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Stochastic Stability Analysis of Fuzzy Hopfield
Neural Networks With Time-Varying Delays

He Huang, Daniel W. C. Ho, and James Lam

Abstract—The ordinary Takagi—Sugeno (TS) fuzzy models have
provided an approach to represent complex nonlinear systems to
a set of linear sub-models by using fuzzy sets and fuzzy reasoning.
In this paper, stochastic fuzzy Hopfield neural networks with time-
varying delays (SFVDHNNs) are studied. The model of SFVDHNN
is first established as a modified TS fuzzy model in which the con-
sequent parts are composed of a set of stochastic Hopfield neural
networks with time-varying delays. Secondly, the global exponen-
tial stability in the mean square for SFVDHNN is studied by using
the Lyapunov—Krasovskii approach. Stability criterion is derived
in terms of linear matrix inequalities (LMIs), which can be effec-
tively solved by some standard numerical packages.

Index Terms—Fuzzy systems, Hopfield neural networks, sta-
bility, stochastic systems, time-varying delay systems.

1. INTRODUCTION

HE SO-CALLED Hopfield neural networks were first in-

troduced by Hopfield [8]. For a few decades, Hopfield
neural networks have been extensively investigated. Many ap-
plications have been found in different fields such as combinato-
rial optimization, signal processing and pattern recognition, see
for examples [8], [9], [12], [13], [19]. These applications are
built upon the stability of the equilibrium of neural networks.
Thus, the stability analysis is a necessary step for the design and
applications of neural networks. Sometimes, neural networks
have to be designed such that there is only one equilibrium and
this equilibrium is globally stable. For example, when a neural
network is applied to solve the optimization problem, it must
have one unique equilibrium which is globally stable. On the
other hand, both in biological and artificial neural networks, the
interactions between neurons are generally asynchronous which
inevitably result in time delays. In electronic implementation
of analog neural networks, nevertheless, the delays are usually
time-varying due to the finite switching speed of amplifiers. It is
known that time delays are often a source of instability of neural
networks [16]. Therefore, it is of great importance to study the
global stability of neural networks with time-varying delays.
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When performing the computation, there are many stochastic
perturbations that affect the stability of neural networks. It was
pointed out [14], [15] that a neural network could be stabilized
or destabilized by certain stochastic inputs. It implies that the
stability analysis of stochastic neural networks also has primary
significance in the research of neural networks. However, the
stability analysis for stochastic neural networks is difficult. Re-
cently, although the stability analysis of neural networks has
received much attention, the stability of stochastic neural net-
works has not been widely studied. In [1], [2], [11], [14], some
results related to this issue have been reported.

Fuzzy logic theory has shown to be an appealing and efficient
approach to dealing with the analysis and synthesis problems
for complex nonlinear systems. In [18], Takagi and Sugeno pro-
posed an effective way to transform a nonlinear dynamic system
to a set of linear sub-models via some fuzzy models by defining
a linear input/output relationship as its consequence of indi-
vidual plant rule. In Takagi—Sugeno (TS) fuzzy models, local
dynamics in different state space regions is represented by linear
models. The overall fuzzy model of the system is obtained by
fuzzy “mixing” of these linear models. Then the analysis of the
nonlinear system is based on these linear models. Moreover, in
[4], the standard TS fuzzy model was extended to one with time
delays, and some stability conditions were presented in terms of
linear matrix inequalities (LMIs).

In this brief, we further extend the ordinary TS fuzzy models
to describe the delayed Hopfield neural networks which are
subjected to environmental noise. That is, the generalized TS
fuzzy models can be used to represent some complex non-
linear systems by having a set of nonlinear stochastic delayed
Hopfield neural networks as its consequent parts. This fuzzy
modeling method is simple and natural. The system dynamics
is captured by a set of fuzzy implications which characterize
local relations in the state space. The local dynamics of each
fuzzy rule is expressed by a stochastic Hopfield neural net-
work with time-varying delay. The overall fuzzy model can
be achieved by fuzzy “blending” of these nonlinear neural
networks. To the best of our knowledge, this is the first time to
introduce and study stochastic fuzzy Hopfield neural networks
with time-varying delays, (SFVDHNNSs). The main purposes
of this paper are firstly to present the model of SFVDHNN
by using fuzzy IF-THEN rules; and secondly to discuss the
stability of SFVDHNN by constructing some appropriate
Lyapunov-Krasovskii functional. One criterion is given to guar-
antee the global exponential stability in the mean square for
SFVDHNN, which is formulated in terms of LMIs. It is known
that LMIs can be efficiently solved [3], [7], [17]; therefore, our
proposed result is practical.
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Notations: The following notations will be used throughout
this paper. Let R denote the set of real numbers, Rt the set
of nonnegative real numbers, R™ the n-dimensional Euclidean
space and R™*"™ the set of all n X m real matrices. For a, b € R,
then, aVv (aAb) means the maximum (minimum) of @ and b. For
a real square matrix X, the notation X > 0 (X > 0, X < 0,
X < 0) means that X is real symmetric and positive definite
(positive semi-definite, negative definite, negative semi-definite,
respectively); A(X) denotes the set of eigenvalues of X; A\(X)
and A(X') denote the maximum and minimum eigenvalues of X,
respectively. For 7 > 0, C([—7,0]; R™) denotes the family of
continuous functions ¢ from [—, 0] to R™ with the norm ||¢|| =

sup |<p(19)| Let (Q,F,{F:}+>0,P) be a complete proba-

bility s space with a filtration {3 }+>0 satisfying the usual condi-
tions (i.e., it is right continuous and Fy contains all P-pull sets);
C% ([-7,0]; R™) the family of all bounded, Fo-measurable,
C([-,0]; R™)-valued random variables; C%1(R" x R*; RT)
the family of all nonnegative functions V(z,t) on R® x RT
which are continuously twice differentiable in z and differen-
tiable in ¢. If x(t) is a continuous R™-valued stochastic process
ont € [-7,00), let zy = {z(t+0) : —7 < 6§ < 0} for
t > 0, which is regarded as a C([—7, 0]; R™)-valued stochastic
process. The mathematical expectation operator with respect to
the given probability measure P is denoted by E{-}.

II. PROBLEM FORMULATION AND ASSUMPTIONS

In [8], Hopfield brought forward a general class of neural net-
works, named Hopfield neural networks, which has been applied
to various engineering fields. However, these applications are
heavily dependent on the property of the stability of the equilib-
rium. The model of Hopfield neural networks can be expressed
as follows:

u(t) = —Au(t) + Bg(u(t)) + J ()

where u(t) = (u1(t),u2(t),...,u(t))T € R"
is the state vector associated with the neurons,
A = diag(ai,a2,...,a,) > 0 is a positive diagonal
matrix, B = (bij)nxn € R™*™ is the interconnection matrix,
gu®) = (ga(ur(t),ga(us(t)), ., gn(un(t))T is the
neuron activation function vector, J = (Jy1,Ja,...,J,)T is a
constant external input vector.

In recent years, Hopfield neural networks with time-varying
delays have been widely investigated and several stability
criteria have been obtained by many, see [5], [6], [10], for
instances. The model of Hopfield neural networks with
time-varying delays can be described by the following state
equations:

u(t) = —Au(t) + Bg(u(t — (1)) + J 2)
where 7(t) > 0 is the transmission delay in (2) which is time-
varying.

In this paper, the following assumptions are made.
(H1) There exists a positive diagonal matrix
K = dlag(kl,kg....7kn) > 07
such that
|9i(ui) — gi(vi)] < Kilui — v
fore. =1,2,...,n

VYu, v; e R (3)

(H2) 7(t) is bounded on R, i.e., 0 < 7(t) < 7, and is a

differentiable function with 7(¢) < ¢ < 1, where 7, ( are

constants.
In general, the activation functions are assumed to be bounded,
differentiable, and monotonic increasing, such as the usual sig-
moid functions which have been used in [1], [2], [8], [9], [11],
[14]. However, in this brief, these restrictions on the activation
functions g; are removed, which are only Lipschitz continuous
(H1). Therefore, our hypothesis on the activation functions are
more general than those in [1], [2], [8], [9], [11], [14].

As mentioned in Section I, it is reasonable to assume that the
neural network (2) has only one equilibrium point, denoted by
u* = (uf,ub,. .., ut)", which satisfies — Au* + Bg(u*)+J =
0. By making a transformation z(t) = u(t) — «*; then, (2) can
be rewritten as

i(t) = —Ax(t) + Bf(z(t — (1)) ©)

where f(az(t — 7(2)) = (filz:(t — 7(1))), falz2(t —
() fal@alt — 7(1)))T and fi(zi(t — 7(t))) =
gi (zi(t — 7(t)) + ul) — ¢; (uf). Noting (3), it implies that f
satisfies

|fi(wi)| < ki,

for all z; € R.

In [18], a fuzzy dynamic TS model was proposed to repre-
sent local linear input/output relationships of nonlinear systems
by using fuzzy IF-THEN rules. Recently, the ordinary TS fuzzy
models have been extended to the case with time delay, and the
stability has also been studied [4]. On the other hand, a neural
network is often disturbed by environmental noises which af-
fect the stability of the equilibrium. Motivated by these, we will
generalize the ordinary TS fuzzy models to express a complex
stochastic system whose consequent parts are a set of stochastic
Hopfield neural networks with time-varying delays.

In this brief, a general class of SFVDHNNS, is discussed. As
in [18], the model of SFVDHNN is composed of 7 plant rules
that can be described as follows:

Plant Rule 7 :
IF A1(t) is 7% and -
THEN

da(t) = [ Ax(t) + Bif(z(t — 7(t)))]dt

i=1,2,....n 5)

-and 6 ()1snp

+ oi(x(t),z(t —7(t)),t)dw(t), ont > 0 (6)
z(t) = ¢(t), ont € [—T,0]. 7
where i = 1L,2,...,r, m is the fuzzy set,

0(t) = (62(1),02(1), ..., 0,(t)"
able vector, r is the number of

is the premise vari-
fuzzy IF-THEN rules.

w(t) = (wi(t),wz(t),...,wn(t))T is an m-dimensional
Brownian motion defined on  (Q,F,{F;}i>0,P).
Let 0, : R®™ x R* x Rt — R"™ ™, that is,
oi(z,y,t) = (a;k(at:,y,t))nX € R™*™. Throughout

this paper, we assume that Ui(an:l, y,t) is locally Lipschitz
continuous and satisfies the linear growth condition as well.
Hence, it is known [15] that (6) with (7) has a unique global
solution on ¢ > 0 with the initial value ¢ € C}, ([-7,0]; R").
Moreover, we assume that o(0,0,¢) = 0 such that (6) has an
trivial solution z(¢,0) = 0.
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The defuzzified output of system (6) is represented as follows:

= 3" o)

X [(— Aix(t) + Bif (a(t — 7(t))))dt

h Foie(t).alt - r(H).Hdu(®)]  ®)
he(o() = 2D oy = [T wi65)
> 1000 i

J
in which 75(6,(t)) is the grade of membership of 6;(t) in 7’.
According to the theory of fuzzy sets, it is obvious that

vi(B(1)) > 0, S vi((1) > 0

=1

i=1,2,...,r

for all £. Therefore, it implies

hi(6(t)) > 0,

r

ACOE

1=1,2,...,1,

for all ¢.

Throughout this paper, we assume that all membership func-
tions are continuous and piecewise continuously differentiable
and the defuzzified model is also continuous. Clearly, based on
the above discussion, (8) has a unique global solution on ¢ > 0
through the initial value z(¢) = ¢(¥) on —7 < 9 < 0 in
C%, ([=7,0]; R™), denoted by x(t, ¢). And it is known that (8)
has an equilibrium z(¢,0) = 0.

Remark 1: By combining the extended version of the ordi-
nary TS fuzzy models and the theory of delayed Hopfield neural
networks, the model of SFVDHNN is proposed. A set of sto-
chastic delayed Hopfield neural networks are used as the con-
sequent parts of individual plant rules. The overall model of
SFVDHNN is achieved by fuzzy “mixing” these stochastic de-
layed models. And the system dynamics is captured by these
fuzzy implications which characterize local relation in the state
space. In the same way, some similar stochastic fuzzy neural
networks can also be established by using different types neural
networks, such as cellular neural networks, bidirectional asso-
ciative memory (BAM) neural networks, etc.

III. STABILITY CRITERION FOR SFVDHNN

Definition 1: For SFVDHNN (8) and every ¢ €
C% ([-7,0]; R™), the trivial solution is globally exponen-
tially stable in the mean square if there exist positive scalars
a > 0and 8 > 0 such that

Ella(t: ¢)II* < ae™E[l]1*.

For stochastic systems, [t6’s formula has an important role in
the analysis of stochastic systems. The details can be found in
[15] and omitted here. In the sequel, the main stability theorem
and its proof will be given for determining the global exponen-
tial stability in the mean square of SFEVDHNN.

Theorem 1: Let the activation function g and the time delay
7(t) satisfy (H1) and (H2). Suppose that there exist some real
matrices C; > 0, Cy > 0, C3 > 0 and P > 0, such that for all
1, =1,2,...,r

trace [af(x(t), a(t — (), t) Poj(x(t), a(t — 7(2)), t)]
T (t)Cra(t) + T (t — 7())Coz(t — 7(t))
+ [T (w(t = 7(1))Cs f(w(t — 7(1))). )

The SFVDHNN (8) is globally exponentially stable in the mean
square, if there exist a matrix (J; > 0 and a diagonal ma-
trix Q2 > 0, such that the following condition holds for ¢« =
1,2,...,r

T; PB; 0
;= | BFP —nQay+ Cs 0 <0
0 0 —nQ1 + Co

where T; = —PA;, — AP+ Q1+ KQ:K+Cy,n=1-C.
Proof: Since II; < 0, then it can guarantee that there is a
sufficiently small scalar 8 > 0 such that

=F PB; 0
Ni= | BIP —nQ2+0Cs 0 <0
0 0 -nQ1 + Co
where Z; = P — PA; — A;P 4+ eP7Q1 4+ ’"KQ,K + C4.

In fact, it is obvious that A = BP + (e’ — 1)Q; + (efT —
1)KQ2K > 0 for all 8 > 0, and equality holds when 5 = 0.
Moreover, we have Z; = T; + A, hence there exists 8 > 0 such
that ; < 0.
Define a Lyapunov—Krasovskii
V(z(t),t) € C>L(R" x RT; RT) by
V(x(t),t) = 2T (t) Pa(t)

t
+ / Pt 2T (5)Qx(s)ds
t—7(t)

functional candidate

t P £ T (2(s))Qs F(2(s))ds
R RO D

(10)
By It6’s formula, the stochastic derivative of V' (z(t),t) along
(8) can be obtained

t) <> ha(B(t)e

x {827 () Pa(t) + 7" (1) Qra(t)

— (1= Q" (t = (1)) Qua(t — 7 (1))
+ P aT (DK QoK a(t) — (1= O fT
X (@(t — (1)) Qs f(x(t — 7(1)))
+:1:T(t)( PA; — A;P)x(t)

T (H)PB, f(a(t - (1))
+ fT(:v(t — 7(1)))B Pa(t)

27 (1)Cha(t)

o (t = (1)) Caar(t — 7(1))
+fT<a:< = T(0)Caf(a(t - T(1))) pat

+ M(t)
= ‘”ih (8(1)) (f( <t$(t> (1)) T
= a(t —7(t))
"0
X i | flz(t—7(t) | dt+M@E)  (11)
w(t — (1))
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Since ¥; < 0, hence it follows that
EV(z(t),t) <EV(0).

Now, from (10), we obtain

“NQ + X(KQQK)]}[EIMII“’-
(12)

On the other hand, from the definition of V' (z:(), t), one obtains

EV(z(t),t) > A(P)e” E||z(t)||. (13)
Combining (12) and (13), it can be easily obtained that
Ellz(t, 9)|I* < ae™El|¢]|*,
where
— BT _ 1~ —
AP) + <5 MQ1) + MEQ2K))
o= .
A(P)
That is, SFVDHNN (8) is globally exponentially stable in the
mean square. This completes the proof. O

Remark 2: 1In this brief, by constructing one appropriate Lya-
punov-Krasovskii functional and using It6’s formula, sufficient
condition for SFVDHNN is given to guarantee the global ex-
ponential stability in the mean square of the trivial solution. It
can be seen that the stability criterion is formulated in terms
of LMIs which can be easily checked in practice, so it pos-
sesses important leading significance in the design and appli-
cations of SFVDHNN. In addition, the approaches adopted in
this paper can also be used to the stability analysis for other sto-
chastic fuzzy neural networks with time-varying delay, such as
stochastic fuzzy cellular neural networks and stochastic fuzzy
BAM neural networks, etc.

Remark 3: When r = 1, (8) degenerates into the stochastic
Hopfield neural networks with time-varying delay. Likewise,
one sufficient condition on global exponential stability in the
mean square is given for the stochastic Hopfield neural net-
works with time-varying delay. Recently, in [1], [2], [11], [14],
some stability conditions were derived for the stochastic Hop-
field neural networks with constant delay. In those papers, the
activation functions g; were assumed to be nondecreasing and
lgi(uw)] < 1A B;|u| for all uw € R, the connection weights were
required to satisfy b; = 2?21 la;j], 1 < i < n oreven to
be symmetric. It is known that these assumptions in [1], [2],
[11], [14] are very restrictive and limit their applications. Nev-
ertheless, the above restrictions on the activation functions and
the connected weight matrix are removed in our paper. We only
suppose that the activation function g to be Lipschitz continuous
(H1). Moreover, our stability criterion can take into account the
sign of entries in the connected matrix, which illustrates the dif-
ferences between the excitatory and inhibitory effects. Hence,
the result obtained in our paper is less conservative and less re-
strictive than the previous works.

IV. ILLUSTRATIVE EXAMPLE

Here, we will present an example to illustrate the results
developed.

Let r =
SFVDHNN:
Plant Rule: :
IF 61(t) is n{ and ... and 6,(t) is ), THEN
d(t) = [ Aix(t) + Bif (z(t — 7(1)))]dt
+oi(z(t),x(t — (1)), t)dw(t),

where 7} is a fuzzy set, 6(t) = (01(t),...,0,(t))T is the
premise variable vector, w(t) is a scalar Brownian motion and

2. Consider the following plant rules of a

PLEN

for: =1,2

filwi) = 3l + 1] = i = 1]
T(t) = %Sint + %
a1(z,y,t) = (0.51(t — 7(t)), 0.4z (t — 7(t)))"
ooz, y,t) = (0.2, (t — 7(t)), 0.3z (t — (1)) 7.

Obviously, Assumptions (H1) and (H2) are satisfied with K =
diag(1,1) and 7 = 1, ¢ = (1/2), respectively. Thus

trace (JiT(a:7 y,t)o;(z,y,t))
< 0.2527(t — 7(t)) + 0.1623(t — 7(t))

forallz,7 = 1,2.
The SFVDHNN can be described by

dr(t) = 3 hi(B(1) [(—Aiw(t)

+ B; f(z(t — 7(t))))dt
+oi(a(t), x(t — (1)), t)dw(t)].

6 0 1 -2
n=(o4) »=(5 3)

5 0 2 -1
A2 = <0 6) B2_<1 2 )
Then, there exist C; = C3 = 0, Cy = diag(0.25,0.16), P =
diag(1,1) > 0

Q1=<? i) >0andQ2:<(2) g) >0

such that the matrix II; defined in Theorem 1 is negative defi-
nite for 7 = 1, 2. That is, the conditions of Theorem 1 are satis-
fied. Therefore, the above SFVDHNN is globally exponentially
stable in the mean square.

Now we let

V. CONCLUSION

In this brief, a general class of SFVDHNN has been studied.
Firstly, the model of SFVDHNN has been proposed by further
extending the ordinary TS fuzzy models, in which a set of sto-
chastic delayed Hopfield neural networks constitute its conse-
quent parts of individual plant rules. Secondly, the global ex-
ponential stability in the mean square has been investigated for
SFVDHNN based on the Lyapunov—Krasovskii approach. One
stability criterion has been derived in this paper. The stability
condition is expressed in terms of the solutions to a set of LMIs,
which can be solved numerically and very effectively by using
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for example the interior-point method. Furthermore, our result
is allowed to have a wider choice for the activation functions,
including the usual sigmoid functions and the piecewise-linear
functions.
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