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I1l. CONCLUDING REMARKS

A continuous-time observer, which converges in finite time, is ac-
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complished by using the redundancy of two standard observers and a
delay. What enables this result is that the individual two observers with
state estimate;(¢) and state observation errof(t), (i = 1,2), re- Abstract—in this note, some testable conditions for mean square (i.e.,

spectively, give rise to the relations

z1(t) =x(t) + 21 (t)

z2(t) =x(t) + 22(t)
zi(t— D) =x(t — D)+ e~ 72 (1)
zo(t — D) =x(t — D)+ el =9(t)

second moment) stability for discrete-time jump linear systems with time-
homogenous and time-inhomogenous finite state Markov chain form pro-
cesses are presented.

Index Terms—Jump linear systems, Kronecker product, Lyapunov equa-
tion, mean square stability, stability, stochastic systems.

|. INTRODUCTION

In this note, second moment (mean square) stability for the jump

i.e., a set of four equations with four unknown@), x(t — D), 1(t),  inear system (1.1) whose form process, } is a finite state time-ho-

£1(t). The state estimat(?) is just taken to be the result, which arisesnogenous or time-inhomogenous Markov chain is studied.
from solving these equations foft), givenz;(¢) andz;(t — D), ( =

1,2).

Ter1 = H(op ) (1.1

The convergence timP and the observer eigenvalues (resp. the ob-
server gaindd;) are independent quantities to be chosen or designed.

They have clearly a joint (filtering) effect on the state estimate. In par-
ticular, after the transient is over, one has from (2) that

#(t) = [Tnns O ] [T,J”T]fl

A stochastic version of Lyapunov’s second method is used to obtain
a necessary and sufficient condition for second moment exponential
stability if the probability transition matrix is periodic in time. This is

a general result in which the results of Morozan [1] anétJal. [2]

for the time-homogenous case and Krtol@aal.[3] can be recovered

as special cases. In order to apply these results, a coupled system of

/ eFmm {Hy(7) + Gu(r)}dr  Lyapunov equations needs to be solved for which Kronecker product
t—D

techniques will be used and a very general sufficient condition is pre-
sented. For one-dimensional systems, this sufficient condition is also

i.e., the state estimate is generated using measurements from the finite

interval [t — D, t] only.
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Before we present the main results, some preliminaries are neces-
sary. Suppose thdw;, } is a finite state Markov chain with state space
N, transition probability matri¥’ = (p;; )~ x~ and initial distribution
p = (p1,...,pn). Forsimplicity, assume that the initial statg € R"
is a (honrandom) constant vector. L&t (F, P) denote the underlying
probability space and I€ be the collection of all probabiltiy distri-
bution onNV. Lete; € = be the initial distribution concentrated at the
ith state, i.e., given by’{so = i} = 1. If properties depend on the
choice of the initial distribution of the Markov form procefs; }, for
eacht € =, let P: denote the probability measure for the Markov chain
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{0 } induced by the initial distributiog. Also, E: denotes expectation = Theorem 2.1: Suppose thafo . } is a finite state time homogenous

with respect taP; andn = (1, .., mn) is the unique invariant prob- Markov chain with probability transition matri®, then the system
ability distribution for the Markov chaids }, when it exists. Details (1.1) is stochastically stable if and only if for any given positive ma-
about Markov chains are given in [12]. Definitions of various stochasttdces S(1), S(2),...,S(N), there exists positive—definite matrices
stability concepts for jump linear systems are presented next. R(1),R(2),..., R(N) such that
Definition 1.1: Let® be a subsetd&E. The jump linear system (1.1)
with a Markovian form proces§s . } is said to be the following. ZPUHT(J’)R(J)H(J') — R(i)=-5(i), i=1,2,...,N. (2.2)
1) (Asymptotically) second moment stable with respect toj=1
(w.rt) @, if for any zo € R" and any initial probability Proof: This can be proved using the Lyapunov function
distributiony € ® of oy, Viag o) = -TZ:R(O'kfl)Ik~ O
nglolo E {Ilwk(wo, MHZ} -0 Remark 1: The necessary and sufficient conditions given in (2.1)

and (2.2) are equivalent.

wherexz(z,w) is a sample solution of (1.1) initial from  Remark 2: From (2.2) and the theory of Lyapunov equations, the

o € R".If ® = E, we simply say (1.1) imsymptotically Schur stability (all eigenvalues inside the unit disk)\gf;; H (i) (i €

second moment stabl8imilar statements apply to the fol- V) is a necessary condition for second moment stability.

lowing definitions. Equations (2.1) and (2.2) are referred to as coupled Lyapunov equa-
2) Exponentially second moment stable wdrtif for anyzo €  tions. Itis not obvious which of these two necessary and sufficient con-

R™ and any initial distributiony € @ of o4, there exist ditions is better for practical applications. For the general finite state

constantsy, 5 > 0 independent of, and such that Markovian case, solving (2.1) and (2.2) requires solvivigcoupled
matrix equations. However, for some special cases, Theorem 2.1 does
provide an easier test for stochastic stability. This is summarized in the

3)  Stochastically second moment stable wirif for any =, €  Nnext result.

E {Jlev(xo, )P} < allaolPe . vk > 0.

R™ and any initial distribution € & of o, Corollary 2.2: Suppose thafs;. } is a finite state independent and
- identically distributed (iid) random sequence with probability distribu-
D E{llak(wo, w)|I*} < +oc. tion {p1.pa....,pn}, then system (1.1) is second moment stochas-
o tically stable if and only if for some positive—definite mati¥xthere

IV)  Almost surely (asymptotically) stable w.dt, if for any xo € exists a positive—definite solutioR to the following matrix equation:

R™ and any initial distribution) € = of o, N -

> piH'()RH(i) - R = -S5.

P {klijgo s (20, w)|] = 0} =1. =

Remark: For the iid case, (2.1) requires solvidg coupled Lya-

punov equations, which is more complicated than Corollary 2.2.

SR So far, we have only considered stochastic stability. This is not a

- ;he a_bc{)f/g .definitions are consistent with those given in [2] and [A!'mitation because Morozan [5] showed that second moment stability,
econd moment stochastic stability and exponential second moment

and an appropriate "state” for the jump linear system isthejointprocesﬁgbimy of (1.1) with a time-homogenous finite state Markov chain
(zk, o1), even though the initial distribution of the form process maé

In the case when{s:} is an iid process with distribution
p = (p1,...,pn), all the aforementioned definitions hold with

- - : .} are equivalent. Furthermore, all of these imply almost sure
be unknown. Thus, it is reasonable that the stability properties as §$r$1ple pat?]) stability, il
fined are independent of the initial distribution. Of course, for a Marko As an illustration V\}e apply Theorem 2.1 to the one-dimensional
chain with a single ergodic class, almost sure (sample path) stabil(i:tg ' '

depends only on the probability measiiteinduced by the initial dis- Se-

tributuionz. Then, if the system i, -almost surely stable, it is almostdeﬁﬁgmple 2.1: Suppose thati (i) = a; (i € V) are scalars, and
surely stable (oP;-almost surely stable for arfye =). However, this , ) )
may not be the case for second moment stability. P11y pi2ai; - PINGN
p21ai  pa2az  --- pandy
Il. SECOND MOMENT STABILITY A= _
In this section, we study the second moment stability (or mean square PN1AT PN2as - PNNGA

stability) of the discrete-time jump linear system (1.1). As mentioned i - i,
Y) Jump y (1.1) )ﬁ\/e want to find a necessary and sufficient condition for (1.1) to be

earlier, a stochastic version of Lyapunov’s second method can be use d tstable in th di ional Bef di
to study stochastic stability. A natural candidate for a Lyapunov fun gcondmoment stable In the one-timensional case. betore proceeding,
mma A provides a result which is needed for this example: Here, the

tion is an appropriately chosen quadratic form. Morozan [5] show: o J o o
that for a finite state time homogenous Markov chiin } with proba- noiatlgn‘4t26tf (A §te IB)dQenotfet?] elem;jnthse inequalities and
bility transition matrixP, the system (1.1) is stochastically stable if and’(‘l'_) enerslge sizcsrgera Ius o i € 4mi X() d ¢
only if for any given positive matrice®(1),Q(2),...,Q(N), there 0 szicgfn;;g [ ,<p. 1 ]'< |v§n ?orrngor;)i(fivg;uma;eka;r?g/;)mth>e;
exists positive—definite matrice®(1), P(2),. ... P(N) such that WL Se AV e P v ands,

P (1), P(2),.... P(N) a < p(d) < B If ax <. Az, thena < p(A4). If Az <. Sz, then

N p

T,. . ) . . N p(A) < 3. O
Zp"""H (OPGH() = P(i) = —Q), i=1.2....N. (2.1) Necessary condition:Suppose that (1.1) is second moment
= stable, then from Theorem 2.1, f6f1) = S(2) = -+ = S(N) = 1,
This resultis based on the choice of Lyapunov funciignx, o) =  there exist positive numbei®(1), R(2), ..., R(N) such that

2} P(oy )z, wherez;, is measurable with respect to thealgebra gen- N
erated byry._1, 01 —2, . .., and the matrix’(o,) depends only omy.. > pijaiR(j) - R =-1 (i=1.2....N)
Another necessary and sufficient condition is given next. =
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ie., some positive—definite matricéd: (j), Q2(j),....Qp(j) G € N),
there exists positive—definite matricé%(j), P(j),.... P,(j) (j €
Ay —y=—c N) such that
N
wherey = (R(1), R(2),..., R(N)T ande = (1,1,...,1)". Thus, T TN D ) g
we obtaindy = y — ¢ <. y. Using Lemma A, we havg(4) < 1, ;])”U)H (NP (D H() — P(i) = — Qu(d),

i.e., A is Schur stable.

Sufficient condition: If A is Schur stable, i.eg(A) < 1 with
U = (uij)nxn~ andu,; = 1, then fore > 0 sufficiently small,p(A +
eU') < 1andA + eU is a positive matrix. From the Frobenius—Perron
Theorem [13], there exists a positive vector>. 0 such that A +
eU)y = p(A+el)y, ie,

lep—1,ie N

S ) HT PG — Byli) = = Qy(0),

i €N. (2.3)

Theorem 2.3 provides practical testable conditions for exponential

Ay—y=pA+el)y—elUy-y<cy—-ely—y=-ely. second moment stability. When the form procgss} is time-homoge-
Let R(i) = y; (i = 1,2,...,N), which are positive numbers that"°US: thatisp = 1, (2.3) is equivalent to Morozan’s [5] necessary and
satisfy ' ' sufficient condition. Moreover, whemtends to infinity, (2.3) is equiv-

alent to the results in [3] and may be used as an approximation to this

Al . , ) ) more general case.
Zp”af R(j) - R() <0, (i=12,...,N). One approach to obtaining a solution to a Lyapuonv matrix equation
=t is to use the Kronecker product. This also holds for coupled Lyapunov
Then (2.2) is satisfied for this choice &(1),..., R(N) where the equations. Second moment stability of (1.1) with an iid form process
positive number$'(1),. .., S(N) are suitably chosen. From Theorem{s. } was first explored by Bellman [6] and generalized by many others
2.1, we conclude that (1.1) is second moment stable. Therefore (1.1])7s For the basics of Kronecker products, the reader is referred to [8].
second moment stable if and onlyAfis Schur stable. O LetA = (a;j)mxn» be areal or complex matrix and define the linear

Krtolica et al. [3] obtained a necessary and sufficient condition fooperator ve¢) by
the second moment exponential stability of (1.1) with a time-inho-

mogenous finite state Markov chain form procéss }. For any sym- ved4) -
metric matrices4d and B, A < B (or A < B) denotes thaB — = [a11,021, 00, Gty @125y A2y ey @iy e e ey Qo]
A IS a positive-semidefinite (or positive-definite) matrix. Let = The following lemma will be used to develop the main results.
{1,2,...,m} for any integem. Then, [3] showed that for a time-in- | s ma 2.4. [8l:

homogenous finite state Markov chdiey, } with probability transition
matrix P = (pi;(k))~nxn, the system (1.1) is exponentially second
moment stable if and only if for some positive—definite matrix sequence

a) ve€AX) = (I® A)vedX),veqd AXB) = (B" © A)veq X).
b) If A\ XB, +---+ Ay X Bi = C, then

Qr(1),Qr(2),...,Qr(N) (k =0,1,2,...) satisfying [B;f' QA +---+BFo Ak] veq X) = veq ().
0< el <Qr(j) el (j=1,2,....N), Vk >0 c) vedAX +YB) = (I ® A)vedX) + (BY @ IveqY).
for some positive constants and ¢z, there exists positive—definite ) . o - U )
matricesP; (1), P (2). .. .. Po(N) such that The following resul_t_ls ageneral s_ufflu_er_lt condition for exponentlal
second moment stability for (1.1) with a finite state Markov chain form
N
T, . . . . N process.
Zp”(l"’ +DH () Pea (DH() = Pe(i) = = Qu(i), i € N, Theorem 2.5: Suppose thafe} is a finite state Markov chain
=t with probability transition matrixl; = (p;;(k)), then (1.1) is expo-

vk 20 nentially second moment stable if the deterministic matrix product

sequence [, 4;} is exponentially convergent to the zero matrix,

where the equation shown at the bottom of the page holds true.
0< el <P(i)<egl, i€ N, VE>0 Theorem 2.5 provides a test procedure for exponential second mo-

ment stability, from which testable conditions can be derived. The com-
for some positive constants andc, . Using this result requires solving plexity of the stability problem is greatly reduced and the relationship
an infinite system of coupled matrix equations. If the positive—definiteetween the system matricg 1), H(2),..., H(N), the probability
solutionsPx(1),..., P.(IN) converge as goes to infinity, then afinite transition matrixII, and the second moment stability of the system is
set of algebraic conditions can be obtained. If the probability transitioevealed. Ifil;. is periodic ink, thenA; is also periodic with the same
matrix is periodic ink, the following testable condition results. period. If{o}, } is time homogenousy;. is a constant matrix. fl; can

Theorem 2.3: Suppose thafo . } is a finite state Markov chain with be approximated by a probability transition matfixthenA, can be

probability transition matrix? = II,, = (p;;(k)) satisfyingllx, = approximated byi. For all these three cases, simpler second moment
11, then (1.1) is exponentially second moment stable if and only if fatability criteria are obtained next.

where

H(1)® H(1)
H(2)® H(2
A = 2 ® . (HLT~—1 ®I).

H(N)® H(N)
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Corollary 2.6: Ill. | LLUSTRATIVE EXAMPLES

a) Suppose thatoy } is a time-homogenous finite state Markov  gxample 3.1 [10]: Consider the one-dimensional jump linear
chain with probability transition matri¥ = (pi;), then (L.1)is gystem
(stochastically, exponentially) second moment stable if the ma-
trix Te41 = a(ok) K w0 IS given

A=diag{H(1)® H(1), H(2)© H(2)..... H(N) © H(N)} Here, the form process is a 7-state Markov chain with the following
‘ (PT @ I) probability transition matrix [12]:

is Schur stable, i.e., all its eigenvalues are inside the unit circle 61 0 0 0 0 0
in the complex plane. par 0 pas O 0 py O
b) Suppose that the probability transition mafliix is periodic with 0 0 0 1 0 0 0
periodp, then the system (1.1) is exponentially second moment P=10 0 1 0 0 0 0
stable ifA,A,_1 --- Ay is Schur stable. 0 0 ps3s 0 pss O 0
¢) Suppose that the probability transition mafiix can be approx- 0O 0 0 0 0 1 0
imated byll, which is also a probability transition matrix, then 0 pm 0 0 0 0 pm

the s_ystem (1.1) is exponentially second moment stable if trI‘-?ere, {6} is an absorbing state, {3,4} is a communicating class and
matrix {1,2,5,7} are transient states. The problem is to find conditions for
A(Il) = diag{H(1)® H(1),H(2) ® H(2),...,H(N)© H(N)}  second moment stability.
. (HT @ I) A simple procedure is presented using Corollary 2.6 to obtain a
necessary and sufficient condition for second moment stability. From
Corollary 2.8, the test matrid is given by the equation at the bottom
Remarks: of the page. It is easy to compute
1) Part c) of _Corollary 2._6 is an importan_t result _pecause _i@et(/\I —A)=(\ _pmaz(l)az@)) (/\z _ (1,2(3)a2(4))
many practical applications, the probability transition matrix 9 9 9
converges to a stationary matrix. In this case it is not necessary ()\ — Pssa (5)) (A —a (6)) (A — pira (7)) :
to test the stability of a deterministic time-varying system, od is Schur stable if and only jf21 4 (1)a®(2) < 1, a*(3)a*(4) < 1,
to test the definiteness of solutions of an infinite number afssa”(5) < 1,a*(6) < 1 andpr7a®(7) < 1, which is also a necessary
coupled Lyapunov equations as in [3]. It is only necessary to teatd sufficient condition for (1.1) to be second moment stable. This is
the stability of a time-homogenous system where the probabilithe same result as obtained in [10] using a different approach.
transition matrix is replaced by its stationary limit. Example 3.2: Stability in each mode does not guarantee second mo-
2) Compared with Theorem 2.1, part a) of Corollary 2.6 providesraent stability. Consider the Schur matrices

is Schur stable.

potential reduction in computations. Solving coupled Lyapunov (05 10 o (05 0
equations using the Kronecker product approach requires repre- H(1) = 0 0.5 H(2) = 10 0.5/°
senting matrices as expanded vectors and transforming the cou- 0 1

pled Lyapunov equations into a linear equation with coefficient The probability transition matrif* = ) Choose)(1) =

1
matrix B. The matriced”(1), P(2),..., P(N) are obtained as Q(2) = I and using this data in (2.1) 0

the solution of a linear matrix equation and the definiteness of 0.9981  —0.0503

P(1),...,P(N) determine the stability of the system. The ma- P(1) = <_0 0503 —0 0075)

trix B is stable if and only if4 is stable, so the eigenvaluesBf e ’ .

determine the second moment exponential stability of (1.1). P(2) = <_O'O9‘° _0'0003)
3) We conjecture that the sufficient condition in a) is also necessary. =0.0503  0.9981

However, we have not been able to give a rigorous proof fayhich are not positive—definite matrices. From (2.1), (1.1) is not second
this. From Example 2.1, we know that for one dimensional jumfioment stable even though the mode matrikés), H (2) are Schur
linear systems, this conjecture is true. Corollary 2.7 establishgiéble. The eigenvalues of the test matiiin (a) of Corollary 2.6 are
the result for the iid case. 0.25, 0.25~0.25,—0.25, 0.0006-0.0006, 0.4994 and-100.4994,

g hence,A is not Schur stable.

Corollary 2.7: Suppose thafs .} is a finite state iid form process ~Assume that the form process is a two-state iid chain with the prob-

with probability distribution{p, p=,....p~ }, then (1.1) is exponen- ability transition matrixP” = 0.5 0.5 ) LetQ(1) =Q(2)=1TIin

; ; ; ; 0.5 0.5
tially second moment stable if and only if the matrix (2.1). The solution of the covipled Lyagunov equations is

Ao =prH() O H(1) +p2H(2)© H(2) ++--+pnH(N) 0 H(N) 0.9970  —0.0807
is Schur stable. P)= <—0.0807 —1.0212)

0  pna®(l) 0 0 0 0 0
a*(2) 0 0 0 0 0 praa®(2)
0  p23a®(3) 0 a*(3) ps3a®(3) 0 0
A= 0 0 a>(4) 0 0 0 0
0 0 0 0 pssa®(3) 0 0
0 pua®(6) 0 0 0 a*(6) 0
0 0 0 0 0 0 a*(7)
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—1.0212
—0.0807

Let the form processs,} be a time-inhomogenous two state
Markov chain with the probability transition matrix

P2) = < —0.0807)

0.9970

which are not positive—definite, hence (1.1) is not second moment
stable. The test matri® in Corollary 2.6 has eigencalues 50.7451 and
—49.75 and it is not Schur stable. Because the form process is iid, the
simpler test criterion given in Corollary 2.2 can be used. fet I, Kirtolicaet al’s [3] result requires solving an infinite system of matrix
the solution of the matrix equation in Corollary 2.2 is equations. Corollary 2.6 uses the steady-state probability transition ma-

trix
—0.0121
E= <—0.0807 0.3 0.7
08 02)/°

which is not positive—definite. From Corollary 2.2, (1.1) is not second ) ] . -

moment stable. Corollary 2.7 can aslo be used to solve this probldifiom our previous results, (1.1) with probability transition ma#ix
By direct computation,d, in Corollary 2.7 has eigenvalues: 0.25,S second moment stable and from Corollary 2.6, the system (1.1) with
—0.2451,-49.75 and 0.7451, thud, is not Schur stable. From the time-inhomogenous finite state Markov chain with probability tran-
Corollary 2.7, (1.1) is not second moment stable. sition matrixII; is exponentially second moment stable.

Assume that the form process has the probability transition matrix

20 0. . . .
P= <8 1 g S) Solving the coupled Lyapunov equations in (2.1)

—(k+1)
1, = <().3 +e

0.8 — sin? k

0.7 — ¢ D )
(k+2)2

sin? k
0.2+ stk

—0.0807)
—0.0121 P = lim II; =

k—oo

IV. CONCLUSION

P(1) = < 0.9787 —0.4575)
- N AXT _Q A
0‘4‘:‘3 9.0346 This note studies the problem of mean square stability for dis-
P(2) = <_0-3"12 _0-0436) crete-time jump linear systems with a finite state Markov chain form
—0.0436  0.9989 process. In particular, a necessary and sufficient condition for the mean

square stability of a jump linear system with a time-homogeneous
which are not positive—definite and (1.1) is not second moment statfiaite-state Markov chain having a periodic probability transition
The test matrix4 has eigenvalue 28.9686 andis not Schur stable. matrix is presented and general testable sufficient conditions for mean
This case is very interesting: From the probability transition mat;ix square stability are also given. The mean square stabilization for the

the system (1.1) stays in the stable mode 2 with greater probabilggme class of systems is studied in a subsequent paper.

Intuitively, one might expect the system to be second moment stable.
However, this is not the case as indicated by the computations. An ex-
planation of this phenomenon is that second moment stability is an av-
erage property and even low probability events (such as switching to
mode 1) can lead to instability. In fact, this can happen when} is

iid. Chooseps = 0.1 andp2 = 0.9, then the test matrix, in Corol-

lary 2.7 has eigenvalue 30.6422, thiis is not Schur stable and (1.1)  [1]
is not second moment stable. Also, for the system (1.1) with a two state[Z]
iid chain having probability distributiorp(, p2), (1.1) is second mo-
ment stable i) < p; < 0.00003 and (1.1) is not second moment

stable if0.00004 < p; < 0.99996. [3]
Example 3.3: Instability of individual modes does not imply second
moment instability. Let
[4]
1 -1 0.5 1
H(l):< ) H(2):< )
0 0.5 0 1 [5]
Let{o } be atwo state Markov chain with probability transition ma- (6]

trix P = 0.3 0'_" . The eigenvalues of the test matrixin Corol-
0.8 0.2 [7

lary 2.6 are 0.5695;-0.2195, 0.5168;-0.2418,—0.25, 0.5, 0.5, and
—0.25, thus4 is Schur stable and from Corollary 2.6, (1.1) is second [8]
moment stable. Solving the coupled Lyapunov equations in (2.1) with

Q(1) = Q(2) = I gives [
3.1420  —2.2857 [10]
P)= <—2.2857 4.6964 ) 11
17143 0.5714
P@)= <0.5714 5.2321)
[12]
[13]

which are positive—definite. From (2.1), (1.1) is second moment stable.
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