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I n t r o d u c t i o n  a n d  s u m m a r y .  

In a stochastic spatial model space is represented by a grid of sites, usually 

the d-dimensional integer latt ice Z a. Each site can be in one of a set of states 

S and changes its s ta te  at a ra te  tha t  depends on the states of neighboring 

sites. This framework is appropriate  for a large number  of situations in 

biology, so it has seen a diverse range of applications. See Dur re t t  and Levin 

(1994a) and references therein. 

In six 45 minute  lectures it would be impossible to survey the field, so we 

will concentra te  on two aspects. The  first is the process tha t  mathemat ic ians  

call the voter model with mutation, but which biologists would call a spatial 

version of the Wright-Fisher or Moran models. Adopting the first viewpoint 

we can describe the dynamics by saying that  (i) each voter  at ra te  one decides 

to change its mind and adopts the opinion of a randomly chosen neighbor, 

(ii) each voter  mutates  at ra te  a creating a new type. To implement  (ii) it 

is convenient to take S to be the unit interval and choose the new types at 

r andom from S. 

The  homogenizing force of (i) and the int roduct ion of new types in (ii) 

create a stochastic equilibrium state  for the process. Since in many  situ- 

ations the ra te  at which new types enter the system due to migrat ion or 

genetic muta t ion  is small, it is interesting to investigate the limiting behav- 

ior of this equilibrium state as a --> 0. Here,  we will concent ra te  on two 

aspects mot ivated  by classical questions in biology: species-area curves and 

the abundance of species. 

To define the species-area curves for the equilibrium state,  let N~ be the 

number  of different types in the box of side L ~ centered at the origin. Since 

most research suggests a power law relationship between species and area, we 

plot log species versus log area, considering TL(r)  = log Nr/log(L2). Results 

on the limiting behavior of this curve when L = 1/v/-a and a -+ 0 are given 

in Section 2 and the relationship with data  on species area curves in na ture  

is discussed. 

In addition to the number  of species seen in a viewing window, one can be 

concerned about  their  relative abundances.  In this case exper imenta l  work 

suggests tha t  we should look at abundances on a logarithmic scale, and many  

theoretical  papers suggest that  when we do this the result will be a log normal 

distribution. In Section 3 we show that  the species abundance  distr ibution 

for our model,  when viewed on logarithmic scale, has a non-normal  limit 

which is similar to Hubbell 's da ta  I'rom Barro Colorado Island in having an 
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over abundance of rare species when compared with the normal distribution. 

In the last four lectures, we switch from the detailed study of one model 

to a much broader perspective. Durrett  and Levin (1994b) proposed that the 

behavior of stochastic spatial models could be determined from the properties 

of the mean field ODE (ordinary differential equation), i.e., the equations for 

the densities that result from pretending that adjacent sites are independent. 

In their scheme there are three cases depending upon the properties of the 

ODE: 

Case  1. One attracting fixed point with all components positive. There will 

be coexistence in the ODE and in the stochastic spatial model. 

Case  2. Two locally attracting fixed points. In the ODE, the limiting behav- 

ior depends on the initial densities. However, in the stochastic spatial model, 

there is one stronger equilibrium that is the winner starting from generic ini- 

tial conditions. To determine the stronger eqnihbrium, one can start with 

one half plane in each equilibrium and watch the direction of movement of 

the front that separates the two equilibria. 

Case  3. Periodic orbits in the ODE. In the spatial model densities fluctuate 

wildly on small length scales, oscillate smoothly on moderate length scales, 

and after an initial transient are almost constant on large scales. That is, 

there is an equilibrium state with an interesting spatial structure. 

These principles are a heuristic, designed to allow one to guess the behavior 

of the system under consideration, but there is a growing list of examples 

where the conclusions have been demonstrated by simulation or proved math- 

ematically. In the last four sections of these notes, we will explain some of 

the results that have been obtained in support of this picture. 
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I .  T h e  V e r s a t i l e  V o t e r  M o d e l  

Our first two lectures are concerned with the voter model. It is one of the 

simplest interacting particle systems, so it has been used as a model in many 

different contexts. We begin by defining the model and describing the basic 

results of HoUey and Liggett (1975) then proceed to more recently develop- 

ments concerning species-area curves and species-abundance distributions 

1. Bas ic  R e s u l t s  

The state of the voter model at time t is given by a function ~t : Z d ~ S, 

where S is the set of possible types. The dynamics of the voter model are 

simple, perhaps the simplest possible: 

The voter at �9 at times of a rate one Poisson process { T ~ , n  > 1}, 

decides to change its opinion and adopts the opinion of the voter at V 

with probabihty p( z ,  y) = ~o(y - z ) .  

To avoid complications in proofs, we will assume that the neighbor choice 

function ~o has the following properties: 

(A1) f ini te range: T ( z )  # 0 for only finitely many z. 

(A2) Za- symme t r i c :  ~o(z) = r where Izl = (z~ + . . .  + z~) 1/2. 

It is sensible to require also that: 

(A3) irreducible: for any z , y  E Z a the opinion at y can by some chain of 

effects get to z. Formally, there is a sequence of sites z0 = z ,  z t ,  �9 �9 z ,  = y 

so that ~o(zk - xk-1) # 0. 

A common concrete example is the nearest  neighbor case: 

~ ( z )  = ~ 1 /2d  it" Izl = 1 

( 0 otherwise 

However, with apphcations in mind, we will be interested in allowing more 

general distributions and obtaining an understanding of how the quantities 

we compute depend on the underlying distribution. We assume finite range 

out of laziness. That way we do not worry about the minimal moment 

conditions needed for the results to be hold or investigate exotic cases that 

occur e.g., transient two dimensional ramlom walks. 
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a. C o n s t r u c t i o n  a n d  D u a l i t y  

For z E Z d let {T~, n >_ 1} be independent  ra te  one Poisson processes and 

let { Y ~ , n  > 1} be  independent  r a n d o m  variables taking values in Z a with 

P ( Y ~  = y) = p(z ,  y). Intuit ively,  at t ime T~ the  voter  at z imi ta tes  the one 

at  Y~. To imp lemen t  this in a graphical  way we draw an arrow f rom (z, T~) 

to (Y,,~, T~). Since there  are infinitely m a n y  Possion processes  and  hence no 

first arrival, we have  to do a h t t le  work to show tha t  this recipe gives rise to a 

well defined process.  To accomplish this, bu t  more  impor tan t ly ,  to in t roduce  

the  concept  tha t  will be the  key to our analysis of the voter  model ,  we will 

define a family of dual random walks { S , ~ ' t , 0 < s <  t} tha t  t race  the origin 

of the  opinion at z at t ime t. These  will have the p rope r ty  

(i.1) - -  r 

In  words, the  opinion at �9 at t ime  t ' i s  the same as the  one at S, ~'t at  t ime  

The  pa ths  S~ 't are easy to describe in words: we work our way down the  

Poisson processes f rom t ime  t to t ime 0, j um p ing  to the head  of an arrow 

whenever  we encounter  its tail. For an example ,  see Figure  1.1, where the  

thick lines indicate  the duals S~, 't and Su, 't. Formally, the dual r a n d o m  walks 

are defined by  the  requi rement  tha t  S, ~'t = y if and only if there  is a sequence 

of sites So = ~ , x , , . . . x , ,  = y and t imes 0 = Vo < v l . . .  < v,~ < v,,+l = s so 

tha t  

(i) for 1 < i < n there  is an arrow f rom ~i - I  to zi at t ime t - ri  

(ii) for 1 < i < n there  is no Poisson arrival at zi-1 in [t - r ,_ l ,  t - ri) 

(iii) there is no Poisson arrival at z~ in [t - r , , t  - rn+l]. 

N o t e .  Tile closed interval in (iii) is there so tha t  the s ta te  will change at the  

t ime a Poisson arrival occurs, and we will have a t radi t ional  r ight  continuous 

Markov  process. 

To analyze the  voter  model ,  it is convenient  to extend the  definition of 

the dual process to subsets A C Z d by 

C a,t = {s~,t : ~ C A} for 0 < s < t 

To see how this sys tem behaves wc nolo I.hat 
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(a) If  S~ '~ = S~ 't then S ;  't = Sy '~ for r < s < t. 

(b) Two random walks S~ ,t and S~ 't move independently until they hit. 

Again the reader can consult Figure 1.1 for an example. Visually, we imagine 

that  when one particle lands on another one, the two particles combine into 

one, so we call the process (A,t, A C Z a, coalescing random walks. 

The processes S~ ,t, 0 < s < t are nice since their properties have a direct 

(almost sure) relationship with corresponding properties of ~t, e.g., 

= i} = = i} 

For some purposes, such as the proofs of Theorems 1.1 and 1.2 below, it is 

convenient to combine these processes which are defined for 0 < s < t into 

two tha t  are defined for all t ime by requiring tha t  for any t 

{ s ; , o  < s < t} { s ; , ' , o  < s < t} 

= { L ' , o < s <  

and noting tha t  these equations give us consistent finite dimensional distri- 

butions to which Kolmogorov's theorem can be applied. 

b.  B a s i c  D i c h o t o m y  

Combining the duality described in the last few paragraphs with the idea 

that  some random walks are recurrent while others are transient,  leads to a 

dichotomy in the behavior of the voter model between dimensions d < 2 and 

d > 2 discovered by Holley and Liggett (1975). 

T h e o r e m  1.1. Clustering occurs in d < 2. For any set of possible states S, 

any initial configuration ~0, and any sites x, y C Z d we have 

P(~t(x) r ~t(y)) -4 0 as t ~ oo 

T h e o r e m  1.2. Coezistence is possible in d > 2. Let ~t ~ denote the process 

with values in S = {0, 1} starting from an initial state in which the events 

{~0~ = 1} are independent and have probability 0. In d > 2 as t -+ oo, 

~ =~ ~ ,  a translation invariant stat ionary distribution in which P ( ~ ( z )  = 

1) = 0 .  
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R e m a r k .  Here ==~ stands for weak convergence, which in this setting is jus t  

convergence of finite dimensional distributions: P(~,(x~) = i t , . . . ~ t ( z k )  = 

ik). By translation invariant, we mean that  the probabilities 

P(~,(x + y t )  = i~ , . . .~ , (~  + yk) = ik) 

do not depend on ~. 

P r o o f  o f  T h e o r e m  1.1 If  the two sites z and y trace their opinions back 

to the same site at t ime 0 then they will certainly be equal at t ime t so 

P(~(~) ~ ~t(y)) < P(S~ # S~) 

_ u random walk stopped when it hits 0, and the Now the difference S, So is a 

random walk has jumps tha t  have mean 0 and finite variance. Such random 

walks are recurrent, and since ours i~ also, by (A3), an irreducible Markov 

chain, it will eventually hit 0. Since 0 is an absorbing state  for S~ - S~ it 

follows tha t  P(S~ ~ S~t) -+ 0 and the proof is complete. [] 

P r o o f  o f  T h e o r e m  1.2 The inclusion-exclusion formula implies tha t  all 

of the finite dimensional distributions are determined if we know P(~t(a~) = 

0 for all x C B) for each B. To show the convergence of these probabilities 

we observe tha t  

P(~t(a~) = 0 for all a~ E B) = E{(1 - 0) Ir 

since by duality there are no l ' s  in B at t ime t if and only if all of the sites 

in ~t s are 0 at t ime 0, an event with probability (1 - 8)1r Since ~t B is a 

coalescing random walk, I ~ ]  is a decreasing function of t and hence has a 

limit. Since 0 < (1 - 0)1r < 1 it follows from the bounded convergence 

theorem tha t  limt~oo E{(1 - 0)1r exists. 

At this point we have shown that  ~t ~ ~ ~ .  Since the voter model is a 

Feller process, it follows that  ~ is a stat ionary distribution. For more details 

see Section 2 of Durre t t  (1995a). Since the ~t ~ are translation invariant, the 

limits ~ are. Duali ty implies tha t  

P ( ~ ( ~ )  = 1) = P(~o(S~'t) = 1) = 0 

for all t so P ( ~ ( x )  = 1) = O. [] 
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R e m a r k .  Holley and Liggett (1975) have shown that  the ~ are spatially 

ergodic and give all the stat ionary distributions for the voter model with 

S = {0, 1}. Tha t  is, all s tat ionary distributions are a convex combination of 

the (distributions of the) ~ .  For proofs of this result see the original paper 

by Holley and Liggett (1975) or Chapter  V of Liggett (1985). 

c. T h e  v o t e r  m o d e l  w i t h  m u t a t i o n .  

In our new process, the state at t ime t is given by a function ~ : Z d --+ 

(0, 1), with ~t(a:) being the type (or species) of the individual at ~ at t ime 

t. We index our types by values w in the interval (0, 1), so we can pick new 

types at random from the set of possibilities without duplicating an existing 

one. As in the voter model 

(i) Each site x at times of a rate one Poisson process {T,~,n > 1}, 

decides to change its state and imitates the state of y with probability 

P(~,Y) = ~(IV - ~l). 

The new feature here is the spontaneous appearance of new types, which can 

be thought  of as being genetic mutat ions or migration of individuals from 

outside the system. 

(ii) Each site x mutates  at rate a,  changing to a new type w I, chosen 

uniformly on (0, 1). 

To keep our t rea tment  of the subjec~ as brief~ we will restrict our a t tent ion 

here to 

(iii) two dimensional nearest neighbor case: d = 2 and 

1/4 i f l z l = l  

T(z)  = 0 otherwise 

Results can be generalized to finite range without substantial  change. In- 

teresting new phenomena occur when we consider this system in d > 2, in 

d = 1, or on the complete graph, but  there is not enough t ime to discuss 

them here. For details see Bramson, Cox, and Durret t  (1997). 

It is straightforward to modify the construction of the voter model with- 

out muta t ion  to take care of rule (ii). We introduce independent  rate ct 

Poisson processes of "mutat ion events" {Sb~,n _> 1}, x E Z a and indepen- 

dent random variables {UT,,n > 1}, z C Z a uniformly distr ibuted on (0, 1) 



47 

that are the new types. That is, at time T~ ~, the type at site $ is set equal 

to u." 

Because of the last feature, when we are working backwards in time with 

the random walks S~ '~ we can stop (and kill the random walk) when we 

encounter a mutation event, since that will determine the state of x at time 

t independent of the initial conditions. This modification turns the dual 

starting from a finite set A, ~A,~, into a coalescing random walk in which 

each particle is killed at rate a. If CA,~ = 0 we need no information from the 

initial configuration to compute the state of A at time t. Since each particle 

is individually killed at rate a, it is not hard to show that: 

T h e o r e m  1.3. The multitype voter model with mutation has a unique 

stationary distribution ~ .  Fhrthermore, for any initial ~o, we have ~t =~ ~oo 
as t -~ oo. 

P r o o f  See Section 11.2 of Griffeath (1978). 

In most situations of interest in biology the mutation/migration rate 

will be small, so our aim here will be to study the spatial structure of ~ in 

the limit o~ -+ 0. 

2. S p e c i e s - a r e a  c u r v e s  

Since almost the beginning of the subject, see Watson (1835), ecologists 

have been interested in the relationship between species and area. The exact 

dependence of species number S on area A has been the subject of much de- 

bate. Early studies (e.g., Hopkins (1955)) fitted the curve S = aln(1 + bA), 

a relationship that would be expected if the individuals in a quadrant were 

a random sample from a larger population (Preston (1969)). The most ac- 

cepted relationship, however (Kilburn (1966), MacArthur and Wilson (1967), 

May (1975), Connor and McCoy (1979), Coleman (1981), Sugihara (1981)), 

takes the logarithm of 5' to be proportional to log area. 

Hubbell (1993) was the first to suggest that a stochastic spatial model 

could be used to investigate species area curves. Some of his results are re- 

ported in Hubbell (1995). Hubbell's model is somewhat compficated because 

he allows each site to be occupied by more than one species and these species 

interact via specified rules of competition. Here, we follow the approach in 
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Bramson, Cox, and Durret t  (1997), and Durret t  and Levin (1996), and re- 

place his model by a much simpler one, the voter model with mutat ion,  so 

tha t  we can obtain analytical results about the structure of the equilibrium 

state. 

To define species-area curves for the voter model with mutat ion,  we let 

B(K) be a box with side K centered at the origin, and for 0 < r < oo let Nr 

be the number  of different types in B(L r) in the stat ionary distribution ~oo. 

To plot log-species vs. log-area, we let 

log N~ 

WL(r)- log(L2) 

To see what to expect, we let & = 1/a and note that  a typical S, ~'~ will 

survive for t ime O(&) without being hit by a mutat ion and by the central 

limit theorem will move a distance about L = &1/2 in that  amount  of time. 

Thus we expect sites that  are separated by a large multiple of L to be distinct 

with high probability. This motivates part of the following result. 

T h e o r e m  2.1. Let L = &1/2. I f r  _> 1, then as a --~ 0, 

N, 2 
(2.1.) L='-2(log L) 2 -+ -rr in probability. 

Readers should note that  (2.1) gives a very boring limit for the species 

area curve: 

~oL(r) --+ (r -- 1) + 

i.e., a segment of slope 0 followed by a ray of slope 1. The ray with slope 

1 is easy to understand: sites separated by L 1+~ = &(l+,)/= will with high 

probability experience mutat ions before their random walks coalesce. Thus 

when r ___ 1, the number of species Nr increases in proportion to the area. 

The segment of slope 0 at the beginning of the limiting carve (r - 1) + 

was initially a major  disappointment for us. However, it turned out to be 

a blessing: although the limiting slope is 0, when c~ is positive one gets 

slopes tha t  agree reasonably well with data. To explain this we note tha t  

g ,  (2/ )(log L) = so 

log N, 2log log L + 

2 log L 2 log L 
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The right hand side converges to 0 but only very slowly. 

a 1 0  - 6  1 0  - s  10 -1~ 10 -12 

slope .264 .229 .202 .182 

These slopes are the range of values given in Figure 2.1. We are not able to 

prove that the species area curve will be roughly a straight line over 0 < r < 1 

but one can demonstrate this using computer simulation. Figure 2.2 gives 

the results of three simulations of the system with a = 10 -s and hence 

L --- 1/v/-~ = 1000. Since we are only interested in the behavior on boxes of 

size L" with 0 < r < 1 we have performed the simulation on a 1000 • 1000 

grid with periodic boundary conditions. That is, sites on the left edge are 

neighbors of those on the right on the same row; those on the top edge are 

neighbors of those in the bot tom row in the same column. 

Returning to the content of Figure 2.2, the reader should notice that the 

three simulated curves are fairly straight and end close to the value of .264 

predicted by the table above. Having a slope that depends on the mutation 

rate provides a new explanation of the wide variety of slopes found in species 

area curves, i.e., mutation/migration rates vary considerably. For more on 

this see Durrett  and Levin (1996). 

3. Spec i e s  a b u n d a n c e  d i s t r i b u t i o n s  

In addition to the spatial arrangements of the types it is interesting to 

look at the distribution of the abundance (i.e., number of representatives) 

of the types found in a sample. Again, this question has a long history in 

ecology. In an influential early paper, Fisher, Corbet, and Williams (1943) 

considered the distribution of moth and butterfly species caught in a hght 

trap, making the interesting observation that while there are a huge number 

of individuals from a few species, tile majority of species were represented by 

a few individuals. 

Preston (1948) was one of the first to suggest the use of the lognormal 

distribution of species abundances. The theoretical explanation for the log- 

normal given on pages 88-89 of May (1975) is typical. Define vi(t) to be the 

per capita instantaneous growth rate of the ith species at time t, that is, 

(3.1) r, Ct) - ] dN, Ct) _ d l n g ,  Ct). 
N,(t) at ,tt 
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The last equation integrates to 

(3.2) In N~(t) = In Ni(0) + ri(s) ds. 

If, as May (1975) says, "the ever-changing hazards of a randomly fluctuating 

environment are all important in determining populations," then one might 

reason that the integral is a sum of random variables to which the central 

limit theorem can be apphed, and the distribution of abundances should 

follow a lognormal law. 

While the last argument is simple, and possibly convincing, there are a 

number of data sets that do not fit the lognormal distribution very well. 

The tropical rain forest data in Hubbell (1995) is an exampIe (see Figure 

3.1). In tile rain forest, the abundances of various plant species are not in- 

dependent since individuals compete for a hmiting resource, hght. A static 

approach to this competition is provided by MacAvthuv's broken stick distri- 
bution (see his (1957) and (1960) papers). He imagines that the proportions 

(pl, p2, . . . ,  pn) of the area occupied by n given species to be chosen at random 

from the set of all possible vectors of proportions, i.e., those with nonneg- 

ative coordinates that sum to one. For this reason, Webb (1974) calls this 

the proportionality space model. A simple way of generating such pi's is to 

put n - 1 independent uniform random variables on (0,1) and look at the 

lengths of the intervals that result, hence, the name "broken stick distri- 

bution." Quoting May's (1975) survey again, "This distribution of relative 

abundance is to be expected whenever an ecologically homogeneous group of 

species apportion randomly among themselves a fixed amount of some gov- 

erning resource." Broken stick abundance patterns have been found in data 

for birds by MacArthur (1960), Tramer (1969), and Longuet-niggins (1971). 

One of the weaknesses of the "broken stick" approach is that it simply 

chooses a nice distribution based on symmetry, without a direct considera- 

tion of the underlying mechanisms. Engen and Lande (1996) have recently 

(see their pages 174-175) introduced a dynamic model in which new species 

enter the community at times given by a Poisson process, and where the log 

abundances of the species Yt i = log(X~) evolve according to the independent 

diffusion processes 

(3.3) dY t' = (r - g(exp(Yt')) )dt + ~r(exp(~')) dB~. 

IIere, r > 0 is a fixed growth rate, g(x) is a "density regulation function", and 

o'(z) = o-~ + tr,~e -*, with cr~ being the environmental and ~rd the demographic 
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stochasticity. Engen and Lande then showed that, if g(z) = 71n(x + v), with 
2 2 v = o's~era, the species abundances in equilibrium are given by the lognormal 

distribution. Although the last approach is dynamic, the reader should note 

that the sizes of the different species there (as well as in May's derivation of 

the lognormal) are independent. That is, there is no competition between 

the species, as there is, at least implicitly, in the broken stick model. 

Here we will use the voter model with mutation to derive a new species 

abundance distribution. To explain precisely what we will study requires 

several definitions. We define the patch size in A for the type i at time t to 

be the number of sites y in A with ~t(y) = i. Let N(A, k) be the number 

of types in ~ with patch size in A equal to k, and, for I C [0, c~), let 

N(A, I) = ~kex N(A, k) be the number of types with patch sizes in A that 

fie in the interval I. 

Here, we only consider the case in which the viewing window A is B(L),  

the square of side L centered at the origin. Let IB(L)[ be the number of 

points of the integer lattice Z 2 that are in the square B(L). It is convenient 

to divide the number of species observed by the number of sites, ]B(L)], to 

obtain the species abundance per site. That is, we consider the frequency of 

types with patch sizes in the interval I: 

NL(I ) _ N(B(L),  l) 
IB(L)I 

One immediate advantage of computing densities per site is that by in- 

voking an appropriate law of large numbers, (see e.g., Theorem 9 on page 

679 of Dunford and Schwarz (1957)), we can conclude that as the observa- 

tion window, B(L), gets large our estimate becomes close to the underlying 

mean. 

P r o p o s i t i o n  3.1. For all sets I, 

N~176 = lim NL(I) 
L--~ oo 

exists and is a nonrandom constant. 

We refer to N~(I )  as the underlying theoretical abundance distribution. 

Proposition 3.1 implies that when L is large, the observed species abun- 

dance frequencies in the square B(L) will be close to tile theoretical frequency, 
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so we next inquire how large L needs to be so that NL(I) ~ N~176 I t  is 

easy to see that some L are too small. The time until mutation along the line 

of descent of a given individual is an exponential random variable with mean 

= 1/ol. Since offspring are displaced by independent and identically dis- 

tributed amounts from their parents, the family tree of an individual behaves 

like a random walk and will move a distance of order ~1/2 in time ~. 

The arguments in the last paragraph indicate that we will need an ob- 

servation window whose length is at least of order &1/2 to get an accurate 

idea of the distribution of sizes. In our first result, we will we will take our 

observation window to have this smallest possible size. To be precise, we 

will let fl > 0 and suppose that L ~ fl&l/2. This will turn out to be large 

enough to look at patch sizes on a logarithmic scale. That is, we will consider 

Nz([1, &u]), the number of species (per site) with sizes between 1 and ~u. 

When the mutation rate gets small then the individual species have a large 

number of individuals and the number of species per site is small. Thus to get 

a sensible asymptotic statement when a -4 0 we have to divide NL([1, &u]) 

by something that tends to 0. 

(3.4) F~(y) - NL([I' &y]) 
 (log 

The exact form of the denominator may look mysterious, but our results 

given below will show that it is the right choice. Readers curious about why 

this is the right normahzation can consult Bramson, Cox, and Durrett (1997) 

for a more detailed explanation. 

To state our result about the asymptotic behavior of the distribution of 

sizes F~(y), we need to define the limiting distribution function V. Let 

0, Y _< O, 

V(y) = y2, 0 <_y< 1, 
1, y > l .  

The nature of this distribution is clearer if we look at its density function, 

which is 0 unless 0 < y < 1 in which casev(y) = V'(y) = 2y. The graph 

of v(y) is a right triangle. The next result is then a "log-triangular" limit 

theorem for species abundances in the two dimensional voter model with 

mutation. 
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T h e o r e m  3.1. Let fl > O, and assume that L = L(a) > fl~1/2. Then, for 
any e > O, 

(3.5) P ( s u p  , F ~ ( y ) - V ( y ) , > ~ ) - + 0  a s o t - + 0 .  

An obvious first reaction to the triangular limiting density v(y) is tha t  

it does not look very much like Hubbell 's da ta  given in Figure 3.1. We will 

re turn  to this point when we discuss the simulations below. The key to 

connecting our result with the Hubbell 's data  lies in a more refined result 

than  Theorem 3.1 which we will now introduce. 

Theorem 3.1 does not apply directly to the histograms of abundance 

counts reported in the literature. For example, in Preston (1948), abundance 

counts are grouped into "octaves," 1-2, 2-4, 4-8, 8-16, 16-32, . . . ,  splitting 

in half  the observations tha t  are exactly powers of 2. To avoid trouble with 

the boundaries, some later investigators (see e.g., Chapter  3 of Whi t taker  

(1972)) viewed the 1 cell as an interval [0.5,1.5], and then multiplied by 3 to 

get disjoint classes [1.5,4.5], [4.5,13.5], etc. 

To treat  such histograms, as well as other possibilities, we could fix an 

r > 1 to be the width of the cells, and look at the area-normalized abundance 

of species, NL([ar  k, ark+l)) where a is some constant,  which can always be 

chosen so tha t  r -1 < a < 1. For example, in this setting Whi t taker ' s  cells 

have a = 0.5, r = 3, and Preston's  correspond roughly to a = 1, r = 2. 

One can easily generalize what we are about to do too a # 1. However, 

our formulas are already too messy, so we will t ry to suppress clutter  by 

restricting our at tent ion to the case a = 1. 

Theorem 3.2 below provides the refinement of Theorem 3.1 needed to 

analyze the histograms that  are used to estimate the densities. To see what 

form the result should take, we note that  r k = c)u where y = log(rk)/log(c)) 

so if in Theorem 3.1 convergence of the underlying density functions also 

holds, then we would have 

gL([rk, rk+')) flog(,'~'+')/log<~ 
a(log a)2/27r z ,iog(.k)/loga 2y dy 

Rearranging and then evaluating the integral, we have 

(3.6) oL([vk' Tk+X)) ~ =(log~)=2w { \(~'~21~ ] \[l~ ] 
= (2#< + 1 ) ( log , , - ) "  = 
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Our next result, Theorem 3.2, shows that  the counts NL([r k, rk+~)) are 

simultaneously well approximated by the formula just  derived over a wide 

range as c~ --~ 0. Fix r > 1 and e > 0, and let EL,,(k) be the event that  our 

approximation in the kth cell, [vk,rk+l), is off by at least a factor of e from 

what we expect. That  is, EL,~(k) is the event 

(3.7) N~([rk,rk+x)) - ~ ( logr )2[  > ~c~k. 

Note tha t  we have simplified the right hand side by dispensing with (log r)z/2rr 

which for fixed r is a constant. 

Unfortunately,  the approximation in (3.6) does not apply to large patch 

sizes. To say how large is too large, we introduce the cutoff size & = 7r~/log &. 

T h e o r e m  3.2. Let r > 1,/3 > O, and assume that L >_ f/c~/2(log &)2. Then, 

for any e > 0 we can pick J small enough so that 

lim sup P (EL,,(k) for some k with r k E [(f-t, $&)) _< e 
ot.--~O 

The form of the conclusion of Theorem 3.2 is dictated by the fact that  the 

approximation given in (3.6) does not apply well when k is small or k is 

of order 6. Thus, we have to pick 3 small to restrict the range of values 

considered, in order to get a small error in the limit as a ~ 0. 

The additional restriction L > fl&l/2(log ~)2 in Theorem 3.2, compared 

to the requirement L > flSa/~ in Theorem 3.1, comes from the fact that  we 

are considering abundance sizes rather  than their logarithms, so losing tha t  

fraction of the mass of a patch which is outside of the observation window can 

have a significant effect. Thus, to have the sampled distribution agree with 

the underlying theoretical distribution, we need to choose L substantially 

larger than  &l/~. A second complication is that  we are making a s ta tement  

simultaneously for about log 5l histogram cells, so we need L/& t/2 --~ oo with 

at least a certain rate to be able to control the errors for all of the cells 

simultaneously. 

The restriction to r k ~ 1/$, in Theorem 3.2, is needed in order to use the 

asymptotics employed in our proof. Small patches are formed due to rare 

events, and require a separate analysis. The largest patch size covered by 

Theorem 3.2 is [rk,rk+t), where ,pk is small relative to s The distribul, ion 
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of larger patch sizes, i.e., those of the form [a~x, b&), differs in a flmdamental 

way from the distribution of the smaller patch sizes. 

T h e o r e m  3.3.  Let fl > 0, and assume that L = L(a)  ~ fl&a/2(log&)2. 

Then, for any e > 0, and a, b with 0 < a < b, 

( &NL([a&,b&]) f b du ) f im P - u-Xe -~ > e = O. 

Some readers may be disturbed by the limiting density u-ae -u above, which 

has an infinite integral over (0, ~ ) .  This behavior must, in fact, occur, 

since the scale in Theorem 3.3 for the frequency of patch sizes of interest 

is 1/& ~ a log~ ,  while Theorem 3.1 tells us that the scale for the total 

frequency is &(log &)2, which is of greater order of magnitude for small a. 

Theorem 3.3 is a close relative of Theorem 3.4 which is taken from Sawyer 

(1979), Theorem 1.2. 

T h e o r e m  3.4. Let u(O) be the number of sites with the same type as the 

origin. As the mutation rate a -+ O, 

b 

P < ha) -+ fo du, for art b > O. 

The same result obviously holds for any other fixed site x replacing the origin 

O, or for a site chosen at random from B(L).  Now, when a site is chosen 

at random, a patch has probability of being chosen which is proportional to 

its size. Removing this "size-bias" from Sawyer's result introduces the factor 

u -1 into the limiting density in Theorem 3. 

S imu la t ion  resu l t s .  To help to understand the results and to what 

extent the results apply when a is only moderately small, we will simulate 

the system with o~ = 10 -4. By the heuristics above, the time for a typical 

line of descent to encounter a mutation will be of order & = 10  4, and it will 

move a distance of order &x/2 = 100 units over this time. Multiplying this 

distance by 10, we choose our experimental universe to be a 1000 • 1000 grid. 

To avoid edge effects we will again use periodic boundary conditions. 
The first statistic we investigate is one that comes from the "size-biased" 

viewpoint. Introduce histogram bins [1,500],[501,1000],..., and then, for a 
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given bin, throw in all of the individuals that belong to species with patch 

sizes in that range. Each patch of size k is counted k times, so Theorem 3.4 

implies that the distribution we observe will be approximately an exponential 

with mean &. To compute this mean, we note that 

(3 .8 )  & _ 7r5~ lO, O00r  
- -  ~ 3411. 

log & 9.21034 

Figure 3.2 shows the average of 10 histograms for our parameters. The 

agreement with the exponential distribution with mean 3411 predicted by 

Theorem 3.4 (the curve of diamonds in Figure 3.2) is fairly good. 

To investigate the ordinary (not size-biased) species abundances, we intro- 

duce histogram bins [1, 2), [2, 4), [4, 8), . . . ,  and count the number of" species 

with patch sizes in the indicated ranges. Figure 3.3 displays the average 

of 20 replications of the experiment (which are independent of the 10 given 

above). To compare with theory, w~ begin with Theorem 3.3. If, for example, 

we want to know the number of species with patch sizes in [2 k, 2k+1), then 

our estimate, based on Theorem 3 3, will be 

(3.9) L2 r2~+'/a 
& a2k/a 

Evaluating the integral numerically for the cells of interest gives the line of 

diamonds in Figure 3.3. The fit is good for cells k > 7. From the remarks 

after Theorem 3.3, we should not necessarily expect this approximation to 

work well for cells too far to the left where Theorem 3.2 gives a different 

answer. 

We now turn to Theorem 3.2. In (3.7), we employed the estimate 

NL([rk,rk+')) ~ r~k(log r)2/~r 

for the abundance counts. Recalling that N L is the number of" species per 

site, we multiply by IB(L)] ~ L 2 to get 

(3.10) g(B(10s)  ' [2k, 2k+1)) ~ 106.10_4. (log 2) 2 k ~ 15.29 k 
r 

This formula, the line of squares in Figure 3.3, provides a poor fit for the 

simulation data. One of the problems with the predicl;ion from Theorem 
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3.2 is that the proof of (3.7) already contains approximations based on the 

assumption that k is large. The error can be reduced by going back into the 

proof of Theorem 3.2 in Bramson, Cox and Durrett  (1997), and pulling out 

the following formula for the number of species per site: 

(3.11) NL([2 k, 2~+1)) ~ a pt(e -2 "' -- e -2 '§  dr. 

See the discussion at the end of Section 6 there. 

Here, pt is the density at time t of a system of coalescing random walks 

started from all sites occupied. A complete description of coalescing ran- 

dom walks can be found in Bramson, Cox, and Durrett (1997). There, we 

employed the asymptotics p~ ~ (log t)/rt, as t --> oo, from Bramson and 

Griffeath (1980), to reduce the right side of (3.11) to ak(log 2)2/7r. One 

can instead use simulations to estimate pt for small t, and then using the 

asymptotic formula after that to numerically evaluate the integral in (3.11). 

In order to estimate N(B(IO00), [2 k, 2 k+l)),we use simulations on a 1000 x 

1000 grid to estimate p~ for times up to time 5000, and then the asymptotic 

formula after that. The result is given by the circular symbols in Figure 3.3. 

This results in a drastic improvement over Theorem 3.2. The value predicted 

by (3.11) for the k = 0 cell is only about 60% of the observed value, but the 

fit at tile other cells 1 _< k < 9 is now good. Note that if we combine the 

formulas in (3.11) and (3.9) by taking the minimum of the two expressions, 

the result is accurate for all cells except k = 0. 

The shapes of the distributions for the simulation data in Figure 3 and 

the field data in Figure 1 from Hubbell (1995) are quite similar. Besides 

being on the same scale, they exhibit related departures from lognormality 

- -  the distributions are not symmetric about their greatest value, and they 

have an over-abundance of species with small numbers. Such similarity is 

not necessarily evidence of a common underlying cause, of course. However, 

there are reasons to suggest that this agreement is not an accident. In the 

rain forest and in our model, species compete for a fixed amount of a limiting 

resource (e.g., light or area). 
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I I .  S t o c h a s t i c  S p a t i a l  M o d e l s  v s .  O D E s  

In the last four sections we will describe a number  of examples to illus- 

t r a t e  Dur re t t  and Levin's (1994b) idea that  the behavior of stochastic spatial 

models can be determined from properties of the mean field ODE, which is 

obta ined by pretending that  neighboring sites are independent .  

4. Case  1. At trac t ing  Fixed Point  

We begin with a simple but  fundamental ly  impor tan t  example.  Our t reat-  

mea t  will be brief. The  reader  can find the facts we quote and much more 

in Liggett (1985) or Durre t t  (1988). 

E x a m p l e  4.1.  Contact  process .  This system was in t roduced by Harris 

(1974). Each site can be in s ta te  0 = vacant or 1 = occupied. The  system 

evolves according to the following rules: 

(i) An occupied site becomes vacant at a ra te  g. 

(ii) A occupied site gives bir th at ra te /3 .  A particle born at x is sent to y 

with probabil i ty p(x,  y) = ~(y  - x). 

(iii) The  site y becomes occupied if it was vacant,  and stays occupied if it 

was occupied. 

One of the simplest and most studied cases is the two dimensional nearest  

neighbor model  which has ~o(1, 0) = ~o(0, 1) = T ( - 1 ,  0) = ~ ( 0 , - 1 )  = 1/4. 

In words, offspring are sent to one of the four nearest  neighbors chosen at 

random. 

The  contact  process as formulated above has two parameters  but  only 

needs one. By scaling t ime we can and will suppose that  fl = 1. In this 

case, particles die at ra te  g and give birth at ra te  at most 1 since births onto 

occupied sites are lost. From this it is easy to see that  if we s tar t  with a finite 

number  of occupied sites and g > 1 then the contact  process will die out, i.e., 

reach the all 0 configuration with probabihty  1. We define the critical value 

Jr,  for survival from finite sets, to be the supremum of all of the values of g 

so tha t  dying out has a probabil i ty < 1 for some finite initial state. 

There is a second slightly more sophisticated notion of "survival" for the 

contact  and other  process: the existence of a s ta t ionary distribution for the 

Markov chain which does not concentrate  on the absorbing s ta te  in which 
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all sites are vacant.  To see when such a s ta t ionary distr ibution will exist, 

we s tar t  with the observation tha t  the contact  process is attractive: i.e., 

increasing the number  of l ' s  increases the bir th ra te  and decreases the dea th  

rate.  Thert we quote  

L e m m a  4.1 .  Let ~ denote the process starting from alt l's. I f  the process 

~t is attractive then as t --~ o0, ~ ~ ~ ,  a stationary distribution. 

Here  =~ is short for converges in distribution, which means tha t  for any sites 

x l , . . . , z ~  and possible states i l , . . .  ,i,, we have convergence of the finite 

dimensional distributions 

P(~(z.1) = i l , . . . ~ t ( x , )  = i ,)  + P ( ~ ( ~ )  = i l , . . . ~ l ( ~ g n )  = in) 

This result  and all the others we cike for the contact  process can be found 

in any of the four books on the subject:  Liggett (1985), Griffeath (1978), 

Dur re t t  (1988) and (19955). 

Of course the  limit in Lemma  4.1 could assign probabil i ty 1 to the all 0 

configuration, and it will if 5 is too large, e.g., $ > 1. Let  5, be the  supremum 

of the values of 5 for which the limit is not all O's. For the quadrat ic  contact  

process, Example  6.1, we will have 

However,  for the contact  process these two critical values coincide. To explain 

why this is t rue,  we note  tha t  by using an explicit construct ion and working 

backwards in t ime, much as we did for the voter  model one can show: 

L e m m a  4.2.  Let p~(A, B) be the probability some site in B is occupied at 

time t when we s ta r t  with l 's on A (and O's elsewhere) at t ime 0. Then 

p t (A ,B)  = p t ( B , A ) .  

T a k i n g  A = all sites and B = a single point we see tha t  the density 

of occupied sites at t ime t is the same as the probabil i ty tha t  the process 

survives until  t ime t start ing from a single occupied site. Thus  5, = 51 and 

we denote  their  common value by ~ ,  where the c stands for critical value. 

M e a n  F i e l d  T h e o r y .  If  we consider tile contact  process on a grid with n 

sites and modify the rules so that  all sites are neighbors then tlle number  of 
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occupied sites at time t is a Markov chain N(t) E {0, 1 , . . . ,  n} with transition 

rates: 

N(t) -+ N(t) - 1 at rate 6N(t). 

N(t) --+ N(t) + 1 at rate N(t) (1 - N(,)). 

If we let u,,(t) = N(t)/n be the fraction of occupied sites and let n ~ oo 

then it is not hard to show (e.g., using (7.1) of Chapter 8 of Durrett (1996)) 

that the u ,  converge to the solution of the "mean field" ordinary differential 
equation. 

du 
(4.1) - -  = - S u +  u(1 - u) 

dt 

The term in quotes comes from the physics. It refers to the fact that each 

site only feels the density of occupied sites. Writing 0 for vacant and 1 for 

occupied the density is then the mean value of the occupancy variables. The 

mean field equation can also be obtained from the spatial model by letting 

u(t) be the fraction of sites occupied at time t and assuming that adjacent 

sites are independent. Under this assumption the rate at which new particles 

are produced is u(1 - u), while particles disappear at rate -6u. Since the 

second recipe is simpler we will use it for all of the other computations. 

The mean field ODE for the contact process predicts that 5c is 1 and 

for 5 < 5c the equilibrium density of occupied sites is 1 - &. In the nearest 

neighbor contact process there is a significant positive correlation between the 

states of neighboring sites (see Harris (1977)) so this overestimates the critical 

value. Numerical results tell us the critical value of the two dimensional 

nearest neighbor contact process is about 0.607. See Brower, Furman and 

Moshe (178) and Grassberger and (le la Worre (1979). 

Although the nearest neighbor case has been the most studied, it turns 

out that the contact process gets simpler when we consider 

(4.2) Long  R a n g e  Limi ts .  Let %b ~ 0 be a continuous function that is 

integrable and not identically 0, and define the dispersal kernel in part (ii) of 

the definition of the contact process to be qo(z) = crr where cr chosen 

to make the probabilities add up to one. 

Bramson, Durrett, and Swindle (1989), have shown (see also Durrett (1992) 

for the weaker version stated here) 
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T h e o r e m  4.1.  As r -+ 0% 8c(r) -+ 1 and 

P ( ~ ( x )  = 1) --~ 1 -  8 

Note tha t  as r --+ oo the critical value and equilibrium densities converge to 

those predicted by mean field theory. 

E x a m p l e  4.2. G r a s s  B u s h e s  Trees .  In our second model, the possible 

states are 0 = grass, 1 = bushes, 2 = trees. O's are thought  of as vacant sites. 

Types 1 and 2 behave like contact processes subject to the rule tha t  2's can 

give birth onto sites occupied by l ' s  but not vice versa. In formulating the 

dynamics,  we are thinking of the various types as species tha t  are part of 

a successional sequence. With  Tilman's  (1994) work in mind we define the 

model for an arbi t rary number of species. 

(i) If  i > 0, type i individuals die at a constant rate 8i and give birth at rate 

8,. 

(ii) A particle of type i born at x is sent to y with probability p~(x,y) = 
- 

(iii) If  number  of the invading type is larger it takes over the site. 

Starting our analysis with the case of two types, we note tha t  2's don' t  

feel the presence of l 's,  so they are a contact process and will survive if 

82/fl2 < 8c. The main question then is: when can the l ' s  survive in the space 

that  is left to them? 

To investigate this question Durret t  and Swindle (1991) considered what 

happens when long range limits are taken as described in (4.2) above. As 

in the case of the long range contact process, tile motivation is tha t  in this 

case the densities will behave like solutions to the mean field ODE, which is 

obtained by pretending that  adjacent sites are always independent  

(4.3) dul/dt  = ul { f l l ( 1 -  u 1 -  uz) - 8 1 -  f12u~ } 
du2/dt = u2{ f12(1-  u 2 ) - 8 2  } 

For example in the dul/d~ equation the first term represents births of l ' s  

onto sites in state 0 (vacant), the second term represents constant  deaths, 

and the third births of 2's onto sites occupied I)y ]'s. 
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From the second equation in (4.3) the equilibrium density of 2's will be 

~ 2  - -  (~2 
~ 2  - -  

/t2 

Inserting this into the first equation and solving one finds there is an equi- 

librium with fil > 0 if 

(4.4) 
52 

~1  " ~22 - -  51 - -  { ~ 2  - -  5 2 }  > 0 

As written, this condition can be derived by asking the question: "Can the 

l 's invade the 2's when they are in equilibrium?" That is, will ul increase 

when it is small enough. To see this note that in the absence of l 's, the 2's 

have an equilibrium density of ~2 = (~2 - 5~)/t32. Plugging this into the first 

equation and ignoring the -fllu~ term gives 

) dt = ul ~1 - 5 2 - ( f l 2 - 5 2 )  

The next two results say that when the range r is large enough the spatial 

model behaves like the ODE. First we need to define the behaviors that we 

will observe. We say that coexistence occurs if there is a stationary distribu- 

tion that concentrates on configurations with infinitely many sites in each of 

the possible states. We say that l 's die out, if whenever there are infinitely 

many 2's in the initial configuration P(~t(x) = 1) ~ 0 as t -~ oo. 

D u r r e t t  and  Swindle  (1991). It" (4.4) holds then coexistence occurs for 

large range. 

D u r r e t t  and Schinzai (1993). Suppose that the quantity on the left-hand 

side of (4.4) is < 0. I f  the range is large 1 's die out. 

R e m a r k s .  The results in Durrett and Schinazi (1993) also apply to the 

Crawley and Mac's (1987) model of the competition between annuals and 

perennials. In this case the perennials are a nearest neighbor contact process 

but annuals have a long dispersal distance. For another competition model 

that has been analyzed using long range limits, see Durrett and Neuhauser 

(1.997). 
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5. R a p i d  S t i r r i n g  L imi t s  

In the previous section we saw that stochastic spatial models simplify 

considerably when the range is large. Our next goal is to explain that this 

also occurs when the particles are subject to fast stirring. Formally, a stirring 

event involving x and y will change the state of the process from ~ to ~,u 

where 

In words, stirring exchanges the values found at �9 and y. 

The stirring mechanism has product measures as its stationary distribu- 

tions. See Griffeath (1978), Section II.10. So when it acts at a rapid rate we 

expect that nearby sites will be almost independent. To keep the particles 

from flying out of our field of vision as the stirring rate is increased, we scale 

space by multiplying by e = v -1/z. Since this is the usual diffusion scaling, 

it should not be surprising that the particle system converges to the solution 

of a reaction diffusion equation. 

To state a general result, we consider processes ~ : ~Z a ~ {0, 1 , . . . ,  x - l }  

that have 

(i) translation invariant finite range flip rates. That is, there a re  sites 

Yl, . . .  yN and for each state i a function hi so that 

ci(x, ~) = h,(~(x), ~(x + c y l ) , . . . ,  ~(~ + eyn)) 

(ii) rapid stirring: for each x , y  E eZ a with [Ix - Y[I1 = e, we exchange the 

values at z and y at rate e -2. 

With these assumptions we get tile following mean field limit theorem 

of De Masi, Ferrari, and Lebowitz (1986). (For the version given here, see 

Durrett and Neuhauser (1994).) 

T h e o r e m  5.1. Suppose ~ ( x )  are independent and let u~(t, ~) = P ( ~ ( x )  ~- 

i). I f  u~(O, z) = gi(z) where gi(x) is a continuous function of  x then as e --+ O, 

the bo ,naea  solution oC 

(5 .1 )  O ,,/Ot = Au,  + f ,(u) , , , (0 ,  = 
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where 

(5.2) = <  < cj(0, 

and < T(~) >,, denotes the expected value of  ~o(~) under the product measure 

in which state j has density uj, i.e., when ~(x) are i.i.d, with P(~(x)  = j )  = 

uj. 

To explain the form of the reaction term, we note that when e is small, stirring 

operates at a fast rate and keeps the system close to a product measure. The 

rate of change of the densities can then be computed assuming adjacent sites 

are independent. 

Theorem 5.1 only concerns expected values, but once it is established we 

can easily demonstrate the next result which says that in the fast stirring 

limit on a suitably rescaled lattice, the particle system becomes deterministic 

and looks like solutions of the PDE. 

T h e o r e m  5.2. I1` f ( z , t )  is a continuous function with compact support in 

R a •  [0, oo) then 

fZ fro e a ~ f (x ,  t)l(~:(~):i) dt -+ f ( x ,  t)u(t ,  ~) dt dr in probability 
~E~Z d 

Our main interest in the PDE limit described in Theorems 5,1 and 5,2 is to 

obtain information about the particle system with fast (but finite) stirring 

rate. To do this we need one more result, The main assumption may look 

strange. Its form is dictated by the "block construction" technique we use 

to prove things. A complete discussion of this technique can be found in 

Durrett  (1995b). Here we content ourselves to simply state one useful result. 

(~r There are constants Ai < al < bl < Bi, L, and T so that if u/(0,~) G 

(A,, Bi) when ~ G [ -L ,  L] a then ui(T, x) G (al, hi) when x G [ -3L,  3L] d. 

Durrett  and Neuhauser (1994) have shown: 

T h e o r e m  5.3. I f  (~) holds 1"or the PDE then there is coexistence for the 
particle system with fast stirring. 
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At this point we have reduced the task of proving theorems for particle 

systems to proving a specific type  of result ( , )  for the associated PDE.  Leav- 

ing the reader  to medi ta te  on whether  or not this is progress, we turn  to the 

first of several concrete examples tha t  can be t rea ted  by this method.  

E x a m p l e  5.1.  P r e d a t o r  P r e y  S y s t e m s .  Each site can be in s ta te  0 = 

vacant,  1 = fish, or 2 = shark. If  we let fl  be the fract ion of the nearest  

neighbors of m (i.e., y with IlY- mill = e) tha t  are in s tate  i then  we can write 

the flip rates as follows: 

1 ~ 0 gl 2 --+ 0 g2 + 7f2 

Here we have shifted our perspect ive from occupied sites giving birth,  to 

vacant sites receiving particles from their neighbors. After this t ranslat ion 

is made,  the two rates on the left say that  in the absence of sharks, the fish 

are a contact  process. 

The  third ra te  says tha t  sharks can reproduce by giving b i r th  onto sites 

occupied by fish, an event which kills the fish. This t ransi t ion is more  than  a 

h t t le  strange from a biological point of view, but  it has the desirable p roper ty  

tha t  the density of sharks will decrease when the density of fish is too small. 

The  final ra te  says that  sharks die at rate 52 when they  are isolated and the 

ra te  increases linearly with crowding. 

To be able to use our results about  rapid stirring limits we also of course 

have to suppose tha t  the sharks and fish swim around. Tha t  is, for each pair 

of nearest  neighbors z and y stirring occurs at ra te  e -2. Applying Theorem 

5.1 we see that  if ~(m),  m E eZ a are independent  and u~(t, m) = P (~ (m )  = i) 

for i = 1, 2 then as e ~ 0, u~(t, z)  --~ ui(t ,  z)  as e --+ 0, the bounded  solution 

of 

(5.a) = / ~ 1  "31- # l U l (  1 - -  1/'1 - -  U 2 )  - -  #2~1"1Z2 - -  a l ' l / ' l  @t 

- Au2  + 3 , m u ~  - u=(52 + 7u2) 

with ui(0, m) = fi(m). To check the r ight-hand side, we note  tha t  if m is vacant 

and neighbor y is occupied by a fish, an event of probabil i ty (1 - ul  - u2)ul 
when sites are independent ,  births from y to m occur at ra te  t31/2d and there  

are 2d such pairs. The  - f l2ulu2 in the first equat ion and the fl2ulu2 in 

the second come from sharks giving bir th onto fish. The  last t e rm in each 

equat ion comes from tile death  events. 
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When the initial functions f~(x)  do not depend on x, we have u~(t, x )  = 

v i ( t )  where the vi 's  satisfy the ODE 

(5.4) 
dt 

Here we have re-arranged the right hand side to show tha t  the system is 

an example of the s tandard predator-prey equations for species with limited 

growth. See e.g., page 263 of Hirsch and Smale (1974). 

The first step in understanding (5.3) is to look at (5.4) and ask: "What  

are the fixed points, i.e., solutions of the form v i ( t )  =- piT '  It is easy to solve 

for the Pi. There is always the trivial solution pl = p2 = 0. In the absence 

of sharks the fish are a contact process, so if fll > 51 there is a solution 

Pl = ( i l l  - -  51)/ t l ,  P2 ---- 0. Finally, if we assume that  the pl, p= # 0, we can 

solve two equations in two unknowns to get 

(~1 -- (~i)~2 - -  (~2/~i 

which has p2 > 0 if 

(5.5) 

To unders tand this condition we note that  if the fish are in equilibrium and 

the sharks have small density, then neglecting the -7v2 term and inserting 

the equilibrium value for vl, the second equation in (5.4) becomes 

(50, { .,,,} dt = v2 -5~  -1- fl2 . fll 

The condition (5.5) says that  tile quanti ty in braces Is positive, i.e., the 

density of sharks will increase when it is small. 

Having found conditions that  guarantee the existence of an interior fixed 

point, the next step is to check that  it is attracting. Figure 5.1 shows an 

example of the ODE, which confirms this in the special case considered there. 

However, one does not need to use a computer to see that  this will occur. To 

prove this, one begins with the easy to check fact that  

H ( v , ,  v2) --- f l~(v,  -- pa log v,) -I- (/3', + f12)('v2 - p2 log v2) 
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is a Lyapunov function, i.e., it is decreasing along solutions of the ODE (5.4). 

A simple argument by contradiction then shows that all orbits starting at 

points with each density v~ > 0 converge to (pl,p2). The presence of a 

globally attracting fixed point leads us to guess that 

T h e o r e m  5.4. Suppose that (#1 -- ~l)/fll > ~2/#2. I f  e is small there is a 

nontrivial translation invariant stationary distribution in which the density 

o f  sites of  type i is close to pl. 

In view of Theorem 5.3 it suffices to prove (*). For details see Durrett 

(1993). The proof involves Brownian motion in a minor role, but is otherwise 

an analytic proof built on results of Redheffer, Redlinger, and Walter (1988) 

who considered the problem in a bounded domain with Neumann boundary 

conditions. 

E x a m p l e  5.9.. P r e d a t o r  M e d i a t e d  C o e x i s t e n c e .  Here the possible 

states of a site are 0 = vacant, 1, 2 = two prey species, 3 = predator. Types 

i = 1, 2 behave like a contact process, dying at a constant rate 61 and being 

born at vacant sites at rate fll times the fraction of neighbors in state i. 3's 

die at a constant rate 6a, are born at sites occupied by l 's at rate f13 times 

the fraction of neighbors in state 3, and are born at sites occupied by l's at 

rate #4 times the fraction of neighbors in state 3. Finally, of course, there 

is stirring at rate tJ: for each pair of nearest neighbors m and y we exchange 

the values at m and at y at rate u. 

In the absence of predators, this system reduces to the competing contact 

process, where the stronger species, identified by the larger of the two ratios 

fll/6i, will competitively exclude the other. (See Neuhauser (1992) where 

the result is proved under the assumption that &l = ~..) However, if the 

predators feeding rate on the stronger species is larger, its presence may 

stabilize the competition between the two species. 

One way of seeing this is to consider the mean field ODE: 

dul /dt  = ul {fl:u0 - ~ 1  - -  Z37-/'3 } 

du /dt = { - - } 

d s/dt = + - } 

Here one can solve three equations in three unknowns to find conditions for 

an interior fixed point but a more fruitfid approach is to derive conditions 

from an invariability analysis. Half of this may be described as follows. 
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By results for predator prey systems above, 2's and 3's can coexist if 

and when this holds their equilibrium densities will be v2 = ~a//34 and 

(/~2 - ~2)P4 - P2 

v3 = (/32 + / 3 4 ) / ~ 4  

Examining the behavior of the ODE near (0, v2,v3) we see that l 's can 

invade the (2,3) equilibrium if 

/~1 - ~, - p,~  - (/3, +/~3)~ > 0 

In a similar way one can derive conditions for the (1,3) equilibrium to exist 

and for the 2's to be able to invade it_ When both sets of conditions hold we 

say there is mutual invariability. It is easy to prove that in this case that the 

ODE has an interior fixed point. By considerably extending the methods of 

Durrett (1993), Shah (1997) has shown 

T h e o r e m  5.5. I f  mutual invadability holds for the ODE then coexistence 

occurs for the stochastic spatial model with fast stirring. 

To get a feel for the resulting phase diagram, set/33 = 4,/34 = 3/2, all the 

~i - 1, and vary/31 and/32. The formulas above imply that 1 and 3 coexist if 

fll > 4/3, 2 and 3 coexist if f12 > 3, and finally all three species can coexist 

inside the region bounded by the equations. 

17 5 9 15 
f l ,> f l2 ,  f12< ~ f l l + ~ ,  f12> ~ f l l +  1--4 

The last few lines are summarized in Figure 5.3. Note that there is a region 

where all three species can coexist but 2's and 3's cannot. Upon reflection 

this is not surprising: it simply says the 2's are not a sufficiently good food 

source to maintain the predator by themselves. 

6. C a s e  2. T w o  Loca l ly  A t t r a c t i n g  F i x e d  P o i n t s  

As in our consideration of Case 1, we will begin with an example that 

has two states: 0 -- vacant and 1 = occupied. The rules are like the contact 
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process but now it takes two particles to make a new one. For this reason 

many  of the early papers refer to this as the sexual reproduction process. 

However to emphasize tha t  here the birth rate is quadratic instead of linear 

we will use the more modest name. 

Example 6.1.  Q u a d r a t i c  c o n t a c t  p roce s s .  This system is also sometimes 

called Schlogl's second model. See Schlogl (1972) and Grassberger (1982). 

(i) An occupied becomes vacant at a rate 5. 

(ii) A vacant site becomes occupied at a rate equal to k(k  - 1)/6 where k is 

number  of occupied neighbors. 

Note tha t  as in the contact process we have scaled time to make the maximum 

possible birth rate = 1. 

The critical value for survival oLthis  process start ing from a finite set 

5f = 0. To see this note tha t  if the initial configuration s tar ts  inside a 

rectangle it can never give birth outside of the rectangle and hence is doomed 

to die out whenever 5 is positive. Somewhat surprisingly, the critical value 

for the existence of a stat ionary distribution 5, > 0. Bramson and Gray  

(1991) have shown 

T h e o r e m  6.1. There is a 50 > 0 so that i f  5 < 5o then the l imit  starting 

from all 1 's is a nontrivial stationary distribution. 

The numerical value of $0 produced in the proof of Theorem 6.1 is very 

small. To obtain quanti tat ive estimates we can turn to simulation to conclude 

tha t  5, ~ 0.1. Or we can take a last stirring limit and use Theorems 5.1 and 

5.2 tha t  with rapid stirring the system behaves like the following PDE. 

d~ 
(6 .1 )  7 / =  - + (1 - 

As in the s tudy of the predator-prey model, we begin with the mean field 

ODE. 

du 
(6.2) dt - ~ + (1 - u)u  2 

When 8 > 1/4, - S + u ( 1 - u )  < 0 for all u C (0, l) so 0 is a globally at t ract ing 

fixed point. When ~ e (0, 1/4) the quadratic equation ~ = u(1 - u) has two 
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roots 
1 - v q -  4~ 1 + v ~ - 4 ~  

0 < P l  - -  < P2 - -  < 1 
2 2 

This might suggest tha t  as stirring becomes more rapid the critical value 

for a nontrivial  equifibrium 8~ approaches 1/4. However, results of Noble 

(1992) and Dur re t t  and Neuhauser  (1994) show 

T h e o r e m  6.2.  As e --+ O, the critical value converges $~(e) -+ 2/9. Further- 

more, i f  $ < 2/9 then the equilibrium density P ( ~ L ( z )  = 1) --+ p2- 

To explain the value 2/9 's  we recall that  in one dimension the limiting reac- 

tion diffusion equation has traveling wave solutions 

(6.3) u(x, t) = ~(~ - ~t) 

tha t  keep their  shape but  move at velocity c. This and the other  P D E  results 

we will quote  for this example can be found in Fife and McLeod (1977). 

Sett ing f ( u )  = - $ u  + (1 - u)u  2, since it will be clearer to do things for 

a general react ion term,  it is easy to check tha t  the recipe in (6.3) wiU lead 

to a solution of (6.1) if and only if 

(6.4) -c~ ' (y)  = w"(v) + f ( ~ )  

Suppose to fix an orientat ion of the wave that :  w tends to P2 as y -+ -cx~ 

and w --+ 0 as y -+ oa. Multiplying by w'(y)  and integrating we have 

(6.5) 
- c  f ~'(u) ~ du = f w"(v)~' (v)  du + f f(~(v)),, , '(v) dy 

= 0 - fo "~ f ( z )  az 

Here to get tile 0 we observed that  the antiderivative of w"w' is (w')2/2 which 

vanishes at infinity, and in the second integral we have changed variables 

z = w(y) ,  and reversed the order of the hmits. 

(6.5) does not allow us to compute  the value of c but  since f w ' (y)  2 dy > 0 

it does tell us tha t  the sign of c is the same as tha t  of fo p~ f ( z )  dz. A little 

calculus now confirms that  the speed is positive for ~; < 2/9 and negative 

for ~; > 2/9. To check this easily, note  tha t  when ~ = 2 /9  the three roots  

of the cubic are 0, 1/3, and 2/3, so symmet ry  dictates tha t  the positive and 

negative areas must  cancel and the speed is 0. 
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Ske tch  of  t h e  p r o o f  of  T h e o r e m  6.2. To prove that if 5 < 2/9 coexistence 

occurs for rapid stirring it suffices to check (*) in Section 5 and apply Theorem 

5.3. This can be done easily with the help of results in Fife and McLeod 

(1977), and was done Noble's (1992) Ph.D. thesis. 

The other direction is a little more tricky since one must show that if 

5 > 2/9 and stirring is rapid, the l 's die out, not just that their density in 

equilibrium is close to 0. Durrett and Neuhauser (1994) do this by using the 

PDE result to drive the density of l 's to a low level and then use auxiliary 

arguments to check that the l 's  will then die out. [] 

Up to this point we have concentrated only on the critical value for a 

nontrivial equilibrium. From the proof of Theorem 6.2 one gets easily that 

T h e o r e m  6.3. As e -+ 0, the critical value for survival from a finite set, 

2/9 

It is known in general that $! > 5,. This may sound obvious but it is 

difficult to prove. See Bezuidenhout and Gray (1994). Once there is stirring 

at a positive rate 51 > 0. In fact we 

C o n j e c t u r e .  If the stirring rate u > 0 then 51 --- 5~. 

R e m a r k .  The techniques described above have been used by Durrett and 

Swindle (1994) to prove results for a catalytic surface. Keeping to biological 

models, we will continue with 

E x a m p l e  6.2. Colicin.  The inspiration for this model came from Chao 

(1979) and Chao and Levin (1981). Bacteria may produce toxic substances, 

known collectively as bacteriocins, that kill or inhibit the growth of compet- 

ing bacteria of different genotypes. In general, bacteria that are capable of 

producing such chemicals are immune to their action. The colicins, the most 

extensively studied class of bacteriocins, are produced by the bacterium Es- 

cherica coli and other members of the family Enterobacteriaceae. For more 

about the biology, and an alternative approach to the modeling, see Prank 

(1994). 

To model the competition we will use a spatial model with three states: 

0 = vacant, 1 = occupied by a colicin producer, 2 = occupied by a colicin 
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sensitive bacterium. If we let f l  be the fraction of the four nearest  neighbors 

in s ta te  i, we can formulate the transition rates as follows: 

birth rate death rate 

0 ~ 1 f l~ f l  1 --+ 0 5x 

0 --+ 2 fl2f~ 2 --+ 0 52 + ",/f~ 

In words, each type  is born at empty  sites at a rate proport ional  to the 

fraction of neighbors of that  type. The colicin producing strain dies at a 

constant ra te  51, while the colicin sensitive strain experiences deaths at ra te  

82 plus 7 times the fraction of colicin producing neighbors. 

To see what  behavior to expect  from the spatial model,  we begin by 

writing down the mean field ODE. Let ul be the density of colicin-producing 

and let u2 be the density of the ordinary, colicin-sensitive bacteria. Assuming 

that  all sites are independent  we have 

= f l l u 1 ( 1  - u l  - u 2 )  - 51ul 

(6.6) d/"t~ = f12u2(1 - u ,  - u21 - 52u2 - 7 u l u 2  
dt 

The system (6.6) has locally stable boundary equilibria at 

(1 -- 5 1 / i l l , 0  ) a n d  (0, 1 -- 52/fl2 ) 

provided 

52 51 52 + 7 
(6.7) 5, < < < +---Z 

There is moreover an interior saddle point (fil,i22) in this case. See Figure 

6.1 for a picture of what  happens when 51 = 52 = 1, fll = 3, f12 = 4 and 

7 = 3. The interpretat ion of the inequa]ities in order from left to right is 

(i) the birth rate exceeds the death rate so either type  can maintain a pop- 

ulation in isolation from the other; 

(ii) there is a cost to colicin production,  reflected in a lower carrying capacity 

in isolation 

(iii) the competi t ive benefit of colicin production is sufficiently large so that  

an established co]loin-producing commu,lity can repel invasion by the wild 
type. 
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The implication of this analysis is that colicin production is an evolu- 

tionarily stable strategy, but so is nonproduction. In the dynamical system 

pictured in Figure 6.1, if the density of the colicin sensitive bacteria is near 

the equilibrium value then the colicin producing bacteria cannot invade. That 

is, if they are introduced at a low level then their density will shrink to 0. 

On the other hand, if the colicin producers are introduced at a large enough 

level, their density will increase to 1 and the density of the colicin sensitive 

strain will approach 0. In words~ selection will only favor genotypes when 

they are common, rare species cannot invade, and genetic diversity will not 

be maintained. This situation is "disruptive frequency dependent selection" 

(see B.R. Levin (1988), Whoday (1959-64)). 

The last paragraph identifies the colicin system as belonging to Case 2, 

so we expect that there is one stronger type that is the winner starting from 

generic initial conditions, i.e., configurations in which there are infinitely 

many sites in each of the possible states. In the case of colicin, it is not 

natural to introduce rapid stirring and even if we did we would not know 

how to analyze the PDE's  that result. Thus we turn to the computer to 

confirm our theoretical predictions. 

C o m p u t e r  s imula t ions .  Figure 6.2 shows the density of colicin pro- 

ducers and colicin sensitive bacteria in a simulation of the spatial model 

with parameters: ~1 = ~ = 1, fll = 3,/32 = 4 and 7 = 3. Here the lattice is 

100 • 100 and to avoid edge effects we have used periodic boundary conditions. 
That is, sites on the bot tom row are neighbors of those on the top row; sites 

on the left edge are neighbors of those on the right edge. We start at time 0 

from product measure. That is, the states of the sites at time 0 are assigned 

independently, i.e., by making repeated calls to a random number genera- 

tor. We started the simulation with colicin producers (l 's) at density 0.01 

and the colicin sensitive strain (2's) at density 0.50; but as the graph shows, 

the colicin producers gradually increase to their equilibrium level while the 

density of colicin sensitive bacteria drops to 0. The colicin producers first 

establish themselves in clumps that grow linearly in radius and take over the 

system. 

The victory of the colicin producers in the last example is due to the fact 

that the colicin induced death rate y = 3 is large enough to compensate for 

the fact that the colicin producing strain has birth rate fll = 3 versus/32 = 4 

for the colicin sensitive strain. If we reduce 7 to 1 the situation reverses 
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and the colicin sensitive strain is victorious even when it starts  from a low 

density. For values of ~ between 1 and 3 coexistence might be possible but 

this does not occur: there is a critical value "/c so that  2's take over when 

"y < *(c, while l 's  take over when ~ > ~c. 

More generally if we fix 5z = 52 = 1, f12 = 4, and vary fll and 3~ then 

we get the phase diagram drawn in Figure 6.3. The figure is a free-hand 

sketch tha t  emphasizes the generic qualitative properties but  is not exact. 

For each fixed value offl~ there is a critical value 3~c(flz) so tha t  2's take over 

when "t < 3'c(fl,) while l ' s  take over when ~ />  %(fla). When fll = 4 = fl~, 

~'~(flz) = 0. Decreasing fl, increases ~/~(fl~) until it reaches cc at a point we 

have labeled tic. tic, which is ~ 1.65 for the neighborhood J~0, is the minimum 

value of the birth rate needed for a single strain to survive in the absence 

of the other. When there is a single strain the model reduces to the basic 

contact process, see Durret t  and Levis (1994a). 

E x a m p l e  6.3.  A T h r e e  Spec ies  Col ie in  S y s t e m .  In the two examples 

above, the ODE and the spatial model sometimes disagreed on who would 

win the competition, but  both approaches agreed that  one type would always 

competitively exclude the other. We will now describe a system in which 

three species coexist in the spatial model, but in the ODE there is always 

only one winner. 

To describe the system in words, we assume l ' s  and 2's both produce 

colicin, to which they  are immune, and to which 3 is sensitive. The rates for 

this system are: 

birth rate death rate 

0 --+ 1 fl~.fl 1 -~ 0 ~1 

0 --+ 2 fl~f2 2 ~ 0 ~2 

0 --+ 3 f13f3 3 --+ 0 ~3 + 71fl t- 72f2 

Here, fl is the fraction of the four nearest neighbors in state i. In our concrete 

example we will set all the 8~ = 1 and 

f l 1 = 3  f l 2=3 -2  f l 3 = 4  7 1 = 3  72 = 0 . 5  

Here we imagine that  species 1 produces more colicin than  2 does but has 

the lowest birth rate. The parameters are chosen so tha t  l ' s  win against 

3's while 3's win against 2's. When only l ' s  and 2's are present tile system 
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reduces to the mul t i type  contact process studied in Neuhauser  (1992). Since 

/32 >/31, the 2's win against the l ' s  in this case. 

If  we write ul for the fraction of sites in state i then the mean field ODE 

is: 

(8.8) 
dul : / ~ l U l U  0 _ ~ l U l  

If  we insert the values for the concrete example then the picture in Figure 6.4 

results. In the u l u 2  plane all trajectories start ing with ul and u2 positive are 

a t t rac ted  to (0, ~22, 0) where ~2i = (fl i  - ~ i ) / f l i .  In the three dimensional ODE 

there is a surface which connects the two separatrices in the u l u 3  and u 2 u z  

planes, so tha t  above the surface trajectories converge to (0, 0, ~2z) while those 

below converge to (0,~22, 0). These conclusions are true whenever fl~ < f12 

and equilibria exist in the interior of the u l u 3  and u 2 u z  planes. (Conditions 

for this can be derived from (6.7).) 

In contrast to the behavior of the ODE, the spatial model shows coexis- 

tence, at least for a long time. See Figure 6.5 for a simulation of the process 

on a 200 • 200 grid with periodic boundary conditions. Here we started in 

an initial product  measure in which the states i = 1, 2, 3 each have density 

1/3 and plotted the observed density of the three species every one thousand 

units of t ime out to t ime 50,000. The densities f luctuate but none of them 

seems in danger of hit t ing 0. 

7. C a s e  3. P e r i o d i c  O r b i t s  

Our first example was introduced by Silvertown et al. (1992) to investigate 

the competit ive interaction of five grass species. We have given it a new 

name to place it in context in the theory of interacting particle systems. 

E x a m p l e  7.1. T h e  M u l t i t y p e  B i a s e d  V o t e r  M o d e l .  Each site will 

always be occupied by exactly one of the species 1, 2 , . . . ,  K.  The process is 

described by declaring that:  

(i) An individual of species i produces new offspring of its type at rate ill. 

(ii) An offspring of type i produced at x is sent to y with probability q~(x, y) -- 

Wi(IY - zl) where tY - zl is the distance from ~" to y. To avoid unnecessary 
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complications, we will suppose that ~oi(1) > 0 and that there is an R < c~ 

so that ~oi(r) -- 0 when the distance r > R. In other words, there is a finite 

dispersal range, but nearest neighbors are always accessible. 

(iii) If site y is occupied by type j ,  and type i disperses to that site, a 

successful invasion occurs (i.e., the state of y changes from j to i) with 

probability pij; if invasion does not occur, the site y is unchanged. 

To explain the name we note that if there are only two types then the model 

reduces to the biased voter model introduced by Williams and Bjerknes 

(1972) and studied by Griffeath (1978) and Bramson and Griffeath (19S0), 

(1981). For a summary of their results see Chapter 3 of Durrett (1988). 

If we were to ignore space and assume that the states of the sites in the 

grid are always independent, then the fraction of sites occupied by species i, 

ul, would satisfy 

dt : y~  uluj  {fliPij - t3jPij} 
J 

In the model (and of course also in the ODE) only the value of Aij = 13ipij is 

important, so we can describe the concrete example investigated by Silver- 

town et al (1992) by giving the matrix Aij. 

i j - +  1 2 3 4 5 

1 Agrostis 0 0.09 0.32 0.23 0.37 

2 Holcus 0.08 0 0.16 0.06 0.09 

3 Poa 0.06 0.06 0 0.44 0.11 

4 Lolium 0.02 0.06 0.05 0 0.03 

5 Cynosurus 0.02 0.03 0.05 0.03 0 

Simulations of this process from a randomly chosen initial state were 

not very interesting to watch. "Three of the five species went extinct very 

rapidly. The two survivors Agrostis and Holcus were the same as tile species 

that survived the longest in the aggregated models." To explain why this 

occurs, we say that species i dominates species j and we write i > j if 

alj -~ )~ij - )~51 ~- O. When the difference is > 0, we say i strictly dominates  j 

and write i > j .  In the concrete case given above, Agrostis strictly dominates 

all other species but beats Holcus by only 0.01, so it should not be surprising 

that Agrostis takes over tile system with Holcus offering the most resistance. 

Indeed, Durrett and Levin (1.997) have shown 
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T h e o r e m  7.1. Assume that the dispersal distribution Ti does not depend on 

i and that type 1 is strictly dominant over type i for 2 < i < K.  I f  we let A~ 

denote the event that type 1 is still alive at t ime t then P(A~, ~t(~) ~ 1) -+ 0 

a s  ~ --+ o o .  

This result says simply that if all species disperse equally, a competitive 

dominant type will almost certainly outcompete all others. To explain the 

mathematical statement, note that if we start with infinitely many sites in 

state 1 then P(A])  = 1 for all t > 0 and the theorem implies that type 1 

comes to dominate at every site. If we only start with finitely many l 's  then 

bad luck in the early stages can wipe out all the l's. Our result says that if 

this does not happen then the l 's will take over the system. 

The outcome in Theorem 7.1 is the one we should expect. It is also the 

one predicted in the mean field case by the ordinary differential equations, 

(7.1). To see this for the ODE, note ' that  the domination condition implies 

that all the all > 0, so Ul(t) is increasing. Being increasing and bounded by 

1, l i m H ~  ul ( t )  exists; but this is only possible if dul /d t  -+ O, which implies 

~>1 ui(t) -+ O. 

C y c l i c  B i a s e d  V o t e r  M o d e l .  In view of the discussion just  completed, 

the simplest system that can have interesting behavior is a three-species sys- 

tems with a competitive loop: 1 < 2 < 3 < 1. This may at first appear to 

be a rather special and esoteric situation, but its generality becomes clearer 

when it is recognized that late successional species (the competitive dom- 

inants) typically would be replaced by early successional species following 

a disturbance. Thus, if, for example, species 1, 2, and 3 are respectively 

grass, bushes, trees, or some other representation of the successional cycle, 

the ordering 1 < 2 < 3 < 1 makes sense in terms of competitive replacement. 

Bramson and Griffeath (1989) have considered this system with n > 3 com- 

petitors in one dimension. Griffeath alone (1988) and with his co-workers 

Fisch and Gravner (1991a, 1991b) has studied related cellular automata. 

Tainaka (1993, 1995) has considered a variation on the model in which l 's  

mutate into 3's with the paradoxical result that this enhances the density of 

I'S. 

In our situation, if we suppose 1 < 2 < 3 < 1 and let 

/31 = AI:~ /32 = A~1 fl:, = A32; 
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then the system (7.1) can be written as 

(7.2) 2A : 
= ~3(/33~2 - / 3 1 u l )  

If for example we take/31 = 0.3,/32 = 0.7, and/33 = 1.0 then the ODE behaves 

as indicated in Figure 7.1. There is a family of periodic orbits around the 

fixed point (0.5, 0.15, 0.35). 

To show that in general we get pictures similar to the concrete example, 

we begin by dividing each equation by the product of the betas that appear 

in it to conclude that any fixed point p has 

p3 /92 Pl 

132 ;~1 /3~ 

Recalling that the equilibrium densities must sum to one, we conclude that 

/33 /31 P~ 

pl - f~l +/3~ + ~ P~ = Zl +/3~ +/3~ p3 - / 3 1  +/32 +/33 

To see that there is a family of periodic orbits surrounding the fixed point 

we write H ( u )  = ~ Pl log ul and note that 

OH V'. ~ g.u_t 
D t  - -  z - ~ t  u i  d t  

c ~ - ~ , ) + c  ~ -  +c  - ~  = 0 ,  

where e =/3,/32f13/(f11 T 132 q- 133). Thus H is constant along solutions of the 

ODE. 

The situation described above is similar to that of May and Leonard 

(1975) and Gilpin (1975) who considered a system in which there were in- 

variant sets of the form ~ilogu~ = K. Gilpin (1975) observed that tile 

"system is neutrally stable on the plane ul + u2 A-u3 = 1, therefore stochastic 

effects (environmental noise) will cause it to decay to a single species sys- 

tem." This conclusion does not apply to the stochastic spatial model. Well 

separated regions oscillate out of phase, and the result is a stable equilibrium 

density for each of the three types. 

Figure 7.2 gives the percentage of sites occupied by species 1 for the first 

500 units of time when we look at the system in windows of size 30 • 30 
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or 120 • 120, or average over the whole 480 • 480 system (which again has 

periodic boundary conditions). Note that in the smallest viewing window, the 

densities fluctuate wildly; but when the averages are taken over the largest 

length scale, the oscillations are confined to the initial period when the system 

is converging to equilibrium. 

Between the two extremes mentioned in the last paragraph is a moderate 

length scale that physicists would call the correlation length. This is the 

"most interesting" scale on which to view the system. Densities computed in 

boxes with sides of the correlation length vary smoothly in time, but undergo 

substantial changes. As we mentioned earlier, Rand and Wilson (1995), and 

Keeling et al. (1997) have considered the problem of precisely defining this 

length scale in terms of the variance of box averages. Pascual and Levin 

(1998) have recently taken a different approach by identifying the length 

scale at which to aggregate to achieve a maximum amount of determinism 

in the evolution of the local densities. ~ 

E x a m p l e  7.2. H a w k s - D o v e s .  Our next model is a spatial version of 

Maynard Smith's (1982) evolutionary games. Our formulation follows Brown 

and Hansell (1987). Others have studied this system using cellular automata: 

Nowak and May (1992), (1993), Uubermann and Glance (1993), Nowak, 

Bonhoeffer, and May (1994), and May (1994), (1995). 
In our model (and most of the others that have been considered), there 

are two types of individuals, called Hawks and Doves, whose interaction is 

described by a game matrix. The three examples we will be interested in are 

given by: 

#1 H D #2 H D #3 II D 

H .4 .s H .7 .4 H - . 6  .9 

D .6 .3 D .4 .8 D - .9  .7 

Finally we list the general case, which serves to define notation we will use 

H D 

H a b 

D c d 

To explain the general game matrix we note that b is, for example, the payoff 

to a hawk when interacting with a dove. When the population consists of a 

fraction p of hawks anti 1 - p  of doves then the payoll" for hawks is ap+b(1-p). 
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We interpret  ap + b(1 - p ) ,  which may be positive or negative (see e.g., game 

~3) ,  as the net birth rate of hawks in this situation. 

Once we have decided on a game matr ix then following Brown and Hansell 

(1987), we can let r/t(z) and et(z) be the number of hawks and doves at x at 

t ime t and formulate the dynamics as follows: 

(i) migration. Each individual changes its spatial location at rate  v and when 

it moves, it moves to a randomly chosen nearest neighbor of x, i.e., it picks 

with equal probabihty one of the four points z + (1, 0), z - (1, 0), z + (0, 1), 

z - (0, 1) tha t  differ from z by 1 in one of the coordinates. 

(ii) deaths due to crowding. Each individual at z at t ime t dies at rate 

~( , t (z )  + 6(~.)). 

(iii) game step. Let Af = {z E Z2:  IZll, Iz21 < 2} be a 5 • 5 square centered 

at (0,0). Let 

'),(*) = Z ~,(x + z) ~ , ( . )  = ~ r + z) 
zEN" zE24" 

be the number of hawks and doves in the interaction neighborhood of z at 

t ime t, and let 
p,(~) = 0,(~)/(,),(~) + ~,(~)) 

be the fraction of hawks. Each hawk experiences a birth (or death) rate of 

a p , ( z )  + b(1 - p,(z)) while each dove experiences a birth (or death) rate of 

cp,(~) + d(1 - p,(~)) .  

If  we assume that  all sites remain independent then we arrive at the 

following mean field ODE for the densities of hawks (u) and doves (v): 

I o n ,  - (7.3) ~ - u b ~  - + 
. . . .  d "  ~(~,+ ~,)} ~; - v ~ c - ~ -  4 - t - -  ~+~ 

Note tha t  a species specific linear term in the net birth (death) rate,  r, is 

easily accommodated within this framework as part of a and b or c and d 

since u/ (u  + v) + v / (u  + v) = 1. 

The Hawks and Doves model quite naturally divides itself into three cases, 

which were our original motivation for formulating the three cases announced 

in the introduction. To motivate the division into cases, we change variables 
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p = u / ( u  + v), s = u + v in the dynamical system to get 

ap _ ( a - b - c q - d ) p ( 1 - p ) ( p - p o )  
t - -  (7.4) 

where 

b - d  
a = a - b - c + d  fl = b + c - 2 d  7 = d - t ~ s  

P ~  b - d + c - a  

The equation for dp/dt is identical to the usual equation from population 

genetics for weak selection with selection coefficient a - b - c + d. If the hawk 

strategy is never worse than the dove strategy, that is, a > c and b > d, tl,en 

p0 > 1 or po < 0 (ignoring the trivial case a = c, b = d). The same conclusion 

holds if the dove strategy dominates the hawk strategy; but if neither strategy 

dominates the other, p0 represents a mixed strategy equihbrium. That is, if 

a fraction p0 of the players play the hawk strategy and a fraction 1 - p o  play 

the dove strategy, both strategies have the same payoff. To check this note 

that 

b-d 

V o a + ( 1 - p o ) b = p o c + ( 1 - p o ) d  if and only if p 0 =  b - d + c - a '  

When p0 E (0, 1), it may be (Case 1) an attracting or (Case 2) a repelling 

fixed point. Matrices #1 and #2  above are examples of Case 1 and Case 2 

respectively. Since we have discussed these situations at length, we turn now 

to the case in which p0 = 1, i.e., the hawk strategy always dominates the 

dove strategy. If a > 0 the system is boring since the hawks will take over 

the world. However if a < 0 and d > 0, as in matrix #3,  things are quite 

interesting. 

This case is often called Prisoner's Dilemma after the two person non-zero 

sum game in which two individuals have a choice to cooperate (C) or defect 

(D). The payoffs to the first and second player for their actions are given as 

follows: 
C D 

C (R,R) (S,T) 

D (T,S) (P ,P)  

Here T > R > P > S so the defector strategy dominates cooperation, but 

double defection leads to less happiness than cooperation of each player. See 

Luce and Raiffa (1.957) or Owen (1968). 
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It is easy to see that in Case 3, the ODE dies out. Figure 7.3 gives a 

picture of the ODE for matrix ~3. From the picture it should be clear that 

the fraction of individuals that are hawks increases in time. This observation 

leads easily to: 

T h e o r e m  7.2. I f  the initial condition for the dynamical system has u(O) > 0 
then v(t)) (0, O) 

Proof .  From (7.4) it follows that p(t) -= u(t)/(u(t) + v(t)) converges to 1 

as t --~ co. Once p(t) gets close enough to 1, both growth rates are negative 

and the populations decay to 0 exponentially fast. [] 

In contrast, the hawks and doves coexist in the our stochastic spatial 

model. A typical simulation of the interacting particle system in Case 3 

begins with a period in which the hawk population grows faster than the 

dove population until the fraction of hawks is too large and both species 

start to die out. When the density gets low we have a few doves who are 

completely isolated and give birth at rate d = 0.7. These doves start colonies 

that grow and would fill up the space to the doves preferred equihbrium 

density, except for the fact that along the way they encounter a few hawks 

that managed to escape extinction. These hawks reproduce faster than the 

doves, the fraction of hawks grows, and the cycle begins again. 

Figure 7.4 gives a graph of the density of hawks and doves vs. time for a 

simulation on a 50 • 50 grid, while Figure 7.5 shows the same statistics for 

a 150 • 150 grid. As the system size increases the oscillations decrease. The 

explanation for this is simple: if we look at a 150 • 150 grid then the cycle of 

growth of the hawks fraction, decrease of the population, and regrowth from 

isolated doves in any 50 • 50 subsquare is much hke that of the simulation 

on the 50 • 50 grid. However, the 150 • 150 system consists of nine 50 • 50 

subsquares which do not oscillate in a synchronized fashion, so the cycles 

cancel each other out to some extent. 

E x a m p l e  7.3. Ep idemics  wi th  r eg row th  of  suscept ib les .  In this model 

the states are 0 = susceptible, 1 = infected, and 2 = removed. Writing f; for 

the fraction of the four nearest neighbors in state i we can write the rates as 

0--4 1 /31fl 1--~ 2 ~ 2-§ 0 cx 
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Durret t  and Neuhauser (1991) have shown tha t  if the epidemic without  re- 

growth (i.e., when a = 0) does not die out, then whenever a > 0 there is a 

nontrivial translation invariant s tat ionary distribution. 

If  c~ is small and we make the correspondence: infecteds = Hawks, su- 

ceptibles = Doves, and removed = vacant, then the behavior of the model 

(when viewed in windows of size l / a )  is much like the Hawks-Doves system. 

(i) Epidemics sweep through the system wiping out most susceptibles, 

(ii) When susceptibles are scarce, the epidemic becomes subcritical and 

the density of infecteds then drops to a low level. 

(iii) When infecteds are scarce, susceptibles increase. When the density of 

susceptibles is large enough, one of the few surviving infecteds starts another 

epidemic. 

For simulation results on this phenomenon, see Durre t t  (1995c). The confer- 

ence proceedings, Mollison (1995), in-which that  paper appears is an excellent 

source for information on all sorts of epidemic models. 

E x a m p l e  7.4. W A T O R .  The name is short for WAter TORus,  a system 

considered in A.K. Dewdney's  Computer  Recreations column in Scientific 

American in December 1984. Each site can be in state 0 = vacant, 1 = 

occupied by a prey (fish), or 2 = occupied by a predator (shark). The original 

model was defined in discrete time, but we reformulate it in continuous t ime 

as follows: 

(i) Fish are born at vacant sites at rate /31 times the fraction of neighbors 

occupied by fish. 

(ii) Each shark at rate  1 inspects q neighboring sites, chosen without  replace- 

ment  from the neighbor set. It moves to the first fish it finds and eats it. A 

shark that  has just  eaten gives birth with probability ~2. A sha rk  that  finds 

no fish dies with probability ~. 

(iii) There is stirring (also called swimming) at rate u: for each pair of nearest 

neighbor sites x and y we exchange the values at x and at y at rate v. 

The stirring mechanism automatically preserves the restriction of at most one 

individuM per site and has the mathemat ical  advantage tha t  the t ra jectory 

of any single particle is just  a continuous time random walk. Of course, if one 

watches the movements of two particles there is a (very small) correlation 
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between their locations due to the occasional stirring steps tha t  affect both 

particles at the same time. 

Lett ing ui(t) be the fraction of sites in state i at t ime t, and computing 

the rate  of change by supposing that  adjacent sites are always independent  

we see tha t  the mean field ODE in this case is: 

d ~ l / d t  =/31u1(1 - ul - u2) - u2{1 - (1 - u,)~} 

(7.4) du2/dt  =/32u2{1 - (1 - Ul) q} - 5u2(1 - u,)q 

Here, the first term on the right represents the birth of fish onto vacant sites. 

To explain the second and third terms, we note that  u2{1 - (1 - u ,)  q} gives 

the fraction of sites occupied by sharks times the probability a given shark 

will find at least one fish when it inspects q neighbors, so f12 times this gives 

the rate at which new sharks are produced. For similar reasons the fourth 

term represents the sharks who find no fish to eat, got a bad coin flip, and 

were told to die. 

To begin to understand the ODE we note that  in the absence of fish, 

sharks can' t  breed and their density drops to 0. Conversely, in the absence 

of sharks, fish don' t  die and will fill up the space. The last two results give the 

direction of motion of the ODE on two sides of the right triangle that  we use 

for the possible states of the system: F = {(Ul, u2) : Ul, u2 > 0, u,  + u2 < 1}. 

Since fish do not die in the absence of sharks, there is a boundary  equilib- 

r ium at (1,0). Considering the second equation in (7.4) and setting u~ = 1 - ~  

and u2 = e2 where the e~ are small shows that  (1,0) is always a saddle point. 

This behavior suggests the presence of a fixed point (~,, u2) with both com- 

ponents positive, a fact which can easily be confirmed by algebraic manipu- 

lation. To do this neatly, and to pave the way for later calculations, we will 

first rewrite the system in (7.4) as 

(7.5) d u l / d t  : A ( u l )  - u 2 B ( u l )  
du2/dt  = u.~C(u,) 

where A ( u , )  = fl, u , (1  - u , ) ,  

a n d  C(u,)  ~-/32 - (/32 -i- 5 ) ( I  - u , ) " .  | n  o rde r  fo r  duz/dl := 0 we , , , , ,s t  h a v e  

(7.6)  = 0 or 
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Having found ul we can now set dul /d t  = 0 to find 

(7.7) ~2 = A ( ~ I ) / B ( ~ , )  

To investigate the nature of the fixed point at (~21, u2) we let vl = ul - u l  

be the displacement from it in t h e / t h  component.  Assuming the vl are small 

and using (7.6) and (7.7) we arrive at the linearized equation 

(7.8) dvl /d t  = Fvl  + Gv~ 

dv~/dt = Hvl  

where F = A ' ( ~ )  - ~2B'(fi~), G = "--B('u.1), and H ----  "/t2Cl('~l). This ODE 

is analyzed in the Appendix of Durre t t  and Levin (1998) with the following 

result. 

Theorem 7.4. The interior fixed point is always locally attracting when 

q <_ 3. Conversely, i f  q > 3 and the values of fl2 and ~ are held constant, 

decreasing t31 leads to a Hopf  bifurcation that produces a limit cycle. 

Figure 7.5 gives a picture of a case of the ODE with a limit cycle: fll = 1/3 

f l 2 = 0 . 1 , 5 = l ,  a n d q = 4 .  

To make connections between our model  and reaction diffusion equations, 

we use Theorems 5.1 and 5.2 to conclude that if we let the stirring rate u --~ oo 

and consider our process on a scaled version of tile square lattice in which 

the spacing between sites is reduced to u -1/2 then the densities of fish and 

sharks converge to the solution of the partial differential equation: 

(7.9) Oul/cOt = Au l  + gl(u, ,  u2) 
a  /ot = A, 2 + 

where the gl are the right-hand sides of the equations in (7.4). 

The next result, proved in Durret t  and Levin (1998), says that  sharks 

and fish coexist in the reaction-diffusion equation. 

T h e o r e m  7.5.  Suppose that the initial conditions UI(X, 0) are continuous, 

always in the set F of sensible values, and each ul is not identically O. Then 

there are positive constants p, el and ~2 so that for large t, u i ( z , t )  > ei 

whenever Ix[ < pt. 
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In words, the densities stay bounded away from zero on a linearly growing 

set. Using methods  of Durre t t  (1993), and Durre t t  and Neuhauser  (1994), it 

is not hard to convert Theorem 2 into a conclusion about  the part icle system. 

See also Sections 4 and 8 of Durre t t  (1995), or the more recent  work of Shah 

(1997). 

T h e o r e m  7.6.  When the stirring ra te  is large there is coexistence, i.e., 

there is a stationary distribution for the particle system that concentrates on 

configurations with infinitely many sites in each of  the possible states. 

S i m u l a t i o n s .  The  last result proves the existence of the s ta t ionary dis- 

t r ibut ion but  does not yield much information about  its spatial s t ructure.  

To unders tand  that ,  we turn  to simulation. Immediately,  however, we run 

into the difficulty tha t  while fast stirring is convenient for making connections 

with reaction-diffusion equations, it is painful to implement  on the computer ,  

since most  of the computat ional  effort is spent moving the particles around. 

To find a variant of the WATOR model tha t  we can more easily simulate, 

we note  tha t  at any moment  when a fish or shark at x inspects its neighbors, it 

sees a set of sites tha t  have been subject  to stirring at ra te  u since the previous 

t ime site z decided to t ry  to change. Since the flip rates stay constant  as 

u --4 oo this t ime is of order 1, and the neighbors will move a distance of 

order u 1/~. Wi th  this mind, we will replace stirring by choose our neighbors 

at r andom (with replacement)  from a square of radius v = u 1/~ centered at 

the point of interest.  

Figures 7.7 and 7.8 show results of computer  simulations when v = 5, i.e., 

neighbors are chosen at r andom from an 11 x 11 square centered at the point.  

Note  that  densities oscillate wildly when measured in a 50 x 50 window but  

are much smoother  in t ime in a 200 • 200 window. 
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