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The covariance of e(k) = [e l (k)e2(k)]  is 

E { e ( k ) e r ( k ) } = P ( k ) =  -----. i \ P r2(k) 

The  covariance, P(k) ,  evolves as 

The initial conditions for each estimate are 

a, (0)=22(0)=E{x(O)}  =x0 

and the initial covariance P(0) is 
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I 
Equation (22) can be expanded to yield the transition equations for the 

submatrices of P ( k )  shown in (21). For the optimal filter gain, identical 
state models for  the  two estimates g1 and f2, and the initial covariance of 
(23) it can then be shown that 

P I 2 ( k ) = P , ( k ) ,  k=O, 1,2,  ... . (24) 

Substituting (24) into (13) yields 

B(k)=P2(k)-P,(k). (25) 

Only Pl(k) and Pz(k) must be computed in order for the chi-square test 
statistic X(k) to account for the correlation between the errors el(k) and 
e2(k). Two n-state covariance models can be computed instead of the 
single 2n-state covariance model of (22). 

The test statistic h(k) is defined by (15).  However, it can be computed 
using the Cholesky decomposition [7], 

E ( k )  = LL 

by solving a triangular system of equations, and computing X(k) as an 
inner product of a vector with itself. 

IV. CONCLUSIONS 

The two-estimate technique developed by Kerr is suitable for use as a 
local-filter self-test that determines the validity of the filter estimate and 
covariance model by computing two estimates of the system state, one 
based on on line data and another based solely on a priori information. 
This technique is a long-term test, since at each check-time all integrated 
effects since system start-time are considered. The long-term aspect 
suggests that the two-estimate technique is well-suited to failure detection 
with sensors that are subject to soft failures, such as instrument bias shifts 
that require time to integrate into the measured variables. The test can  also 
be  used with suboptimal filters since it does not depend on the residuals 
being white in the unfailed case. 

For the particular case where the two estimates are computed based on 
the same model of the system state, and assuming the filter is optimal, the 
two covariances completely define  the  joint covariance of  the  errors in the 
two estimates. The threshold for the chi-square test can be obtained from 
tables of the chi-square distribution, chosen according to the number of 
degrees of freedom in the chi-square variable. The chi-square test yields a 
closed form for two and higher dimensions, and is computationally 
straightforward. 

Finally, it is important to note that the chi-square test requires 
knowledge of the cross-covariance of the errors in the two estimates. For 
the case  where  the two estimates are the Kalman filter estimate and the 
time-extrapolated a priori estimate, both computed assuming the same 
state model, the cross-covariance is the  same as the filter covariance (and, 
hence, does not require additional computation). An interesting applica- 
tion  is the comparison of two Kalman filter estimates, each based on 
different measurements, to  determine if they agree within the confidence 
limits for both. It is possible to  compute  the cross-covariance of the errors 
in these two estimates, however, Kerr’s twoellipsoid overlap test may 
require less computational effort and provide a framework for approxima- 
tion methods. 
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Stochastic Teams with Nonclassical Information 
Revisited: When is an Affine Law Optimal? 

M E S H  BANSAL AND TAMER  BASAR 

Abstract-In this  note we consider a parameterized family of two-stage 
stochastic  control problems with nonclassical information  patterns, 
which includes the well-known 1968 counterexample of Witsenhausen. 
We show that whenever the  performance index does not contain  a 
product term between the decision variables, the  optimal  solution is linear 
in the observation variables. The parameter space can be partitioned into 
two regions in one of which the  optimal solution is linear, whereas in the 
other it is inherently nonlinear. Extensive computations using two-point 
piecewise constant policies and linear plus piecewise constant policies 
provide numerical evidence that nonlinear policies may indeed outper- 
form linear policies when the  product term is present. 

I .  INTRODUCTION 
In the context of team decision theory it is  now customary to distinguish 

problems on the basis of their information structure, which may  be of the 
classical, quasiclassical,  or nonclassical type. 
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Fig. 1. The Gaussian test channel. 

By the classical or quasi-classical information structure,  we  refer to the 
situation of either static teams,  where  there is no explicit causal 
relationship between the control and information of different members, or 
dynamic teams with partially nested information structure [3]. In case  of 
classical or quasi-classical information structures,  the LQG team problem 
is known  to admit linear optimal solutions. 

However, if the decision maker j ' s  action affects the information of i 
and there is no way in which i can infer the information available toj ,  the 
information structure is of the nonclassical type. Such problems have 
defied all attempts for the development of realistic algorithms or 
representations of their solution. Recently, Papadimitriou and Tsitsiklis 
[5 ]  have studied the example provided by Witsenhausen [6] and have 
shown that the discrete version of the problem is NP complete, thus 
explaining the  failures in the  literature to attack the problem computa- 
tionally. Here we are interested in identifying the precise causes that 
contribute to the intractability of the problem (NP complete or worse). 

Hitherto, two basic problems with quadratic cost structure and 
nonclassical information patterns have been identified in the literature, 
one of which admits a nonlinear optimal solution whose exact form is yet 
not known, whereas the other one  is quite tractable and admits a linear 
optimal solution. 

Thc formcr is thc problcrn invcstigatcd by Witsenhausen, which we call 
w1: 

Problem WI: 

minimize J = E { k o u ~ + ( x + u o - u l ) 2 )  

with uo=yo(x)  and u l = y l ( x + u ~ + w )  

over all Borel measurable maps yo and yI. Here ko is a positive constant, 
and x and w are independent Gaussian random variables with zero mean 
and variances uI; and u:", respectively. 0 

It has been established by Witsenhausen [6] that an optimal design 
exists for this problem,  and an affine design is not necessarily optimal. 

The latter is the Gaussian test channel arising in communications, 
which, when viewed as a stochastic team problem, shows an information 
pattern of the nonclassical type. To further  describe this problem, 
consider the communication system depicted in Fig. 1, where a Gaussian 
message x is to be transmitted reliably over a noisy Gaussian channel. The 
problem here is to minimize the expected value of distortion (ul - x)* 
under a given power constraint E [ @  Q P'. Using Shannon's capacity 
theorem, it can be shown [2] that the optimal design for this problem is 
linear with uo = Ax and 

u l = E [ x l u o + w ]  

where h2u: = P'. 
If we replace the 'hard' constraint on the  power in the Gaussian test 

channel above by a soft constraint, the problem may be viewed in the 
control theoretic framework  as  Problem C below. 

Problem C: 

minimize J = E [ k o u ~ + ( u l - x ) Z ]  

w,ith uo=yo(x )  and u l = y l ( u o +  w )  

over all Borel measurable maps yo and yI.  0 
The optimal solution for Problem C, which may again be obtained 

using information theoretic bounds, is also linear [q, [4]. 
The Witsenhausen problem W1 may be rewritten as W2 below. 
Problem W2: 

minimize J = E [ k o ( u o - x ) 2 + ( u O - u I ) Z ]  

with uo=yo(x )  and ul=y l (uo+w)  

over all Borel measurable yo and y1 . 0 
Both Problems C and  W2 have identical information structures,  and yet 

only Problem C admits linear optimal solutions. We would like to identify 
the sources  of difficulty for problems endowed with this type  of 
nonclassical information structure.  Towards this end we will consider a 
general class of problems which contains both Problems C and  W2 as 
special cases, and then determine  the conditions under which this class 
will admit linear optimal solutions. 

The organization of this note is  as follows. In Section Il we formulate 
the basic LQG team problem, which includes the  two well-known 
problems with nonclassical information structure as special cases. In 
Section III we  solve this problem when the product term between the 
decision variables is absent, using some results from information theory. 
Section IV contains numerical results on optimal policies, and provides 
numerical evidence that nonlinear policies may indeed outperform  the 
optimal linear policy when the product term between the decision 
variables is present in the  performance index. The note ends with a 
Conclusion section which indicates some directions for further  work, and 
an Appendix. 

II. PROBLEM STATEMENT 

Towards  the goal identified in Section I, we first consider  the  general 
stochastic team problem PI below. We then restrict the coefficient of the 
u&l term to  be  zero and rewrite PI in a form  appropriate for our use. 

Note that both W2 and C can be viewed as special cases of P1 below. 
Problem PI: 

minimize J = E [ k , ' u ~ Z + k ~ u ~ 2 + k , ' l u ~ u ~ + s , ' l u ~ x + s ~ l u ~ x ]  

k ; > 0 ,   k ; > O ,  

With u: =?: (x)  and u," = y ; ( ~ ; + b x +  w ) .  0 

We fist  observe that the parameter b can, without loss of generality, 
assumed to be zero, since by substituting ui = u{ + bx and approp&ely 
redefining sil and sll we get  the equivalent problem p2 below. 

Problem  P2: 

minimize J = E [ k ~ u , ' 2 + k ; u ; z + k , ' , u , ' u ; + s ; l u ; ~ + ~ ; l ~ ; ~ ]  

k; >O, k ;  >O 

withu, '=y, ' (x)andu;=y;(u, '+w).  0 

If kL1 is zero,  we have two possibilities: either sll = 0 or s ; ~  # 0. For 

Problem P3: 
the former we arrive at the equivalent problem P3 below. 

minimize J = E [ k o ~ i + k ~ u : + S o ~ W l  

with u,,=yo(x) and ul=yl(uo+ w ) .  

This problem trivially admits  the solution 

~ o = - - x x d  u ~ = O .  so I 
2ko 

We therefore restrict ourselves  to the latter case (i.e., k i l  = 0 and s ; ~  

0 

\ 
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# 0) where the  cost function for P2 may be rewritten as 

J = E  [ 
and problem F’2 may be rewritten as problem P4 below. 

Problem P4: 

minimize J = E [ k o u ~ + s o l u o x + ( u l - x ) 2 ]  

with uo=yo(x) and u l = y l ( u o + w )  

4k’k‘  4k ‘s 2k 
where k o = e ,  sol=< and uI= -+ u ; .  C 

SI1  SI1 SI1 

The reason for rewriting the problem as P4 is that this is the  appropriate 
form for  the application of Shannon’s capacity theorem which we will 
utilize to prove  the existence and optimality of linear solutions and thus 
establish our claim that the complexity of the class of problems considered 
is due to the presence of the uoul term, coupled with the nonclassical 
information structure. 

m. OPTIMAL SOLUTION FOR P4 

Viewing problem P4 from an information theoretic viewpoint, we can 
say that the problem is  to minimize the expected value of a generalized 
distortion measure given by koui + soluox + (uI  - x ) ~ ;  i.e., in addition 
to the distortion (ul - x ) 2  of a standard Gaussian test channel, we have 
soft constraints on ui and uox. The encoder decision uo is based on the 
random variable x and the  decoder output is based on the channel output 
y = uo + w, which is a noise corrupted version of the  encoder output. 

Fig. 1 represents the team decision problem P4 from an information 
theoretic viewpoint. Using a basic property of mutual information, we 
have 

I { x ;  UI} <Z{uo; Y l  (3.1) 

where Z{x; u l }  represents the mutual information of the random variables 
x and ut, and I(u0; y }  denotes that of uo and y .  

Now, under the constraint E[u$ < P2, we have the inequality [8] 

where the expression on the right-hand side is the channel capacity. 
Furthermore,  we  have 

[ { x ;  UI} = H { x }   - H { X l u l }  2- log 27ieuf-- log 2aeA2 (3.3a) 
1 1 
2 2 

=-log > 1 2  

2 A  (3.3b) 

where A2 = E[(ul - x) * ] .  Here N ( x }  denotes the entropy of the random 
variable x. 

From (3.1)-(3.3) we obtain 

-log-d<-log- 1 uz 1 P2+u’, 
2 A2‘2 u t  

and using the monotonicity of logarithms 

(3 .4)  

(3.5) 

If Jp denotes the infimum of J under the constraint E[ua  = P2,  i.e., 

Jp inf J ( Y 0 ,  Yl) ,  

70.7,3E[?;(x)1=PZ 

we have the following series  of inequalities: 

Jp>  koP2+ inf A 2 +  inf solE[uox] 
€ [ 7 3  = P2 = p2 

= koP*2 + .:ut 
P*’+ u’, 

- Is01 IP*ux. (3.6d) 

Note that in going from (3.6a) to  (3.6b) we have utilized the Cauchy- 
Schwartz inequality. In (3.6d), P* > 0 necessarily exists since at P = 0 
the function is decreasing, and as P --f 00, Jp +-, implying that we can 
restrict our search  to a compact region. A continuous function on a 
compact set always admits a minimum, and in this case the value of P = 
P* which attains this minimum satisfies 

Now, since the right-hand side of (3.6d) is independent of P, we have 

Jop 2 inf J(yo, rl)= inf Jp 
W 7 1  P>O 

which gives us a lower bound for  the infimum of J .  Our next task is to 
show that this bound is tight, and can be achieved by linear policies yo and 
TI. 

Towards this end, we first find the minimum value of performance 
index achievable when yo is restricted to be linear, i.e., uo = Ax. Here the 
policy yI is taken to  be a general, possibly nonlinear, Bore1 measurable 
mapping. With uo as above,  the  optimal y~ is also linear; given by 

u , = E [ x l u o + w ] = - ( X x + w )  = p(u0+w) .  (3.9) 
Xu2 

(X2u:+u’,) 

The expected value of cost with the linear policy as above is 

(3.10) 

As before, &X) admits a minimum, and the X that attains this minimum is 
given by X*, where X* is a solution of (3.11) below: 

The minimum value of performance index over the linear class is then 
found by substituting the solution from  (3.11) into (3.10), i.e., 

(3.12) 

Note that (3.7) is identical to (3.11) with P* = - ( s g n  sol)X*ux. In 
other words, with X* = -(sgn sol)P*/u,, the optimal linear solution 
achieves the lowest possible value of distortion attainable, with (3.12) and 
(3.1%) yielding the same value. 

Hence, we see that the bound in (3.6) is indeed tight and is attained by 
linear policies for uo and uI ,  implying that the solution to this team 
problem with nonclassical information pattern is indeed linear. 

We now summarize the essentials of this result in the following 
theorem. 

Theorem 3.1: i)  Problem  P1, with kd, = 0, admits an optimal solution 
which is linear in the measurements available to the decision makers. The 
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TABLE I 
DEPENDENCE OF OPTIMAL COST ON ko 

S. 
NO. ko x* P* JW 

1 0.0125 -40.0002 -2.49973 X lo-’ - 125.999 
2 0.125 -4.0201 1 - 0.2462 10 - 17.939 
3 0.5 - 1.16663 - 0.763655 
4 0.1 - 0.741043 

- 8.262 
- 1.03525 

5 2.0 - 0.494034 - 1.20280 - 3.601 
- 5.754 

6 4.0 -0.311618 
7 8.0 

- 1.18139 
- 0.149754 - 0.791960 

- 1.748 

8 80.0 
- 0.537 

- 6 . 7 5 6 5 ~ 1 0 - ~   - 4 . 0 5 2 7 7 ~ 1 0 - *   - 2 . 0 2 7 ~ 1 0 - ~  

corresponding gain coefficients can be obtained by solving for a root of a 
fifth-order polynomial. The polynomial is given by (3.11) in terms of the 
parameters of a related Problem P4, and the optimum value for J is 
(3.12), or equivalently the right-hand side of (3.8), again in terms of the 
parameters of Problem P4. 

ii) If X* denotes the root of (3.11) rendering a minimum value to 
(3.12), the optimum solution for Problem P4 is given by 

uo=y; (x )=x*x  

u l = y ~ ( u o + w ) = [ x * u ~ / ( x * ’ u ~ + u ~ ) ] [ u , + w ] .  0 

N. NUMERICAL  RESULTS 

In this section we present some numerical results on optimal linear 
policies, along with numerical evidence that nonlinear policies may 
indeed outperform the optimal linear policy when a product term between 
the decision variables is present in the performance index. We shall 
consider two types of nonlinear policies, uo = E sgn x ,  as considered by 
Witsenhausen earlier, and uo = E sgn x + Ax, that is, a combination of 
the two-point policy and a linear policy. 

A .  Linear Optimal Policies for P4 

Knowing that linear policies are optimal over the class of  all strategies 
for Problem P4 we can find the optimal performance index for various 
values of the parameters. 

Table I gives the optimal strategies and corresponding costs when ko 
increases from a small positive value to larger values. Here so,, u:, and u’, 
are assumed to be fxed at 1 .O, 6.0, and 1 .O, respectively. An increase in 
ko leads to an increase in the signaling cost, and hence as ko increases the 
signal energy decreases. 

Table I1 gives the optimal strategies and the corresponding costs when 
sol increases from a negative value to a positive one.  Here ko, uf, and u’, 
are assumed to be fixed at 2.0, 6.0, and 1.0, respectively. When the sign 
of sol is reversed,  the signs of both A* and F* are reversed and the value of 
the performance index remains unchanged. 

Table LII gives the optimal strategies and the corresponding costs when 
u; increases from a small positive value, with ko, sol, and utfixed at 2.0, 
1.0, and 1.0, respectively. 

Table IV gives the optimal strategies and corresponding costs when u’, 
increases, with ko, sol, and uf fixed at 1.0, 1.0, and 6.0, respectively. 

B. Improvement Using Nonlinear Policies 

Witsenhausen [6] observed an improvement in the achievable perform- 
ance index when the linear policy is replaced by a policy of the form uo = 
E sgn x,  and the performance index includes the product term between uo 
and u l .  In particular, it has been observed that for Problem W2 (Section 
I), with koa: = 1 and ko -+ 0 the nonlinear policy above with E = ux 
performs better than the optimal linear policy. One can actually show that 
further considerable improvement can be made if E is chosen as -*ox, 
rather than as ux, the resulting bound on the asymptotic cost: (1 - Q/a)) 
= 0.363 comparing favorably to  the one reported in Witsenhausen [6]: 
2(1 - a) = 0.404. We shall next see that such improvements by 

TABLE II 
DEPENDENCE OF OPTLMAL COST  ON sol 

S. NO. sol x* P* Jopc 

1 - 16.0 3.99275 0.247863 - 197.938 
2 -4.0 1.05383 0.825094 - 17.182 
3 -1.0 0.494034 1.20280 
4 

-3.601 
0.0 e0.349297 f 1.210000 

5 
- 1.072 

0.01 -0.350774 - 1.21078 
6 

- 1.09280 
1 .O -0.494034 - 1.20280 - 3.601 

7 4.0 - 1.05383 - 0.825094 
8 

- 17.182 
16.0 -3.99275 - 0.247863 - 197.938 

TABLE III 
DEPENDENCE OF OPTIMAL COST ON uf 

S. No. ut x* P* J O P  

1 0.25 - 0.284124 - 6.96258 X lo-’ - 3.56 X IO-’ 
2 1.0 -0.398357 -0.343800 -0.2179 
3 6.0 -0.494034 - 1.20280 - 3.60072 
4 12.0 -0.465487 -1.55156 - 9.0524 
5 24.0 -0.427155 - 1.90585 -21.0318 

TABLE IV 
DEPENDENCE OF OPTIhlAL  COST  ON u’, 

S. No. ut, x* P* Jopt 

1 0.1 -0.578220 - 1.64733 -7 .718  
2 1 .o -0.741043 - 1.03525 
3 

-5.757 

4 
6.0 -0.797883 - 0.487520 -3.302 

12.0 
5 

-0.727443 -0.287621 
100.0 

- 2.445 
-0.530798 - 3 . 1 3 1 8 3 ~  lo-’ -1.594 

nonlinear policies of the type given above are parameter-specific, and do 
not wry over for arbitrary values of  the parameters. 

Towards this end we have Problem NL1. 
Problem NLI: 

minimize J =  { k o u ~ + k l u ~ + k o l u o u l  + s O l u ~ + s l l u l x }  

with 

U O = E  sgnxand u l = y l ( u o + t v )  

over all Bore1 measurable yI.  E 
Using the results from Appendix I, we can compute the optimum value 

of J for different values of E .  For  the  case where the parameters in NLI 
are: 

ko=l.Ol;k~=l;ko,=-2;sol=-0.02;  

SI1 =o; ut= 100; ut= 1 

the optimum value of J with E = 5 is - 0.5474 which is much better than 
the optimal linear policy which yields J = - 0.01. 

However, it is notable that a very small change of the parameters in 
either direction causes an  increase in the performance index achievable by 
this nonlinear policy to such an extent that it ceases to be better than the 
linear policy. For instance, if sII is changed to - 0.01, with all other 
parameters being the same, the optimal linear policy gives J = - 1.25, 
whereas the best policy of the form E sgn x gives J = - 1.39. With sol = 
- 1, a linear policy achieves J = - 2625 while the best policy in the form 

E sgn x achieves J = - 729. Similarly, if u: is increased to 500, all other 
parameters being the  same,  the optimal linear policy achieves -4.002, 
whereas the best policy in the form E sgn x achieves - 3.13.  

A similar situation is observed with changes in 511, ko, and k l ,  implying 
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TABLE V 
IMPROVEMENT IN J USING NONLINEAR POLICIES 

ko k1 kol so I SI1 .: .’, x € J 

2 1 0.1 2 2  6 1 x$= - 0.635424 0 - .6713 

2 1 2 2 2  6 1 X:,= - 0.438828 0.0 - 3.9677 

3 2  4.5 4 2  6 1 Xbpt= - 1.76136 0 - 1 1.4263 

1.1 1 -2.0 - 0.2 0 10 1 X i p =  -0.1127 0 -0.100 

1.01 1 - 2  - 0.02 0 80 1 A& = 1.006 X 0 -7.98 X 10-3 

1 . 1  1 -2.0 - 0.3  0.1 12 1 X:,= - 0.880412 0 - 0.4091 

2 1 0. I 2 2  6 1 - 0.635424 0.1 - 6.7307 
2 1 0.1 2 2  6 1 - 0.635424 - 0.1 - 6.7316 

2 1 2 2 2 6 1 -0.48828 0.1 - 3.9323 
2 1 2 2 2  6 1 -0,438828 -0.1 - 3.9348 

3 2 4.5 4 2  6 1 - 1.76136 0.1 - 11.4229 
3 2 4.5 4 2 6 1 - 1.76136 -0.1 -11.4230 

1 . 1  1 -2.0 -0.2 0 10 1 -0.1127 2 - 0.4797 
1 . 1  1 -2.0 -0.2 0 10 1 -0.1127 - 2  1.4984 

1.01 1 -2.0 -0.02 0 80 1 1 . 0 0 6 ~  IO-* 5 - 0.4691 

1 . 1  1 -2.0 - 0.3 0.1 12 1 0 2 - 0.4870 

that the best policy in the form E sgn x is better than the optimal linear 
policy only for very specific parameter values. 

We now consider the minimum value of the performance index 
attainable when we use a policy of  the  type 

yo(x) = E sgn x +  h u ,  

that is, we use a combination of the two-point distribution and a linear 
policy. Such a choice is motivated by the fact that a linear policy is 
optimal for the case when kol is zero and that in the presence of kol (and 
for some values of kol) a policy of the type E sgn x can outperform the 
optimal linear policy. 

The problem is now the same as problem NL1  earlier. Using 
expressions from Bansal [l! the improvement over the optimal linear 
policy  when a nonlinear term is included in uo, either with or without the 
linear term, may  now be observed. The corresponding numerical results 
are presented in Table V, where k&,, denotes the gain coefficient of the 
optimal (pure) linear policy yo. It is observed that in some cases the policy 

ydx) = h&x+ E sgn x for fixed E 

actually performs worse than the policy X&x. However, improvements in 
J are possible in the presence of a nonzero kol (over that achieved by the 
best linear policy) by including also the E sgn x term. This improvement 
has been observed particularly when lkoll is large, close to its limiting 
value of f m. However, it seems that the other parameters SO,, SI I ,  

uf. etc.,  also play a significant role and improvement is particularly 
pronounced when uyut ,  is large. 

V. CONCLUSIONS 

In this note we have shown that when the performance index does not 
contain a product term between the decision variables, the LQG team 
problem with two decision makers indeed admits optimal policies which 
are affine, even when the information structure is nonclassical. However, 
when the performance index contains a product term between the two 
decision variables, the best linear solution ceases to be optimal, with a 
corrective term E sgn x added to the first agent’s policy leading to 
significant improvements over the best cost attainable under linear 
policies. Such a term  alone (i.e.! without a linear part) does not 
necessarily outperform the best linear policy, except in a rather restricted 
region in the parameter space. 

The proof given here  on  the existence of linear policies as solutions of 
Problem P4 can be carried  over  to a vector version of P4 where all 
variables are of the same dimension, by working this time with 
expressions for the mutual information between two random vectors. 

There,  again,  the optimal solution will be linear when a cross term 
between the decision vectors of the two agents is absent in the cost 
function. Furthermore, for the  case when the first decision maker bases 
his decision not on  the pure observation x, but on a noise cormpted 
version of it, it has been shown in Bansal [l] that the optimal solution is 
also linear, provided that the product term uoul does not appear in the 
performance index. The best attainable performance when this cross  term 
is present still remains today as an open problem. 

APPENDIX 1 

In this Appendix we obtain an  expression  for  the value of Problem NL1 
as a function of the parameter E. Toward this end, we first  rewrite NL1 in 
the equivalent form. 

Problem NL2: 

+(sol-% kol)  u,,x-$x2] 

with 

over all Bore1 measurable yI. 
Clearly,  the optimal uI  is E[zly] 

wherey=u,+w=EsgnxX+w 

and 

Next, we find E[uoly] and E[x ly ] .  
The density for E sgn x = uo is 

1 1 
2 

2 6(uo-E)+- q u o + € )  

and convolving this with the density for w we find the density for y to be 
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Therefore, 

PC0 

and 

=d% a, Tanh - . EY 
0: 

The minimum achievable J ,  with uo = E sgn X ,  is 

Since 

E [ u 3  = E 2  

and 

we have 

and 

Therefore,  the achieved value of J is 

where 

cosh 9 dy= 1 - 6  - 1 exp ($) [ij 
0: a, 

where Lis the integral 

The value of this integral can be numerically evaluated and we can, 
therefore, find the best performance achievable with uo = E sgn x. 
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