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Abstract We extend the theory of noise-induced phase synchronization to the case
of a neural master equation describing the stochastic dynamics of an ensemble of un-
coupled neuronal population oscillators with intrinsic and extrinsic noise. The master
equation formulation of stochastic neurodynamics represents the state of each popula-
tion by the number of currently active neurons, and the state transitions are chosen so
that deterministic Wilson-Cowan rate equations are recovered in the mean-field limit.
We apply phase reduction and averaging methods to a corresponding Langevin ap-
proximation of the master equation in order to determine how intrinsic noise disrupts
synchronization of the population oscillators driven by a common extrinsic noise
source. We illustrate our analysis by considering one of the simplest networks known
to generate limit cycle oscillations at the population level, namely, a pair of mu-
tually coupled excitatory (E) and inhibitory (/) subpopulations. We show how the
combination of intrinsic independent noise and extrinsic common noise can lead to
clustering of the population oscillators due to the multiplicative nature of both noise
sources under the Langevin approximation. Finally, we show how a similar analy-
sis can be carried out for another simple population model that exhibits limit cycle
oscillations in the deterministic limit, namely, a recurrent excitatory network with
synaptic depression; inclusion of synaptic depression into the neural master equation
now generates a stochastic hybrid system.
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1 Introduction

Synchronous oscillations are prevalent in many areas of the brain including sensory
cortices, thalamus and hippocampus [1]. Recordings of population activity based on
the electroencephalogram (EEG) or the local field potential (LFP) often exhibit strong
peaks in the power spectrum at certain characteristic frequencies. For example, in the
visual system of mammals, cortical oscillations in the ¢ frequency band (20-70 Hz)
are generated with a spatially distributed phase that is modulated by the nature of
a visual stimulus. Stimulus-induced phase synchronization of different populations
of neurons has been proposed as a potential solution to the binding problem, that
is, how various components of a visual image are combined into a single coherently
perceived object [2, 3]. An alternative suggestion is that such oscillations provide a
mechanism for attentionally gating the flow of neural information [4, 5]. Neuronal os-
cillations may be generated by intrinsic properties of single cells or may arise through
excitatory and inhibitory synaptic interactions within a local population of cells. Ir-
respective of the identity of the basic oscillating unit, synchronization can occur via
mutual interactions between the oscillators or via entrainment to a common periodic
stimulus in the absence of coupling.

From a dynamical systems perspective, self-sustained oscillations in biological,
physical and chemical systems are often described in terms of limit cycle oscilla-
tors where the timing along each limit cycle is specified in terms of a single phase
variable. The phase-reduction method can then be used to analyze synchronization
of an ensemble of oscillators by approximating the high-dimensional limit cycle dy-
namics as a closed system of equations for the corresponding phase variables [6, 7].
Although the phase-reduction method has traditionally been applied to deterministic
limit cycle oscillators, there is growing interest in extending the method to take into
account the effects of noise, in particular, the phenomenon of noise induced phase
synchronization [8—15]. This concerns the counterintuitive idea that an ensemble of
independent oscillators can be synchronized by a randomly fluctuating input applied
globally to all of the oscillators. Evidence for such an effect has been found in exper-
imental studies of oscillations in the olfactory bulb [11]. It is also suggested by the
related phenomenon of spike-time reliability, in which the reproducibility of a single
neuron’s output spike train across trials is greatly enhanced by a fluctuating input
when compared to a constant input [16, 17].

In this paper we extend the theory of noise-induced phase synchronization to the
case of a neural master equation describing the stochastic dynamics of an ensem-
ble of uncoupled neuronal population oscillators with intrinsic and extrinsic noise.
The master equation formulation of stochastic neurodynamics represents the state
of each population by the number of currently active neurons, and the state transi-
tions are chosen such that deterministic Wilson-Cowan rate equations [18, 19] are
recovered in an appropriate mean-field limit (where statistical correlations can be ne-
glected) [20-23]. We will consider the particular version of the neural master equa-
tion introduced by Bressloff [23], in which the state transition rates scale with the
size N of each population in such a way that the Wilson-Cowan equations are ob-
tained in the thermodynamic limit N — oco. Thus, for large but finite N, the network
operates in a regime characterized by Gaussian-like fluctuations about attracting so-
lutions (metastable states) of the mean-field equations (at least away from critical
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points), combined with rare transitions between different metastable states [24]. (In
contrast, the master equation of Buice et al. assumes that the network operates in a
Poisson-like regime at the population level [21, 22].) The Gaussian-like statistics can
be captured by a corresponding neural Langevin equation that is obtained by carry-
ing out a Kramers-Moyal expansion of the master equation [25]. One motivation for
the neural master equation is that it represents an intrinsic noise source at the net-
work level arising from finite size effects. That is, a number of studies of fully or
sparsely connected integrate-and-fire networks have shown that under certain condi-
tions, even though individual neurons exhibit Poisson-like statistics, the neurons fire
asynchronously so that the total population activity evolves according to a mean-field
rate equation [26-30]. However, formally speaking, the asynchronous state only ex-
ists in the thermodynamic limit N — o0, so that fluctuations about the asynchronous
state arise for finite N [31-34]. (Finite-size effects in IF networks have also been
studied using linear response theory [35].)

The structure of the paper is as follows. First, we introduce the basic master equa-
tion formulation of neuronal population dynamics. We reduce the master equation to
a corresponding neural Langevin equation and show that both intrinsic and extrinsic
noise sources lead to multiplicative white noise terms in the Langevin equation. We
then consider an ensemble of uncoupled neuronal populations each of which evolves
according to a neural master equation. We assume that each population supports a
stable limit cycle in the deterministic or mean-field limit. We apply stochastic phase
reduction and averaging methods to the corresponding system of neural Langevin
equations, following along similar lines to Nakao et al. [12], and use this to determine
how independent intrinsic noise disrupts synchronization due to a common extrinsic
noise source. (Previous studies have mostly been motivated by single neuronal oscil-
lator models, in which both the independent and common noise sources are extrinsic
to the oscillator. In contrast, we consider a stochastic population model in which the
independent noise sources are due to finite size effects intrinsic to each oscillator.)
We then apply our analysis to one of the simplest networks known to generate limit
cycle oscillations at the population level, namely, a pair of mutually coupled exci-
tatory (E) and inhibitory (/) subpopulations [36]. A number of modeling studies of
stimulus-induced oscillations and synchrony in primary visual cortex have taken the
basic oscillatory unit to be an E-I network operating in a limit cycle regime [37, 38].
The E-I network represents a cortical column, which can synchronize with other cor-
tical columns either via long-range synaptic coupling or via a common external drive.
In the case of an E-I network, we show how the combination of intrinsic independent
noise and extrinsic common noise can lead to clustering of limit cycle oscillators due
to the multiplicative nature of both noise sources under the Langevin approximation.
(Clustering would not occur in the case of additive noise.) Finally, we show how a
similar analysis can be carried out for another important neuronal population model
that exhibits limit cycle oscillations in the deterministic limit, namely, an excitatory
recurrent network with synaptic depression; such a network forms the basis of various
studies of spontaneous synchronous oscillations in cortex [39—43]. We also highlight
how the inclusion of synaptic depression into the master equation formulation leads
to a novel example of a stochastic hybrid system [44].
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2 Neural Langevin equation

Suppose that there exist M homogeneous neuronal subpopulations labeled i =
1,..., M, each consisting of N neurons.! Assume that all neurons of a given sub-
population are equivalent in the sense that the pairwise synaptic interaction between
a neuron of subpopulation i and a neuron of subpopulation j only depends on i and
Jj. Each neuron can be in either an active or quiescent state. Let N; (¢) denote the num-
ber of active neurons at time 7. The state or configuration of the full system (network
of subpopulations) is then specified by the vector N(¢) = (N1(¢), Na(t), ..., Ny (1)),
where each N;(r) is treated as a discrete stochastic variable that evolves according
to a one-step jump Markov process. Let P(n, t) = Prob[N(#) = n] denote the prob-
ability that the full system has configuration n = (n1,n3,...,ny) at time ¢, t > 0,
given some initial distribution P (n, 0). The probability distribution is taken to evolve
according to a master equation of the form [20-23]

dP(n n <
Z Z T (0 —reg) P(n —reg, 1) 0
— Tirm)P(n,1)]
with boundary condition P(n,t) =0 if n; = —1 or n; = N + 1 for some i. Here e,

denotes the unit vector whose kth component is equal to unity. The corresponding
transition rates are chosen so that in the thermodynamic limit N — oo one recovers
the deterministic Wilson-Cowan equations [18, 19] (see below):

Ty, —1(m) = agny,

2
Tk +1(n) = NF(Z wiiny /N + Ik), @
I

where o are rate constants, wy; is the effective synaptic weight from the /th to the

kth population, and I; are external inputs. The gain function F is taken to be the
sigmoid function

F Fo 3

)= 3)

with gain y and maximum firing rate Fy. (Any threshold can be absorbed into the

external inputs I.) Equation (1) preserves the normalization condition anzo

ZnMZO P(n,t) =1 for all + > 0. The master equation given by equations (1) and (2)

is a phenomenological representation of stochastic neurodynamics [20, 23]. It is mo-

tivated by various studies of noisy spiking networks which show that under certain

10ne could take the number of neurons in each sub-population to be different provided that they all scaled
with N. For example, one could identify the system size parameter N with the mean number of synaptic
connections into a neuron in a sparsely coupled network.
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conditions, even though individual neurons exhibit Poisson-like statistics, the neu-
rons fire asynchronously so that the population activity can be characterized by fluc-
tuations around a mean rate evolving according to a deterministic mean-field equa-
tion [26-29]. On the other hand, if population activity is itself Poisson-like, then it
is more appropriate to consider an N-independent version of the master equation, in
which NF — F and w/N — w [21, 22]. The advantage of our choice of scaling
from an analytical viewpoint is that one can treat N~! as a small parameter and use
perturbation methods such as the Kramers-Moyal expansion to derive a correspond-
ing neural Langevin equation [45].

Multiplying both sides of the master equation (1) by ny followed by a summation
over all configuration states leads to

d
— (i)=Y r{Ti, @), €5

dt
r==+1

where the brackets (---) denote a time-dependent ensemble averaging over realiza-
tion of the stochastic dynamics, that is, (f(n)) = >, P(n, ¢) f(n) for any function
of state f(m). We now impose the mean-field approximation (T} ,(n)) ~ T ,((n)),
which is based on the assumption that statistical correlations can be neglected. Intro-
ducing the mean activity variables X, = N ™! (n;), we can write the resulting mean-
field equations in the form

d _ _ _ _ _

5 =N T (ND) = T - (ND)] = Hi(®). )
Substituting for T , using equation (2) yields the deterministic Wilson-Cowan equa-
tions [19]

.
% = —oy X + F(Xl: WX + Ik>~ (6)

Strictly speaking, the mean-field description is only valid in the thermodynamic limit
N — 00, and provided that this limit is taken before the limit t — oo [24]. In this
paper we are interested in the effects of intrinsic noise fluctuations arising from the
fact that each neural subpopulation is finite.

Let us introduce the rescaled variables x; = n;/N and corresponding transition
rates

Q1) = axg, Q1 (x) = F(Z WX + Ik>~ N
]
Equation (1) can then be rewritten in the form
M
dP(X t)
Z [k (x —rex/N)

k=1 r=%1 ®)
x P(x—rey/N,t) — Qi (x)P(x,1)].
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Treating x4 as a continuous variable and Taylor expanding terms on the right-hand
side to second order in N ! leads to the Fokker-Planck equation

M 2 M

aP(x ;) 9 € 92
kZI T [Arx) P(x,1) +7};@ By(x)P(x,1)] )
with € =N*1/2,
Ar(X) = Q1 (%) — Q. —1(%) (10)
and
Bi(x) = Q.1 (%) + Q1 (%). (11)

The solution to the Fokker-Planck equation (9) determines the probability den-
sity function for a corresponding stochastic process X(¢) with X(¢) = (X1(¢), ...,
X (), which evolves according to a neural Langevin equation of the form

dXi = Ax(X) dt 4 €/ B (X) d Wi (1). (12)
Here Wi (¢) denotes an independent Wiener process such that
[dWe®))=0, (dWi(t)dW; (1)) = 8, dt. (13)

Equation (12) is the neural analog of the well known chemical Langevin equation [46,
47]. (A rigorous analysis of the convergence of solutions of a chemical master equa-
tion to solutions of the corresponding Langevin equation in the mean-field limit has
been carried out by Kurtz [48].) It is important to note that the Langevin equation (12)
takes the form of an Ito rather than Stratonovich stochastic differential equation
(SDE). This distinction will be important in our subsequent analysis.

The above neural Langevin equation approximates the effects of intrinsic noise
fluctuations when the number N of neurons in each sub-population is large but finite.
It is also possible to extend the neural Langevin equation to incorporate the effects of
a common extrinsic noise source. In particular, suppose that the external drive Iy to
the kth subpopulation can be decomposed into a deterministic part and a stochastic
part according to

Io=he+ 222 (14)
k=hg + ——5&),
v Fo

where /iy is a constant input and £(¢) is a white noise term, which is assumed to be
common to all the neural subpopulations; the level of extrinsic noise is given by the
dimensionless quantity o and Z,jcwzl Xk = 1. Substituting for [ in equation (7) and
assuming that o is sufficiently small, we can Taylor expand €2 to first order in o to
give

2
Qk,l(x>~F(Zwk1x1+hk) jﬁF/(Zwkmhk)sm (15)
l
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Carrying out a corresponding expansion of the drift function A (x) then leads to the
extended neural Langevin equation

dXi = Ar(X)dt + ebp(X) dWi(t) + oar (X) dW (1), (16)

where

ap(X) = 2XkF/<Z WXy + hk)/\/F
] a7
bk (x) = v/ B (x),

and dW (t) = &£(t)dt is an additional independent Wiener process that is common
to all subpopulations. We now have a combination of intrinsic noise terms that are
treated in the sense of Ito, and an extrinsic noise term that is treated in the sense of
Stratonovich. The latter is based on the physical assumption that external sources of
noise have finite correlation times, so that we are considering the external noise to be
the zero correlation time limit of a colored noise process.

3 Stochastic synchronization of an ensemble of population oscillators

In the deterministic limit (¢, o — 0) the neural Langevin equation (16) reduces to the
mean-field equation (6). Suppose that the latter supports a stable limit cycle solution
of the form X = x*(¢) with x*(r +nT) = x*(¢) for all integers ¢, where T is the period
of the oscillations. The Langevin equation (16) then describes a noise-driven popula-
tion oscillator. Now consider an ensemble of N identical population oscillators each
of which consists of M interacting sub-populations evolving according to a Langevin
equation of the form (16). We ignore any coupling between different population os-
cillators, but assume that all oscillators are driven by a common source of extrinsic
noise. Introducing the ensemble label w, u =1, ..., N, we thus have the system of
Langevin equations

dX{” = Ap(XW) dt + eb (X)) aw (1) -
+oar(XW)aw (@), k=1,...,M.

We associate an independent set of Wiener processes Wk(“ ), k=1,..., M, with each
population oscillator (independent noise) but take the extrinsic noise to be given by a
single Wiener process W (¢) (common noise):

(dWI @) dW ™ (0)) = 8118, 1, (19)
(AW 1y dW (1)) =0, (20)
([dw@) dw (1)) =du. 1)

Langevin equations of the form (18) have been the starting point for a number of re-
cent studies of noise-induced synchronization of uncoupled limit cycle oscillators [9,
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11-15]. The one major difference from our own work is that these studies have mostly
been motivated by single neuron oscillator models, in which both the independent
and common noise sources are extrinsic to the oscillator. In contrast, we consider a
stochastic population model in which the independent noise sources are due to finite
size effects intrinsic to each oscillator. The reduction of the neural master equation (1)
to a corresponding Langevin equation (16) then leads to multiplicative rather than ad-
ditive noise terms; this is true for both intrinsic and extrinsic noise sources. We will
show that this has non-trivial consequences for the noise-induced synchronization of
an ensemble of population oscillators. In order to proceed, we carry out a stochastic
phase reduction of the full Langevin equations (18), following the approach of Nakao
et al. [12] and Ly and Ermentrout [15]. We will only sketch the analysis here, since
further details can be found in these references. We do highlight one subtle differ-
ence, however, associated with the fact that the intrinsic noise terms are Ito rather
than Stratonovich.

3.1 Stochastic phase reduction

Introduce the phase variable 6 € (—m, ] such that the dynamics of an individual limit
cycle oscillator (in the absence of noise) reduces to the simple phase equation 6 = w,
where w = 277/ T is the natural frequency of the oscillator and X(¢) = x*(6(¢)). The
phase reduction method [6, 7] exploits the observation that the notion of phase can
be extended into a neighborhood M C R2 of each deterministic limit cycle, that is,
there exists an isochronal mapping ¥ : M — [—m, ) with & = W (x). This allows us
to define a stochastic phase variable according to @™ (¢) = (XMW (1)) € [-7, )
with X (¢) evolving according to equation (18). Since the phase reduction method
requires the application of standard rules of calculus, it is first necessary to convert
the intrinsic noise term in equation (18) to a Stratonovich form [25, 49]:

62

(1)
ax [Ak(X(u)) _ ?bk(xw) by (X )}

ax (22)
+ebp (XY aW M (1) + oar (X)) dW (1).

The phase reduction method then leads to the following Stratonovich Langevin equa-
tions for the the stochastic phase variables oW, w=1,...,N[9, 12, 14]:

M 2
dOW =w+Y "z, (0W) [— %bk(®(“))8bk(®(“)) dt
k=1 (23)

+ebe (W) aw (1) + oar(0W) dW}.

Here Z;(0) is the kth component of the infinitesimal phase resetting curve (PRC)
defined as

AW (x)
axk x=x*(0)

Zi(0) = (24)
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with Z,](VI: 1 Zi(0) A (x*(0)) = w. All the terms multiplying Z; (f) are evaluated on
the limit cycle so that

ar(0) = ak(x*(0)),  bi(0) = b (x*(9)),
0Dy (x)
Xk

dby(0) = @

X =x; (6)

It can be shown that the PRC is the unique 2m -periodic solution of the adjoint linear
equation [7]

dZ;

M
— =" Z A (X)) Z1 (1), (26)
=1

where Ajx = 0A;/dx;, which is supplemented by the normalization condition
Y« Zk(t)dx[/dt = w. The PRC can thus be evaluated numerically by solving the
adjoint equation backwards in time. (This exploits the fact that all non-zero Floquet
exponents of solutions to the adjoint equation are positive.) It is convenient to rewrite
equation (23) in the more compact form

2
40w = [w = %Q(@W)} dt

y 27)
+eY (@MY dWM (1) + ca (@) dW (1),
k=1

where

M
Br(0) = Z(0)br(0),  QO) =Y Zr(0)bi(0) dbi (),

k=1
(28)

M
a(®) = Zi(0)ar®).

k=1

In order to simplify the analysis of noise-induced synchronization, we now convert
equation (27) from a Stratonovich to an Ito system of Langevin equations:

dO™W = AW (@) dt +dc ™ (@, 1), 29)

where {¢ ") (@, 1)} are correlated Wiener processes with @ = (01 .., ®(N)). That
is,

M
dcW(©.1 =€) p(@W)dWM 1) +oa(@W)dW (), (30)
k=1
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with (d¢™(©,1)) = 0 and (dcW(©,1)dc™M(@,1)) = CH)(@)dr, where
CHv) (@) is the equal-time correlation matrix

M
CH(0) =02 (09)a(0™) + € > Be(09) B (6™) 8.0 31
k=1

The drift term A (9) is given by

2
AW (@) =w — %Q(O(“)) + %B’(G(“)) (32)
with
B(Q(M)) = Ccmw 6)

M (33)
2 2 2 2
=a2[a(09)] +€ Y [Ae(0™)]
k=1
It follows that the ensemble is described by a multivariate Fokker-Planck equation of
the form

8P(0 N _ ﬁ/: 9

5 M [A“@)P@®,1)]

n=1
(34)

A
= C"@)P@,1)].
+2,LZV:139“39”[ ©)P@®.1)]

Equation (34) was previously derived by Nakao et al. [12] (see also [15]). Here,
however, there is an additional contribution to the drift term A®) arising from the fact
that the independent noise terms appearing in the full system of Langevin equations
(18) are Ito rather than Stratonovich, reflecting the fact that they arise from finite size
effects.

3.2 Steady-state distribution for a pair of oscillators

Having obtained the FP equation (34), we can now carry out the averaging procedure
of Nakao et al. [12]. The basic idea is to introduce the slow phase variables ¥ =
AR w( )) according to A% = wt + Y* and set Q(¥, 1) = P({wt + 6"}, 1).
For sufﬁ01ently small € and o, Q is a slowly varying function of time so that we can
average the Fokker-Planck equation for Q over one cycle of length 7 = 27 /w. The
averaged FP equation for Q is thus [12]

0.0 - 9
o T3l gyl

(35)
18 » ol .
+ 2;::1 GpragrlC .0
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where
_ 1 [
27 Jo
and
W) =a% (1 —y) +h O3
with

1 b/
gW) = 7 / a@a(0 +y)do’,
T

1 r
h(y) = - Zﬁk(e/)ﬂk(e/ +)do’.

T k=1

(36)

(37)

(38)

Following Nakao et al. [12] and Ly and Ermentrout [15], we can now investigate the
role of finite size effects on the noise-induced synchronization of population oscilla-

tors by focussing on the phase difference between two oscillators. Setting
equation (35) gives

ay T oY@

3 3\’
X [(awm) +<8W)) }Q

82
+ oy 3¢(2)[

90 ﬁﬁ[ 90 90
a2

] + %[azg(O) +€2h(0)]

o’y —v?)o]
Performing the change of variables

WZ(I//(I)-FI/I(]))/Z ¢:1/f(1) _1/[(1)

and writing Q(y ", @ 1) = W (yr, )P (¢, ) we obtain the pair of PDEs

oW 2_3\11 1 82\11
o = 3%y + 1o’ 60 @) + 0]
and
3o 92
3 = 5210 (60 —5(@) + EhO)] .

These have the steady-state solution

_ ! _ Lo
Y=o PO = — s @)+ 2h0)

where Iy is a normalization constant.

N =2in

(39)
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A number of general results regarding finite size effects immediately follow from
the form of the steady-state distribution ®(¢) for the phase difference ¢ of two pop-
ulation oscillators. First, in the absence of a common extrinsic noise source (o = 0)
and € > 0, ©g(¢) is a uniform distribution, which means that the oscillators are com-
pletely desynchronized. On the other hand, in the thermodynamic limit N — oo we
have € = N~!/2 — 0 so that the independent noise source vanishes. The distribu-
tion ®(¢) then diverges at & = 0 while keeping positive since it can be shown that
g(0) > g(0) [12]. Hence, the phase difference between any pair of oscillators accu-
mulates at zero, resulting in complete noise-induced synchronization. For finite N,
intrinsic noise broadens the distribution of phase differences. Taylor expanding g(¢)
to second order in ¢ shows that, in a neighbourhood of the maximum at ¢ = 0, we
can approximate ®¢(¢) by the Cauchy distribution

I

[0} ~
0N 2217 0)1/2 + hO)/N

for an appropriate normalization I'. Thus the degree of broadening depends on the
ratio

_ h(0)
~ No2|g"(0)]

The second general result is that the functions «(8) and Bi(6) that determine g(¢)
and h(¢) according to equations (38) are nontrivial products of the phase resetting
curves Zi(9) and terms ay (0), by (9) that depend on the transition rates of the original
master equation, see equations (17), (25) and (28). This reflects the fact that both
intrinsic and extrinsic noise sources in the full neural Langevin equation (18) are
multiplicative rather than additive. As previously highlighted by Nakao et al. [12]
for a Fitzhugh-Nagumo model of a single neuron oscillator, multiplicative noise can
lead to additional peaks in the function g(¢), which can induce clustering behavior
within an ensemble of noise-driven oscillators. In order to determine whether or not
a similar phenomenon occurs in neural population models, it is necessary to consider
specific examples. We will consider two canonical models of population oscillators,
one based on interacting sub-populations of excitatory and inhibitory neurons and the
other based on an excitatory network with synaptic depression.

4 Excitatory-inhibitory (E-I) network
4.1 Deterministic network

Consider a network model consisting of an excitatory subpopulation interacting with
an inhibitory subpopulation as shown in Figure 1(a). The associated mean-field equa-
tion (6) for this so-called E-I network reduces to the pair of equations (dropping the
bar on xj and setting M = 2)

de
W =—xg+ F(wWggxg +wgix; +hg),
(40)
dxy
= + F(wipxg +wyrx; + hy),
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(@) h (b)
WE| /
0 /\
N
* Fold
hi I-?opf
5 Fold # 5
l\.
P
-10

hg

Fig. 1 Deterministic E-I network. (a) Schematic diagram of network architecture. (b) Phase diagram of
two-population Wilson-Cowan model (40) for fixed set of weights wgg = 11.5, w;g = —wg; = 10,
wy = —2. Also Fy =y = 1. The dots correspond to Takens-Bogdanov bifurcation points.

where o ; = a = 1 for simplicity. (We interpret a~! as a membrane time con-
stant and take ¢ ~! = 10 msec in physical units.) Also note that wgg, wyg > 0 and
wgr, wrr < 0. The bifurcation structure of the Wilson-Cowan model given by equa-
tions (40) has been analyzed in detail elsewhere [36]. An equilibrium (xE, x;‘) is
obtained as a solution of the pair of equations

xz:F(u)EExZ—i-wE[x}k—i—hE), “n
x}k = F(U)[Exz + w”x}k -I—h]).

Suppose that the gain function F is the simple sigmoid F(u) = (1 +e~*)~!, that
is, Fp =1 and y =1 in equation (3). Using the fact that the sigmoid function then
satisfies F’ = F(1 — F), the Jacobian obtained by linearizing about the fixed point
takes the simple form

J= —1+wppxp(1 —x3%)  werxp(1—x3)
- wipxf(1—x3) —l4+wxfd—xp) )’

An equilibrium will be stable provided that the eigenvalues A+ of J have negative
real parts, where

1
ha =5 (TrJ+ V[TrJ] — 4DetJ).

This leads to the stability conditions TrJ < 0 and DetJ > 0. For a fixed weight ma-
trix w, we can then construct bifurcation curves in the (x};, xj)-plane by imposing a
constraint on the eigenvalues A4 . For example, the constraint

TrJE—2+wEEXE(1 —XE) +w11x;‘(l _x;k) =0

with DetJ > 0 determines Hopf bifurcation curves where a pair of complex conjugate
eigenvalues crosses the imaginary axis. Since the trace is a quadratic function of x7,
x;‘, we obtain two Hopf branches. Similarly, the constraint DetJ = 0 with TrJ <
0 determines saddle-node or fold bifurcation curves where a single real eigenvalue
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Fig. 2 Limit cycle in a deterministic E-I network with parameters wgg = 11.5, w;g = —wgy = 10,
wyy=-2,hg =0and h; = —4. Also F(u) = 1/(1+e™"). (a) Limit cycle in the (xg, xj)-plane. (b) Tra-
jectories along the limit cycle for x (¢) (solid curve) and x; (¢) (dashed curve).

crosses zero. The saddle-node curves have to be determined numerically, since the
determinant is a quartic function of xz, x}k. Finally, these bifurcation curves can be
replotted in the (h g, h;)-plane by numerically solving the fix point equations (41) for
fixed w. An example phase diagram is shown in Figure 1(b).

We will assume that the deterministic E-I network operates in a parameter regime
where the mean-field equations support a stable limit cycle. For concreteness, we
take a point between the two Hopf curves in Figure 1(b), namely, (hg, h;) = (0, —4).
A plot of the limit cycle is shown in Figure 2 and the components Zg, Z; of the cor-
responding phase resetting curve are shown in Figure 3. Note that both components
are approximately sinusoidal so that the E-I network acts as a type II oscillator.

4.2 Stochastic network and noise-induced synchronization

Let us now consider an ensemble of uncoupled stochastic E-I networks evolving ac-
cording to the system of Langevin equations (18) for M =2 and k = E, I. (More
precisely, each E-I network evolves according to a master equation of the form (1).
However, we assume that N is sufficiently large so that the master equation can be

15

phase resetting curve

phase 6

Fig. 3 Components Zg and Z; of phase resetting curve for an E-I network supporting limit cycle oscil-
lations in the deterministic limit. Same network parameter values as Figure 2.
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Fig. 4 Plot of periodic functions g and 4 for an E-I limit cycle oscillator with symmetric stochastic drive
to excitatory and inhibitory populations (x g = x; = 1/2). Same network parameters as Figure 2.

approximated by the corresponding Langevin equation. This was also checked explic-
itly in computer simulations.) Having numerically computed the phase resetting curve
(ZE, Zr) and the solution on the limit cycle for the deterministic E-I network, we can
then compute the functions g(¢) and i (¢) of the stationary phase distribution ®¢(¢)
according to equations (17), (25), (28) and (38). We plot these functions in Figure 4
for the parameter values of the limit cycle shown in Figure 2, assuming symmetric
common noise to excitatory and inhibitory populations. That is, xg = x; = 1/2 in
equation (17). It can be seen that the periodic function g is unimodal with g(0) > g(¢)
so that ®(¢) is also unimodal with a peak at ¢ = 0.

The width and height of the peak depend directly on the relative strengths of the
intrinsic noise € and extrinsic noise o . This is illustrated in Figure 5 where the ampli-
tude o of the common signal is kept fixed but the system size N is varied. Increasing
N effectively increases the correlation of the inputs by reducing the uncorrelated in-
trinsic noise, which results in sharper peaks and stronger synchronization, see also
Marella and Ermentrout [13]. We find that there is good agreement between our an-
alytical calculations and numerical simulations of the phase-reduced Langevin equa-
tions, as illustrated in Figure 6. We simulated the phase oscillators by using an Euler-

0.26 ‘
0.24] N = 10000 ]
0.22

_ 02

Z0.18
0.16
0.14
0.12

0.1 L s s s ‘ ; ‘
-3 -2 -1 0 1 2 3
phase difference ¢

Fig. 5 Probability distribution of the phase difference between a pair of E-I oscillators as a function of
system size N for fixed extrinsic noise o = 0.08 with g, & given by Figure 4. Increasing N causes the
curve to have a much sharper peak and much more synchronization.
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Fig. 6 Probability distribution of the phase difference between a pair of E-I oscillators as a function
of extrinsic noise strength o with g, i given by Figure 4. Solid curves are based on analytical calcula-
tions, whereas black (gray) filled circles correspond to stochastic simulations of the phase-reduced (pla-
nar) Langevin equations. (a) N = 10°, 6 = 0.01. The curve is very flat, showing little synchronization.
(b) N = 10%, 0 = 0.08. Increasing o causes the curve to have a much sharper peak and much more syn-
chronization.

Maruyama scheme on the Ito Langevin equation (29). A large number M 2 O (10%)
of oscillators were simulated up to a large time 7 (obtained by trial and error), by
which time their pairwise phase differences had reached a steady state. As we were
comparing pairwise phase differences each simulation gave us %M(M — 1) data
points and we averaged over many simulations to obtain 10° data points for each dia-
gram in Figure 6. These were then placed into 50 bins along [—, ) and normalised.
Also shown in Figure 6(b) are data points obtained from simulations of the full planar
Langevin equations. Here computations were much slower so we only averaged over
relatively few trials and thus the data is more noisy. Nevertheless a reasonable fit with
the analytical distribution can still be seen.

Nakao et al. have previously shown that in the case of Stuart-Landau or Fitzhugh-
Nagumo limit cycle oscillators with both uncorrelated and correlated extrinsic noise
sources, parameter regimes can be found where the periodic function g has multi-
ple peaks [12]. This can occur when higher harmonics of the phase resetting curve
become dominant or when the common noise source is multiplicative. The presence
of multiple peaks in g results in an ensemble of oscillators forming clustered states.
Moreover, there are intermittent transitions between the clustered states induced by
the uncorrelated noise. In the case of stochastic E-I limit cycle oscillators, we were
unable to find a parameter regime where g develops multiple peaks when the com-
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Fig. 7 Periodic function g with multiple peaks when there is an asymmetry in the common extrin-
sic noise source to the excitatory and inhibitory populations. Other network parameters are as in Fig-
ure 2. (@) xg = 1/8, x;7 = 7/8 so that common stochastic drive is mainly to the inhibitory population.
(b) xg =7/8, x; = 1/8 so that common stochastic drive is mainly to the excitatory population.

mon extrinsic noise source is the same for both excitatory and inhibitory populations,
thatis, xg = x; = 1/2 in equations (14) and (17). However, multiple peaks can occur
when there is an asymmetry between the excitatory and inhibitory stochastic drives,
as illustrated in Figure 7. The corresponding stationary distribution ®o(¢) for the
phase differences ¢ also develops additional peaks, see Figure 8. When the common
stochastic input is mainly presented to the inhibitory population, we find a peak at
¢ = 0 and smaller peaks at ¢ = +27/3. Consequently, the ensemble of oscillators
tend to cluster in three regions around the limit cycle as shown in the inset of Fig-
ure 8(a). On the other hand, when the stochastic drive is predominantly to the excita-
tory population, we find a much sharper peak at ¢ = 0 (compared to the symmetric
case) and a small peak at ¢ = . However, the latter does not contribute significantly
to the dynamics, so that the oscillators are strongly synchronized.

5 Excitatory network with synaptic depression

So far we have applied the stochastic phase reduction method to a two-population
model consisting of mutually interacting excitatory and inhibitory populations. This
E-I network is one of the simplest population models known to exhibit limit cycle
oscillations in the deterministic limit, and forms the basic module in various studies
of stimulus-induced oscillations and synchronization in visual cortex [37, 38]. An
even simpler population model known to exhibit limit cycle oscillations is a recurrent
excitatory network with synaptic depression. For example, Tabak er al. [39, 40] have
analyzed Wilson-Cowan mean-field equations representing a recurrent excitatory net-
work with both slow and fast forms of synaptic depression, and used this to model the
dynamics of synchronized population bursts in developing chick spinal cord. These
burst oscillations are more robust in the presence of an extrinsic noise source or some
form of spatial heterogeneity within the network [50, 51]. An excitatory network with
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Fig. 8 Probability distribution of the phase difference between a pair of E-I oscillators when there is
an asymmetry in the common extrinsic noise source to the excitatory and inhibitory populations. Here
N =10%, 6 = 0.01 and other network parameters are as in Figure 2. Solid curves are based on analyt-
ical calculations, whereas black filled circles correspond to stochastic simulations of the phase-reduced
Langevin equations. (a) xg = 1/8, x; = 7/8 so that common stochastic drive is mainly to the inhibitory
population. (b) xg =7/8, x; = 1/8 so that common stochastic drive is mainly to the excitatory popula-
tion. The insets show instantaneous distributions of the oscillators on the limit cycle.

synaptic depression and extrinsic noise has also been used to model transitions be-
tween cortical Up and Down states [41—43]. Here we will show how our analysis of
noise-induced synchronization of population oscillators based on a Langevin approx-
imation of a neural master equation can be extended to take into account the effects of
synaptic depression. In addition to the relevance of synaptic depression in the gener-
ation of neural oscillations, it is interesting from a mathematical perspective since the
resulting master equation provides a novel example of a so-called stochastic hybrid
system [44, 52].

@ Springer



Journal of Mathematical Neuroscience (2011) 1:2 Page 19 of 28

5.1 Deterministic network

The mean-field equations for a homogeneous network with synaptic depression are
taken to be of the form [39, 43, 53, 54]

dx + F(gx +h)

— =—x qx ,

j’ (42)
q

— =k (1 — —k_xq,

i +(1—-¢q) xq

where we have set the membrane rate constant o« = 1. The depression variable ¢ (t)
can be interpreted as a measure of available presynaptic resources at the population
level, which are depleted at a rate k_x(¢), which is proportional to the mean pop-
ulation activity x(¢), and are recovered at a rate k. A fixed point (x*, ¢*) of the
mean-field equation satisfies g* = k4 / (k4 + k_x*) with x* given by

%
x*=F <k+—x + h>
k+ + k_x*
Suppose that the network operates in a parameter regime where there exists a unique
fixed point. By linearizing about the fixed point and calculating the eigenvalues of
the Jacobian, we can find regimes where the fixed point destabilizes via a Hopf bi-
furcation leading to the formation of a limit cycle. An example bifurcation diagram
is shown in Figure 9 with the depletion rate k_ treated as the bifurcation parameter.
Also shown is an example of a limit cycle for a particular value of k_. Given a limit
cycle solution (x*(0), ¢*(#)) and associated isochronal function ¥ (x, ¢), we can nu-
merically calculate the components of the corresponding phase resetting curve, which

(b)
08 0.8 X
06 0.6
x q
0.4 0.4
0.2 0.2 \\-
0 0
0 0 10 20 30 40
time t

Fig. 9 Deterministic excitatory network with synaptic depression. (a) Bifurcation diagram showing solu-
tions as a function of the depletion rate k—. Stable fixed point (thin solid curve) undergoes a Hop bifurca-
tion at the points H, resulting in an unstable fixed point (dotted curve) and a stable limit cycle (thick solid
curve). (b) Trajectories along the limit cycle for x(¢) (solid curve) and ¢ (¢) (grey curve). Parameter values
are k4 =0.02, y =20, Fp =1 and h = —0.15 with k— = 0.1 in (b).
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Fig. 10 Components Zy and Z; of phase resetting curve for an excitatory network with synaptic depres-
sion. Same parameter values as Figure 9(b).

are defined according to

oW (x,q)
Zx(e>=a—" ,
X lx=x*0).9=¢*©®) 43)
oW (x,q)
zq(9)=Tq
4 lx=x*9).9=¢*©®)

together with the normalization condition
w=Zy)A(x*©®),q"©®))
+ ZgO)[ky (1 — g*©)) — k_x*(0)g*()].

The components of the phase resetting curve for the limit cycle shown in Figure 9(b)
are plotted in Figure 10. As in the case of the E-I network, the resulting population
oscillator is type II. However, the PRC is no longer approximately sinusoidal.

5.2 Stochastic network and noise-induced synchronization

We will now construct a stochastic version of the above population model by assum-
ing that the population activity evolves according to a birth-death master equation
with transition rates that depend on the depression variable g. (Both the determin-
istic and stochastic models make a strong simplication by assuming that synaptic
depression, which occurs at individual synapses, can be represented in terms of a sin-
gle scalar variable ¢.)> Let N(¢) denote the number of excitatory neurons active at
time ¢, with P (n, t) = Prob[N (¢) = n] evolving according to the master equation (1)
with M = 1:

dP(n,1t)

T =T_(n+1)Pn+1,1)

2In order to relate the population depression variable g to what is happening at individual synapses, we
label individual neurons within an excitatory network by the index a = 1,..., N and assume that the
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+ T (n—1,0)P(n—1,1) (44)
— [T_(n) + T4 (n, t)]P(n, t)
with P(—1,¢) =0. The transition rates are taken to be of the Wilson-Cowan form
T_i(n)y=an, Ty(n,t)=NF(qt)n/N+1), (45)
where [ is an external input, and g (¢) satisfies

N
kr(1=q(0) —k-X(q@®), X(1)= % (46)

dq_
dr

The master equation (44) is non-autonomous due to the dependence of the birth rate
T, on ¢ (t), with the latter itself coupled to the associated jump Markov process via
the depletion rate k_ X (¢). Thus equation (46) is only defined between jumps, during
which g evolves deterministically.

The system defined by equations (44)-(46) is an example of a so-called stochas-
tic hybrid model based on a piecewise deterministic process. This type of model
has recently been applied to genetic networks [55] and to excitable neuronal mem-
branes [44, 52, 56]. In the latter case, the hybrid model provides a mathematical
formulation of excitable membranes that incorporates the exact Markovian dynamics
of single stochastic ion channels. Moreover, the limit theorems of Kurtz [48] can be

neurons are globally coupled. Suppose that the firing rate r, of the ath neuron evolves according to

N
d}’a —1
dr:_r‘”'F(N };qabrb‘i‘h),

dqap
dt

Summing the second equation with respect to b and dividing through by N leads to the following equation
for ga = N~ S0, qab,

=k+(1 —qap) — k—qap7p-

d
=kt (1 - ga) — k—gax,

provided that the following mean-field approximation holds:
1Y 1Y 1Y

If we then average the first equation with respect to @ and again impose the mean field approximation, we
see that

dx N
-1

—=- N F(gax +h).
=X HNTI Y Flgax+h)

a=1
Finally, noting that g, (¢) — ¢(t) for sufficiently large ¢ (after transients have disappeared), we recover
equations (42). In constructing a stochastic version of the network, we will assume that the above mean-
field approximation still holds even though the activity variables are now random. See [70] for a recent
discussion of the validity of mean-field approximations in a stochastic network model with synaptic de-
pression.
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adapted to prove convergence of solutions of the hybrid model to solutions of a cor-
responding Langevin approximation in the limit N — oo and finite time, where N is
the number of ion channels within the membrane [44, 52].

In the case of our stochastic hybrid model of an excitatory network with synaptic
depression, we can heuristically derive a Langevin approximation by first carrying out
a Kramers-Moyal expansion of the master equation (44). That is, setting x = n/N and
treating x as a continuous variable, we Taylor expand the master equation to second
order in 1/N to obtain the Fokker-Planck equation

AP(x,1) 9 € 32
= —a[A(x, QP 0]+ ?W[B(x’ qQ)P(x,1)] 47)

with e = N~1/2,

Alx,q)=F(@x+1)—oax (48)
and

B(x,q) =F(gx + 1) +ax. (49)

The solution to the Fokker-Planck equation (47) determines the probability density
function for a corresponding stochastic process X (¢), which evolves according to the
Langevin equation

dX = A(X, Q)dt +eb(X, Q) dW: (1) (50)

with b(x,q)* = B(x,q), Wi(t) an independent Wiener process and, from equa-
tion (46),

dQ =[ks(1— Q) —k_XQ]dt. (51)

Following along similar lines to the E-I network, we can also include an extrinsic
noise source by decomposing the drive to the excitatory population as

I=h+-—2_£@) (52)
_ o,

NG

where # is a constant input and £(1) is a white noise term of strength . Substituting
for I in equation (50) and assuming that o is sufficiently small, we can Taylor expand
to first order in o to give

dX=AX, Q)dt +eb(X, Q)dW(t) +oa(X, Q)dW (1), (53)

where W is a second independent Wiener process and
a(x,q) = F'(gx + h)//Fo. (54)
Suppose that we have an ensemble of excitatory networks with synaptic depression

labeled =1, ..., N, each of which supports a stable limit cycle (x*(9), ¢*(0)) in
the deterministic limit. Carrying out a stochastic phase reduction along similar lines
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to that of the E-I network, we obtain the following system of Stratonovich Langevin
equations:

2
de® = [a) - %9(@00)} dr + e (©W) dw™ (1)

+oa(@W)dw () (55)
foru=1,...,N.Here

Q(0)=Zx(0)b(8)3b(©®), B©O)=Z(0)b(0),
a(0) = Zc(0)a(0),

(56)

with

a®) =a(x*(9).q%©), b®)=b(x*©®),q"®)),
ab(x,q) (57)

ab(6) = )
X lx=x*(8).9=¢*©®)

Thus, equations (55) and (56) correspond to equations (27) and (28) for M =1 and
Z1(0) = Z,(6). However, the functions ©2(0), «(6), B(0) implicitly depend on the
dynamics of the depression variable as seen in equation (57). We can now write down
the associated Fokker-Planck equation (34) and carry out the averaging procedure of
Nakao et al. [12]. The final result of this analysis is the steady state distribution ®q(¢)
for the phase difference ¢ of any pair of oscillators given by equation (39) with

1 m
s =5 / 0(©)a (0 +v)do, (58)
I

1 T
h(y) = o BOHBO + ) db’ (59)
T J-n

and o, B given by equation (56). An example plot of the periodic functions g(y/),
h(yr) for an excitatory network with synaptic depression is given in Figure 11. In
Figure 12 we plot an example of the distribution @ illustrating how, as in the case
of an E-I network, the synchronizing effects of a common extrinsic noise source are
counteracted by the uncorrelated intrinsic noise arising from finite-size effects.

6 Discussion

In this paper we extended the theory of noise-induced synchronization to a stochastic
Wilson-Cowan model of neural population dynamics formulated as a neural master
equation. We considered two canonical network structures that are known to exhibit
limit cycle oscillations in the deterministic limit; an E-I network of mutually inter-
acting excitatory and inhibitory populations, and an excitatory network with synaptic
depression. In both cases, we used phase reduction methods and averaging theory to
explore the effects of intrinsic noise on the synchronization of uncoupled limit cycle
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Fig. 11 Plot of periodic functions g and i for an excitatory network with synaptic depression. Same
parameters as Figure 9(b).

oscillators driven by a common extrinsic noise source. We achieved this by first ap-
proximating the neural master equation by a corresponding neural Langevin equation.
Such an approximation is reasonable for sufficiently large system size N, and pro-
vided that there do not exist other stable attractors of the deterministic system [24].
One important consequence of intrinsic noise is that it broadens the distribution of
phase differences. The degree of broadening depends on the term N ~!4(0), see equa-
tion (39), where N is the system size and /(0) depends on the intrinsic dynamics of
each uncoupled limit cycle oscillator. Another result our study is that the reduction of
the master equation generates multiplicative rather than additive terms in the associ-
ated Langevin equation for both intrinsic and extrinsic noise sources. Multiplicative
noise can lead to clustering of limit cycle oscillators, as was demonstrated in the case
of an ensemble of uncoupled E-I networks.

0.3 T T T T T T
0.28
0.26
0.24
0.22
0.2
0.18
0.16
0.14
0.12

Dp(0)

phase difference ¢

Fig. 12 Probability distribution of the phase difference between a pair of excitatory networks with synap-
tic depression with g, & given by Figure 11. Solid curves are based on analytical calculations, whereas
black filled circles correspond to stochastic simulations of the phase-reduced Langevin equation. Same
parameters as Figure 9(b).
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It is important to point out that the master equation formulation of stochastic neu-
rodynamics developed here and elsewhere [21-24] is a phenomenological represen-
tation of stochasticity at the population level. It is not derived from a detailed micro-
scopic model of synaptically coupled spiking neurons, and it is not yet clear under
what circumstances such a microscopic model would yield population activity consis-
tent with the master equation approach. Nevertheless, if one views the Wilson-Cowan
rate equations [18, 19] as an appropriate description of large-scale neural activity in
the deterministic limit, it is reasonable to explore ways of adding noise to such equa-
tions from a top-down perspective. One possibility is to consider a Langevin ver-
sion of the Wilson-Cowan equations involving some form of extrinsic additive white
noise [57, 58], whereas another is to view the Wilson-Cowan rate equations as the
thermodynamic limit of an underlying master equation that describes the effects of
intrinsic noise [20-23]. As we have highlighted in this paper, the latter leads to a
multiplicative rather than additive form of noise.

There are a number of possible extensions of this work. First, one could consider
more complicated network architectures that generate limit cycle oscillations at the
population level. One particularly interesting example is a competitive network con-
sisting of two excitatory populations with synaptic depression (or some other form of
slow adaptation) that mutually inhibit each other. Such a network has recently been
used to model noise-induced switching during binocular rivalry [59-64]. Binocular
rivalry concerns the phenomenon whereby perception switches back and forth be-
tween different images presented to either eye [65, 66]. Experimentally, it has been
found that the eye dominance time statistics may be fit to a gamma distribution, sug-
gesting that binocular rivalry is driven by a stochastic process [67]. One possibility is
that there is an extrinsic source of noise associated with the input stimuli. A number
of recent models have examined dominance switching times due to additive noise in
a competitive Wilson-Cowan model with additional slow adapting variables [61-63].
On the other hand, Laing and Chow [59] considered a deterministic spiking neuron
model of binocular rivalry in which the statistics of the resulting dominance times
appeared noisy due to the aperiodicity of the high-dimensional system’s trajecto-
ries. The latter is suggestive of an effective intrinsic noise source within a rate-based
population model. A second extension of our work would be to introduce synaptic
coupling between the limit cycle oscillators. For example, in the case of E-I networks
such coupling could represent intracortical connections between columns in visual
cortex [37, 38]. The effects of mutual coupling on noise-induced synchronization
has been explored within the context of a pair of coupled conductance-based neu-
rons [15]. Finally, the neural master equation has certain similarities to individual-
based models in theoretical ecology, in particular, stochastic urn models of predator-
prey systems [68, 69]. Given that predator-prey systems often exhibit limit cycle
oscillations and receive extrinsic environmental signals, it would be interesting to
extend our results on neuronal population oscillators to explore the effects of demo-
graphic noise on the stimulus-induced synchronization of an ensemble of ecological
communities.
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