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III. CONCLUDING REMARKS

A continuous-time observer, which converges in finite time, is ac-
complished by using the redundancy of two standard observers and a
delay. What enables this result is that the individual two observers with
state estimatezi(t) and state observation error"i(t), (i = 1; 2), re-
spectively, give rise to the relations

z1(t) =x(t) + "1(t)

z2(t) =x(t) + "2(t)

z1(t�D) =x(t�D) + e
�F D � "1(t)

z2(t�D) =x(t�D) + e
�F D � "2(t)

i.e., a set of four equations with four unknownsx(t), x(t�D), "1(t),
"1(t). The state estimatêx(t) is just taken to be the result, which arises
from solving these equations forx(t), givenzi(t) andzi(t�D), (i =
1; 2).

The convergence timeD and the observer eigenvalues (resp. the ob-
server gainsHi) are independent quantities to be chosen or designed.
They have clearly a joint (filtering) effect on the state estimate. In par-
ticular, after the transient is over, one has from (2) that

x̂(t) = [In;n; 0n;n] T; e
FD

T
�1

�
t

t�D

e
F (t��) fHy(� ) +Gu(�)g d�

i.e., the state estimate is generated using measurements from the finite
interval [t � D; t] only.
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Stochastic Stability of Jump Linear Systems

Yuguang Fang and Kenneth A. Loparo

Abstract—In this note, some testable conditions for mean square (i.e.,
second moment) stability for discrete-time jump linear systems with time-
homogenous and time-inhomogenous finite state Markov chain form pro-
cesses are presented.

Index Terms—Jump linear systems, Kronecker product, Lyapunov equa-
tion, mean square stability, stability, stochastic systems.

I. INTRODUCTION

In this note, second moment (mean square) stability for the jump
linear system (1.1) whose form processf�kg is a finite state time-ho-
mogenous or time-inhomogenous Markov chain is studied.

xk+1 = H(�k)xk (1.1)

A stochastic version of Lyapunov’s second method is used to obtain
a necessary and sufficient condition for second moment exponential
stability if the probability transition matrix is periodic in time. This is
a general result in which the results of Morozan [1] and Jiet al. [2]
for the time-homogenous case and Krtolicaet al. [3] can be recovered
as special cases. In order to apply these results, a coupled system of
Lyapunov equations needs to be solved for which Kronecker product
techniques will be used and a very general sufficient condition is pre-
sented. For one-dimensional systems, this sufficient condition is also
necessary.

A second moment stabilization problem for systems of type (1.1)
is investigated by Jiet al. [2] and Fenget al. [4], where the equiv-
alence between some second moment stability concepts were also
proved. Mariton also studied stochastic controllability, observability,
stabilizability and linear quadratic optimal control problems for
continuous-time jump linear control systems, the details can be found
in [6]. Krtolica et al. [3] applied the Kalman–Bertram decomposition
to study closed-loop control systems with communication delays. The
system is modeled as a jump linear system with an inhomogenous
Markov chain and they obtained a necessary and sufficient condition
for exponential stability. Wonham [9] systematically studied linear
quadratic optimal control problems for these types of systems. Other
work related to the stability of jump linear systems is summarized in
[7].

Before we present the main results, some preliminaries are neces-
sary. Suppose thatf�kg is a finite state Markov chain with state space
N , transition probability matrixP = (pij)N�N and initial distribution
p = (p1; . . . ; pN). For simplicity, assume that the initial statex0 2 Rn

is a (nonrandom) constant vector. Let (
;F ; P ) denote the underlying
probability space and let� be the collection of all probabiltiy distri-
bution onN . Let ei 2 � be the initial distribution concentrated at the
ith state, i.e., given byPf�0 = ig = 1. If properties depend on the
choice of the initial distribution of the Markov form processf�kg, for
each� 2 �, letP� denote the probability measure for the Markov chain
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f�kg induced by the initial distribution�. Also,E� denotes expectation
with respect toP� and� = (�1; . . . ; �N ) is the unique invariant prob-
ability distribution for the Markov chainf�kg, when it exists. Details
about Markov chains are given in [12]. Definitions of various stochastic
stability concepts for jump linear systems are presented next.

Definition 1.1: Let� be a subset of�. The jump linear system (1.1)
with a Markovian form processf�kg is said to be the following.

1) (Asymptotically) second moment stable with respect to
(w.r.t.) �, if for any x0 2 Rn and any initial probability
distribution 2 � of �k

lim
k!1

E kxk(x0; !)k2 = 0

wherexk(x0; !) is a sample solution of (1.1) initial from
x0 2 Rn. If � = �, we simply say (1.1) isasymptotically
second moment stable. Similar statements apply to the fol-
lowing definitions.

2) Exponentially second moment stable w.r.t.�, if for anyx0 2
Rn and any initial distribution 2 � of �k, there exist
constants�, � > 0 independent ofx0 and such that

E kxk(x0; !)k2 � �kx0k2e��k; 8k � 0:

3) Stochastically second moment stable w.r.t.�, if for anyx0 2
Rn and any initial distribution 2 � of �k,

1

k=0

E kxk(x0; !)k2 < +1:

IV) Almost surely (asymptotically) stable w.r.t.�, if for anyx0 2
Rn and any initial distribution 2 � of �k

P lim
k!1

kxk(x0; !)k = 0 = 1:

In the case whenf�kg is an iid process with distribution
p = (p1; . . . ; pN), all the aforementioned definitions hold with
� = � = fpg.

The above definitions are consistent with those given in [2] and [4],
and an appropriate “state” for the jump linear system is the joint process
(xk; �k), even though the initial distribution of the form process may
be unknown. Thus, it is reasonable that the stability properties as de-
fined are independent of the initial distribution. Of course, for a Markov
chain with a single ergodic class, almost sure (sample path) stability
depends only on the probability measureP� induced by the initial dis-
tributuion�. Then, if the system isP�-almost surely stable, it is almost
surely stable (orP�-almost surely stable for any� 2 �). However, this
may not be the case for second moment stability.

II. SECOND MOMENT STABILITY

In this section, we study the second moment stability (or mean square
stability) of the discrete-time jump linear system (1.1). As mentioned
earlier, a stochastic version of Lyapunov’s second method can be used
to study stochastic stability. A natural candidate for a Lyapunov func-
tion is an appropriately chosen quadratic form. Morozan [5] showed
that for a finite state time homogenous Markov chainf�kgwith proba-
bility transition matrixP , the system (1.1) is stochastically stable if and
only if for any given positive matricesQ(1);Q(2); . . . ; Q(N), there
exists positive–definite matricesP (1); P (2); . . . ; P (N) such that

N

j=1

pijH
T (i)P (j)H(i)� P (i) = �Q(i); i = 1; 2; . . . ; N: (2.1)

This result is based on the choice of Lyapunov functionV (xk; �k) =
xTk P (�k)xk wherexk is measurable with respect to the�-algebra gen-
erated by�k�1; �k�2; . . ., and the matrixP (�k) depends only on�k.
Another necessary and sufficient condition is given next.

Theorem 2.1:Suppose thatf�kg is a finite state time homogenous
Markov chain with probability transition matrixP , then the system
(1.1) is stochastically stable if and only if for any given positive ma-
trices S(1); S(2); . . . ; S(N), there exists positive–definite matrices
R(1);R(2); . . . ; R(N) such that

N

j=1

pijH
T (j)R(j)H(j)�R(i) = �S(i); i = 1; 2; . . . ; N: (2.2)

Proof: This can be proved using the Lyapunov function
V (xk; �k) = xTkR(�k�1)xk.

Remark 1: The necessary and sufficient conditions given in (2.1)
and (2.2) are equivalent.

Remark 2: From (2.2) and the theory of Lyapunov equations, the
Schur stability (all eigenvalues inside the unit disk) of

p
piiH(i) (i 2

N ) is a necessary condition for second moment stability.
Equations (2.1) and (2.2) are referred to as coupled Lyapunov equa-

tions. It is not obvious which of these two necessary and sufficient con-
ditions is better for practical applications. For the general finite state
Markovian case, solving (2.1) and (2.2) requires solvingN coupled
matrix equations. However, for some special cases, Theorem 2.1 does
provide an easier test for stochastic stability. This is summarized in the
next result.

Corollary 2.2: Suppose thatf�kg is a finite state independent and
identically distributed (iid) random sequence with probability distribu-
tion fp1; p2; . . . ; pNg, then system (1.1) is second moment stochas-
tically stable if and only if for some positive–definite matrixS there
exists a positive–definite solutionR to the following matrix equation:

N

i=1

piH
T (i)RH(i)�R = �S:

Remark: For the iid case, (2.1) requires solvingN coupled Lya-
punov equations, which is more complicated than Corollary 2.2.

So far, we have only considered stochastic stability. This is not a
limitation because Morozan [5] showed that second moment stability,
second moment stochastic stability and exponential second moment
stability of (1.1) with a time-homogenous finite state Markov chain
f�kg are equivalent. Furthermore, all of these imply almost sure
(sample path) stability.

As an illustration, we apply Theorem 2.1 to the one-dimensional
case.

Example 2.1: Suppose thatH(i) = ai (i 2 N ) are scalars, and
define

A =

p11a
2

1 p12a
2

2 � � � p1Na
2

N

p21a
2

1 p22a
2

2 � � � p2Na
2

N

...
...

. . .
...

pN1a
2

1 pN2a
2

2 � � � pNNa
2

N

:

We want to find a necessary and sufficient condition for (1.1) to be
second moment stable in the one-dimensional case. Before proceeding,
Lemma A provides a result which is needed for this example: Here, the
notationA �e B (A �e B) denotes elementwise inequalities and
�(A) denotes the spectral radius of the matrixA.

Lemma A [13, p. 493]:Given a matrixA �e 0 and a vectorx >e

0 satisfying�x �e Ax �e �x for positive number� and�, then
� � �(A) � �. If �x <e Ax, then� < �(A). If Ax <e �x, then
�(A) < �.

Necessary condition:Suppose that (1.1) is second moment
stable, then from Theorem 2.1, forS(1) = S(2) = � � � = S(N) = 1,
there exist positive numbersR(1);R(2); . . . ; R(N) such that

N

j=1

pija
2

jR(j)�R(i) = �1 (i = 1; 2; . . . ; N)
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i.e.,

Ay � y = �c

wherey = (R(1); R(2); . . . ; R(N))T andc = (1; 1; . . . ; 1)T . Thus,
we obtainAy = y � c <e y. Using Lemma A, we have�(A) < 1,
i.e.,A is Schur stable.

Sufficient condition: If A is Schur stable, i.e.,�(A) < 1 with
U = (uij)N�N anduij = 1, then for� > 0 sufficiently small,�(A+
�U) < 1 andA+ �U is a positive matrix. From the Frobenius–Perron
Theorem [13], there exists a positive vectory >e 0 such that(A +
�U)y = �(A + �U)y, i.e.,

Ay � y = �(A+ �U)y � �Uy � y <e y � �Uy � y = ��Uy:

Let R(i) = yi (i = 1; 2; . . . ; N ), which are positive numbers that
satisfy

N

j=1

pija
2

jR(j)�R(i) < 0; (i = 1; 2; . . . ; N):

Then (2.2) is satisfied for this choice ofR(1); . . . ; R(N) where the
positive numbersS(1); . . . ; S(N) are suitably chosen. From Theorem
2.1, we conclude that (1.1) is second moment stable. Therefore (1.1) is
second moment stable if and only ifA is Schur stable.

Krtolica et al. [3] obtained a necessary and sufficient condition for
the second moment exponential stability of (1.1) with a time-inho-
mogenous finite state Markov chain form processf�kg. For any sym-
metric matricesA andB, A � B (or A < B) denotes thatB �
A is a positive–semidefinite (or positive–definite) matrix. Letm =
f1; 2; . . . ;mg for any integerm. Then, [3] showed that for a time-in-
homogenous finite state Markov chainf�kgwith probability transition
matrix P = (pij(k))N�N , the system (1.1) is exponentially second
moment stable if and only if for some positive–definite matrix sequence
Qk(1);Qk(2); . . . ; Qk(N) (k = 0; 1; 2; . . .) satisfying

0 < c1I � Qk(j) � c2I (j = 1; 2; . . . ; N); 8k � 0

for some positive constantsc1 and c2, there exists positive–definite
matricesPk(1); Pk(2); . . . ; Pk(N) such that

N

j=1

pij(k + 1)HT (i)Pk+1(j)H(i)� Pk(i) =�Qk(i); i 2 N;

8k �0

where

0 < c3I � Pk(i) � c4I; i 2 N; 8k � 0

for some positive constantsc3 andc4. Using this result requires solving
an infinite system of coupled matrix equations. If the positive–definite
solutionsPk(1); . . . ; Pk(N) converge ask goes to infinity, then a finite
set of algebraic conditions can be obtained. If the probability transition
matrix is periodic ink, the following testable condition results.

Theorem 2.3:Suppose thatf�kg is a finite state Markov chain with
probability transition matrixP = �k = (pij(k)) satisfying�k+p =
�k, then (1.1) is exponentially second moment stable if and only if for

some positive–definite matricesQ1(j);Q2(j); . . . ; Qp(j) (j 2 N ),
there exists positive–definite matricesP1(j); P2(j); . . . ; Pp(j) (j 2
N ) such that

N

j=1

pij(l)H
T (i)Pl+1(j)H(i)� Pl(i) =�Ql(i);

l 2p� 1; i 2 N

N

j=1

pij(p)H
T (i)P1(j)H(i)� Pp(i) =�Qp(i);

i 2N: (2.3)

Theorem 2.3 provides practical testable conditions for exponential
second moment stability. When the form processf�kg is time-homoge-
nous, that is,p = 1, (2.3) is equivalent to Morozan’s [5] necessary and
sufficient condition. Moreover, whenp tends to infinity, (2.3) is equiv-
alent to the results in [3] and may be used as an approximation to this
more general case.

One approach to obtaining a solution to a Lyapuonv matrix equation
is to use the Kronecker product. This also holds for coupled Lyapunov
equations. Second moment stability of (1.1) with an iid form process
f�kgwas first explored by Bellman [6] and generalized by many others
[7]. For the basics of Kronecker products, the reader is referred to [8].
Let A = (aij)m�n be a real or complex matrix and define the linear
operator vec(�) by

vec(A)

= [a11; a21; . . . ; am1; a12; . . . ; am2; . . . ; a1n; . . . ; amn]
T
:

The following lemma will be used to develop the main results.
Lemma 2.4. [8]:

a) vec(AX) = (I 
A)vec(X), vec(AXB) = (BT 
A)vec(X).
b) If A1XB1 + � � � + AkXBk = C, then

B
T
1 
A1 + � � �+B

T
k 
 Ak vec(X) = vec(C):

c) vec(AX + Y B) = (I 
 A)vec(X) + (BT 
 I)vec(Y ):

The following result is a general sufficient condition for exponential
second moment stability for (1.1) with a finite state Markov chain form
process.

Theorem 2.5:Suppose thatf�kg is a finite state Markov chain
with probability transition matrix�k = (pij(k)), then (1.1) is expo-
nentially second moment stable if the deterministic matrix product
sequencef k

i=1
Aig is exponentially convergent to the zero matrix,

where the equation shown at the bottom of the page holds true.
Theorem 2.5 provides a test procedure for exponential second mo-

ment stability, from which testable conditions can be derived. The com-
plexity of the stability problem is greatly reduced and the relationship
between the system matricesH(1);H(2); . . . ; H(N), the probability
transition matrix�k and the second moment stability of the system is
revealed. If�k is periodic ink, thenAk is also periodic with the same
period. Iff�kg is time homogenous,Ak is a constant matrix. If�k can
be approximated by a probability transition matrix�, thenAk can be
approximated byA. For all these three cases, simpler second moment
stability criteria are obtained next.

Ak =

H(1)
H(1)

H(2)
H(2)

. . .

H(N)
H(N)

�T
k�1 
 I :
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Corollary 2.6:

a) Suppose thatf�kg is a time-homogenous finite state Markov
chain with probability transition matrixP = (pij), then (1.1) is
(stochastically, exponentially) second moment stable if the ma-
trix

A = diagfH(1)
H(1); H(2)
H(2); . . . ; H(N)
H(N)g

� P
T 
 I

is Schur stable, i.e., all its eigenvalues are inside the unit circle
in the complex plane.

b) Suppose that the probability transition matrix�k is periodic with
periodp, then the system (1.1) is exponentially second moment
stable ifApAp�1 � � �A1 is Schur stable.

c) Suppose that the probability transition matrix�k can be approx-
imated by�, which is also a probability transition matrix, then
the system (1.1) is exponentially second moment stable if the
matrix

A(�) = diagfH(1)
H(1);H(2)
H(2); . . . ; H(N)
H(N)g

� �T 
 I

is Schur stable.
Remarks:

1) Part c) of Corollary 2.6 is an important result because in
many practical applications, the probability transition matrix
converges to a stationary matrix. In this case it is not necessary
to test the stability of a deterministic time-varying system, or
to test the definiteness of solutions of an infinite number of
coupled Lyapunov equations as in [3]. It is only necessary to test
the stability of a time-homogenous system where the probability
transition matrix is replaced by its stationary limit.

2) Compared with Theorem 2.1, part a) of Corollary 2.6 provides a
potential reduction in computations. Solving coupled Lyapunov
equations using the Kronecker product approach requires repre-
senting matrices as expanded vectors and transforming the cou-
pled Lyapunov equations into a linear equation with coefficient
matrixB. The matricesP (1); P (2); . . . ; P (N) are obtained as
the solution of a linear matrix equation and the definiteness of
P (1); . . . ; P (N) determine the stability of the system. The ma-
trix B is stable if and only ifA is stable, so the eigenvalues ofB

determine the second moment exponential stability of (1.1).
3) We conjecture that the sufficient condition in a) is also necessary.

However, we have not been able to give a rigorous proof for
this. From Example 2.1, we know that for one dimensional jump
linear systems, this conjecture is true. Corollary 2.7 establishes
the result for the iid case.

Corollary 2.7: Suppose thatf�kg is a finite state iid form process
with probability distributionfp1; p2; . . . ; pNg, then (1.1) is exponen-
tially second moment stable if and only if the matrix

A0 = p1H(1)
H(1)+p2H(2)
H(2)+ � � �+pNH(N)
H(N)

is Schur stable.

III. I LLUSTRATIVE EXAMPLES

Example 3.1 [10]: Consider the one-dimensional jump linear
system

xk+1 = a (�k)xk x0 is given:

Here, the form process is a 7-state Markov chain with the following
probability transition matrix [12]:

P =

0 1 0 0 0 0 0

p21 0 p23 0 0 p26 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 p53 0 p55 0 0

0 0 0 0 0 1 0

0 p72 0 0 0 0 p77

:

Here, {6} is an absorbing state, {3,4} is a communicating class and
{1,2,5,7} are transient states. The problem is to find conditions for
second moment stability.

A simple procedure is presented using Corollary 2.6 to obtain a
necessary and sufficient condition for second moment stability. From
Corollary 2.8, the test matrixA is given by the equation at the bottom
of the page. It is easy to compute

det(�I � A) = �� p21a
2(1)a2(2) �

2 � a
2(3)a2(4)

�� p55a
2(5) �� a

2(6) �� p77a
2(7) :

A is Schur stable if and only ifp21a2(1)a2(2) < 1, a2(3)a2(4) < 1,
p55a

2(5) < 1,a2(6) < 1 andp77a2(7) < 1, which is also a necessary
and sufficient condition for (1.1) to be second moment stable. This is
the same result as obtained in [10] using a different approach.

Example 3.2: Stability in each mode does not guarantee second mo-
ment stability. Consider the Schur matrices

H(1) =
0:5 10

0 0:5
H(2) =

0:5 0

10 0:5
:

The probability transition matrixP =
0 1

1 0
. ChooseQ(1) =

Q(2) = I and using this data in (2.1)

P (1) =
0:9981 �0:0503

�0:0503 �0:0075

P (2) =
�0:0075 �0:0503

�0:0503 0:9981

which are not positive–definite matrices. From (2.1), (1.1) is not second
moment stable even though the mode matricesH(1),H(2) are Schur
stable. The eigenvalues of the test matrixA in (a) of Corollary 2.6 are
0.25, 0.25,�0.25,�0.25, 0.0006,�0.0006, 0.4994 and�100.4994,
hence,A is not Schur stable.

Assume that the form process is a two-state iid chain with the prob-

ability transition matrixP =
0:5 0:5

0:5 0:5
. LetQ(1) = Q(2) = I in

(2.1). The solution of the coupled Lyapunov equations is

P (1) =
0:9970 �0:0807

�0:0807 �1:0212

A =

0 p21a
2(1) 0 0 0 0 0

a2(2) 0 0 0 0 0 p72a
2(2)

0 p23a
2(3) 0 a2(3) p53a

2(3) 0 0

0 0 a2(4) 0 0 0 0

0 0 0 0 p55a
2(5) 0 0

0 p26a
2(6) 0 0 0 a2(6) 0

0 0 0 0 0 0 a2(7)

:
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P (2) =
�1:0212 �0:0807

�0:0807 0:9970

which are not positive–definite, hence (1.1) is not second moment
stable. The test matrixA in Corollary 2.6 has eigencalues 50.7451 and
�49.75 and it is not Schur stable. Because the form process is iid, the
simpler test criterion given in Corollary 2.2 can be used. LetS = I ,
the solution of the matrix equation in Corollary 2.2 is

R =
�0:0121 �0:0807

�0:0807 �0:0121

which is not positive–definite. From Corollary 2.2, (1.1) is not second
moment stable. Corollary 2.7 can aslo be used to solve this problem.
By direct computation,A0 in Corollary 2.7 has eigenvalues: 0.25,
�0.2451,�49.75 and 0.7451, thusA0 is not Schur stable. From
Corollary 2.7, (1.1) is not second moment stable.

Assume that the form process has the probability transition matrix

P =
0:2 0:8

0:1 0:9
. Solving the coupled Lyapunov equations in (2.1)

P (1) =
0:9787 �0:4575

�0:4573 �9:0346

P (2) =
�0:3512 �0:0436

�0:0436 0:9989

which are not positive–definite and (1.1) is not second moment stable.
The test matrixA has eigenvalue 28.9686 andA is not Schur stable.
This case is very interesting: From the probability transition matrixP ,
the system (1.1) stays in the stable mode 2 with greater probability.
Intuitively, one might expect the system to be second moment stable.
However, this is not the case as indicated by the computations. An ex-
planation of this phenomenon is that second moment stability is an av-
erage property and even low probability events (such as switching to
mode 1) can lead to instability. In fact, this can happen whenf�kg is
iid. Choosep1 = 0:1 andp2 = 0:9, then the test matrixA0 in Corol-
lary 2.7 has eigenvalue 30.6422, thusA0 is not Schur stable and (1.1)
is not second moment stable. Also, for the system (1.1) with a two state
iid chain having probability distribution (p1; p2), (1.1) is second mo-
ment stable if0 � p1 � 0:00003 and (1.1) is not second moment
stable if0:00004 � p1 � 0:99996.

Example 3.3: Instability of individual modes does not imply second
moment instability. Let

H(1) =
1 �1

0 0:5
; H(2) =

0:5 1

0 1
:

Letf�kg be a two state Markov chain with probability transition ma-

trix P =
0:3 0:7

0:8 0:2
. The eigenvalues of the test matrixA in Corol-

lary 2.6 are 0.5695,�0.2195, 0.5168,�0.2418,�0.25, 0.5, 0.5, and
�0.25, thusA is Schur stable and from Corollary 2.6, (1.1) is second
moment stable. Solving the coupled Lyapunov equations in (2.1) with
Q(1) = Q(2) = I gives

P (1) =
3:1429 �2:2857

�2:2857 4:6964

P (2) =
1:7143 0:5714

0:5714 5:2321

which are positive–definite. From (2.1), (1.1) is second moment stable.

Let the form processf�kg be a time-inhomogenous two state
Markov chain with the probability transition matrix

�k =
0:3 + e�(k+1) 0:7� e�(k+1)

0:8� sin k

(k+2)
0:2 + sin k

(k+2)

:

Krtolica et al.’s [3] result requires solving an infinite system of matrix
equations. Corollary 2.6 uses the steady-state probability transition ma-
trix

P = lim
k!1

�k =
0:3 0:7

0:8 0:2
:

From our previous results, (1.1) with probability transition matrixP

is second moment stable and from Corollary 2.6, the system (1.1) with
the time-inhomogenous finite state Markov chain with probability tran-
sition matrix�k is exponentially second moment stable.

IV. CONCLUSION

This note studies the problem of mean square stability for dis-
crete-time jump linear systems with a finite state Markov chain form
process. In particular, a necessary and sufficient condition for the mean
square stability of a jump linear system with a time-homogeneous
finite-state Markov chain having a periodic probability transition
matrix is presented and general testable sufficient conditions for mean
square stability are also given. The mean square stabilization for the
same class of systems is studied in a subsequent paper.
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