x)

∂x1

∂f(x)

∂x2
· · · ∂f(x)

∂xn

]⊤

∈ R
n

where xi is the ith element of the vector x ∈ R
n. Finally,

S1⊕S2 represents the Minkowski sum of the sets S1 and S2.

II. STOCHASTIC SOURCE SEEKING PROBLEM

A. Problem Formulation

Consider the feedback system in Fig. 2, composed of

the mobile robot P , the signal field S, and the controller K.

The robot P is given by

P :







ẋ(t)

θ̇(t)

ϕ̇(t)






= G(x(t), θ(t), ϕ(t))u(t) (1)

where x(t) ∈ R
n1 and θ(t) ∈ R

n2 are the translational

and orientational positions in the world coordinate frame,

ϕ(t) ∈ R
n3 is the other state variable defined relative to

the absolute position (x(t), θ(t)) and is called the internal

posture, u(t) ∈ R
m is the control input, and G : Rn1×R

n2×
R

n3 → R
(n1+n2+n3)×m is a nonlinear function describing the

dynamics. We assume that P is in a two- or three-dimensional

space, i.e., (n1, n2) ∈ {(2, 1), (3, 3)}. It is well-known that

many drift-free mobile robots can be expressed by (1) [23].

An example of P is the Kinematic model of the nonholonomic

unicycle in Fig. 3 (a), which is described by




ẋ1(t)

ẋ2(t)

θ̇(t)



 =





cos θ(t) 0

sin θ(t) 0

0 1



u(t) (2)

where x1(t) ∈ R, x2(t) ∈ R, θ(t) ∈ R, and u(t) ∈ R
2. The

state variable ϕ for the internal posture is not required for the

unicycle but will be used for more complicated robots such

as the four-wheeled vehicle in Fig. 3 (b) where the steering

angle is expressed by ϕ.
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Fig. 2. Control system for source seeking.
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Fig. 3. Examples of mobile robots.

The signal field S is a transducer from the information on

x to a scalar signal, which is of the randomly switching form

S : y(t) = fσ(t)(x(t)) (3)

where y(t) ∈ R expresses the signal strength and fσ : Rn1 →
R are thrice differentiable functions with respect to x. Further-

more, σ(t) ∈ {1, 2, . . . , N} is the piecewise constant random

signal given as σ(t) = σi on the time interval [iη, (i + 1)η)
where i ∈ N, σi are the i.i.d. random variables from the prob-

ability distribution g : {1, 2, . . . , N} → [0, 1], and η ∈ R+ is

the switching time period. An example of S is shown in Sec-

tion IV-C. We denote by E[fσ(x)|x] the conditional expected

value
∑N

σ=1 g(σ)fσ(x), i.e., E[fσ(x)|x] =
∑N

σ=1 g(σ)fσ(x),
and we call the local minimizer(s) of E[fσ(x)|x] the source(s),

where note that σ corresponds to just a random variable drawn

from the probability distribution g. For example, if n1 := 2,

N := 2, f1(x) := x⊤x, f2(x) := (x− [0 1]⊤)⊤(x− [0 1]⊤),
g(σ) = 0.5 for σ ∈ {1, 2}, and g(σ) = 0 for σ /∈ {1, 2},

then E[fσ(x)|x] = 0.5x⊤x+0.5(x− [0 1]⊤)⊤(x− [0 1]⊤) =
x⊤x− [0 1]x+ 0.5 and the source is x = [0 0.5]⊤.

The controller K is a (causal) dynamical system which

could be a continuous-time system or a discrete-time system

with a sampler and a holder. The inputs are ϕ and y, which

means that the information on the internal posture ϕ is

available by some internal sensors of P (e.g., potentiometers)

but the absolute position (x, θ) is not.

Then we consider the following problem.

Problem 1 (Stochastic Source Seeking): For the feed-

back system in Fig. 2, suppose that P , S, and a positive

number r ∈ R+ are given, but assume that S is unknown

(i.e., the functions fσ (σ = 1, 2, . . . , N ) and the probability

distribution g are unknown). Then find a controller K seeking

a source, i.e., a K such that there exists an initial state set

X0 ∈ R
n1 satisfying

(i) X0 is a nonzero-measure set including a source in its

interior,

(ii) for every (x0, t) ∈ X0 ×R0+, ∥x(t)∥ < ∞ w.p.1 under

x(0) = x0,

(iii) for each x(0) = x0 ∈ X0, there exists a time instant

ts ∈ R+ satisfying

∥x(t)− x∗∥ ≤ r

for every t ∈ [ts,∞) w.p.1 where x∗ ∈ X0 is the source.

Several remarks on this problem are given.

First, (iii) is the condition on the convergence not to a source

but to a closed ball including a source. This is fairly standard

for source seeking problems, since the trajectories of the robot

P are often restricted by the mobility constraints (such as

nonzero velocity constraints and nonholonomic constraints)

and the convergence to a single point is often impossible. Note

here that, if the given r is smaller than a value depending upon

the mobility constraint, then it is concluded that the problem

is infeasible, i.e., there is no solution to this problem.

Next, we have no information on S except for a few assump-

tions, which poses two challenging issues in this problem.

First, even if we focus on only the static optimization problem

min
x∈Rn1

E[fσ(x)|x], (4)

typical methods, using the explicit form of E[fσ(x)|x] or

its gradient, cannot be employed (because we do not have

the expression of E[fσ(x)|x]). Namely, our attention has to

be restricted to methods only using the measurements of

fσ(t)(x(t)). Second, in the feedback system in Fig. 2, it is

impossible to estimate the absolute position of P through

the measurements of y. Thus K has to generate the control

input without using the position information, which prevents

us from applying position control methods based on the world

coordinate frame.

Finally, it is assumed in the problem that the robot P has a

single sensor to measure the signal strength (i.e., y(t) ∈ R) of

the signal field S. On the other hand, if P has multiple sensors

appropriately embedded, the gradient information of S can be

directly obtained and utilized for source seeking. Nevertheless,

this paper does not deal with such a situation, because we are

interested in the source seeking with the minimum number of

sensors.

B. Solution Idea and Preparation

The idea to solve Problem 1 is outlined as follows. As easily

imagined, Problem 1 raises two issues: the exploration of the

solution to the static problem (4), and the control of the robot.

As a solution to the former, we first present a set of stochastic

discrete trajectories (almost surely) converging to a solution

to (4). Next, we pick an appropriate stochastic trajectory from

the set and give a controller K to steer the robot along the

trajectory, which solves the latter. These will be respectively

detailed in the next two sections.

In considering the approach, some symbols are prepared

at this point. For the robot P , we often use the body fixed

coordinate frame. The frame at time τ is denoted by Σ(τ),
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i.e.,

Σ(τ) :





z(t)
ψ(t)
φ(t)



 =





Rn1
(−θ(τ))(x(t)− x(τ))

θ(t)− θ(τ)
ϕ(t)



 (5)

where t expresses a future time after τ , (z(t), ψ(t), φ(t)) ∈
R

n1 ×R
n2 ×R

n3 are the new coordinates, and Rn1
(−θ(τ))

is the n1-dimensional rotation matrix defined in Section I. If

(P1) for each (∆z,∆ψ) ∈ R
n1 × R

n2 , there exists a

control input u such that

(a) ∥z(t)∥ ≤ r1∥∆z∥ + r2∥∆ψ∥ + r3 for every

t ∈ [τ, τ +∆τ ],
(b) z(τ +∆τ) = ∆z and ψ(τ +∆τ) = ∆ψ

under the conditions z(τ) = 0 and ψ(τ) = 0

holds for some ∆τ ∈ R+ and (r1, r2, r3) ∈ R0+ × R0+ ×
R0+, we denote by

v

(

t, ∆τ, 0 →
[

∆z
∆ψ

]

, r1, r2, r3

)

(6)

a control input (function) for t ∈ [τ, τ +∆τ ] to steer the robot

P as stated in (P1). Note that (P1) corresponds to a kind of

controllability assumption, which guarantees the existence of a

point-to-point controller to steer P from the current position to

[(∆z)⊤ (∆ψ)⊤]⊤ keeping the boundedness of z(t) on the time

interval [τ, τ +∆τ ]. Note also that applying v to P results in
[

x(τ+∆τ)

θ(τ+∆τ)

]

=

[

x(τ)

θ(τ)

]

+

[

Rn1
(θ(τ))∆z

∆ψ

]

, (7)

∥x(t)−x(τ)∥ ≤ r1∥∆z∥+ r2∥∆ψ∥+ r3 (∀t ∈ [τ, τ+∆τ ])

(8)

in the world coordinate frame. A typical method to obtain the

input v is to utilize the so-called Lie bracket motion based on

periodic inputs and the accessibility distribution1 of P (see,

e.g., [24]).

III. STOCHASTIC DISCRETE TRAJECTORIES FOR

STOCHASTIC SOURCE SEEKING

To obtain stochastic discrete trajectories for the source

seeking, we employ the idea of a stochastic approximation

technique, called the simultaneous-perturbation stochastic ap-

proximation (SPSA) [21]. Since the original SPSA algorithm

is not applicable to our source seeking problem as stated in

Section I (which will be detailed in Remark 2), we extend the

original algorithm to a more suitable version.

A. Generalized Simultaneous-Perturbation Stochastic Approx-

imation

A general form of the stochastic approximation algorithm

is given by

xk+1 = xk − akd(xk, ck, ξk, δk) (9)

where xk ∈ R
n is the state, ak ∈ R+ and ck ∈ R

l
+ are the

gains, ξk ∈ R
p is the random variable introduced for solving

1The linear combination of the all Lie brackets for the column vectors of
G(x, θ, φ).

a problem, δk ∈ R
q is the variable expressing noise and

uncertainty, and d : Rn×R
l
+×R

p×R
q → R

n is the search

direction. This algorithm is closely related to the steepest

descent, which corresponds to the case d(xk, ck, ξk, δk) =
∇f(xk) for the function f : Rn → R to be minimized.

For the algorithm in (9), we propose the search direction

d(xk, ck, ξk, δk) :=

Tk
(f(xk+ck1Tkξk)+εk+)−(f(xk−ck2Tkξk)+εk−)

(ck1 + ck2)
ξ
(−1)
k

(10)

for ck := [ck1 ck2]
⊤ and δk := [εk+ εk− vec(Tk)]

⊤,

where f : R
n → R is the function to be minimized,

ck1, ck2 ∈ {0} ∪ R+ are the gains, ξk ∈ R
n (p = n) is

the random variable, ξ
(−1)
k is the elementwise inverse of ξk as

defined in Section I, εk+, εk− ∈ R are the random noise, and

Tk ∈ R
n×n is the uncertain time-varying matrix (which will

be treated as an uncertain time-varying “rotation” matrix in

Section IV). To appropriately define (10), it is assumed that

∥ck∥ > 0, i.e., ck1 > 0 or ck2 > 0. We also assume that

Tk ∈ T for the uncertain matrix set T ⊆ R
n×n and assume

that the random variable ξk follows the probability distribution

Ξk : Rn → [0, 1]. In the algorithm given by (9) and (10), the

problem parameters (given in advance) are the function f , the

probability distributions of {εk+}, {εk−}, and the uncertain

matrix set T, while the design parameters of the algorithm

are the gain sequences {ak}, {ck1}, {ck2} and the probability

distribution sequence {Ξk}. We call the algorithm given by (9)

and (10) the generalized simultaneous-perturbation stochastic

approximation algorithm or simply the G-SPSA algorithm.

For the algorithm, we discuss here the robust stability, i.e.,

the convergence for every possible uncertain matrices. In the

following part of this section, the conditions and propositions

on the solution xk of the G-SPSA algorithm are assumed to be

those satisfied for every {Tk} ∈∏∞
k=1 T, though the universal

quantification for the uncertain matrix is omitted for simplicity

of notation.

Under several conditions, the G-SPSA algorithm solves the

static optimization problem

min
x∈Rn

f(x) (11)

by using noisy measurements of f(x). This is formalized in

Propositions 1 and 2.

Proposition 1: Consider the search direction

d(xk, ck, ξk, δk) in (10) and let ξki ∈ R be the ith
element of the random vector ξk. If

• the conditions on the problem parameters:

(A1) f is thrice differentiable,

(A2) E[ εk+ − εk− | {x0, x1, . . . , xk}, ξk ] = 0 w.p.1

for all k ∈ N,

(A3) each element of T is an orthogonal matrix,

• the conditions on the design parameters:

(B1) (a) for each k ∈ N, ξk is integrable, the prob-

ability distribution Ξk is symmetric about zero

(i.e., E[ξk] = 0), and there exists a β1 ∈ R+

such that |ξki| ≤ β1 and |ξ−1
ki | ≤ β1 w.p.1 for
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all i ∈ {1, 2, . . . , n},

(b) for each k ∈ N, ξki (i = 1, 2, . . . , n) are

mutually independent

hold, then

E[ d(xk, ck, ξk, δk) |xk ] = ∇f(xk) +O(∥ck∥ 2) (as ck → 0)

(12)

for every Tk ∈ T, where the left hand side expresses the

expected value with respect to ξk, εk+, and εk−.

Proof: See Appendix I.

Proposition 1 implies that, under several assumptions, the

expected value of d(xk, ck, ξk, δk) is nearly equal to the

gradient of f(xk). So the algorithm given by (9) and (10) can

be regarded as an approximation of the so-called fixed-point

iteration for finding a root of ∇f(x) = 0.

Next, the following result is obtained from Proposition 1.

Proposition 2: For the G-SPSA algorithm given by (9) and

(10), suppose that a set T̂ ⊂ R
n×n satisfying T ⊆ T̂ is given,

and assume that there exists a root x∗ ∈ R
n of the equation

∇f(x) = 0. Let x̂k denote the state of the modified G-SPSA

algorithm so that T is replaced with T̂. If

• the conditions on the problem parameters: (A1)–(A3) and

(A4) x∗ is an asymptotically stable equilibrium of

ẋ(t) = −∇f(x(t)) (in the Lyapunov sense),

(A5) there exists an α5 ∈ R+ such that E[ ε2k+ ] ≤ α5

and E[ ε2k− ] ≤ α5 for all k ∈ N,

(A6) T is a finite set,

• the conditions on the design parameters: (B1) and

(B2) limk→∞ ak = 0,
∑∞

k=0 ak = ∞, limk→∞ ck =
0, and

∑∞
k=0 a

2
k/∥ck∥2 <∞,

(B3) the random vectors ξk (k = 0, 1, . . .) are mutu-

ally independent,

(B4) there exists a β4 ∈ R+ such that E[ ξ−2
ki ] ≤ β4

for all (k, i) ∈ N× {0, 1, . . . , n},

• the conditions for the modified G-SPSA algorithm:

(C1) there exists a compact stability region S ⊆
R

n for ẋ(t) = −∇f(x(t)) (which is nonzero-

measure and for which ẋ(t) = −∇f(x(t)) with

x(0) ∈ S results in x(∞) = x∗) such that

x̂k ∈ S occurs infinitely often for every x0 ∈ S

and almost all sample points,

(C2) supk∈N ∥x̂k∥<∞ holds w.p.1 for every x0 ∈ S,

(C3) there exists a γ4 ∈ R+ such that E[ f(x̂k +
ck1Tkξk)

2 ] ≤ γ4 and E[ f(x̂k − ck2Tkξk)
2 ] ≤

γ4 for every x0 ∈ S and k ∈ N,

hold, then

lim
k→∞

xk = x∗ (13)

holds w.p.1 for every x0 ∈ S.

Proof: See Appendix II.

From Proposition 2, it turns out that a local solution to

the problem in (11) is given by the G-SPSA algorithm under

several conditions. In particular, it should be noted that the

conditions for the convergence do not heavily depend on the

information of the uncertain matrix set T as seen in (A3) and

(A6) and thus this result is useful for the case where we do

not have precise information about T but have an estimation

T̂ of T.

Most of the conditions in Proposition 2 are fairly standard

in stochastic approximation [21], [25]. Conditions (A1)–(A6)

are concerned with the function f , the noise εk+, εk−, and the

uncertain time-varying matrix Tk. (A1) means that f is smooth

enough and (A4) is common for descent-type algorithms,

saying that x∗ is a local minimum point of f . (A2) resembles

the common martingale difference noise assumption appearing

in standard stochastic approximation algorithms (see e.g.,

[30]). This plays an important role to make the search direction

d(xk, ck, ξk, δk) be a gradient approximation as in (12) and to

prove that a partial sum process associated with the difference

d(xk, ck, ξk, δk) − E[d(xk, ck, ξk, δk)|xk] is martingale (see

the proof of Proposition 2). In our source seeking problem,

the condition holds if the field switches sufficiently fast. (A5)

prescribes the second-order moment of the noise terms. (A3)

implies T0T
⊤
0 = T1T

⊤
1 = · · · = T∞T

⊤
∞ = I and (A6) is a

technical assumption to prove the convergence in probability

by reducing the G-SPSA algorithm into the Robbins-Monro

Algorithm in Appendix II-A. Next, (B1)–(B4) are imposed

for the parameters designed by the users, and they will be

a guideline to design. A typical parameter choice of {ak},

{ck1}, and {ck2} is

ak :=
a

(k + 1)α
, ck1 :=

c

(k + 1)γ
, ck2 := ck1,

where a, α, c, γ ∈ R+ are arbitrarily given so that α ≤ 1 and

α − γ > 0.5. It may be reasonable to set large numbers to

ak, ck1, and ck2 in the initial phase and let them be gradually

smaller with k so as to search the minimizer roughly at the

beginning and search it precisely near the minimizer. On the

other hand, a typical probability distribution Ξk of ξk is based

on the elementwise Bernoulli trial with outcome ±1 and equal

probabilities (i.e., ξki = −1 or ξki = 1 occurs the same

probability). The condition that Ξk be Bernoulli-type is not

necessary but it has been proven in [26] that the Bernoulli type

is optimal in many cases. Other possible choices are found in

[27]. The last (C1)–(C3) are technical conditions to guarantee

the convergence. (C1) and (C2) are challenging to check, but

it is known that they are not restrictive conditions in practice,

as addressed in [21], [25]. This fact has been demonstrated by

a number of examples (a great list of the existing results is

provided in [28]). In addition, it has been explained in [25]

that these can be ignored by replacing the algorithm in (9)

with a projected version (like the projected gradient method

for constrained optimization problems). A projected version

is given by xk+1 = ΠX(xk − akd(xk, ck, ξk, δk)) where

X ⊂ R
n is a closed hyperrectangle in which xk has to be

constrained and ΠX : Rn → R
n is the projection onto the

set X. Meanwhile, it should be noted that (C1) holds if f
is convex and (C2) holds, and a simple sufficient condition2

for (C2) is given in [30]. Also, a weaker condition of (C2),

2(C2) holds if (i) ∇f(x) is Lipschitz, (ii) the conditions in Proposition 1
hold, (iii) the first and second conditions of (B2) hold, and (iv) for ∇fc(x) :=
∇f(cx)/c, ∇fc(x) → ∇f∞(x) as c → ∞ and ẋ = ∇f∞(x) has the
origin as its unique globally asymptotically stable equilibrium. This is just
a sufficient condition for (C2) (i.e., (C2) covers more cases) but may be the
most practical for directly checking (C2). See [30] for further details.
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which is for a more general class of stochastic approximation

algorithms, has been given in [29]. (C3) is related to the

second-order moment of f with randomly perturbed inputs

and is not so restrictive if (C2) holds.

Similar to the original SPSA algorithm [21], the G-SPSA

algorithm has the following two features. First, the algo-

rithm solves the problem in (11) when neither f nor ∇f
is known, and instead, only noisy measurements of f are

available. In fact, it can be seen that the search direction

d(xk, ck, ξk, δk) in (10) contains the noisy measurements

f(xk+ ck1Tkξk)+εk+ and f(xk− ck2Tkξk)+εk−. Next, the

number of measurements to determine the search direction

is only two and is independent of the dimension n of the

variable x. This merit can be understood by the fact that the

number of measurements for the difference approximation of

∇f (= [∂f(x)/∂x1 · · · ∂f(x)/∂xn]⊤) grows with n.

The proposed algorithm is equivalent to the original SPSA

algorithm in [21] if

ck1 ≡ ck2, T = {In} (14)

for (10). Basically, the proposed algorithm is an extention by

the coordinate transformation, while the following differences

should be stressed:

• the search direction (10) is based on unequal two-sided

perturbations ck1Tkξk ̸= ck2Tkξk, while the original

version is of equal perturbations ck1Tkξk = ck2Tkξk.

• the direction (10) is regarded as a time-varying function

of xk, ck1, ck2, ξk, εk+, and εk− (by the time-dependent

matrices Tk) unlike the time-invariant original one.

These properties play a key role for solving the source seeking

problem. Note that, though one may consider that the former

is just an excess of generality, (12) is not straightforwardly

obtained by [21] in the case where ck1Tkξk ̸= ck2Tkξk,

because we need a different formula (the latter equation of

(39)) to derive it. Note also that the latter, i.e., the idea of the

time-varying coordinate transformation by Tk, is not standard

in static optimization methods. These imply that the proposed

algorithm will be a special technique for the source seeking

by mobile robots.

B. G-SPSA Based Stochastic Discrete Trajectories for Source

Seeking

Based on the G-SPSA algorithm, we provide a set of

stochastic discrete trajectories for source seeking.

For the signal field S, let us introduce the random variable

ε(t) := fσ(t)(x(t))− E[ fσ(t)(x(t)) | x(t) ]. (15)

Its conditional expected value is zero, i.e.,

E[ ε(t) | x(t) ] = 0 ∀(t, x(t)) ∈ R0+ ×R
n1 . (16)

By (3) and (15), S is expressed as

y(t) = E[ fσ(t)(x(t)) | x(t) ] + ε(t). (17)

Then by respectively regarding x(t), E[fσ(t)(x(t))|x(t)], and

ε(t) as xk, f(x), and εk± in the G-SPSA algorithm, we obtain

the following result.

Theorem 1: For the signal field S, assume that there exists

a source x∗ ∈ R
n1 . Suppose that the uncertain matrix set

T ⊆ R
n1×n1 and the design parameters {ak}, {ck1}, {ck2},

{Ξk} of the G-SPSA algorithm are given so as to satisfy (A3),

(A6), and (B1)–(B4) (note that (A1), (A2), (A4), and (A5)

automatically hold, which will be shown in the proof), and

let {x01, x02, x10, x11, x12, x20, x21, x22, . . .} be the stochastic

process given by






xk1 = xk0 + ck1Tkξk,
xk2 = xk0 − ck2Tkξk,

x(k+1)0 = xk0−akTkd̂(yk1, yk2, (ck1+ck2), ξk)
(18)

where x00 ∈ R
n1 is the initial state, Tk ∈ T is the uncertain

time-varying matrix,

d̂(yk1, yk2, (ck1 + ck2), ξk) :=
yk1 − yk2
(ck1 + ck2)

ξ
(−1)
k , (19)

yki := fσki
(xki), (20)

and σki are the i.i.d. random variables from the probability

distribution g in Section II-A. If (C1)–(C3) hold for the mod-

ified G-SPSA algorithm with f(x) := E[ fσ(x) | x ], εk+ :=
fσk1

(x)−E[ fσ(x) | x ], εk− := fσk2
(x)−E[ fσ(x) |x ], some

T̂ ⊆ R
n1×n1 including T, {ak}, {ck1}, {ck2}, {Ξk}, x00,

and x∗, then

lim
k→∞

xki = x∗ (∀{Tk} ∈∏∞
k=0 T) (21)

w.p.1 for every x00 ∈ S and i ∈ {0, 1, 2} (where S is given

in (C1)).

Proof: For f(x) := E[fσ(x)|x] and εki := fσki
(xki) −

E[fσ(xki)|xki] (i = 1, 2), we have yki = f(xki) + εki in a

similar way to (17). This and the first two equations of (18)

provide yk1 = f(xk0 + ck1Tkξk) + εk1 and yk2 = f(xk0 −
ck2Tkξk) + εk2. So it follows under xk = xk0, εk+ = εk1,

and εk− = εk2 that the third equation of (18) is equivalent to

a G-SPSA algorithm. Then, (A3), (A6), (B1)–(B4), and (C1)–

(C3) hold for the G-SPSA algorithm as stated, and also (A1),

(A2), (A4), and (A5) hold by the thrice differentiability of fσ,

the i.i.d. sample condition for σki (which implies that xki is

independent of {σki, σ(k+1)i, . . .}), the definitions of εki and

the source, (C2), and (16). So it turns out from Proposition 2

that (21) with i = 0 holds for every x00 ∈ S. Moreover, since

ξk and Tk are bounded as stated in (B1) (a) and (A3), the first

two equations of (18) and (B2) imply limk→∞ ∥xki−xk0∥ = 0
for i ∈ {1, 2}. This and (21) for i = 0 prove that (21) with

i ∈ {1, 2} holds for every x00 ∈ S.

Theorem 1 presents a set of stochastic trajectories converg-

ing to a source almost surely (in which each trajectory is

specified by {ak}, {ck1}, {ck2}, and {Ξk}). The trajectories

are given by fully exploiting the advantages of the G-SPSA

algorithm: they only use the measurements yki (i = 1, 2) of

fσki
for finding a source, and the measurements to determine

the search direction are collected by the only two auxiliary

movements to the positions xk1 and xk2.

IV. STOCHASTIC SOURCE SEEKING CONTROLLERS

A. Source Seeking Controllers in A General Form

Now, we derive a controller K which sequentially generates

the next waypoints as a part of a stochastic trajectory in the
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form of (18) and steers the robot P along the trajectory.

Since P does not have the position information in the world

coordinate frame, P cannot follow some trajectories in the

form of (18). So, in order to obtain an appropriate trajectory

in the sensor-free situation, we transform the condition (18)

into that in the body fixed frame Σ(tk0):






zk1 = ck1Rn1
(−θ(tk0))Tkξk,

zk2 = −ck2Rn1
(−θ(tk0))Tkξk,

z(k+1)0 = −akRn1
(−θ(tk0))Tkd̂(yk1, yk2, (ck1+ck2), ξk)

(22)

where x(tk0) = xk0 and θ(tk0) is the rotational position of

P at time tk0. Here, if ck1 = 0 and Tk = Rn1
(θ(tk0))

(k = 1, 2, . . .), we have zk1 = 0, zk2 = −ck2ξk, and z(k+1)0 =

−akd̂(yk1, yk2, ck2, ξk). This is a condition excluding the

position information of θ(tk0) in the world coordinate frame

and thus is suitable in the sensor-free situation. This idea

provides a solution to Problem 1.

Theorem 2: For the feedback system in Fig. 2, assume that

(P1) holds for ∆τ ∈ R+ and (r1, r2, r3) ∈ R
3
0+ and there

exists a source x∗ ∈ R
n1 . Let t00 := 0 and suppose that the

tuning parameters:

• the discrete time sequence {t02, t10, t12, . . .} such that

tk2 − tk0 > max{η,∆τ} and t(k+1)0 − tk2 >
max{η,∆τ} for every k ∈ {0, 1, . . .},

• {ak}, {ck2}, and {Ξk} satisfying (B1)–(B4) under the

condition ck1 ≡ 0,

• the positive integer N and the desirable rotation angle

∆ψki ∈ ΦN (k = 0, 1, . . . ,∞, i = 0, 2)

are given, where ΦN := {0,±π/N,±2π/N,
. . . ,±(N − 1)π/N, π}n2 (e.g., Φ3 = {−2π/3,−π/3,
0, π/3, 2π/3, π}n2). If (C1)–(C3) hold for the modified G-

SPSA algorithm with the same f , εk+, εk− as in Theorem 1,

T̂ := {L ∈ R
n1×n1 |∃φ ∈ [−π, π)n2 s.t. L = Rn1

(φ)} (the

set of n1-dimensional rotation matrices), {ak}, ck1 ≡ 0,

{ck2}, {Ξk}, x0 := x(0), and x∗, then the controller K
satisfying (23) (at the top of the next page) for k = 0, 1, . . .
is a solution to Problem 1 for any r > r2π

√
n2 + r3.

Proof: Let x(t) (also x(tki)) denote the translational

position of the robot P for the controller K satisfying (23).

Then this theorem is a direct consequence of the following

three facts:

(i) The set S, which is given by (C1), is nonzero-measure and

includes the source x∗ in its interior.

(ii) For every (x0, t) ∈ S × R0+, ∥x(t)∥ < ∞ w.p.1 under

x(0) = x0.

(iii) For every x0 ∈ S and i ∈ {0, 2}, limk→∞ x(tki) = x∗

w.p.1 under x(0) = x0.

(iv) For each x0 ∈ S and ν ∈ R+, there exists a kmin ∈ N

such that the following two conditions hold for every k ∈
{kmin, kmin+1, . . .}: (a) ∥x(t)−x(tk0)∥ ≤ ν+r2π

√
n2+r3

for every t ∈ [tk0, tk2], (b) ∥x(t)−x(tk2)∥ ≤ ν+r2π
√
n2+r3

for every t ∈ [tk2, t(k+1)0].

Fact (i) is trivial. So we next prove the other facts in the order

of (iii), (ii), and (iv).

(iii) By the definition of the point-to-point control input v (see

(6) and (7)), the controller K steers the robot P as

x(tk2) = x(tk0)−Rn1
(θ(tk0))(ck2ξk), (24)

x(t(k+1)0) = x(tk2) +Rn1
(θ(tk2))Rn1

(−∆ψk0)

×(ck2ξk − akd̂(y(tk0), y(tk2), ck2, ξk))

= x(tk0)

− akRn1
(θ(tk0))d̂(y(tk0), y(tk2), ck2, ξk). (25)

Then the conditions on the discrete time sequence, especially,

tk2 − tk0 > η and t(k+1)0 − tk2 > η, imply that the

corresponding noise signals ε0+, ε0−, ε1+, ε1−, . . . are not

correlated and so (A2) holds. Thus it turns out from (3) and

(20) that the stochastic process {x(t00), x(t02), x(t10), x(t10),
x(t12), . . .} is equivalent to that in Theorem 1 with T :=
{L ∈ R

n1×n1 |∃φ ∈ {θ(tk0)} ⊕ΦN s.t. L = Rn1
(φ)}, {ak},

ck1 ≡ 0, {ck2}, and {Ξk}, and it is obvious that (A3) and

(A6) hold for T. In addition, (B1)–(B4) hold for the given

{ak}, {ck2}, {Ξk} and ck1 ≡ 0, and (C1)–(C3) hold for the

modified G-SPSA algorithm as stated. So (iii) follows from

Theorem 1.

(ii) Suppose that x0 ∈ S is given and let x(0) = x0. From

(23) and the definition of v, we have ∥z(t)∥ ≤ r1∥ck2ξk∥ +
r2∥∆ψk0∥ + r3 for t ∈ [tk0, tk2] and ∥z(t) + ck2ξk∥ ≤
r1∥Rn1

(−∆ψk0)(ck2ξk − akd̂(y(tk0), y(tk2), ck2, ξk))∥ +
r2∥∆ψk2∥+ r3 = r1∥ck2ξk − akd̂(y(tk0), y(tk2), ck2, ξk)∥+
r2∥∆ψk2∥ + r3 for t ∈ [tk2, t(k+1)0] in the body fixed

coordinate frame Σ(tk0), which are rewritten as

∥x(t)− x(tk0)∥ ≤ r1∥ck2ξk∥+ r2∥∆ψk0∥+ r3

(∀t ∈ [tk0, tk2]), (26)

∥x(t)− x(tk2)∥ ≤ r1∥ck2ξk − akd̂(y(tk0), y(tk2), ck2, ξk)∥
+ r2∥∆ψk2∥+ r3

(∀t ∈ [tk2, t(k+1)0]) (27)

in the world coordinate frame (see (8)). Then,

∥∆ψki∥ ≤ π
√
n2 (28)

by the definition of ΦN (which implies ∆ψki ∈ [−π, π)n2).

Furthermore, as shown in the proof of (iii), the stochastic pro-

cess {x(t00), x(t02), x(t10), x(t10), x(t12), . . .} is equivalent

to that in Theorem 1, which, together with (B1) and (B2),

implies that x(tki), ck2ξk, and akd̂(y(tk0), y(tk2), ck2, ξk)
(k = 0, 1, . . ., i = 0, 1, 2) are bounded w.p.1. So we have (ii).

(iv) Applying (24), (25), and (28) to (26) and (27) gives

∥x(t)− x(tk0)∥ ≤ r1∥x(tk2)− x(tk0)∥+ r2π
√
n2 + r3

(∀t ∈ [tk0, tk2]),

∥x(t)− x(tk2)∥ ≤ r1∥x(t(k+1)0)− x(tk2)∥+ r2π
√
n2 + r3

(∀t ∈ [tk2, t(k+1)0]).

Then (iii) implies that, for each x0 ∈ S and ν ∈ R+, there

exists a kmin ∈ N such that ∥x(tk2) − x(tk0)∥ ≤ ν/r1 and

∥x(t(k+1)0) − x(tk2)∥ ≤ ν/r1 for every k ∈ {kmin, kmin +
1, . . .} w.p.1. This completes the proof of (iv).

Theorem 2 presents stochastic source seeking controllers

composed of two point-to-point controllers. The controllers is

given by the G-SPSA algorithm and it executes the G-SPSA
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u(t)=



















v

(

t, tk2 − tk0, 0 →
[

−ck2ξk
∆ψk0

]

, r1, r2, r3

)

if t ∈ [tk0, tk2],

v

(

t, t(k+1)0 − tk2, 0→
[

Rn1
(−∆ψk0)(ck2ξk − akd̂(y(tk0), y(tk2), ck2, ξk))

∆ψk2

]

, r1, r2, r3

)

if t ∈ [tk2, t(k+1)0]

(23)

algorithm step by step: after P obtains a measurement at the

current position, the first input v moves P to a point to collect

another measurement and the second input v steers P to a

point indicated by the search direction, which is iterated. Then

the values about the mobility of P , i.e., ∆τ and (r1, r2, r3),
are related to the convergence property: ∆τ corresponds to

the possible convergence speed as shown in the condition for

the discrete time sequence {t02, t10, t12, . . .}, while (r1, r2, r3)
has the relation to the smoothness of the paths connecting

the waypoints given in Theorem 1, and also r2 and r3 are

numbers characterizing the radius r of the closed ball to which

P converges.

Remark 1: It is assumed in Theorem 2 that tk2 − tk0 >
max{η,∆τ} and t(k+1)0− tk2 > max{η,∆τ}. The condition

on ∆τ is related to the mobility of the robot P . On the other

hand, the condition on η is reasonable in finding the source

of the “expected” signal field. In fact, in our source seeking

method, the source is sought by sampling the value of the

stochastically switching signal field, and then the condition

guarantees that the number of samples is large. If η is greater

than tk2 − tk0 or t(k+1)0 − tk2, it is a practical option that

the discrete time sequence {t02, t10, t12, . . .} is reset so as to

satisfy the condition. Note that the control designer usually

has the flexibility in choosing the time sequence.

Remark 2: It should be clarified why the original SPSA

algorithm [21], given by (9), (10), and (14), is not suitable

for our source seeking problem. First, the discrete trajectories

given by the original SPSA algorithm cannot be followed by

P in practice. In fact, (14) and (18) specify a robot moving

trajectory in the body fixed frame Σ(tk0) (see (5)) as







zk1 = ck1Rn1
(−θ(tk0))ξk,

zk2 = −ck1Rn1
(−θ(tk0))ξk,

z(k+1)0 = −akRn1
(−θ(tk0))d̂(yk1, yk2, 2ck1, ξk),

(29)

in which the three destinations depend on the position θ(tk0) in

the world coordinate frame. However, the position information

is not available in K as shown in Fig. 2. Thus, in general, it is

impossible to move P along the trajectory. The only case that

P can follow the trajectory is when the trajectory is given

based on the coordinate frame whose origin is (x(0), θ(0))
and a feedforward estimator, that is, a solver of the differential

equation (1) with the initial state and the input history, is used

to estimate the robot position on the time interval [0,∞). In

this case, the rotational position in the frame can be estimated

only with the model of (1), the zero initial position, and the

input history. However, it is obvious that such feedforward

estimation produces an accumulative error in the real world

and is unrealistic. Second, unlike the proposed controllers in

(23), K has to be a feedforward motion controller driving the

robot P to three points. That is, as seen in (29), to execute

one step of the SPSA algorithm, P has to visit two points to

collect measurements and move to a point indicated by the

search direction. Then, in our problem, this movement must

be achieved without using the position information. Clearly,

in the presence of uncertainty, such three-point feedforward

control is less desirable than the two-point feedforward control

in (23).

Remark 3: As a variant of the SPSA algorithm [21], the

one-measurement type, which requires the only one measure-

ment to determine the search direction, has been developed

in [31]. This can be also extended to an appropriate form for

the source seeking. However, as pointed out in [31], the one-

measurement algorithm is less efficient in many cases.

Remark 4: The controllers proposed in Theorem 2 are

given without explicitly considering the mobility of the robot

P . This implies that the controllers may lead to some unnatural

behavior. On the other hand, as shown in the next subsection,

if P is the unicycle robot, the resulting movement is similar

(not completely-consistent) to a well-known biological phe-

nomenon, the bacterial chemotaxis, that is, the phenomenon

that bacteria in an environment sense a chemical concentration

and move to a more favorable position [32]. In fact, it is

known that the mobility of the bacteria is the almost same

as that of the unicycle and the movement of the chemotaxis is

composed of a random turn and a forward move. Meanwhile,

the proposed controller let the unicycle robot P perform the

random turn and the feedforward/backward move. In this

sense, the movement by the proposed controllers may not be

unnatural for some class of P . In relation to this, it should

be remarked that a source seeking method that mimics the

bacterial chemotaxis has been proposed in [6].

Remark 5: Though the boundedness and the convergence

of x(t) is guaranteed for the proposed controller, P might drift

far away on the way to the source even when the robot P starts

near the source. This is because the gains ak, which are relative

to the moving distance on the time intervals [tk0, t(k+1)0], have

to be large numbers in the early iterations to avoid the sluggish

performance and so the value of E[ fσ(tk0)(x(tk0)) | x(tk0) ]
does not always decrease even if the initial position x(0) is

near the source. In exchange for the undesirable transient, such

a policy contributes to good performance for x(0) far from the

source. Generally, in the optimization using a gradient-free

descent method (such as the finite-difference approximation),

such a phenomenon is unavoidable because the step size

sequence which guarantees monotonically decreasing behavior

cannot be determined without the information of the gradient.

These points imply that the possibility of the drift is a

theoretical limitation of our method. However, it should be

noted that our method yields a certain result for switching

fields despite of such a limitation.
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B. Source Seeking Controllers for Some Specific Robots

Next, we focus on two- and three-dimensional nonholo-

nomic robots and show that there exist very simple source

seeking controllers.

1) 2D Nonholonomic Robot Case: We first prepare the

following result.

Lemma 1: Consider the search direction d(xk, ck, ξk, δk)
in (10). If ξk ∈ {−ρ, ρ}n for ρ ∈ R+, then the vectors Tkξk
and d(xk, ck, ξk, δk) are linearly dependent. More precisely,

the relation

d(xk, ck, ξk, δk) = (ωkρ
−2)Tkξk (30)

holds for the scalar

ωk :=
(f(xk+ck1Tkξk)+εk+)−(f(xk−ck2Tkξk)+εk−)

(ck1 + ck2)
.

Proof: For ξk ∈ {−ρ, ρ}n, we have ξk = ρ sign(ξk). So

it follows that Tkξk = ρTk sign(ξk) and d(xk, ck, ξk, δk) =

ωkTkξ
(−1)
k = ρ−1ωkTk(sign(ξk))

(−1) = ρ−1ωkTk sign(ξk).
This proves (30).

Lemma 1 shows that, if Ξk (i = 0, 1, . . .) are the probability

distributions based on the elementwise Bernoulli trial shown

in Section III-A, the vectors in (18), xk1, xk2, and x(k+1)0,

are on a line segment in R
n1 . So to execute one step of

the G-SPSA algorithm, it is enough to drive P on a line

segment. This property presents a very simple controller for

the nonholonomic unicycle (2).

Theorem 3: For the feedback system in Fig. 2, assume that

P is the unicycle (2) and there exists a source x∗ ∈ R
2. Let

K be the discrete-time controller with the zero-order hold:


















































ypre[s+1] = y[s],

u[s]=







































[

0
1
hζ[s]

]

if s=0, 3, 6, . . . ,

[

−λ
hc⌊s/3⌋2
0

]

if s=1, 4, 7, . . . ,

[

λ
h

(

c⌊s/3⌋2 − a⌊s/3⌋
ypre[s]−y[s]

c⌊s/3⌋2

)

0

]

if s=2, 5, 8, . . .

(31)

where h ∈ (η,∞) is the sampling period, s ∈ N is the discrete

time (s = ⌊t/h⌋), ypre[s] ∈ R is the state to save y[s − 1]
(= y((s− 1)h)), ζ[s] ∈ R is the i.i.d random variable drawn

from the uniform distribution on
{

π

4
,
3π

4
, −3π

4
, −π

4

}

, (32)

λ :=
√
2, and {ak} ∈ ∏∞

k=0 R+ and {ck2} ∈ ∏∞
k=0 R+ are

arbitrarily given so as to satisfy (B2) for ck1 ≡ 0 (note that

a⌊s/3⌋ and c⌊s/3⌋2 express ak and ck2 for k = ⌊s/3⌋). If (C1)–

(C3) hold for the G-SPSA algorithm with the same f , εk+,

εk−, T̂ as in Theorem 2, {ak}, ck1 ≡ 0, {ck2}, the Bernoulli-

trial based distribution {Ξk}, x0 := x(0), and x∗, then K is

a solution to Problem 1 for any r > 0.

Proof: The unicycle in (2) can move forward and turn at

the same position; that is, P can be steered straightforwardly

to any translational position. Thus (P1) holds for ∆τ := h

and (r1, r2, r3) := (1, 0, 0). Then u[s] in (31) is composed of

the control inputs for forward move and for turn at the same

position, which can be related to (23) as follows. From (2)

and the definition of the point-to-point control input v, the

combination of the first and second inputs in (31) corresponds

to

v



t, 2h, 0 →





−c⌊s/3⌋2λ
[

cos(ζ[s])
sin(ζ[s])

]

ζ[s]



 , 1, 0, 0



 . (33)

On the other hand, since R2(−ζ[s])[cos(ζ[s]) sin(ζ[s])]⊤ =
[1 0]⊤ and λ[cos(ζ[s]) sin(ζ[s])]⊤ =
(λ[cos(ζ[s]) sin(ζ[s])]⊤)(−1) (the latter is related to

Lemma 1 and it holds only for ζ[s] on the set in (32)), the

third input corresponds to (34) at the top of the next page. We

see from (33) and (34) that the controller K satisfies (23) for

{t02, t10, t12, t20, . . .} := {2h, 3h, 5h, 6h, . . .}, {ak}, {ck2},

ξk := λ[cos(ζ[3k]) sin(ζ[3k])]⊤, ∆ψk0 := ζ[3k] ∈ Φ4,

and ∆ψk2 := 0 ∈ Φ4. Here, (B2) holds for {ak},

{ck2}, and ck1 ≡ 0. Furthermore, by noting that the

probability distributions of ζ[s], the random vectors

λ[cos(ζ[3k]) sin(ζ[3k])]⊤ (k = 0, 1, . . .) are equivalent

to that from the elementwise Bernoulli trial shown in

Section III-A, i.e., which satisfies (B1), (B3), and (B4).

Therefore, this theorem follows from Theorem 1.

The proposed controller K steers the robot P as shown in

Fig. 4. Three steps on a line segment are repeated: the random

turn, the forward move, and the forward or backward move.

2) 3D Nonholonomic Robot Case: In a similar way to

the above, we can obtain a simple controller for a three-

dimensional nonholonomic mobile robot.

Consider the robot in Fig. 5, which is described by

P :











ẋ1(t)

ẋ2(t)

ẋ3(t)

θ̇(t)











=









cos θ1(t) cos θ2(t) 0

cos θ1(t) sin θ2(t) 0

sin θ1(t) 0

0 I3









u(t) (35)

where x(t) := [x1(t) x2(t) x3(t)]
⊤ ∈ R

3 is the translational

position, θ(t) := [θ1(t) θ2(t) θ3(t)]
⊤ ∈ R

3 is the orientational

position (yaw, pitch, and roll), and u(t) ∈ R
4 is the control

input. This robot is the same as considered in [9].

For this, the following result is obtained.

Theorem 4: For the feedback system in Fig. 2, assume that

P is the three-dimensional robot in (35) and there exists a

source x∗ ∈ R
3. Let K be the modified version of (31) so

that u[s] ∈ R
4, ζ[s] ∈ R

3 is the i.i.d random vector drawn

from the uniform distribution on
{

− tan−1 1√
2
, tan−1 1√

2

}

×
{

π

4
,
3π

4
, −3π

4
, −π

4

}

×{0},

the two 0s for s = 1, 4, 7, . . . and s = 2, 5, 8, . . . are the three-

dimensional zero vectors, and λ := 1/ sin(tan−1(1/
√
2)). If

the same conditions in Theorem 3 hold, K is a solution to

Problem 1 for any r > 0.

This can be derived in the same way to Theorem 3.

Let ζi[s] denote the ith element of ζ[s]. Then, from the

relation sin(tan−1(1/
√
2)) = (1/

√
2) cos(tan−1(1/

√
2)) and
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v



t, h, 0 →





λ
(

c⌊s/3⌋2 − a⌊s/3⌋
ypre[s]−y[s]

c⌊s/3⌋2

)

[

1
0

]

0



 , 1, 0, 0





= v



t, h, 0 →





R2(−ζ[s])
(

c⌊s/3⌋2λ

[

cos(ζ[s])
sin(ζ[s])

]

− a⌊s/3⌋d̂

(

y[s−1], y[s], c⌊s/3⌋2, λ

[

cos(ζ[s])
sin(ζ[s])

]))

0



, 1, 0, 0



 (34)

x1

x
2

x1

x
2

(a) Step 0: Current position. (b) Step 1: Random turn.

x1

x
2

x1

x
2

(c) Step 2: Forward move. (d) Step 3: Forward or backward move.

Fig. 4. Robot motion by the proposed controller in Theorem 3 (by repeating
these steps, the robot is guided to the source).

x1

3
x

θ1

θ2

θ3

x2

Fig. 5. 3D nonholonomic mobile robot.

the probability distribution of ζ[s], it can be shown that the

vectors

λ





cos(ζ1[s]) cos(ζ2[s])
cos(ζ1[s]) sin(ζ2[s])

sin(ζ1[s])





(s = 0, 3, 6, . . .), which correspond to ξk (more precisely,

ξ⌊s/3⌋) in (23), are equivalent to the random vectors from the

elementwise Bernoulli trial. This is the main idea of the proof.

C. Example

Consider Problem 1, where the robot P is the unicycle (2)

and the signal field S is given by the functions

f1(x)=

([

x1
x2

]

−
[

110
80

])⊤[
0.01 −0.005

−0.005 0.01

]([

x1
x2

]

−
[

110
80

])

,

f2(x)=

([

x1
x2

]

−
[

90
90

])⊤[
0.01 0.001
0.001 0.003

]([

x1
x2

]

−
[

90
90

])

,

f3(x)=

([

x1
x2

]

−
[

109
110

])⊤[
0.02 0.003
0.003 0.01

]([

x1
x2

]

−
[

109
110

])

and the probability distribution g(1) = 0.15, g(2) = 0.15,

and g(3) = 0.7. Its source is argminx∈R2E[fσ(x)|x] =

argminx∈R2

∑3
σ=1 g(σ)fσ(x) ≃ [109.13 103.54]⊤. The con-

troller K is given by Theorem 3 for h := 1, ak := 15/(k +
1)0.55, and ck2 := 10/(k + 1)0.03.

Fig. 6 illustrates the contour plot of E[fσ(x)|x] and the

moving trajectory of P from the initial state (x(0), θ(0)) :=
([182 41]⊤, 10), where the isosceles triangles express

(x(tki), θ(tki)) (k = 0, 1, . . . ,∞, i = 0, 2). Fig. 7 depicts

the time evolution of the distance to the source, i.e., ∥x(t)−
argminx∈R2E[fσ(x)|x]∥. We see that the robot P is guided

to the source by the simple controller.

Remark 6: As pointed out for the original SPSA algorithm

[33], the choice of the gains {ak} and {ck2} is critical

to the performance, in particular, the convergence speed, of

the G-SPSA based controllers. A practical way to determine

these gains is the Monte Carlo method with randomly chosen

S based on some prior knowledge. There may be suitable

selection for the stochastic source seeking, and such a topic is

one of future works. Also, the best probabilistic distribution

{Ξk} should be clarified in the future, though the Bernoulli-

type distribution has been mainly employed in this paper,

by considering the optimality proven in [26] and the good

property given by Lemma 1.

Remark 7: The above controllers are based on the turn and

the forward/backward move. Even if the robot P does not have

such simple mobility, the source seeking can be achieved as

long as (P1) holds.

Remark 8: Four limitations of the proposed method are

noted. First, the signal fields fσ(x) have to be thrice differ-

entiable as assumed in Section II-A. This guarantees that the

expected value of d(xk, ck, ξk, δk) (in (10)) is nearly equal to

the gradient of f(xk), from which the source seeking problem

is solved. If this assumption does not hold (and the signal

field S does not switch), the method in [5] can be used as

an alternative. Second, our source seeking controllers have

been presented for periodic switching fields. The periodic
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Fig. 6. Moving trajectory of unicycle by the proposed controller.
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Fig. 7. Time evolution of the distance to the source.

switch is reasonable in some cases, e.g., in the base station

placement, mentioned in Section I, with a large number of

synchronized terminal units. Note, however, that the all results

in this paper hold even for aperiodic fields which switch before

discrete times tki (k = 0, 1, . . ., i = 0, 2) w.p.1. On the other

hand, our result should be extended to more practical switches

such as the Poisson switch. For the extention to the Poisson

switch case, our result may be a basis because it is well-

known that the Bimodal distribution, which is used as the

switching model considered here, has a close relationship to

the Poisson distribution [34]. Third, the proposed controllers

cannot be applied to robots with nonzero constant velocity,

such as aircrafts. On the other hand, the methods in [4], [5],

[10] can be used for such robots. Finally, even when the

robot can take the measurements continuously along the whole

trajectory, the proposed controllers do not utilize the all of the

data. If they are adopted for the gradient estimation, a better

result could be obtained. It is however pointed out that the

time for measurement is not always short, e.g., for chemical

substances. Thus one cannot always utilize the measurements

along the whole trajectory.

Remark 9: We note the difference to other source seeking

methods. First, a source seeking method for noisy environment

has been developed in [13]. By using this result, a solution to

Problem 1 may be obtained. The method, however, is based on

the extremum seeking and can be applied to the only integrator

and nonholonomic unicycles at present. On the other hand, the

proposed method is given for robots satisfying (P1). Next, a

method based on stochastic motion has been recently presented

in [14]. Although it is similar to our method in the sense of

taking stochastic motion, the method in [14] is a solution for

non-switching fields and thus the performance for switching

fields is unclear. Similarly to this, as mentioned in Section I,

there are a number of source seeking methods and some of

them might be useful for switching fields. However, there has

been no theoretical result for switching fields.

V. CONCLUSION

A stochastic source seeking problem has been studied. By

extending the SPSA algorithm in [21], we have developed

source seeking controllers for randomly switching signal field.

The key idea is to find a stochastic trajectory (i) converging to

the unknown source with probability 1 and (ii) followed by the

robot without a position sensor. The trajectory is given by a

generalized version of the SPSA algorithm. In addition, simple

source seeking controllers have been provided for two types

of nonholonomic robots, for which it has been shown that

the source seeking is attained by the combination of simple

movements.

As a first step for the switching source seeking, somewhat

limited cases have been treated. In particular, the convergence

of the proposed controllers is guaranteed for periodic and

sufficiently fast switching fields. In the future, more general

switching fields should be addressed. In addition, the proposed

controllers cannot be used for robots with drift (i.e., movement

under the zero control input), as stated in Remark 8. Solving

this problem is left as a future work. Also, for various

applications, the proposed framework should be extended to

the case where the robot is disturbed by the environment (e.g.,

fluid environment) and to the stochastic source seeking by

multiple robots.

Acknowledgments: The first author would like to thank Prof.

James C. Spall, Johns Hopkins University, for his valuable

information on one-sided SPSA algorithms. He also would like

to thank Prof. Toshiharu Sugie, Kyoto University, for giving

the opportunity to study at University of Pennsylvania.

APPENDIX I

PROOF OF PROPOSITION 1

A. Notation

We denote by ei the ith standard basis of R
n. The Kro-

necker product of the vectors y1 and y2 is expressed as y1⊗y2.

For the row vector z ∈ R
1×n, diagm(z) expresses the block

diagonal matrix whose m diagonal blocks are z. Using this,

we have the vector equality

(zx)y = diagm(z)(y ⊗ x) (36)
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for x ∈ R
n, y ∈ R

m, and z ∈ R
1×n. For the thrice

differentiable function f : Rn → R and j = 2, 3, let

f (1)(x) := (∇f(x))⊤,

f (j)(x) :=

[

∂f (j−1)(x)

∂x1

∂f (j−1)(x)

∂x2
· · · ∂f (j−1)(x)

∂xn

]

.

Note that f (j)(x) is a row vector of dimension nj . Using this,

the function f(x + y) (thrice differentiable) is expressed by

Taylor’s theorem as

f(x+ y) = f(x) + f (1)(x)y +
1

2
f (2)(x)(y ⊗ y)

+
1

6
f (3)(x̄)(y ⊗ y ⊗ y) (37)

where x̄ is a vector on the line segment between x and x+ y.

B. Proof

By noting (A1), we apply Taylor’s theorem in (37) to the

terms f(xk + ck1Tkξk) and f(xk − ck2Tkξk) in (10), which

gives

f(xk+ck1Tkξk)− f(xk−ck2Tkξk)
= (ck1+ck2)f

(1)(xk)Tkξk

+
(c2k1−c2k2)

2
f (2)(xk)(Tk ⊗ Tk)(ξk ⊗ ξk)

+

(

c3k1
6
f (3)(x̄k1)+

c3k2
6
f (3)(x̄k2)

)

(Tk⊗Tk⊗Tk)(ξk⊗ξk⊗ξk)

where x̄k1 and x̄k2 are vectors on the line segments between

xk and xk + ck1Tkξk and between xk and xk − ck2Tkξk,

respectively. It follows from (10) and (36) that

d(xk, ck, ξk, δk)

= Tk(f
(1)(xk)Tkξk)ξ

(−1)
k

+
(ck1−ck2)

2
Tk(f

(2)(xk)(Tk ⊗ Tk)(ξk ⊗ ξk))ξ
(−1)
k

+
1

6
Tk

((

c3k1
ck1+ck2

f (3)(x̄k1) +
c3k2

ck1+ck2
f (3)(x̄k2)

)

× (Tk⊗Tk⊗Tk)(ξk⊗ξk⊗ξk)
)

ξ
(−1)
k

+ Tk
εk+ − εk−
(ck1 + ck2)

ξ
(−1)
k

= Tkdiagn(f
(1)(xk)Tk)(ξ

(−1)
k ⊗ ξk)

+
(ck1−ck2)

2
Tkdiagn(f

(2)(xk)(Tk ⊗ Tk))

× (ξ
(−1)
k ⊗ (ξk ⊗ ξk))

+
1

6
Tk

((

c3k1
ck1+ck2

f (3)(x̄k1) +
c3k2

ck1+ck2
f (3)(x̄k2)

)

× (Tk⊗Tk⊗Tk)(ξk⊗ξk⊗ξk)
)

ξ
(−1)
k

+ Tk
εk+ − εk−
(ck1 + ck2)

ξ
(−1)
k . (38)

Here, from (B1), the relations

E

[

ξkj
ξki

∣

∣

∣

∣

xk

]

=

{

0 if i ̸= j,
1 if i = j,

E

[

ξkjξkl
ξki

∣

∣

∣

∣

xk

]

= 0

hold for every (i, j, k, l) ∈ {1, 2, . . . , n}4 (note that (B1) (a)

implies E[ξki] = 0 and E[ξ−1
ki ] = 0), from which we have

E[ξ
(−1)
k ⊗ ξk|xk ] = [e⊤1 e

⊤
2 · · · e

⊤
n ]

⊤, (39)

E[ξ
(−1)
k ⊗ (ξk ⊗ ξk)|xk ] = 0n3×1. (40)

Moreover,

c3ki
ck1+ck2

≤ c3ki
max{ck1, ck2}

≤ c2ki = O(∥ck∥2) (i = 1, 2)

(41)

in (38). From (A2), (B1) (a), (38), (39), (40), and (41), we

have

E[d(xk, ck, ξk, δk) |xk ]
= Tkdiagn(f

(1)(xk)Tk)E[ξ
(−1)
k ⊗ ξk|xk ] +O(∥ck∥2)

= Tk











f (1)(xk)Tke1
f (1)(xk)Tke2

...

f (1)(xk)Tken











+O(∥ck∥2)

= Tk











e
⊤
1 T

⊤
k ∇f(xk)

e
⊤
2 T

⊤
k ∇f(xk)

...

e
⊤
n T

⊤
k ∇f(xk)











+O(∥ck∥2)

as ck → 0. This, together with (A3), implies (12).

APPENDIX II

PROOF OF PROPOSITION 2

In a similar way to [21], Proposition 2 is proven via the

Robbins-Monro Algorithm.

A. Robbins-Monro Algorithm

The Robbins-Monro Algorithm has the form

xk+1 = xk − ak(g(xk) + bk + ek) (42)

where xk ∈ R
n is the state, ak ∈ R+ is the gain, g : Rn →

R
n is the function whose root is to be found, and bk ∈ (R ∪

{∞})n and ek ∈ R
n are the random variables.

A result on the convergence is given by the following

theorem (see, e.g., [25] for further details).

Proposition 3: Consider the algorithm in (42). Assume that

there exists a root x∗ ∈ R
n of the equation g(x) = 0. If

(D1) limk→∞ ak = 0 and
∑∞

k=0 ak = ∞,

(D2) limk→∞ bk = 0 and supk∈N
∥bk∥ <∞ w.p.1,

(D3) for every x0 ∈ S and κ ∈ R+,

lim
k→∞

Prob

[

sup
l∈[k,∞)

∥

∥

∥

∥

∥

l
∑

i=k

aiei

∥

∥

∥

∥

∥

≥ κ

]

= 0 (43)

where S is a set defined in (D5),

(D4) x∗ is an asymptotically stable equilibrium of ẋ(t) =
−g(x(t)),

(D5) there exists a compact stability region S ⊆ R
n for

ẋ(t) = −g(x(t)) (which is nonzero-measure and for

which ẋ(t) = −g(x(t)) with x(0) = x0 results in
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x(∞) = x∗) such that xk ∈ S infinitely often for

every x0 ∈ S and almost all sample points,

(D6) supk∈N
∥xk∥ <∞ w.p.1 for every x0 ∈ S,

then

lim
k→∞

xk = x∗ w.p.1 (44)

for every x0 ∈ S.

B. Proof of Proposition 2

By Proposition 1 and the relation

d(xk, ck, ξk, δk) = E[d(xk, ck, ξk, δk)|xk] + d(xk, ck, ξk, δk)

− E[d(xk, ck, ξk, δk)|xk],

the G-SPSA algorithm given by (9) and (10) is represented as

xk+1 = xk − ak
(

∇f(xk) +O(∥ck∥2)
+ d(xk, ck, ξk, δk)−E[d(xk, ck, ξk, δk)|xk]

)

under (A1)–(A3) and (B1). Therefore, the G-SPSA algorithm

with a fixed sequence {Tk} is equivalent to (42) for

g(xk) = ∇f(xk), (45)

bk = O(∥ck∥2), (46)

ek = d(xk, ck, ξk, δk)− E[d(xk, ck, ξk, δk)|xk]. (47)

Furthermore, under (A6), the statement

(⋆) for each sequence {Tk} ∈
∏∞

k=0 T, “limk→∞ xk = x∗

w.p.1” holds

implies the main statement in the theorem (“(13) holds for

every {Tk} ∈ ∏∞
k=0 T ” holds w.p.1), since (A6) means that

∏∞
k=0 T is a countable set.

So in the following part, to prove (⋆), we show under (45)–

(47) that (A2)–(A5), (B2)–(B4), and (C1)–(C3) imply (D1)–

(D6) for any {Tk} ∈∏∞
i=0 T.

First, it is trivial that (B2) implies (D1) and (D2) and that

(A4), (C1), and (C2) imply (D4)–(D6) because T ⊆ T̂.

Next, we prove that (D3) holds under (A2), (A3), (A5),

(B2)–(B4), and (C3). Suppose that a sequence {Tk} ∈
∏∞

k=0 T is arbitrarily given and consider the stochastic pro-

cess {∑β
i=k aiei}∞β=k with the filtration Fβ generated by

{(xk, ξk)}βi=0. From Jensen’s inequality and the fact that

E[e⊤i ej ] = 0 for i ̸= j, we have

(

E

[∥

∥

∥

∥

∥

β
∑

i=k

aiei

∥

∥

∥

∥

∥

])2

≤ E





∥

∥

∥

∥

∥

β
∑

i=k

aiei

∥

∥

∥

∥

∥

2


=

β
∑

i=k

E
[

∥aiei∥2
]

.

(48)

Furthermore, under (A3), (A5), (B2), (B4), and (C3), it can

be shown in a similar way to [21] that

∞
∑

k=0

E
[

∥akek∥2
]

≤ µ
∞
∑

k=0

a2k
∥ck∥2

<∞ (49)

where µ is a constant that does not depend on k. Equations

(48) and (49) mean E[∥
∑β

i=k aiei∥ ] < ∞ for every β ∈
{k, k+1, . . .}. It follows that the sequences {

∑β
i=k aiei}∞β=k

and {∥
∑β

i=k aiei∥}∞β=k are integrable. Thus, if the martingale

difference assumption (A2) and the independence assump-

tion (B3) hold, the sequence {∑β
i=k aiei}∞β=k is martingale

in the filtration Fβ and further {∥∑β
i=k aiei∥}∞β=k is sub-

martingale in Fβ (by the Jensen’s inequality). This follows

from the relation E[
∑β+1

i=k aiei −
∑β

i=k aiei|
∑β

i=k aiei ] =

aβ+1E[E[ eβ+1|x0, x1, . . . , xβ , ξβ ,
∑β

i=k aiei ]|
∑β

i=k aiei ]

= aβ+1E[E[ eβ+1|x0, x1, . . . , xβ , ξβ ]|
∑β

i=k aiei ] = 0 sub-

ject to (A2) and the fact that
∑β

i=k aiei is determined by

{(xk, ξk)}βi=0. The submartingale property enables us to apply

Doob’s martingale inequality to the probability part of the left

hand side of (43), which gives

Prob

[

sup
β∈[k,∞)

∥

∥

∥

∥

∥

β
∑

i=k

aiei

∥

∥

∥

∥

∥

≥ κ

]

≤ lim
β→∞

κ−2E





∥

∥

∥

∥

∥

β
∑

i=k

aiei

∥

∥

∥

∥

∥

2


 .

(50)

Equations (48)–(50) imply

Prob

[

sup
β∈[k,∞)

∥

∥

∥

∥

∥

β
∑

i=k

aiei

∥

∥

∥

∥

∥

≥ κ

]

≤ κ−2µ

∞
∑

i=k

a2i
∥ci∥2

.

This and (B2) prove (D3).
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