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Abstract. Pollicott–Ruelle resonances for chaotic flows are the characteristic fre-

quencies of correlations. They are typically defined as eigenvalues of the generator

of the flow acting on specially designed functional spaces. We show that these res-

onances can be computed as viscosity limits of eigenvalues of second order elliptic

operators. These eigenvalues are the characteristic frequencies of correlations for a

stochastically perturbed flow.

1. Introduction and statement of results

We consider an Anosov flow ϕt = etV on a compact manifold X. For the Laplacian

∆g ≤ 0 with respect to some metric on X, we define

Pε =
1

i
V + iε∆g, (1.1)

For ε 6= 0 this operator is elliptic and hence has a discrete L2(X)-spectrum {λj(ε)}∞j=0.

However, for ε = 0 most of the L2 spectrum is not discrete.

Following the seminal work of Ruelle [Ru] and Pollicott [Po], many authors inves-

tigated the discrete spectrum of P0 acting on specially designed anisotropic Sobolev

spaces and the role of that spectrum in the expansion of correlations – see Blank–

Keller–Liverani [BKL], Baladi–Tsujii [BaTs], Faure–Sjöstrand [FaSj], Faure–Tsujii

[FaTs1, FaTs2], Gouëzel–Liverani [GoLi1], Liverani [Li2], Tsujii [Ts1, Ts2] and ref-

erences given there. We review a yet another approach based on [DyZw1] in §3.

These complex eigenvalues of P0, {λj}∞j=0, are called Pollicott–Ruelle resonances. For

perspectives on physical manifestations of these resonances see for instance Gaspard–

Ramirez [GaRa] or Chekroun et al [CNKMG].

The purpose of this note is to show that Pollicott–Ruelle resonances can be defined

as limits of λj(ε) as ε→ 0+. This can be considered a stochastic stability of resonances:

Theorem 1. Let Pε be given by (1.1) and let {λj(ε)}∞j=0 be the set of its L
2-eigenvalues.

If {λj}∞j=0 is the set of the Pollicott–Ruelle resonances of the flow ϕt, then

λj(ε) −→ λj, ε→ 0+,

with convergence uniform for λj in a compact set.
1
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Figure 1. A schematic presentation of the results in Theorems 1 and

2. Pollicott–Ruelle resonances of the generator of the flow V (denoted

by red asterisks) are approximated by the eigenvalues of V/i + iε∆g

(denoted by blue circles) uniformly on compact sets. The asymptotic

resonance free strip is uniform with respect to ε.

The nature of convergence is much more precise – see §5. In particular the spectral

projections depend smoothly on ε ∈ [0, ε0] where ε0 depends on the compact set. Also,

when λj is a simple resonance then for ε sufficiently small the map ε 7→ λj(ε) is smooth

all the way up to ε = 0. As explained in the next paragraph λj(ε) → λ̄j when ε→ 0−.

We also note the symmetry of λj(ε)’s with respect to the imaginary axis (see Fig. 1).

That follows from the fact that Pεu = −Pεū and thus

(Pε − λ)−1u = −(Pε + λ̄)−1ū. (1.2)

The proof of Theorem 1 relies on the fact that Pε−λ is a Fredholm operator on the

same anisotropic Sobolev spaces as P0 − λ, in a way which is controlled uniformly as

ε → 0+. This Fredholm property is established by the same methods as those used

in [DyZw1] for the case of ε = 0. The key feature of the damping term iε∆g is that

its imaginary part is nonpositive and thus the propagation of singularities theorem of

Duistermaat–Hörmander (see (2.10)) still applies in the forward time direction. For

ε < 0, the damping term is nonnegative and propagation of singularities applies in the

negative time direction, which means that we have to consider the dual anisotropic

Sobolev spaces H−sG(h) and the spectrum of P0 on these spaces is given by {λ̄j}.

We remark that all the results of this paper are valid for the operators acting on

sections of vector bundles arising in dynamical systems – see [DyZw1]. We consider

the scalar case to make the notation, which is all that is affected, simpler.

Previously, stability of Pollicott–Ruelle resonances has been established for Anosov

maps, f : Td → T
d, [BKL],[Li2], following a very general argument of Keller–Liverani

[KeLi]. In that case the Koopman operator f ∗ : C∞(Td) → C∞(Td) is replaced by a

“noisy propagator” Gε ◦ f ∗, where Gεu = gε ∗ u, gε → δ0, ε → 0. For general Anosov
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maps on compact manifolds a semiclassical proof was given by Faure–Roy–Sjöstrand

[FRS, Theorem 5]. Further refinements concerning dependence on ε can be found in

[GoLi1, §8] and interesting applications were obtained by Gouëzel–Liverani [GoLi2]

and Fannjiang–Nonnenmacher–Wo lowski [FNW]. For a physics perspective on this see

for instance Blum–Agam [BlAg] and Venegeroles [Ve].

For flows, Butterley–Liverani [BuLi1],[BuLi2] showed that if a vector field depends

smoothly on a parameter, then the spectrum of the transfer operator associated to the

weight corresponding to the SRB measure is smooth in that parameter. Constantin–

Kiselev–Ryzhik–Zlatoš [CKRZ] established that solutions to the heat equation with a

large transport term equidistribute after arbitrarily small times if and only if the flow

corresponding to the transport term is mixing; this can be viewed as an analogue of

our work for the L2 spectrum on the real line instead of resonances.

A dynamical interpretation of λj(ε)’s can be formulated as follows. In terms of the

operator P0 the flow, x(t) := ϕ−t(x(0)), is given by

e−itP0f(x) = f(x(t)), ẋ(t) = −Vx(t), x(0) = x.

For ε > 0 the evolution equation is replaced by the Langevin equation:

e−itPεf(x) = E [f(x(t))] , ẋ(t) = −Vx(t) +
√

2εḂ(t), x(0) = x,

where B(t) is the Brownian motion corresponding to the metric g on X (presented

here in an informal way; see [El]). This explains why considering Pε corresponds

to a stochastic perturbation of the deterministic flow. See also Kifer [Ki] for other

perspective on random perturbations of dynamical systems.

We also remark that a result similar to Theorem 1 is valid for scattering resonances:

for V ∈ L∞
c (Rn;C) (and in greater generality) they appear as limits of eigenvalues of

−∆ + V (x) − iε|x|2 when ε → 0+, see [Zw2]. The proof is based on the method of

complex scaling and is technically very different than the one presented here. The result

however is exactly analogous with spacial infinity, |x| → ∞, replacing the momentum

infinity, |ξ| → ∞.

Pretending that spectrum of Pε is semisimple (algebraic multiplicities are equal

to geometric multiplicities – see §5 for the general statement), the relation to the

eigenvalues λj(ε) comes from considering long time behaviour: for any f ∈ C∞(X),

and t > 0,

e−itPεf(x) =
∑

Imλj>−A

e−itλj(ε)uεj(x)

∫

X

vεj (y)f(y)dvolg(y) + Of (e−tA)C∞ , (1.3)

where uεj , v
ε
j ∈ C∞(X) are the eigenfunctions of Pε and P t

ε corresponding to λj(ε). We

note that there are no convergence problems as the number of λj(ε) with imaginary
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Figure 2. An illustration of chaotic and stochastic trajectories: we

consider the Nosé–Hoover oscillator [PHV] which is possibly the simplest

chaotic system: W = x2∂x1 +(−x1 +x2x3)∂x2 +(1−x22)∂x3 , x ∈ R
3. The

vector field V = e|x|
2/2W is the Reeb vector field for the contact form

α = e−|x|2/2(x2dx1 + dx3). On the left the Poincaré section {x3 = 0}
showing the chaotic sea and islands of quasi-periodicity (each colour

corresponds to a numerical iteration of a single point). On the right a

chaotic trajectory and the stochastic trajectory, ε = 0.01, with the same

initial data. We stress that the results of our paper do not apply to

mixed systems and this example is meant as an illustration of chaotic

and stochastic trajectories. However, as in [CNKMG], Pollicott–Ruelle

resonances are expected to be relevant for mixed systems as well.

parts above −A is finite though the number will grow with ε. In fact, [JiZw] shows

that the number of Pollicott–Ruelle resonances, λj, with Imλj > −A is always infinite

if A is sufficiently large.

The validity of a modification of (1.3) for ε = 0 is only known for contact Anosov

flows (see §6) and for A > −γ0/2, where γ0 is an averaged Lyapounov exponent (see

(1.5)). That is due to Tsujii [Ts1, Ts2] who followed earlier advances by Dolgopyat

[Do] and Liverani [Li1]. It is also a consequence of more general results obtained in

[NoZw].

The modification in (1.3) is needed since the corresponding uj’s are now distributions

and the expansion provides fine aspects of the decay of correlations. Let dµ(x) be the

volume form obtained from the contact form on X, µ(X) = 1. For f, g ∈ C∞(X) and
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any δ > 0,
∫

X

[
e−itP0f

]
(x)g(x)dµ(x) =

∫

X

f(x)dµ(x)

∫

X

g(x)dµ(x)

+
∑

− 1
2
(γ0−δ)<Imλj<0

e−itλjvj(f)uj(g) + Of,g(e
− 1

2
t(γ0−δ)),

(1.4)

where γ0 is the minimal asymptotic growth rate of the unstable Jacobian, that is the

largest constant such that for each δ > 0

| det(dϕ−t|Eu(x))| ≤ Cδe
−(γ0−δ)t, t ≥ 0; ϕ∗

−t = e−itP0 : C∞(X) → C∞(X), (1.5)

with Eu(x) ⊂ TxX the unstable subspace of the flow at x – see §2. Now uj and vj
are distributional eigenfunctions of P0 and P t

0, WF(uj) ⊂ E∗
u and WF(v̄j) ⊂ E∗

s . Here

again we make the simplifying assumption that the spectrum is semisimple; that is

always the case for geodesic flows in constant negative curvature as shown by Dyatlov–

Faure–Guillarmou [DFG, Theorem 3].

Hence it is natural to ask the question if the gap γ0/2 is uniform with respect to ε,

that is, if the expansion (1.3) with A > −1
2
(γ0−ε) uniformly approaches the expansion

(1.4). That is indeed a consequence of the next theorem:

Theorem 2. Suppose that X is an odd dimensional compact manifold and that V ∈
C∞(X;TX) generates a contact Anosov flow. There exists a constant s0 such that for

any δ > 0 there exist N0, R > 0 such that for all ε > 0,

(Pε − λ)−1 = O(λN0) : Hs0(X) → H−s0(X), (1.6)

for γ0 defined in (1.5) and λ ∈ [R,∞) − i[0, 1
2
(γ0 − δ)].

The same estimate is true for λ ∈ (−∞,−R]− i[0, 1
2
(γ0−δ)] by recalling (1.2). Since

on the compact set [−R,R] − i[0, 1
2
(γ0 − δ)], λj(ε) converge uniformly to λj’s, we see

that for ε small enough the number of eigenvalues of Pε in that set is independent

of ε. We should remark that the estimate (1.6) can be made more precise by using

microlocally weighted spaces reviewed in §4 – see (6.10).

The proof of Theorem 2 combines the approach of Faure–Sjöstrand [FaSj] and

[DyZw1] with the work on resonance gaps for general differential operators [NoZw].

As in that paper we also use the resolvent gluing method of Datchev–Vasy [DaVa].

For a class of maps on T
2 a similar result has been obtained by Nakano–Wittsten

[NaWi].

Negative examples. It is important to point out that the existence of a discrete

limit set for the eigenvalues of the operator Pε is very special to chaotic flows and

for mixed flows could only hold under some special domain restrictions. The simplest

“counterexample” is given by considering X = S
1 × S

1 with V = ∂x1 + α∂x2 , xj ∈
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Figure 3. The case of geodesic flow on a torus: the unit tangent bundle

is given by T
3 = S

1 × S
1 × S

1. If V is the generator of the geodesic flow

and ∆ is the (flat) Laplacian on T
3 then accumulation points of spectra

of V/i+ iε∆ as ε→ 0+ form a discrete set of lines. That is dramatically

different from the Anosov case shown in Fig. 1.

S
1 := R/2πZ. When α is irrational then accumulation points of the spectrum of Pε as

ε → 0+ form the lower half plane. When α = p/q with p and q coprime the limit set

is equal to Z/q − i[0,∞).

A more interesting example is given by the geodesic flow on the torus, T2 = S
1 × S

1

with the flat metric. That is a contact flow on the unit cotangent bundle S∗
T
2 =

T
2
x1,x2

× S
1
θ, generated by and it is generated by

V = cos θ∂x1 + sin θ∂x2 .

Defining Pε using the flat Laplacian n on T
3, and by expanding in Fourier modes in x

we see that

Spec(Pε) =
⋃

n∈Z2

Spec(Pε(n)), Pε(n) := n1 cos θ + n2 sin θ − iε(n2
1 + n2

2 +D2
θ),

Dθ = 1
i
∂θ. We rewrite the operator Pε(n) as follows:

Pε(n) = −iεD2
θ + |n| cos(θ − δn) − i|n|2ε, δn = tan−1(n1/n2).
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For n = 0 the spectrum is simply −iεm2, m ∈ Z and it accumulates on the negative

imaginary axis. For n 6= 0 the asymptotic behaviour of the spectrum is determined by

the asymptotic behaviour of the spectrum of the semiclassical operator

Q(h) := (hDθ)
2 + i cos θ, h2 := ε/|n|.

That has been determined by Galtsev–Shafarevitch [GaSh] who showed that as h→ 0

the spectrum concentrates on on a rotated “Y” shape with the vertices at ±i and the

junction at a special value E∗ ≈ 0.85.

This shows that the accumulation points in the case of the generator of the geodesic

flow on the two torus regularized using the flat Laplacian are given by

−i[0,∞) ∪
⋃

n∈Z2\{0,0}

{z : |Re z| ≤ n, Im z = −E∗|n| + E∗|Re z|},

and part of this set is shown in Fig. 3.

Acknowledgements. We would like express thanks to Carlangelo Liverani for sug-

gesting this problem, to Viviane Baladi and Stéphane Nonnenmacher for helpful com-

ments on an earlier version of the paper, and to Michael Hitrik for informing us of the

reference [GaSh]. We are also grateful for the support by the Clay Research Fellowship

(SD) and by the National Science Foundation grant DMS-1201417 (MZ).

2. Preliminaries

We review some definitions and basic facts mostly to fix notation and to provide

references. The needed results from microlocal/semiclassical analysis are presented in

detail in [DyZw1, §2.3, Appendix C] and we will rely on the presentation given there.

Notation. We use the following notation: f = Oℓ(g)H means that ‖f‖H ≤ Cℓg where

the norm (or any seminorm) is in the space H, and the constant Cℓ depends on ℓ.

When either ℓ or H are absent then the constant is universal or the estimate is scalar,

respectively. When G = Oℓ(g)H1→H2 then the operator G : H1 → H2 has its norm

bounded by Cℓg.

2.1. Dynamical systems. In this paper X is a compact manifold and ϕt : X → X

a C∞ flow, ϕt = exp tV , V ∈ C∞(X;TX). The flow is Anosov if the tangent space to

X has a continuous decomposition TxX = E0(x) ⊕ Es(x) ⊕ Eu(x) which is invariant,

dϕt(x)E•(x) = E•(ϕt(x)), E0(x) = RV (x), and for some C and θ > 0 fixed

|dϕt(x)v|ϕt(x) ≤ Ce−θ|t||v|x, v ∈ Eu(x), t < 0,

|dϕt(x)v|ϕt(x) ≤ Ce−θ|t||v|x, v ∈ Es(x), t > 0.
(2.1)

where | • |y is given by a smooth Riemannian metric on X.
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Following Faure–Sjöstrand [FaSj] we exploit the analogy between dynamical systems

and quantum scattering, with the fiber (ξ) infinity playing the role of x-infinity in

scattering theory. The pull-back map can be written analogously to the Schrödinger

propagator

ϕ−t = e−itP0 , P0 :=
1

i
V.

The symbol of P0 and its Hamiltonian flow are

p(x, ξ) = ξ(Vx), etHp(x, ξ) = (ϕt(x), (Tdϕt(x))−1ξ).

Here Hp denotes the Hamilton vector field of p: ω(•, Hp) = dp, where ω = d(ξdx) is

the symplectic form on T ∗X.

In the study of P0 we need the dual decomposition of the cotangent space:

T ∗
xX = E∗

0(x) ⊕ E∗
s (x) ⊕ E∗

u(x), (2.2)

where E∗
0(x), E∗

s (x), E∗
u(x) are symplectic annhilators of Es(x)⊕Eu(x), E0(x)⊕Es(x),

and E0(x) ⊕ Eu(x). Hence they are dual to to E0(x), Eu(x), Es(x).

A special class of Anosov flows is given by contact Anosov flows. In that case X is

a contact manifold, that is a manifold equipped with a contact 1-form α: that means

that if the dimension of X is 2k− 1 then (dα)∧k ∧α is non-degenerate. A contact flow

is the flow generated by the Reeb vector field V :

α(V ) = 1, dα(V, •) = 0. (2.3)

For an example of a non-Anosov contact flow see Fig.2. An important class of examples

of Anosov contact flows is obtained from negatively curved Riemannian manifolds

(M, g): X = S∗M := {(z, ζ) ∈ T ∗M ; |ζ|g = 1}, α = ζdz|S∗M .

2.2. Wave front set of distributions and operators. Semiclassical quantization

on a compact manifold [DyZw1, Appendix C],[Zw1, Chapter 14] is central to our

analysis.

Let X be a compact manifold and h ∈ (0, 1) a parameter (the asymptotic parameter

in the semiclassical analysis). A family of h-dependent distributions u ∈ D′(X) is

called h-tempered if for some N , ‖u‖H−N ≤ Ch−N . A phase space description of

singularities of u is given by the wave front set:

WFh(u) ⊂ T
∗
X,

where T
∗
X is the fiber-radially compactified cotangent bundle, a manifold with interior

T ∗X and boundary,

∂T
∗
X = S∗X = (T ∗X \ 0)/R+, κ : T ∗X \ 0 −→ S∗X = ∂T

∗
X. (2.4)
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In addition to singularities, WFh measures oscillations on the h-scale. We also refer

to it as the microsupport of u or as having u microlocalized to some region containing

WFh(u) – see §C.2 for the definitions.

For families of (h-tempered) operators we define the wave front set WF′
h(B) using

the Schwartz kernel of B, KB:

WF′
h(B) = {(x, ξ, y,−η) : (x, y, ξ, η) ∈ WFh(KB)}.

This convention guarantees that WFh(I) = ∆T ∗X is the diagonal, {(x, ξ, x, ξ)}, in

T ∗X × T ∗X.

2.3. Pseudodifferential operators. We only use the standard class of semiclassical

pseudodifferential operators, Ψm
h (X) with the symbol map σh, for which

0 −→ hΨm−1
h (X) →֒ Ψm

h (X)
σh−→ Sm(X)/hSm−1(X) −→ 0,

is a short exact sequence of algebra homomorphisms and

Sm(X) := {a ∈ C∞(T ∗X) : ∂αx∂
β
ξ a(x, ξ) = Oαβ(〈ξ〉m−|β|)}

(where we were informal about coordinates on X).

One of our uses of the pseudodifferential calculus is that for χ ∈ C∞
0 (R), the operator

χ(−h2∆g), defined via spectral theory on L2, is pseudodifferential in the class Ψ−N
h

for each N , and σh(χ(−h2∆g)) = χ(|ξ|2g) – see [Zw1, Theorem 14.9]. Moreover, we

implicitly use in the analysis of the operator P̃ε(λ) in §4 that the S0-seminorms of the

full symbol of χ(−h2∆g) are controlled by the S0(R)-seminorms of χ. To see that, we

use the proof of [Zw1, Theorem 14.9] to write the full symbol of χ(−h2∆g) in the form

(see [Dy, Propositions 2.2 and 2.4] for details)

∞∑

j=0

hj
2j∑

k=0

χ(k)(|ξ|2g)aj,k(x, ξ), aj,k ∈ S2k−j(T ∗X). (2.5)

If we control supλ∈R〈λ〉kχ(k)(λ) for all k ≥ 0, then we control χ(k)(|ξ|2g) in S−2k and

thus we control (2.5) in S0.

The semiclassical Sobolev spaces on X are defined as

Hs
h(X) = (I − h2∆g)

−s/2L2(X) ⊂ D′(X), (2.6)

for a choice of a Laplacian ∆g ≤ 0 on X and with the inner product inherited from

L2.

For A ∈ Ψm
h (X) the elliptic set ellh(A) ⊂ T

∗
X is defined as the set of (x, ξ) ∈ T

∗
X

such 〈ξ′〉−k|σh(A)(x′, ξ′;h)| ≥ c > 0 for h small enough and all (x′, ξ′) ∈ T ∗X in a

neighbourhood of (x, ξ). We recall [DyZw1, Proposition 2.4]:
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B

AC

Figure 4. The assumptions on the microsupports of the operators in

the propagation estimate (2.10) and the flow lines of the Hamilton vector

field Hp. This is the simplest of the cases illustrated in Fig. 6 with A3

and C3 (in that case B3 is the identity).

Proposition 2.1. Suppose that P ∈ Ψk(X) and that u(h) ∈ D′(X; E) be h-tempered.

Then

WFh(u) ∩ ellh(P ) ⊂ WFh(Pu). (2.7)

If A ∈ Ψ0
h(X) and WFh(A) ⊂ ellh(P ), then for each m,

‖Au‖Hm
h (X) ≤ C‖Pu‖Hm−k

h (X) + O(h∞). (2.8)

2.4. Propagation estimates. The crucial components of the proofs of Theorems 1

and 2 are propagation results presented in [DyZw1, §2.3] and proved in [DyZw1, §C.3].

We start by recalling a modification of the result of Duistermaat–Hörmander:

Proposition 2.2. Assume that P̃ ∈ Ψ1
h(X) and the semiclassical principal symbol,

σh(P̃ ) ∈ S1
h(X)/hS0

h(X), has a representative p̃− iq, where for some δ > 0,

p̃ = p+ O(hδ)S1/2(T ∗X), p(x, tξ) = tp(x, ξ) ∈ R, ‖ξ|g ≥ 1, t ≥ 1, q ≥ 0. (2.9)

Let etHp be the Hamiltonian flow of p on T
∗
X and u(h) ∈ D′(X; E) be an h-tempered

family of distributions. Then (see Figure 4):

1. Assume that A,B,C ∈ Ψ0
h(X) and for each (x, ξ) ∈ WFh(A), there exists T ≥ 0

with e−THp(x, ξ) ∈ ellh(C) and etHp(x, ξ) ∈ ellh(B) for t ∈ [−T, 0]. Then for each m,

‖Au‖Hm
h (X;E) ≤ K‖Cu‖Hm

h (X;E) +Kh−1‖BPu‖Hm
h (X;E) + O(h∞). (2.10)

2. If γ(t) is a flow line of Hp, then for each T > 0,

γ(−T ) 6∈ WFh(u), γ([−T, 0]) ∩ WFh(Pu) = ∅ =⇒ γ(0) 6∈ WFh(u). (2.11)

Proof. We explain the modifications needed in the proof of [DyZw1, Proposition 2.5]

where p̃ = p. We again construct the escape function f using the homogeneous part of

the symbol given by p. The difference p̃− p produces an additional O(hδ)Ψ2m−1/2 term

in the operator Tε of [DyZw1], which is uniform in the parameter ε of [DyZw1] (note

that in [DyZw1] the letter ε has a different meaning than in the current paper). The

H
m−1/2
h norm should be replaced by the H

m−1/4
h norm on the right-hand side of [DyZw1,

(C.12)], which leads to the same modification on the right-hand side of [DyZw1, (C.5)];

the rest of the proof is carried out the same way as in [DyZw1]. �
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Figure 5. (a) The assumptions of Proposition 2.3. (b) The assump-

tions of Proposition 2.4. Here S∗X is the boundary of T
∗
X and the flow

lines of Hp are pictured.

This propagation result is applied away from the radial sinks and sources given by

κ(E∗
s ) and κ(E∗

u) where κ is the projection in (2.4) and E∗
• are from (2.2). Near κ(E∗

•)

we use radial estimates obtained in the context of scattering theory by Melrose [Me,

Propositions 9,10] (see also Vasy [Va, Propositions 2.3,2.4]). These less standard esti-

mates guarantee regularity of u near sources/sinks, provided that u lies in a sufficiently

high/low Sobolev space.

Let p satisfy the assumptions in (2.9). Assume that L ⊂ T ∗X \0 is a closed conic set

invariant under the flow etHp . It is called a radial source if there exists an open conic

neighbourhood U of L with the following properties valid for some constant θ > 0:

d
(
κ(e−tHp(U)), κ(L)

)
→ 0 as t→ +∞;

(x, ξ) ∈ U =⇒ |e−tHp(x, ξ)| ≥ C−1eθt|ξ|, for any norm on the fibers.
(2.12)

A radial sink is defined analogously, reversing the direction of the flow.

We now have a propagation estimate near radial sources. It shows that Pu controls

u there for sufficiently regular solutions:

Proposition 2.3. Let P ∈ Ψ1
h(X) and assume that σh(P ) has a representative of the

form p− iq and p and Q satisfy (2.9). Assume that L ⊂ T ∗X \ 0 is a radial source for

the flow of Hp. Then there exists m0 > 0 such that (see Figure 5(a))

1. For each B ∈ Ψ0
h(X) elliptic on κ(L) ⊂ S∗X = ∂T

∗
X, there exists A ∈ Ψ0

h(X)

elliptic on κ(L) such that if u(h) ∈ D′(X; E) is h-tempered, then for each m ≥ m0,

Au ∈ Hm0
h =⇒ ‖Au‖Hm

h
≤ Kh−1‖BPu‖Hm

h
+ O(h∞). (2.13)

2. If u(h) ∈ D′(X; E) is h-tempered and B ∈ Ψ0
h(X) is elliptic on κ(L), then

Bu ∈ Hm0
h , WFh(Pu) ∩ κ(L) = ∅ =⇒ WFh(u) ∩ κ(L) = ∅. (2.14)

The second result shows that for sufficiently low regularity we have a propagation

result at radial sinks analogous to (2.10).
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Proposition 2.4. Assume that P ∈ Ψ1
h(X) is as in Proposition 2.3 and L ⊂ T ∗X\0 is

a radial sink. Then there exists m0 > 0 such that for each B ∈ Ψ0
h(X) elliptic on κ(L),

there exists A ∈ Ψ0
h(X) elliptic on κ(L) and C ∈ Ψ0

h(X) with WFh(C) ⊂ ellh(B)\κ(L),

such that if u(h) ∈ D′(X) is h-tempered, then for each m ≤ −m0 (see Figure 5(b))

‖Au‖Hm
h
≤ K‖Cu‖Hm

h
+Kh−1‖BPu‖Hm

h
+ O(h∞). (2.15)

The proofs of Propositions 2.3 and 2.4 can be found in [DyZw1, §C.3].

3. Definition of Pollicott–Ruelle resonances

The resonances for Anosov flows are defined as spectra of the generator of the flow

acting on suitably modified spaces – see Baladi–Tsujii [BaTs], Faure–Sjöstrand [FaSj],

Gouëzel–Liverani [GoLi1], Liverani [Li2], and references given there.

Here we follow [DyZw1, §3.1–3.2] where the spaces are defined using microlocal

weights with simple properties:

HsG(h)(X) := exp(−sG(x, hD))L2(X), G ∈ Ψ0+
h (X),

σh(G) = (1 − ψ0(x, ξ))mG(x, ξ) log |ξ|g,
(3.1)

where ψ0 ∈ C∞
c (T ∗X, [0, 1]) is 1 near {ξ = 0}, mG(x, ξ) ∈ C∞(T ∗X \ 0, [−1, 1]) is

homogeneous of degree 0 and satisfies

mG(x, ξ) =

{
1 near E∗

s

−1 near E∗
u

HpmG(x, ξ) ≤ 0, (x, ξ) ∈ T ∗X \ 0. (3.2)

The existence of such mG is shown in [DyZw1, Lemma C.1]. For convenience we

choose |ξ|2g to be the same metric as in the definition of the Laplacian −∆g. We can

also assume that for some χ0 ∈ C∞
c (R), χ0 ≡ 1 near 0,

G(x, hD) = (1 − χ0(−h2∆g))G(x, hD). (3.3)

(Simply multiply G(x, hD) by (1− χ̃0(−h2∆g)) for χ̃0 ∈ C∞
c such that if |ξ|g ∈ supp χ̃0

then ψ0(x, ξ) = 1 and then choose χ0 so that suppχ0 ⊂ χ̃−1
0 (1).)

We note that as a set HsG(h) is independent of h and that for some N and C,

hN‖u‖HsG(1)
/C ≤ ‖u‖HsG(h)

≤ Ch−N‖u‖HsG(1)
. (3.4)

We also need a version of weighted Sobolev spaces associated to HsG(h):

Hr
sG(h) := exp(−Gr,s(x, hD))L2(X), Gr,s ∈ Ψ0+

h (X),

σh(Gr,s) = (1 − ψ0(x, ξ))(smG(x, ξ) + r) log |ξ|g.
(3.5)

We can also assume that (3.3) holds for Gs,r as well.

The spaces with r 6= 0 will be used to control applications of differential operators:

Ψm
h (X) ∋ A : Hr

sG(h)(X) −→ Hr−m
sG(h)(X). (3.6)



STOCHASTIC STABILITY OF POLLICOTT–RUELLE RESONANCES 13

Since (see [DyZw1, (3.9)])

Hpσh(Gr,s) = s log |ξ|gHpmG + O(1)S0
h
,

we can use the estimates reviewed in §2.4 as in the proof of [DyZw1, Proposition 3.4].

That shows that for any r ∈ R, λ ∈ D(0, R), s > s0 = s0(R, r) and 0 < h < h0,

(hP0 − iQ− hλ)−1 = O(1/h) : Hr
sG(h) −→ Hr

sG(h). (3.7)

Here Q is a complex absorbing operator

Q = χ(−h2∆g), χ ∈ C∞
0 ((−2, 2); [0, 1]), χ(t) = 1, t ∈ [−1, 1]. (3.8)

It is introduced to damp the trapped set which, on p−1(0), is equal to the zero section.

Writing

P0 − λ = h−1(I + iQ(hP0 − iQ− hλ)−1)(hP0 − iQ− hλ),

and noting that

Q(hP0 − iQ− λh)−1 : HsG(1) → C∞(X), (3.9)

is compact as an operator HsG(1) → HsG(1), analytic Fredholm theory (see for instance

[Zw1, Theorem D.4]) shows that (P0 − λ)−1 is a meromorphic family:

Proposition 3.1. For λ ∈ D(0, R) and s > s0 = s0(R),

(P0 − λ)−1 : HsG(1) → HsG(1),

is a meromorphic family of operators with poles of finite rank. These poles are inde-

pendent of s and are called Pollicott–Ruelle resonances.

The mapping property (3.9) also shows that the operator there is of trace class.

Combined with Gohberg–Sigal theory (see for instance [DyZw2, (C.4.6)]) this gives

the following characterization of Pollicott–Ruelle resonances:

Proposition 3.2. Let R > 0 and assume that s > s0(R). For 0 < h < h0(R, s) define

DR(λ) := detHsG(1)
(I + iQ(hP0 − iQ− λh)−1), λ ∈ D(0, R).

Then Pollicott–Ruelle resonances in D(0, R) are given, with multiplicities, by the zeros

of DR.

4. Microlocal bounds on the modified operator

Let Pε be given by (1.1) and let Q be the complex absorbing operator (3.8). The

goal of this section is to prove that for 0 < h < h0 and 0 ≤ ε < h/C the operator

hPε − iQ − hλ is invertible on the same weighted spaces on which hP0 − iQ − hλ is

invertible. Note that for ε > 0, hPε− iQ−hλ is a Fredholm operator H2
sG(h) → HsG(h)

of index 0 by the standard elliptic theory applied to the conjugation of this operator

by esG(x,hD) (see (4.6) below and [HöIII, Theorem 19.2.1]).

We first prove an elliptic estimate, which does not involve the parameter h:
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Lemma 4.1. Suppose that χ1 ∈ C∞
0 ((−2, 2), [0, 1]) satisfies χ1 = 1 on [−1, 1], and put

χ2(t) := χ1(3t). Then for λ ∈ D(0, R),

‖(1 − χ1(−ε2∆g))u‖HsG(1)
+ ‖ε2∆g(1 − χ1(−ε2∆g))u‖HsG(1)

≤ Cε‖(1 − χ2(−ε2∆g))(Pε − λ)u‖HsG(1)
+ OR(ε∞)‖u‖HsG(1)

.
(4.1)

Proof. In (3.3) we can assume that suppχ0 ⊂ χ−1
2 (1): changing χ0 corresponds to

changing ψ0 in the definition of HsG(1) that produces an equivalent norm (see [Zw1,

Theorem 8.8]).

The weight of the space HsG(1) is not smooth at the zero section when one considers

the ε-quantization. To counteract this problem, we introduce a new, ε-dependent,

norm on HsG(1) using a modified weight:

‖u‖s,ε := ‖esGε(x,εD)u‖L2 , Gε(x, εD) := (1 − χ0(−ε2∆g))G(x,D), (4.2)

where Gε(x, εD) ∈ log(1/ε)Ψ0+
ε (X) and

σε(Gε(x, εD)) := (1−χ0(|ξ|2g)) log(|ξ|g/ε)mG(x, ξ) mod ε log(1/ε)S−1+(T ∗X). (4.3)

(We used here the homogeneity of mG: mG(x, ξ/ε) = mG(x, ξ).)

We now claim that for j = 1, 2,

(esG(x,D) − esGε(x,εD))(1 − χj(−ε2∆g)) = O(ε∞)D′(X)→C∞(X). (4.4)

This can be rewritten as the following identity for t = s:

(etG(x,D)e−tGε(x,εD) − I)esGε(x,εD)(1 − χj(−ε2∆g)) = O(ε∞)D′(X)→C∞(X).

Differentiating the left-hand side in t, we obtain

etG(x,D)C(t, s), C(t, s) = χ0(−ε2∆g)G(x,D)e(s−t)Gε(x,εD)(1 − χj(−ε2∆g)).

We now consider C(t, s) as an operator in Ψs−t+(X). Since suppχ0∩supp(1−χj) = ∅,

we see that the all the terms in the symbolic composition formula for the four factors

in C(t, s) vanish. The remainder (estimated, for instance, as in [Zw1, (9.3.7)]) is of

size εN for any any N . Hence C(t, s) ∈ ε∞Ψ−∞(X) and consequently

etG(x,D)C(t, s) ∈ ε∞Ψ−∞(X),

uniformly for bounded t, s. Integration then gives (4.4).

By (4.4), we may replace the HsG(1) norms in (4.1) by the ‖ • ‖s,ε norms. We now

consider our operator in the ε-pseudodifferential calculus:

ε(Pε − λ) ∈ Ψ2
ε, pε(x, ξ) := σε(εPε) = −i|ξ|2g + ξ(Vx).

This operator is elliptic in the class Ψ2
ε for ξ 6= 0. By the choice of χj’s, we see that

both ε(Pε − λ) ∈ Ψ2
ε and (1 − χ2(−ε2∆g)) ∈ Ψ0

ε are elliptic on WFε(1 − χ1(−ε2∆g)).

Hence the estimate (4.1) holds for s = 0 – see Proposition 2.1 above.
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To prove (4.1) for the ‖ • ‖s,ε-norms, we consider conjugated operators:

Pε,s := esGε(x,εD)Pεe
−sGε(x,εD)), Aj,s(x, hD) := esGε(x,εD)(1 − χj(−ε2∆g))e

−sGε(x,εD),

and need to prove that

‖A1,su‖H2
ε
≤ C‖A2,s(εPε,s − ελ)‖L2 + O(ε∞)‖u‖L2 . (4.5)

(The conjugation of ε2∆g appearing in (4.1) is handled in the same way as εPε,s below.)

We have, as in [DyZw1, §3.3], εPε,s ∈ Ψ2
ε, Aj,s ∈ Ψ0

ε, and

εPε,s = εPε − iεs
i

ε
[Gε, εPε] + O(ε2 log(1/ε))Ψ0+

ε
, (4.6)

so that

σε(εPε,s) = −i|ξ|2g + ξ(V ) + εsH|ξ|2g
σε(Gε) + iεHξ(V )σε(Gε) mod εS1(T ∗X).

Recalling (4.3) we see that

|H|ξ|2g
σε(Gε)| + |Hξ(V )σε(Gε)| ≤ C log(1/ε)〈ξ〉1+.

Hence, εPε,s − ελ is elliptic in Ψ2
ε on the set |ξ| > δ for any δ > 0. Composition of

pseudodifferential operators in Ψ∗
ε shows that

WFε(A1,s) ⊂ {|ξ| > 1} ⊂ ellε(εPε,s − ελ), WFε(I − A2,s) ∩ WFε(A1,s) = ∅.
We can apply Proposition 2.1 again to obtain (4.5) and hence (4.1). �

We turn to the question of invertibility of hPε − iQ− λh and suppose that

(hPε − iQ− λh)u = f.

For ε < h/C we have (1 − χ2(−ε2∆g))Q = 0. Hence in view of (3.4) and (4.1),

‖(1 − χ1(−ε2∆g))u‖HsG(h)
+ ‖ε2∆g(1 − χ1(−ε2∆g))u‖HsG(h)

≤ Ch−Nε‖(1 − χ2(−ε2∆g))f‖HsG(h)
+ OR(h−Nε∞)‖u‖HsG(h)

,
(4.7)

for λ ∈ D(0, R), ε < h/C, and some N depending on s.

Put

P̃ε(λ) :=
h

i
V + iεh∆gχ1(−ε2∆g) − iQ− λh, (4.8)

Then

P̃ε(λ)u = −iεh∆g

(
1 − χ1(−ε2∆g)

)
u+ f =: F. (4.9)

From (4.7) we see immediately that

‖F‖HsG(h)
≤ Ch−N‖f‖HsG(h)

+ O(h−Nε∞)‖u‖HsG(h)
, (4.10)

where N depends on s.
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The operator P̃ε(λ) on the left-hand side of (4.9) is an h-pseudodifferential operator

in Ψ1
h and

σh(P̃ε(λ)) = ξ(Vx) − i|ξ|gχ1

( ε2
h2

|ξ|2g
) ε
h
|ξ|g − iχ(|ξ|2g) ∈ S1(T ∗X),

uniformly in ε ∈ (0, Ch), λ ∈ D(0, R). The domain of this operator is given by the

domain of V acting on HsG(h):

DsG(h) = {u ∈ HsG(h) | V u ∈ HsG(h) ⊂ D′(X)} ,
‖u‖DsG(h)

= ‖u‖HsG(h)
+ h‖V u‖HsG(h)

.

We now verify that the main estimate of [DyZw1, §3.3] is valid for the operator

P̃ε(λ). The key fact is that the operator is now of order 1 in ξ as, using Lemma 4.1,

we can control F by f .

Lemma 4.2. Suppose that λ ∈ D(0, R) and that 0 ≤ ε ≤ h/C0. Then there exist

h0 = h0(R), s0 = s0(R), C = C(R) (independent of ε) such that for u ∈ DsG(h) and

the operator P̃ε(λ) defined in (4.8)

‖u‖HsG(h)
≤ Ch−1‖P̃ε(λ)u‖HsG(h)

, s0 < s, 0 < h < h0. (4.11)

Proof. We refer to the proof of [DyZw1, Proposition 3.4] for details and explain the

differences between the operator P̃ε(λ) and the operator P̃0(λ) = h
i
V − iQ − hλ con-

sidered there. We recall that the proof is based on propagation results recalled in

§2.4.

First of all, near κ(E∗
s ), where κ : T ∗X \ 0 → S∗X = ∂T

∗
X is the projection to

fiber infinity, we use the radial source estimate (Proposition 2.3). The operator P̃ε(λ)

satisfies the assumptions of Proposition 2.3 and we get for each N

‖A1u‖Hs
h
≤ Ch−1‖B1P̃ε(λ)u‖Hs

h
+ O(h∞)‖u‖H−N

h
, s > s0, (4.12)

where both A1, B1 ∈ Ψ0
h are microlocalized in a small neighborhood of κ(E∗

s ) and A1

is elliptic near κ(E∗
s ) – see Fig. 6. From the properties of the weight G – see (3.2) –

we see that

‖A1u‖HsG(h)
= ‖A1u‖Hs

h
+ O(h∞)‖u‖H−N

h
, ‖B1f‖HsG(h)

= ‖B1f‖Hs
h

+ O(h∞)‖u‖H−N
h
,

and hence we can replace Hs
h by HsG(h) in (4.12).

Similarly if A2 ∈ Ψ0
h is microlocalized near κ(E∗

u) there exist B2, C2 ∈ Ψ0
h microlo-

calized near κ(E∗
u) with WFh(C2) ∩ κ(E∗

u) = ∅ (see Fig. 6) such that

‖A2u‖H−s
h

≤ C‖C2u‖H−s
h

+ Ch−1‖B2P̃ε(λ)u‖H−s
h

+ O(h∞)‖u‖H−N
h
, s > s0. (4.13)

This follows from Proposition 2.4. Recalling (3.2) again we see that

‖A2u‖HsG(h)
= ‖A2u‖H−s

h
+O(h∞)‖u‖H−N

h
, ‖B2f‖HsG(h)

= ‖B2u‖H−s
h

+O(h∞)‖u‖H−N
h
,
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κ(E∗

s
)

κ(E∗

u
)

A1

A2

C2

A3

C3

A4

Q

Figure 6. A schematic representation of the flow on T
∗
X. Different

regions (we denote by •j the region of microlocalization of •j; control in

Cj is needed for the estimate in Aj) in which different propagation results

are applied: for A1 we use the radial source estimates (Proposition 2.3);

for A2 the radial sink estimates (Proposition 2.4); for A3 the standard

propagation result (Proposition 2.2) applied to the conjugated operator;

for A4 we use elliptic estimates (Proposition 2.1). Since for A1 and A4

we do not need any initial control (given by Cj), C3 can be dynamically

controlled by regions of the type A1 and A4, and C2 is a region of the

type A2, a partition of unity provides a global estimate (4.15).

and similarly for C2, so that again the estimate (4.13) is valid with H−s
h replaced by

HsG(h).

We now have to consider the case of A3 ∈ Ψ0
h microlocalized away from κ(E∗

u)∪κ(E∗
s ).

For that we need to see that the conjugated operator satisfies the assumptions of the

Duistermaat–Hörmander propagation theorem (Proposition 2.2). As in (4.6) we have

P̃ε,s(λ) := esG(h)P̃ε(λ)e−sG(h) = P̃ε(λ) − ihs
i

h
[G(h), P̃ε(λ)] + O(h2)Ψ−1+

h
,

where now, as the operators P̃ε(λ) and G(h) are uniformly bounded in Ψ1
h and Ψ0+

h ,

respectively, the error is in Ψ−1+
h . Hence we have

σh(Pε,s(λ)) = pε,s(x, ξ) − iqε,s(x, ξ) mod (hΨ0
h)
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where, with p(x, ξ) := ξ(Vx), away from ξ = 0 we can take

pε,s(x, ξ) = p(x, ξ) − hs log |ξ|gHmG

(
|ξ|gχ1

( ε2
h2

|ξ|2g
) ε
h
|ξ|g

)
,

qε,s(x, ξ) = χ(|ξ|2g) + |ξ|gχ1

( ε2
h2

|ξ|2g
) ε
h
|ξ|g − hs log |ξ|gHpmG(x, ξ) ≥ 0.

(4.14)

We note that p̃ := pε,s = p + O(h)S0+ satisfies the assumptions of Proposition 2.2

with δ = 1 and qε,s ≤ 0. Hence the propagation estimate(2.10) applies.

As in the proof of [DyZw1, Proposition 3.4], combining (4.12), (4.13), Proposi-

tion 2.2, and the elliptic estimate (Proposition 2.1) we obtain uniformly in ε,

‖u‖HsG(h)
≤ Ch−1‖P̃ε(λ)u‖HsG(h)

+ O(h∞)‖u‖H−N
h
, 0 < h < h0(R)

s > s0(R), λ ∈ D(0, R), 0 < ε ≤ h,
(4.15)

for any N and that implies (4.11), finishing the proof. �

We now fix h < h0 and apply Lemma 4.2 to (4.9). That and (4.10) give

‖u‖HsG(h) ≤ Ch−N‖f‖HsG(h) + O(h−Nε∞)‖u‖HsG(h)

and the O(h−Nε∞) can be absorbed into the left-hand side for ε/h small enough.

We summarize the result of this section in

Proposition 4.3. Let Pε be given by (1.1) and Q by (3.8). Suppose that λ ∈ D(0, R)

and that 0 ≤ ε ≤ h/C0. Then there exist h0 = h0(R), s0 = s0(R), (independent of ε)

such that for 0 < h < h0 and s > s0(R)

hPε − iQ− hλ : H2
sG(h) → HsG(h),

is invertible and for some constants C and N independent of ε,

‖(hPε − iQ− hλ)−1‖HsG(h)→HsG(h)
≤ Ch−N . (4.16)

Remark. Same statement is true if we replace the spaces HsG(h) with Hr
sG(h) for some

fixed r. Indeed, this amounts to replacing smG by smG +r in the weight G. The proof

of Lemma 4.1 remains unchanged. As for Lemma 4.2, its proof uses the inequality

HpmG ≤ 0 (which is still true), as well as the fact that HsG(h) is equivalent to Hs
h

microlocally near E∗
s and to H−s

h microlocally near E∗
u. The space Hr

sG(h) is equivalent

to Hr+s
h near E∗

s and to Hr−s
h near E∗

u; for s large enough depending on r and R,

Lemma 4.2 still holds.
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5. Stochastic approximation of Pollicott–Ruelle resonances

In this section we prove Theorem 1. Using Proposition 4.3 we see that for λ ∈
D(0, R), we have the following expression for the meromorphic continuation of the

resolvent of Pε:

(Pε − λ)−1 = h(hPε − iQ− hλ)−1(I +K(λ, ε))−1 : HsG → HsG, (5.1)

where

K(λ, ε) := iQ(hPε − iQ− hλ)−1 : HsG → HsG, (5.2)

is of trace class and depends holomorphically on λ – see (3.9). Here 0 < h < h0,

0 ≤ ε ≤ ε0 := h/C0 and s > s0 with h0 and s0 depending on R. We fix h and drop it

in the notation for HsG.

As in Proposition 3.2 we see that the spectrum of Pε in D(0, R) is given (with

multiplicities) by the zeros of the following Fredholm determinant:

DR(λ, ε) := detHsG
(I +K(λ, ε)). (5.3)

Note that, since Q is compactly microlocalized, K(λ, ε) acts HsG → HN for all N . It

follows that DR(λ, ε) is equal to the HN determinant of I +K(λ, ε) for each N ≥ s.

To analyze the determinant DR(λ, ε), we apply the following two lemmas. We use

the notation f ∈ C1([a, b]) to mean that f and its derivative f ′ are continuous in [a, b];

here f ′(a), f ′(b) are the left and right derivatives of f at those points. By induction

we then define Ck([a, b]) and C∞([a, b]).

Lemma 5.1. Let R and h be fixed so that (5.1) is valid. Then for every k there exists

s1 = s1(k,R) such that for s ≥ s1,

K(λ, ε) ∈ Ck
(
[0, ε0]ε,Hol

(
D(0, R)λ,L1(Hs, Hs)

))
, (5.4)

where Hs = Hs(X) are Sobolev spaces and L1 denotes the space of trace class operators.

Proof. We first show that the identity

∂ε(hPε − iQ− hλ)−1 = −ih(hPε − iQ− hλ)−1∆g(hPε − iQ− hλ)−1 (5.5)

is true for ε ∈ [0, ε0] in the space Hol(D(0, R),B(Hr
sG, H

r−4
sG )), for each r and for s large

enough depending on R and r. Here B stands for the class of bounded operators with

operator norm. Indeed, for each ε, ε′ ∈ [0, ε0],

(hPε − iQ− hλ)−1 − (hPε′ − iQ− hλ)−1

ε− ε′

= −ih(hPε − iQ− hλ)−1∆g(hPε′ − iQ− hλ)−1

(5.6)

where the right-hand side of the equation is uniformly bounded in ε, ε′ as an operator

Hr
sG → Hr−2

sG . Here we used

(hPε′ − iQ− hλ)−1 ∈ B(Hr
sG, H

r
sG), (hPε − iQ− hλ)−1 ∈ B(Hr−2

sG , Hr−2
sG ),



20 SEMYON DYATLOV AND MACIEJ ZWORSKI

(see Proposition 4.3 and the remark following it) and the fact that ∆g is bounded

Hr
sG → Hr−2

sG . Now, (5.6) implies that (hPε − iQ − hλ)−1 is Lipschitz (and thus

continuous) as an operator Hr
sG → Hr−2

sG . Passing to the limit ε′ → ε in (5.6), we

obtain (5.5) in the class B(Hr
sG, H

r−4
sG ). Holomorphy in λ follows automatically from

the holomorphy of each of the operators involved.

Iterating (5.5), we see that for each r, each k > 0, and for s large enough depending

on R, r and k,

(hPε − iQ− hλ)−1 ∈ Ck
(
[0, ε0]ε,Hol

(
D(0, R),B(Hr

sG, H
r−4k
sG )

))
.

To obtain (5.4) we recall the definition (5.2) of K(λ, ε), take r = 0, note that Hs

embeds into HsG and that the operator Q is compactly microlocalized and thus of

trace class H−4k
sG → Hs. �

Lemma 5.2. Suppose that {Xj}∞j=0 is a nested family of Hilbert spaces, Xj+1 ⊂ Xj.

Let

K(ε) : Xj →
∞⋂

ℓ=0

Xℓ, (5.7)

be a family of operators such that K ∈ Ck([0, ε0],L1(Xk, Xk)). Then

F (ε) := detX0(I +K(ε)) ∈ C∞([0, ε0]).

Proof. Because of (5.7) we see that detXj
(I +K(ε)) is independent of j and hence we

only need to prove that detXj
(I + K(ε)) ∈ Cj([0, ε0]ε), for any j. For j = 1 we note

that ∂εF (ε) = F (ε) trX1 ((I +K(ε))−1∂εK(ε)). The operators ε 7→ F (ε)(I + K(ε))−1

form a continuous family of uniformly bounded operators (see for instance [DyZw2,

(B.7.4)]). Hence, |∂εF (ε)| ≤ C‖∂εK(ε)‖L1(X1,X1). Higher order derivatives are handled

similarly and smoothness of F follows. �

Applying this Lemma with Xj = Hs1(j,R) where s1 comes from Lemma 5.1, we

see that ε 7→ DR(λ, ε) is a smooth function of ε ∈ [0, ε0] with values in Hol(D(0, R)).

Rouché’s theorem implies that the zeros are continuous in ε up to 0, proving Theorem 1.

If µ0 is a simple zero of DR(λ, 0) then for 0 ≤ ε < ε1, DR(λ, ε) has a unique zero, µ(ε),

close to µ0. Smoothness of DR in ε shows that

µ(ε) ∈ C∞([0, ε1]).

When the zeros are not simple (in particular, when the eigenvalues of P0 are not

semisimple) the situation is potentially quite complicated. However we have smooth-

ness of spectral projectors:
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Proposition 5.3. Suppose that µ0 ∈ D(0, R − 1) is an eigenvalue of P0 : HsG(X) →
HsG(X), s ≥ s0(R), and that multiplicity of µ0 is m:

m = tr Π0 , Π0 =
1

2πi

∮

γδ

(λ− P0)
−1dλ,

where γδ : [0, 2π) ∋ t→ µ0 + δeit, and δ is small enough.

Then there exists ε0 and δ such that for 0 < ε ≤ ε0, Pε has exactly m eigenvalues

in D(µ0, δ):

tr Πε = m, Πε :=
1

2πi

∮

γδ

(λ− Pε)
−1dλ, Π2

ε = Πε, (5.8)

and Πε ∈ C∞([0, ε0],L1(C∞(X),D′(X)). More precisely, the projections Πε have rank

m and for each j there exists sj such that

Πε ∈ Cj
(
[0, ε0],L(HsjG, HsjG)

)
⊂ Cj

(
[0, ε0],L(H−sj , Hsj)

)
. (5.9)

Proof. From the analysis of the determinants, we already know that there exist ε0, δ

such that for 0 ≤ ε ≤ ε0, λ 7→ DR(λ, ε) has no zeros on |λ − µ0| = δ and has exactly

m zeros in D(µ0, δ). Hence the spectral projectors are well defined by the formula in

(5.8) and their rank is equal to m. To consider regularity, we choose h sufficiently

small (depending on R) and write

(Pε − λ)−1 = (Pε − ih−1Q− λ)−1 − ih−1(Pε − λ)−1Q(Pε − ih−1Q− λ)−1.

Since the first term is holomorphic in λ ∈ D(0, R) we have

Πε := − 1

2πh

∮

γδ

(λ− Pε)
−1Q(Pε − ih−1Q− λ)−1dλ.

Also

(λ− Pε)
−1 = OR,r,s(1) : Hr

sG → Hr
sG, s ≥ s0(R, r), λ ∈ ∂D(µ0, δ).

Hence the same argument as in the proof of Lemma 5.1 shows j-fold differentiability

of Πε as bounded operators HsjG → HsjG. �

6. Stochastic stability in the case of contact Anosov flows

We now turn to the proof of Theorem 2. The first result concerns values of ε larger

than h2. Here we do not need to make the contact assumption on the flow.

Lemma 6.1. Let Pε be given by (1.1). There exist K0 > 0 and h0 > 0 such that for

any γ > 1, h and ε satisfying

0 < K0γh
2 < ε, 0 < h < h0,

we have

(hPε − z)−1 = O
(

1√
ε

)
: L2(X) → L2(X), z ∈ [1

2
, 3
2
] − i[0, γh]. (6.1)
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In particular hPε does not have any spectrum with |z − 1| < 1
2
and Im z > −γh.

Remark. The lemma shows that for any fixed ε the number of eigenvalues of Pε in

Imλ > −C is finite. In fact the rescaling from z to λ shows that there are only finitely

many eigenvalues of Pε in {Imλ > −ε|Reλ|2/C0}, for some fixed C0. This leads to an

easy justification of the expansion (1.3). We also see that a gap Im z > −γh for any γ

is valid for ε > C(γ)h2. Hence in what follows we will assume that ε = O(h2).

Proof. We fix the volume form on X induced by the metric g, so that the operator ∆g

is symmetric on L2(X). Take u ∈ H2(X) and denote f := (hPε − z)u; then

〈f, u〉L2 =
〈(

h
i
V + ihε∆g − z

)
u, u

〉
L2 = h

i
〈V u, u〉L2 − ihε‖∇gu‖2L2 − z‖u‖2L2 .

Taking the real part, we get

Re〈f, u〉L2 = h Im〈V u, u〉L2 − Re z‖u‖2L2 .

Since Re z ≥ 1
2

and V is a vector field, we find for some constant C independent of

h, z, ε,

‖u‖2L2 ≤ C‖f‖L2 · ‖u‖L2 + Ch‖∇gu‖L2 · ‖u‖L2 ,

which implies

‖u‖L2 ≤ C‖f‖L2 + Ch‖∇gu‖L2 . (6.2)

Now, taking the imaginary part, we get for F := 1
2

div V ∈ C∞(X),

Im〈f, u〉L2 = h〈Fu, u〉L2 − hε‖∇gu‖2L2 − (Im z)‖u‖2L2 .

Since Im z ≥ −γh and F is a bounded function, we get

hε‖∇gu‖2L2 ≤ C‖f‖L2 · ‖u‖L2 + (C + γ)h‖u‖2L2 ,

which implies

‖∇gu‖L2 ≤ Ch−1ε−1/2‖f‖L2 + (C +
√
γ)ε−1/2‖u‖L2 . (6.3)

Combining (6.2) and (6.3), we get

‖u‖L2 ≤ Cε−1/2‖f‖L2 + Ch(C +
√
γ)ε−1/2‖u‖L2 .

For K0 large enough and ε > K0γh
2, γ > 1, we have Ch(C +

√
γ)ε−1/2 < 1

2
, imply-

ing (6.1). �

To prove Theorem 2 we follow [NoZw]. We first prove a result in which damping is

introduced near the fiber infinity in T ∗X. For that we introduce a complex absorbing

operator

W0 := −f(−h2∆g)h
2∆g, (6.4)

where f ∈ C∞(R) satisfies the following conditions:

f ≥ 0, |f (k)| ≤ Ckf
1−α, f(t) ≡ 0 for t ≤ C0, f(t) ≡ 1 for t ≥ 2C0 (6.5)
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for some α < 1
2

and some large constant C0. The technical condition on f (k) is useful

for comparing the propagators of P̂ε and P0 – see [NoZw, Appendix].

With Pε given by (1.1) we now consider

P̂ε := hPε − iW0. (6.6)

Unlike in §§4,5 we will now work near a fixed rescaled energy level z = hλ ∼ 1 rather

than near the zero energy.

The next result is an almost immediate application of [NoZw, Theorem 2]:

Lemma 6.2. Suppose that the flow ϕt : X → X is a contact Anosov flow (see (2.3)),

P̂ε is given by (6.6) and that ε = O(h2). Let γ0 be the averaged Lyapounov exponent

defined in (1.5). Then for any δ > 0 and s there exist h0, c0, C1, such that for

0 < h < h0,

‖(P̂ε − z)−1‖L2→L2 ≤ C1h
−1+c0 Im z/h log(1/h), (6.7)

for

z ∈ [1
2
, 3
2
] − ih[0, γ0/2 − δ] . (6.8)

Remark. The bound (6.7) is more precise than the bound (1.6) which corresponds to

O(h−N). It is obtained by interpolation between the bound 1/ Im z for Im z > 0 and

the polynomial bound O(h−N) – see [Bu, Lemma 4.7], [TaZw, Lemma 2]. Using the

fact that HsG are complex interpolation spaces [Ca] the estimate (1.6) can be refined

to a form similar to (6.7).

Proof. Put W = −(ε/h)h2∆g + W0 (where W0 appearing in the definition of P̂ε is

given by (6.4)). Note that P̂ε = hP0 − iW . We have W ∈ Ψ2
h(X), W ≥ 0, and since

ε = O(h2),

w := σh(W ) = σh(W0) = f(|ξ|2g)|ξ|2g.
Hence P := hP0 and W satisfy the assumptions [NoZw, (1.9),(1.10)]. The only dif-

ference is that P ∈ Ψ1
h(X), so that in the notation of [NoZw], k = 2 and m = 1.

Replacing k with m in the ellipticity condition [NoZw, (1.9)] does not change the

proofs in [NoZw] (in particular it does not affect [NoZw, Proposition A.3]): all the

arguments are microlocal near the (compact) trapped set

K̂ := {(x, ξ) : |p0(x, ξ) − 1| < 1/2, exp(tHp)(x, ξ) 6→ ∞, t→ ±∞}, (6.9)

p(x, ξ) = ξ(Vx).

Since ϕt is a contact Anosov flow, the trapped set is normally hyperbolic in the sense

of [NoZw, (1.14)–(1.17)] – see [NoZw, §9]. Hence we can apply [NoZw, Theorem 2]

and obtain the bound (6.7). �

We are now ready for
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Proof of Theorem 2. We first note that (1.6) follows by rescaling z = hλ from a semi-

classical estimate between the weighted spaces (we recall that Hs ⊂ HsG(1) ⊂ H−s)

(hPε − z)−1 = O(h−N) : Hs0G(1)(X) → Hs0G(1)(X). (6.10)

for the same range of z’s as in (6.8). By Lemma 6.1, we can assume that ε = O(h2).

To prove (6.10) we follow the strategy as in [NoZw, §9] combined with the estimates

of §4. For that we choose Q in (3.8) and W0 in (6.4), so that for the weight G in (3.1)

and the trapped set K̂ defined in (6.9) we have

WFh(Q) ∩ WFh(G) = K̂ ∩ WFh(I −Q) = WFh(Q) ∩ WFh(W0) = ∅.

Since K̂ is compact that is possible by modifying the conditions on χ in (3.8) and by

increasing C0 in (6.5).

To stay close to the notation of [NoZw, §9] we now put P∞ := hP0 + iεh∆g − iQ.

To apply the gluing argument of Datchev–Vasy [DaVa] as in [NoZw, §9] we check that

the conclusions of [NoZw, Lemma 9.19] are valid. First,

(P∞ − z)−1 = O(h−N1) : Hs0G(1) → Hs0G(1), Im z > −γ0/2, |Re z− 1| < 1/2, (6.11)

is proved similarly as (4.16). Indeed, Lemma 4.1 holds for λ = O(ε−1/2), and this

condition is true since λ = O(h−1) and ε = O(h2). The proof of Lemma 4.2 goes

through as in the case λ = O(1). The proof of (4.16) works as before, using again that

ε = O(h2).

Next, we need the propagation statement,

u = (P∞ − z)−1f, WFh(f) ∩ ∂T ∗
X = ∅ =⇒

WFh(u) \ (WFh(f) ∪ ∂T ∗
X) ⊂ exp([0,∞)Hp)

(
WFh(f) ∩ p−1(Re z)

)
,

where p(x, ξ) = ξ(Vx). This statement follows from the propagation theorems reviewed

in the proof of Lemma 4.2; note that (hPε − P̃ε(0))u = O(h∞)C∞ since ε = O(h2) and

WFh(f) does not intersect the fiber infinity.

We can now follow the gluing argument of the resolvent estimates on (P∞ − z)−1

and (P̂ε − z)−1 (given in (6.7)) as in [NoZw, §9] to obtain (6.10). In the notation of

[NoZw, §9] the parametrix for (hPε − z)−1 is given by

F (z) := A1(P̂ε − z)−1A0 +B1(P∞ − z)−1B0,

where Aj, I − Bj ∈ Ψcomp
h (X) are suitably chosen, with WFh(Aj) ∩ WF(G) = ∅.

Away from the microsupport of G, the spaces HsG(h) are microlocally equivalent to L2.

Hence the L2 estimates on (P̂ε − z)−1 imply the HsG(h) estimates on F (z). The gluing

argument of [DaVa] as recalled in [NoZw, §8] concludes the proof of (6.10). �
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