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Abstract—In this paper, Stochastic Collocation Algorithm
combined with Sparse Grid technique (SSCA) is proposed to
deal with the periodic steady-state analysis for nonlinear sys-
tems with process variations. Compared to the existing ap-
proaches, SSCA has several considerable merits. Firstly, com-
pared with the moment-matching parameterized model order re-
duction (PMOR), which equally treats the circuit response on
process variables and frequency parameter by Taylor approxima-
tion, SSCA employs Homogeneous Chaos to capture the impact of
process variations with exponential convergence rate and adopts
Fourier series or Wavelet Bases to model the steady-state behav-
ior in time domain. Secondly, contrary to Stochastic Galerkin
Algorithm (SGA), which is efficient for stochastic linear system
analysis, the complexity of SSCA is much smaller than that of
SGA for nonlinear case. Thirdly, different from Efficient Colloca-
tion Method, the heuristic approach which may results in ‘“Rank
deficient problem” and “Runge phenomenon”, Sparse Grid tech-
nique is developed to select the collocation points in SSCA in or-
der to reduce the complexity while guaranteing the approxima-
tion accuracy. Furthermore, though SSCA is proposed for the
stochastic nonlinear steady-state analysis, it can be applied for
any other kinds of nonlinear system simulation with process vari-
ations, such as transient analysis, etc..

I. INTRODUCTION

As IC technology is scaled down to deep sub-micron region, the
circuit performance is increasingly less predictable for the indetermi-
nation in the manufacturing process. Therefore, it is quite essential to
deal with the sensitivity analysis about how process parameters influ-
ence the performance of a design[1]. Contrary to the linear system,
investigation of nonlinear circuit behavior in the presence of process
variations is increasingly more crucial and urgent, especially for RF
and Mixed-Signal design. In fact, many important building blocks
in RF or Mixed-Signal system, such as mixers and oscillators, are
fundamentally dependent on nonlinear effect to operate[2]. In these
nonlinear circuits, impact of process variations could be much more
severe than that on the linear circuits, since the parameter variations
could be amplified exponentially by nonlinear behavior. Therefore,
variation aware steady-state simulation for nonlinear circuits is quite
demanding.
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Up to now, the majority of variational circuit analysis methods
use Taylor series to study the impact of process variations on circuit
performance, such as CORE[3] and PMOR[4] for linear system and
TPWL-PMOR|5] for nonlinear circuit. In [4] and [5], the same ex-
pansion order is employed for both random process parameters and
frequency parameter. However, in today’s IC technology, the process
parameters varies at most around 0 ~ 30%, while the frequency para-
meter may extend in extremely large range from 0 to 10GH z . There-
fore, the more reasonable choice should be high order moments for
frequency parameter and low order moments for process variables.
Moreover, since “Taylor expansion” do not consider the randomness
property of process variations, all these methods do not result in con-
vergent expansion and can only be applied to study the systems with
relatively small variations. “Taylor expansion” methods are not ef-
ficient for variational nonlinear system analysis in which case small
variations are always amplified significantly.

When considering the random process variables, the nonlinear cir-
cuits could be formulated as stochastic ordinary differential equation
(ODE). A natural choice for the solution of stochastic nonlinear ODE
is the stochastic spectral methods, such as Stochastic Galerkin Al-
gorithm (SGA) and Stochastic Collocation Algorithm (SCA). Previ-
ously, SGA has been introduced in [6] and [7] to deal with the sto-
chastic analysis of linear interconnect and Power Grid circuits. How-
ever, SGA is not a potential method for the analysis of nonlinear sys-
tem when considering the process variations even though it is very
useful for linear circuit. This is because the forms of resulting equa-
tion by SGA for parameterized nonlinear systems are always coupled
and much more complicated than the equations generated from lin-
ear case, and this could result in unacceptable computational com-
plexity. On the other hand, for SCA, since the high dimension of
random variable space makes the collocation points explode with di-
rect tensor product and thus increases the computation cost expo-
nentially, a simple heuristic approach, also named as Efficient Col-
location Method(ECM), is previously developed in [8] to choose the
fewest collocation points for stochastic analysis in the chemical and
biochemical engineering field. Later, ECM is employed by [9] for
function approximation in the stochastic gate delay modeling with
process variations. However, ECM is an ad-hoc approach, and this
approach will result in “Runge phenomenon” and fail to convergence
for high order polynomial chaos expansion, i.e., suffer from “Rank de-
ficient problem” attributed to its inherent instability[8][10] discussed
detailedly in Section IIL.B.

In this paper, Stochastic Sparse-grid Collocation Algo-
rithm(SSCA) is developed to analyze periodic steady-state response
of the nonlinear circuits with respect to process variations. SSCA has
several important advantages compared with the existing methods.
Firstly, different from [4] and [5], which expand the different
value range parameters, i.e., the process parameters and frequency
parameter, with the same Taylor order, SSCA adopts disparate or-
thogonal bases for different kinds of parameters, i.e., Homogeneous
Chaos for process variables and Fourier series or Wavelet basis in
time(frequency) domain with much higher convergence rate than
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“Taylor expansion”. Secondly, contrary to the SGA which always
results in high complexity for nonlinear case, SSCA has much
smaller CPU cost since it is only required to solve the deterministic
nonlinear system with the same order as original ones on several
selected collocation points in the process variational space. In
addition, Sparse Grid technique, which is well developed in the
mathematics and mechanics field[11], is introduced in this paper to
reduce the complexity of SCA. Sparse Grid technique could avoid the
exponential increase of the number of collocation points generated by
direct tensor product scheme in the high dimensional random space.
Moreover, compared with the ECM developed in [8][9], which is
lack of theoretical background and easily suffer from “Rank deficient
problem” and “Runge phenomenon”, Sparse Grid technique has the
solid mathematical support and it could preserve the accuracy while
reducing the number of collocation points remarkably.

The rest of the paper is organized as follows. In Section II, the
problems for steady-state analysis of deterministic and stochastic non-
linear systems are formulated. In Section III, background of SCA is
reviewed. Stochastic Collocation Algorithm combined with Sparse
Grid technique (SSCA) is proposed in Section IV. Numerical results
are given in Section V to demonstrate the advantages of the proposed
algorithm. Finally, conclusions are drawn in Section VI.

II. PROBLEM DEFINITION

Without loss of generality, the traditional steady state analysis for
the deterministic nonlinear system is trying to find out the exact solu-
tion of (1),

dx(t

M @) T =a) )

where z(t) = [z1(t), 22(t), - -, xp(t)]T € RF are the P unknown

state variables, f(-) = [f1(-), f2(-), -, fr(:)]* denotes the non-

linear vector function and u(t) means a periodic signal with fre-

quency fo = % There are two main steady-state analysis algorithms,

Harmonic Balance Method (HBM)[2] and Wavelet Balance Method

(WBM)[12], both of which assume that the solution of (1) can be ap-
proximated by a finite series of orthogonal bases as (2),

2(t) = Xi-u(t) )
=1

where 1);(t) is the Fourier function for HBM or Wavelet bases for
WBM. X are unknown coefficients. Based on (2), (1) can be trans-
formed to a nonlinear algebraic equation with respect toX;, which
can be solved by the classical iterative techniques, such as Newton-
Raphson method.

When considering process variations, let E = [&1,&,---,Em]T €
©M denote series of interested independent random variables with

probability density function p(g), where ©M is the M-dimensional
random space. Then, (1) should be reformulated to (3).

da(t,€)

—g - =@t &) e+ T =2(tE O

The solution of (3) can be regarded as a continuous stochastic process.
A good choice to model a stochastic process is Polynomial Chaos
expansion. Therefore, in the following, basic concepts of Polynomial
Chaos will be reviewed briefly.

II1. BACKGROUND

In this section, Polynomial Chaos[13], the basic principle of sto-
chastic spectral methods, is introduced at first. Then, Stochastic Col-
location Algorithm (SCA) combined with two kinds of collocation
points selection approaches, direct tensor product scheme[11] and
ECM[8], are reviewed briefly by taking gate delay modeling as an ex-
ample. In addition, Gaussian Quadrature used in SCA is introduced
briefly.

A. Polynomial Chaos Expansion

For the solution of deterministic systems (1), orthogonal polyno-
mials as Fourier basis or Wavelet basis expansion in the deterministic
space can result in high approximation accuracy. Contrarily, for the
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solution of stochastic ODE as (3), which should be regarded as sto-
chastic process, polynomials chaos (Askey Scheme), i.e., the orthog-
onal basis defined in the random space according to the corresponding
probability density function (pdf), are always the best choice for its
exponential convergence rate[13]. For instance, Laguerre-chaos can
be applied for Gamma process approximation and Charlier-chaos can
be employed for Poisson process[13]. In this paper, all the process
parameters are assumed to be Gaussian variables, and the best choice
should be Hermite polynomials[13]. The Hermite polynomials form
a set of orthogonal bases in Hilbert space based on the inner product
definition (4).

@), 9() = / FEg(Ep()de @
13

where E = [&1,8&2,- & M]T is a set of independent random variables

—

with standard Gaussian pdf as p(&).

According to the orthogonal property of Hermite polynomials, any
second order Gaussian process can be approximated by a series of
Hermite polynomials in the norm sense[14].

B. Stochastic Collocation Algorithm

In this section, taken gate delay modeling as an example, SCA is in-
troduced briefly by function approximation in the forms of a truncated
series of Homogeneous Chaos with respect to process parameters &,

N

y=fE)~ Y cnHa(d) ®)
n=1

where H, (5) is the n-th Hermite polynomial. The unknown coef-
ficients ¢, are estimated by equating delays y and the correspond-
ing polynomial chaos (5) at a set of collocation points in the para-
meter space. There are two algorithms for the selection of colloca-
tion points and calculation of ¢,, Gaussian Quadrature with Tensor
Product Scheme discussed in Section III.B.1 and Efficient Colloca-
tion Method presented in Section III.B.2.

1). Gaussian Quadrature with Tensor Product Scheme

With Gaussian Quadrature, tensor product scheme can be applied
easily to obtain ¢y,

Gaussian Quadrature[15]

Gaussian Quadrature presented in Theorem 1[15] for one-
dimension case is always regarded as an efficient numerical integra-
tion technique for nonlinear function.

Theorem 1 Ifa < t1 < t2 < --- < tn < b are the real roots of
N order orthogonal polynomial Py (x) = kNvazl(m —t;), kn >0
defined in the region [a, b] and with weight function w(z), the quadra-
ture function (6) is exact for all polynomials of degree < 2N —1.[15]

[ v Y wi) ©®

where w; is the weight for point t;, which is also called as the
Gaussian collocation point for N — 1-level Gaussian Quadrature.

With regard to the Gaussian-Hermite Quadrature for multi-
dimensional cases, it has the similar conclusion as Theorem 1. For in-

stance, let g(.f;?) denotes a nonlinear function for independent Gaussian
random variables £ = [¢1,&2,--+,&m]T with probability density

function p(&), then,

oo Py
/ 9@pE)dE~ Y wig(€) @)
- =1

[e']

where the Gaussian collocation points Ef and correlated weight w}
can be obtained by direct tensor product scheme.

Tensor Product Scheme

Let ©7 = {¢],--- 69"} and W = {wi,---,w?""} denote
the set of collocation points and weights for one-dimensional g-level
accuracy Gaussian-Hermite quadrature rule. According to the direct
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tensor product scheme[11], the space of collocation points for M-
dimensional integration of Q-level is[11],

0% =01 x 02 x ... x OM (8)
where i1 = i2 = --- = iy = @ and @1Q denotes the collocation
points for one-dimension with -level. For each collocation point
& = [ &0 € ©F, 1 < ji,--- i < Q+ 1, where
&k, k=1,---, M, is any one chosen from @?, The corresponding
weight w? is defined as,

wt- = wj1 - w{é A w{M 9)
* is the weight for collocation point 57 * in one-dimensional

case. Obv1ously, the number of collocation points is P = (Q + 1)
which is always much larger than the number of Hermite polynomi-

als up to Q-order in M dimensional space, as N = (MJFQ)[IS]

where w

When the collocation points Ej and corresponding weights w;, j =
1,---, P, have been obtained, the coefficients c¢,, can be calculated
based on SCA and Gaussian Quadrature as,

i t, t
. wiy: H
 {y, Ha( >>_]§1 ™

Cn = =
Qn Gn

— =

where y¢ is the delay on point 5;, and a, = (Hn(§),Hn(§)) =
S B2 (©)p(E)de.
2). Efficient Collocation Method (ECM)

In order to avoid exponential increase of the number of colloca-
tion points by applying tensor product scheme, a simple heuristic ap-
proach, ECM is proposed by [8] for stochastic analysis in chemical
field. Then it is used for delay modeling[9].

In ECM, one “corresponding” collocation point is selected for each
basis applied in (5). The collocation point for the constant is the ori-
gin. The collocation points for terms involving only one variable are
selected by setting all other £’s to zero and the corresponding variable
to the roots of the higher order one-dimension Hermite polynomial.
For terms involving two or more random variables, the values of the
corresponding variables are set to the roots of the higher order one-
dimension polynomial. If more “corresponding” points are available
than needed, the points which are closer to the origin and make the
overall distribution of selected points symmetric with respect to the
origin are preferred. The number of collocation points obtained by
ECM is the same as the number of Hermite basis employed in (5).
Therefore, ¢, can be calculated exactly according to (11).

HxC=Y (11)
Hl(gl)HQ(gl) . HN(gl) c1 Y1
HI(EK)HQ(gK)"HN(gK) CN K

By applying ECM, the number of selected collocation points is re-
duced remarkably than that by tensor product scheme, and the behav-
ior of the model is captured reasonably well at points corresponding to
regions of high probability. However, since the function approxima-
tion can also be regarded as interpolation problem and the collocation
points selected by ECM are not all exactly the Gaussian collocation
points introduced in the above section, the approximation accuracy of
p+ 1 order Hermite expansion with more sampling collocation points
may not be higher than that of p order Hermite expansion with less
collocation points. This “Runge phenomenon” of interpolation prob-
lem is observed in the numerical results of ECM as given in Section
V. Moreover, ECM will fail to converge for high order polynomial
chaos approximation attributed to its inherent instability[8][10], i.e.,
the rank of matrix H in (11) will be smaller than its size, which is
called as “Rank Deficient Problem”. Then, there exist infinite so-
lutions for (11) and Least Square method (LSM) is always used to
obtain the minimum 2-norm solution[16]. However, since it is im-
possible to demonstrate whether this minimum 2-norm solution is the

exact solution for (5) or not, LSM may result in unacceptable approx-
imation results as shown by numerical results in Section V. There-
fore, as a simple heuristic approach, ECM is infeasible for high order
polynomial chaos expansion in stochastic analysis of strong nonlinear
system .

IV. STOCHASTIC SPARSE-GRID COLLOCATION
ALGORITHM

In this section, firstly, Stochastic Galerkin Algorithm (SGA), an
efficient method for linear system analysis, is proven to have high
complexity for nonlinear case. Then, Stochastic Collocation Algo-
rithm (SCA) is proposed for the parameterized steady-state analysis
of nonlinear circuit with much lower CPU cost than SGA. In addition,
Sparse Grid technique is developed to further decrease the complex-
ity.

A. Spectral Stochastic Methods

The two most important components in the spectral methods are
trial functions and test functions[14]. Since all the interested vari-
ables 5 in (3) are normalized Gaussian random variables, according
to spectral methods, Hermite polynomials can be chosen as the trial
functions to approximate the solution of (3). Then based on the prin-
ciples of stochastic spectral methods and HBM/WBM, the response

of (3) can be approximated by z4(t, E),
N

n;l =1 .
=Y BuMHA(E) =D Xi(Ewi(t)  (12)
. n=1 =1 N
Bult) = curth(t) )= euHa (&) (13)
=1 n=1

where H, () is the n-th Hermite polynomials, v;(¢) is the Fourier
basis or Wavelet basis, and c,,; are expansion coefficients.

Test functions are used to minimize the residue given in (14) in the
norm sense. In other words, the inner product of each test function
and E, (&) in (14) should be enforced to zero. Different choice of test
function will result in different spectral methods.

Ba(@) = ) 16,0, (e

In Stochastic Galerkin Algorithm (SGA), test functions are set to be
the same as trial functions, i.e., (15) should be satisfied,

(En(&), He(£)) = 0

N. However, in SCA, test functions are set to be

(14)

15)

where k =1, -,
the Dirac delta functions §(§ — &;) whose value is only non-zero at

some special collocation points g;, 3=12---.J,ie., (16) should

be met,

(En(£),0(6=¢&))=0 (16)
This means that equation (3) is only required to be satisfied exactly at
some collocation points in process variable space.

B. Limitations of Stochastic Galerkin Algorithm (SGA)
According to the principle of SGA (15), (17) should be satisfied.

dza(t,&) . —_ A

(L @) = (flratt. 6,1, Eu(e), HUE) T
(&1 () —zNjOﬁn(w @ pE10E = 0 0
0, 00), HE) = [ 120,00 HAE @t
- gf(i B (1) o ©) () H p(E)d(E) = Fu()
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where ar = (Hy(€), Hi(€ fi HE(Ep(E)dE. and Fi(-),k =

1,---, N are the functions of unknown coefﬁcn:nts Bi(t),---,Bn(t).
Therefore, a large deterministic coupled system such as (18) should

be solved.
Fi()/ax
- (18)
Fn(-)/an

B (t)

B (1)
Obviously, the complexity of solving (18) is bottleneck of SGA. Let
P denote the order of the nonlinear system to be considered. Since the
complexity analysis for nonlinear system solution is always very dif-
ficult, and in each iteration step of nonlinear solution, the complexity
for nonlinear system analysis is at least of O(P?). Hence, the com-
plexity for solving (18) is at least of O(P® x N?). However, since
small parameter variations may induce large output variations in the
nonlinear system, high order polynomial chaos expansion are always
required to guarantee the approximation accuracy. The complexity
of SGA for nonlinear system will become unacceptable especially for
high order polynomial chaos expansion in the high dimension random
space. As aresult, SGA is not a suitable algorithm for stochastic non-
linear system analysis, though it is efficient for linear case where low
order polynomial chaos approximation is enough.

C. Stochastic Collocation Algorithm

In this section, Stochastic Collocation Algorithm is proposed to
calculate the unknown coefficients c,; in (12) by the following three
steps.

Step 1 Selection of Collocation Points for €. Direct tensor product
scheme can be adopted to generate the required collocation points and
the corresponding weight. However, the number of collocation points
P, will increase exponentially with regard to the space dimension[11].

Step 2 Calculation of Steady-State Response at each Collocation
Point. At each collocation point gk, k=1,---, P, (3)is transformed
to a deterministic nonlinear equation (19), following the SCM princi-
ple in (16).

%ﬁ) = f(a(t,€0).t, €, u(t) (19)

Then, classical algorithms, such as HBM or WBM can be applied to

calculate the steady-state behavior of (19), which is approximated by
a truncated series of Fourier basis or Wavelet basis as,

ZXW/JL

where 1);(t) is the Fourier basis or Wavelet basis. On the other hand,
according to (12), the steady state response x (¢, ) of (3) at each col-
location point £, can be approximated by z4(t, 5_12) as,

) =Y Xi(E)wit)
=1

a(t, &) (20)

@n

Therefore, o
Xi1(&k) = Xna (22)
Step 3 Computation of Steady-state Behavior for Nonlinear System

with Process Variations. According to (13), X; (5) can be approxi-
mated by a series of Hermite polynomials. The expansion coefficients
cni can be obtained by Weighted Least Square Method as setting,

(Be, Hy(8)) = 0, k=1,---,N (23)

where E. is the residue defined as,

N
Z Can

n=0

24
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Based on the Gaussian-Hermite Quadrature and direct tensor product
scheme, (23) can be rewritten as (25),

(B, (&)= / Bol (Ep(E)de
13

Py

=) wiXi(E)H(E) —are =0 (29)
i=1
Then, Py
> wi X (€Y Hy (&)
e = = (26)
Qg

Obviously, when cg; is computed, the steady-state response of (3) can
be obtained by (12). Then it is very easy to calculate the stochastic

properties, such as the mean value u(z (¢, )) and variance 6 (x(t, £))
given in (27).

L

u(@(t,€) =Y coatu(t),6*(@(t,£) = Y > chianvi(t)

=1 n=1 1=1
27

Since the number of collocation points selected by tensor product
scheme increases exponentially according to the expansion order, the
complexity of SCA is still considerable. In order to further reduce the
CPU consumption, Sparse Grid technique is investigated in the next
section.
D. Sparse Grid Technique

In this section, Sparse Grid technique[11], which is developed very
well in the mathematical field, is proposed to decrease the number of
required collocation points in SCA, then, reduce the computational
complexity remarkably compared with direct tensor product scheme.

Let ©f and WY denote the collocation points and weights for one-
dimensional g-level accuracy Gaussian quadrature rule. Thus the
collocation points space generated by Sparse Grid technique for M-
dimensional space with Q-level accuracy is[11],

59 _
CHETNG
Q+1<[F<M+Q

+ . And the number, denoted by Ps, of
the generated collocation points E_Z € (:)J?/[ is

O x Oz x ... x QM (28)

wherem:il 4+ Gy 4 -

_ 2R
P, = dim(0%,) ~ @MQ ~ 29N (29)
where N is the number of Hermite polynomials for M -dimensional
space of order at most (). Table I lists the amount of collocation
points generated by different kinds of approaches, where P; and Ps
denote the number of points generated by direct tensor scheme and
Sparse Grid technique respectively. It can be found that the direct
tensor product scheme can result in the exponential increasing of the
number of collocation points with respect to dimensionality, while
Sparse Grid technique could reduce the number of required colloca-
tion points remarkably. Furthermore, the weight corresponding to the

collocation point £ = [5’&1, ,5;?;]T € 6% [11]is,

af M-—1 : ;
s (_1)M+re-li . i M
vy <M+Q - |i|>(w”“ Vil

Then, the integration of nonlinear function f (E) in terms of Gaussian

random variables E can be computed as (31) up to (2Q + 1)-level
accuracy according to Theorem 2,

Ps
| r@n@ag~ > uis@)
fe6y, i=1

Theorem 2 Equation (31) is exact for all M-variables polynomials
of order at most 2Q + 1[11].

(30)

€1V
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TABLE I
THE NUMBER OF GENERATED COLLOCATION POINTS
M Q Ps Pt Q ]Ds Pt
4 1 9 16 2 | 41 81
6 1|13 64 2 85 729
10| 1 |21]1024 | 2 |221] 5.9x10*

For SCM proposed in the last section, Sparse Grid technique can be
applied in Step 1 to generate collocation points instead of direct tensor
product scheme and the number of required collocation points will be
reduced remarkably. Then in Step 3, (25) should be transformed to
(32),

(e, Hi ()= / EoHu(Ep(@)de
13

Ps

=) Wi Xi(E)HW(E) —arcn =0 (32)
i=1
where £ = 0,1,---, N and cy; can be obtained by (33).
Py .
> wiXi (&) Hi(€7)
o = (33)

E. Summary

Compared with existing algorithms, the proposed Stochastic
Sparse-grid Collocation Algorithm(SSCA) has three remarkable ad-
vantages.

e Compared to the moment-matching method[5] for nonlinear
system analysis, SSCA employs the Homogeneous Chaos rather
than Taylor expansion for variation analysis. From the Askey
principle[13], Homogeneous chaos has the optimal(exponential)
convergence rate for its corresponding stochastic process by
solving the stochastic ODE. If for a certain process the opti-
mal Askey polynomial chaos expansion is not employed, the
solution also converges but the rate is clearly slower as demon-
strated by numerical results in Section V. Furthermore, contrary
to the “Taylor” expansion method[5], which approximate the
process variables and frequency parameter with different varia-
tional range by the same Taylor order, stochastic spectral meth-
ods adopt Homogeneous Chaos to capture the impact of process
variations and employ Fourier series or Wavelet basis to model
the steady-state behavior in time domain in order to improve the
efficiency for variational nonlinear system analysis.

e For stochastic nonlinear analysis, the complexity of SCA is
much smaller than that of SGA. According to Section IV, the
time consumption of SCA with Sparse Grid technique includes
two parts, solving (3) at each selected collocation points and
calculation of cx; by (33). For a P order system, the complex-
ity of the first part is at least of Ps - O(P%) ~ 29N - O(P?),
and the complexity of the second part is O(PPsNL). Since
Py - O(P%) = 29N - O(P®) > O(PPsNL), the complex-
ity of SCA could be regarded as 29 N - O(P?), which is much
lower than that of SGA as O(P3 x N?).

e Sparse Grid Technique is developed in this paper to decrease
the number of required collocation points in SCA in order to
reduce the complexity and guarantee the approximation accu-
racy. Compared with the direct tensor product scheme, Sparse
Grid technique avoids the exponential increase of the number of
collocation points in terms of random space dimension. Further-
more, Sparse Grid technique is much more efficient than ECM
for strong nonlinear stochastic analysis. As the heuristic ap-
proach, ECM will result in “Runge phenomenon” since it does
not generate the exact Gaussian collocation points. With high
order Hermite expansion, ECM always suffers from “Rank defi-
cient problem” which can not be solved by least square method
to obtain the exact solution for the original system. According
to Theorem 2, Sparse Grid technique could guarantee the high

Rl=1002

Ll=01H

RI=1k0
Ci=1mF|

Cl=luF  C2= mTT T

Fig. 1. Schematic of the DC Power Supply

approximation accuracy and the convergence rate while reduc-
ing the number of required collocation points as demonstrated
by numerical examples given in Section V.

V. NUMERICAL RESULTS

In this section, a DC power supply (Fig.1), which is widely used
in the testing of deterministic steady-state analysis algorithms[12], is
applied to demonstrate the properties of proposed SSCA. The mean
value of devices parameters are also given in Fig 1. Harmonic Bal-
ance Method is taken as the solution engine for deterministic nonlin-
ear system. The voltage on C'1, C2, C'3 (denoted as v1, vz, v3), and
the current across L1(denoted as i) are taken as the state variables.
The current across the diode which has exponential relationship with
v1, is denoted as i4. The input for this circuit is a sinusoidal volt-
age with frequency 100H z and amplitude 10V. This circuit can be
formulated by a series ODE as,

v
tqa =is(evtn — 1)

dvi _ vin —v1—v2 dvs . U3
o= Lt=n 172 C3—> =ip — —
Ydt R v > Tdt ZL Ro
dva  Vip —v1—v2 . dir,
Chp——=_—- = _ Li— =wvy —
2at Ry B Yat vz

where is,v¢n, R1, R2 are considered as random variables with
Gaussian variations < 7%. i is taken as the testing signal. Obvi-
ously, any small variations of process parameters will result in expo-
nential variations for the state variables. This is a typical strong non-
linear system where high order polynomial chaos expansion should be
applied. The response obtained by Monte Carlo HSPICE simulation
with 10* sampling points is taken as the standard result.

A. Comparison with Taylor Expansion

By applying “Taylor expansion”, the response is approximated by
a truncated Taylor series in terms of process parameters, and the ex-
pansion coefficients can be obtained by moment matching scheme
combined with Harmonic Balance algorithm. However, when four
parameters s, v¢h, R1, Ro are considered as random variables and
the expansion order is 3, “Taylor expansion” will suffer into “out of
memory”. In order to study the convergence rate of SSCA and “Taylor
expansion”, only two parameters, 21 and R are regarded as random
parameters with Gaussian variations < 7%. Fig.2 shows the relative
errors of the mean values and variances obtained by “Taylor” scheme
and SSCA. The relative errors of “Taylor” method for order 3 and or-
der 4 are almost the same, while SSCA with order 4 has much higher
accuracy than that with order 3. Evidently, both the convergence rate
and accuracy of SSCA are much higher than those of “Taylor” meth-
ods for the analysis of nonlinear system with process variations. This
example demonstrates the exponential convergence rate of Homoge-
neous Chaos approximation for stochastic process, especially for the
analysis of strong nonlinear circuit with process variations.

B. Comparison with SGA

Fig.3 (a) shows the relative errors of the mean values for the
steady state response obtained by SGA with Sparse Grid technique
and SSCA, and (b) shows the computational costs for these two al-
gorithms. It is clear that even though with same order expansion,
the accuracy of SGA and SSCA are almost at the same order, the
CPU consumption of SGM is much higher than SSCM. SGM is most
likely to suffer from “out of memory” when the order of employed
Hermite polynomial is higher than 3, while SSCA could give the re-
sults with high accuracy with acceptable complexity. The numerical
results demonstrate that SSCM is more efficient than SGM for non-
linear system analysis with the similar accuracy and much lower CPU
cost.
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Fig. 2. Results of Taylor expansion method and SSCA
C. Comparison with ECM

Fig.4 shows the relative errors of mean values and variances for the
steady state response obtained by ECM, SSCA and Tensor product
scheme, while Fig.3(b) gives the CPU cost for these three algorithms.
Firstly, though Tensor scheme could result in much high approxima-
tion accuracy as shown in Fig.4, its computational complexity is al-
ways very high. Secondly, though the CPU time cost by ECM is
much smaller than SSCA as shown in Fig 3(b), ECM can not obtain
the acceptable approximation accuracy for strong nonlinear stochas-
tic analysis when increasing Homogeneous expansion order. Further-
more, according to Fig.4, the relative error of ECM for order 2 is
smaller than those for order 1 and order 3, i.e., the accuracy could
not be improved by increasing the expansion polynomial chaos order
and the number of collocation points for ECM, which is called as the
Runge phenomenon in interpolation problem. Moreover, when the
expansion order of Homogeneous Chaos is larger than 3, ECM suf-
fers from “Rank deficient problem”. For instance, for matrix H, the
rank is 60 and the size is 70 for order 4, the rank is 99 and the size
is 126 for order 5. Though Least square method in Matlab is applied
here to obtain the minimum 2-norm result [16] for order 4 with ECM,
the relative error is up to 10* as given in Fig 4. Therefore, ECM is
infeasible for strong nonlinear stochastic analysis because of its lack
of theorem for error control. On the other hand, by applying SSCA,
the response are convergent to Tensor product scheme results with the
increase of expansion order, while the CPU cost is much lower than
that of Tensor scheme as shown in Fig.3. Therefore, SSCA, which has
the solid mathematical background, is a practical and efficient method
for stochastic analysis of the strong nonlinear system.

VI. CONCLUSION

In this paper, Stochastic Sparse-grid Collocation Algorithm
(SSCA) is proposed to analyze the stochastic steady-state perfor-
mance of nonlinear circuit with process variations. Homogeneous
Chaos is applied in SSCA to capture the variation behavior and
Fourier series or Wavelet bases is used to model the circuit behav-
ior in time domain. Both theoretical analysis and numerical results
have shown that, by applying SSCA, the accuracy is much higher
than “Taylor expansion” methods and the time consumption is much
lower than Stochastic Galerkin Algorithm. Furthermore, Sparse Grid
technique is introduced to reduce the complexity of SSCA while guar-
anteeing the accuracy and avoiding “Rank deficient problem” and
“Runge phenomenon” appeared in the heuristic approach ECM.
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